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We consider the six-sphere S6 = G2/SU(3) and its twistor space Z = G2/U(2)
associated with the SU(3)-structure on S6. It is shown that a Hermitian Yang-Mills
connection (instanton) on a smooth vector bundle over S6 is equivalent to a flat
partial connection on a vector bundle over the twistor space Z . The relation with
Tian’s tangent instantons on R7 and their twistor description are briefly discussed.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765065]

I. INTRODUCTION AND SUMMARY

The twistor description of solutions to chiral zero-rest-mass field equations on the six-
dimensional space C6 or its real forms with various signatures (see, e.g., Ref. 1) was general-
ized recently to Abelian2, 3 and non-Abelian4 holomorphic principal 2-bundles over the twistor
space Q′

6 ⊂ CP7 \ CP3, corresponding to solutions of the 3-form self-duality equations on C6.
The twistor approach was also extended to maximally supersymmetric Yang-Mills theory on C6.5

Twistor methods have also been applied in the study of scattering amplitudes in this theory (see,
e.g., Ref. 6).

The goal of our paper is to describe instantons in gauge theory on Euclidean six-dimensional
space (i.e., the bosonic sector of maximally supersymmetric Yang-Mills theory) by using twistor
methods. Recall that instantons in four dimensions are nonperturbative gauge-field configurations
solving conformally invariant first-order anti-self-duality equations, which imply the full Yang-Mills
equations.7 The twistor approach allows one to describe instanton solutions and their moduli space
very efficiently.8–10 We will apply it to study gauge instantons on the six-dimensional sphere S6,
which is a natural compactification of R6. Our considerations are based on papers studying twistor
spaces associated with higher-dimensional manifolds11–19 as well as on papers considering instanton
equations in dimensions higher than four.20–29 Here, we consider instanton equations only on S6.
However, our results can be generalized to any nearly Kähler manifold in six and higher dimensions
as well as to some other manifolds with G-structure.

We recall some definitions to clarify our purposes. Let X be a Riemannian manifold of dimension
2n. We define the metric twistor space of X as the bundle Tw(X) → X of almost Hermitian structures
on X (i.e., almost complex structures compatible with the metric g on X and its orientation) associated
with the principal bundle P(X, SO(2n)) of orthonormal frames of X, i.e.,

Tw(X ) := P(X, SO(2n)) ×SO(2n) SO(2n)/U(n) . (1.1)

It is well known that Tw(X) can be endowed with an almost complex structure J , which is integrable
if and only if the Weyl tensor of X vanishes identically when n > 2.11 In the case n = 2, the
Weyl tensor has to be anti-self-dual.9, 30 However, if the manifold X has a G-structure (which is
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not necessarily integrable) then one can often find a subbundle Z of Tw(X) associated with the
G-structure bundle P(X, G) for G ⊂SO(2n), such that an induced almost complex structure (also
called J ) on Z is integrable. Many examples were considered in the literature.11–13, 15–17

The six-sphere S6 provides an interesting example. Considered as the round sphere

S6 = Spin(7)/Spin(6) , (1.2)

its metric twistor space is

Tw(S6) = Spin(7)/U(3)
CP3−→ S6, (1.3)

(see, e.g., Refs. 14 and 17), which may be recognized as a six-dimensional quadric38 Q6 in CP7.
Alternatively, one may consider the six-sphere as a nearly Kähler homogeneous space with SU(3)-
structure, namely

S6 = G2/SU(3) . (1.4)

Then,

Z = G2/U(2)
CP2−→ S6 (1.5)

is a complex subbundle of Tw(S6).11–13, 16 Note that Z can be identified with a five-dimensional
quadric Q5 ⊂ CP6, and obviously Q5 ⊂ Q6 = Tw(S6). The twistor space (1.5) is a bundle of
almost complex structures J on S6, which are parametrized by the complex projective space CP2 at
each point of S6.

There was an attempt,31 not quite successful, to obtain instanton-type configurations on S6 from
holomorphic bundles over Tw(S6). However, natural instanton equations on S6 (as well as on R6) are
the Donaldson-Uhlenbeck-Yau (DUY) equations,21, 39 which are SU(3) invariant but not invariant
under the SO(6) transformations on the round six-sphere.

The DUY equations are well defined on S6 = G2/SU(3), and their solutions are natural connec-
tions A on pseudo-holomorphic vector bundles E → S6.32 We will show that such bundles (E,A)
are pulled back to complex vector bundles (Ẽ, Ã) over the complex twistor space Z = G2/U(2)
with flat partial connection Ã. For the definition and discussion of such connections, see, e.g., Refs.
19, 33, and 34. The bundle Ẽ → Z is not holomorphic. We would like to emphasize two outcomes
of our study of instantons on S6:

(i) the reduced twistor space Z ↪→Tw(X) of X may be more suitable for describing solutions of
field equations on manifolds X with G-structure than the metric twistor space Tw(X),

(ii) the twistor description of gauge instantons in dimensions higher than four may lead to non-
holomorphic bundles over the reduced twistor space Z even if Z is a complex manifold.

II. NEARLY KÄHLER STRUCTURE ON S6

A. Almost complex structure

Let us consider the principal fibre bundle

G2 −→ G2/SU(3) = S6 (2.1)

with the Lie group SU(3) as the structure group. Let {ea} with a = 1, . . . , 6 be a (local) coframe on
S6 compatible with the SU(3)-structure and {ei} with i = 7, . . . , 14 be the components of an su(3)-
valued connection on the bundle (2.1). Using ea, one can introduce an almost complex structure J
on S6 such that

J θα = i θα, α = 1, 2, 3 , for θ1 := e1 + i e2, θ2 := e3 + i e4, θ3 := e5 + i e6, (2.2)

as well as define forms

ω := i
2

(
θ1 ∧ θ 1̄ + θ2 ∧ θ 2̄ + θ3 ∧ θ 3̄

)
and � := θ1 ∧ θ2 ∧ θ3 . (2.3)
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B. Flat connection on S6

It is convenient to work with the matrices

θ := κ

(
θ1 θ2 θ3) , θ̄ := κ

(
θ 1̄ θ 2̄ θ 3̄

)
, (2.4)

B := σ

⎛
⎝ 0 θ3 −θ2

−θ3 0 θ1

θ2 −θ1 0

⎞
⎠ and B̄ := σ

⎛
⎝ 0 θ 3̄ −θ 2̄

−θ 3̄ 0 θ 1̄

θ 2̄ −θ 1̄ 0

⎞
⎠ (2.5)

with κ =
√

2
3 and σ =

√
1
3 . Using (2.4) and (2.5), one can introduce a flat Lie G2-valued connection

A0
35 on the trivial bundle G2 × S6 → S6 as

A0 =
⎛
⎝ �̄ −θ† B

θ 0 θ̄

B̄ −θ̄† �

⎞
⎠ with � = ei Ii and �̄ = ei Īi = −ei I �

i , (2.6)

where Ii = −I †
i are 3 × 3 matrix generators of the group SU(3) and � = eiIi is the canonical

connection in the bundle (2.1).

C. Maurer-Cartan equations on S6

The flatness of the connection (2.6) (see Ref. 35) means that there exists a local G2-valued
function L, which is a coset representative of G2/SU(3) such that A0 = L−1d L . Note that L is a
local section of the bundle (2.1). For the curvature F0 = dA0 + A0 ∧ A0, we find

F0 =
⎛
⎝ R̄ − θ†∧θ + B∧B̄ −(dθ†+�̄∧θ†+B∧θ̄†) dB+�̄∧B−θ†∧θ̄+B∧�

dθ + θ∧�̄ + θ̄∧B̄ −(θ∧θ† + θ̄∧θ̄†) dθ̄ + θ̄∧� + θ∧B
dB̄+B̄∧�̄−θ̄†∧θ+�∧B̄ −(dθ̄†+�∧θ̄†+B̄∧θ†) R − θ̄†∧θ̄ + B̄∧B

⎞
⎠ . (2.7)

From F0 = 0, it follows that

d

⎛
⎝ θ1

θ2

θ3

⎞
⎠ + � ∧

⎛
⎝ θ1

θ2

θ3

⎞
⎠ = 2√

3

⎛
⎝ θ 2̄ ∧ θ 3̄

θ 3̄ ∧ θ 1̄

θ 1̄ ∧ θ 2̄

⎞
⎠ ⇒ dθα + �α

β ∧ θβ = T α , (2.8)

where � = (�α
β ) = (�i I α

iβ) is the canonical connection on the tangent bundle TS6 associated to the

bundle (2.1), and where T α = 1
2 T α

β̄γ̄
θ β̄ ∧ θ γ̄ is the intrinsic torsion of � (see, e.g., Ref. 36). Equation

(2.8) and its complex conjugate constitute the Maurer-Cartan equations on the sphere S6.
The curvature R = d� + � ∧ � of the connection � is read off (2.7) by equating to zero its

lower right (or upper left) block,

R = θ̄† ∧ θ̄ − B̄ ∧ B = 1

3

⎛
⎝ 2θ11̄−θ22̄−θ33̄ 3θ12̄ 3θ13̄

3θ21̄ −θ11̄+2θ22̄−θ33̄ 3θ23̄

3θ31̄ 3θ32̄ −θ11̄−θ22̄+2θ33̄

⎞
⎠ , (2.9)

where θ11̄ = θ1 ∧ θ 1̄ etc. Also, from (2.8) we see that the almost complex structure (2.2) on S6 is
not integrable due to the torsion Tα , which is a (0,2)-form with respect to J. It is easy to show that

dω = 3ρ Im� and d� = 2ρ ω ∧ ω , (2.10)

where ρ ∈ R is proportional to the inverse radius of S6. The pair (ω, �) of forms subject to (2.10)
turns S6 into a nearly Kähler manifold (see, e.g.,Refs. 16,32, and 36). It comes with a non-integrable
SU(3)-structure.
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D. Hermitian Yang-Mills equations

Consider an oriented 2n-dimensional Riemannian manifold X2n with an almost complex struc-
ture J and a complex vector bundle E over X2n with a connection A. According to Bryant,32 a
connection A on E defines a pseudo-holomorphic structure if it has curvature F = dA + A ∧ A of
type (1,1) with respect to J, i.e., if F0,2 = 0 = F2,0.

One can endow the bundle E with a Hermitian metric and choose A to be compatible with the
Hermitian structure on E. If, in addition, ω is an almost Hermitian structure on (X2n, J) and c1(E)
= 0,40 then the equations

F0,2 = −(F2,0)† = 0 and ω�F := ωabFab = 0 (2.11)

are called the Hermitian Yang-Mills equations. The notation ω� exploits the underlying Riemannian
metric g = δabeaeb. In the case of an integrable almost complex structure J on X2n, these equations
were introduced by Donaldson and Uhlenbeck and Yau.21

We notice that the canonical connection � on the tangent bundle of S 6 = G2/SU(3) satisfies the
DUY Equation (2.11). In other words, its curvature obeys R2, 0 = 0 = R0, 2 and ω� R = 0 with ω

given in (2.3). This is easily seen from the explicit form (2.9) of the curvature R.

III. TWISTOR SPACES OF THE SIX-SPHERE

A. Twistor spaces of S6

We mentioned in the Introduction that one can associate with S 6 two different twistor spaces,
both with an integrable almost complex structure. The larger one, Tw(S6) = Spin(7)/U(3), belongs
to the round sphere S6 = Spin(7)/SU(4) having the full Lorentz symmetry SO(6) ∼= SU(4)/Z2 on
the tangent spaces and the Levi-Civita connection. The smaller twistor space, Z = G2/U(2), is
associated with the nearly Kähler coset space S6 = G2/SU(3) having the canonical connection �

with a torsion given in (2.8). The space Z is a complex submanifold of Tw(S6). Note that the
Hermitian Yang-Mills Equation (2.11) on S6 is SU(3) invariant but not invariant under the full
orthogonal group SO(6). This shows that the reduced twistor space Z is more suitable than Tw(S6)
for a description of instantons on S6.

B. Coset representation of CP2

Let us consider the projection

π : Z −→ S6 = G2/SU(3) (3.1)

with fibres

CP2 = SU(3)/U(2) . (3.2)

Let JCP2 be a complex structure on CP2, {yα} homogeneous coordinates on CP2 and

λ1 = y1

y3
and λ2 = y2

y3
(3.3)

be local complex coordinates on the patch U3 = {y3 �= 0} ⊂ CP2.
One can choose as a coset representation of CP2 the matrix

V = 1

γ

(
W �

−�† 1

)
:= 1

γ

⎛
⎝ W11 W12 λ1

W21 W22 λ2

−λ̄1̄ −λ̄2̄ 1

⎞
⎠ ∈ SU(3) , (3.4)

where

γ 2 := 1 + �†� = 1 + λ1λ̄1̄ + λ2λ̄2̄ and W = W † = γ · 12 − 1

γ + 1
��† . (3.5)
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It is a local section of the bundle SU(3) → CP2 = SU(3)/U(2). From (3.4) and (3.5), it is easy to
see that

W� = � and W 2 = γ 2 − ��† ⇔ V †V = 13 = V V † . (3.6)

C. Flat connection on Z

Using the group element (3.4) to parametrize the typical CP2-fibre in (3.1), we introduce a flat
connection Â0 on the trivial bundle G2 × Z → Z as

Â0 = V̂ †A0V̂ + V̂ †dV̂ with V̂ =
⎛
⎝ V̄ 0 0

0 1 0
0 0 V

⎞
⎠ ∈ G2 , V ∈ SU(3) , (3.7)

where A0 is given in (2.6). One gets

Â0 =

⎛
⎜⎝

¯̂� −θ̂† B̂

θ̂ 0 ¯̂θ
¯̂B − ¯̂θ† �̂

⎞
⎟⎠ =

⎛
⎜⎝ V̄ †�̄V̄ +V̄ †dV̄ −V̄ †θ† V̄ † BV

θ V̄ 0 θ̄V

V † B̄V̄ −V †θ̄† V †�V +V †dV

⎞
⎟⎠ , (3.8)

and for the curvature F̂0 = dÂ0 + Â0 ∧ Â0, we obtain

F̂0 =

⎛
⎜⎝

¯̂R − θ̂†∧θ̂ + B̂∧ ¯̂B −(dθ̂† + ¯̂�∧θ̂† + B̂∧ ¯̂θ†) dB̂+ ¯̂�∧B̂+B̂∧�̂−θ̂†∧ ¯̂θ

dθ̂ + θ̂∧ ¯̂� + ¯̂θ∧ ¯̂B −(θ̂∧θ̂† + ¯̂θ∧ ¯̂θ†) d ¯̂θ + ¯̂θ∧�̂ + θ̂∧B̂

d ¯̂B+�̂∧ ¯̂B+ ¯̂B∧ ¯̂�− ¯̂θ†∧θ̂ −(d ¯̂θ† + �̂∧ ¯̂θ† + ¯̂B∧θ̂†) R̂ − ¯̂θ†∧ ¯̂θ + ¯̂B∧B̂

⎞
⎟⎠ .

(3.9)

D. Maurer-Cartan equations on Z

From the flatness F̂0 = 0 with (3.8) and (3.9), it follows that

¯̂θ† = V †θ̄† ⇒
⎛
⎝ θ̂1

θ̂2

θ̂3

⎞
⎠ = 1

γ

⎛
⎝ W11 W12 −λ1

W21 W22 −λ2

λ̄1̄ λ̄2̄ 1

⎞
⎠
⎛
⎝ θ1

θ2

θ3

⎞
⎠ and

B̂ = V̄ †BV = σ

⎛
⎝ 0 θ̂3 −θ̂2

−θ̂3 0 θ̂1

θ̂2 −θ̂1 0

⎞
⎠ , (3.10)

where θ̂ α are (1,0)-forms with respect to π∗ J ⊕ JCP2 . The latter is not integrable since

d

⎛
⎝ θ̂1

θ̂2

θ̂3

⎞
⎠ + �̂ ∧

⎛
⎝ θ̂1

θ̂2

θ̂3

⎞
⎠ = 2√

3

⎛
⎝ θ̂ 2̄ ∧ θ̂ 3̄

θ̂ 3̄ ∧ θ̂ 1̄

θ̂ 1̄ ∧ θ̂ 2̄

⎞
⎠ ⇔ dθ̂ α + �̂α

β ∧ θ̂ β = T̂ α , (3.11)

and we see a non-vanishing torsion T̂ α with (0,2)-components. Here, the connection on the tangent
bundle TZ reads

�̂ = V †�V + V †dV =

⎛
⎜⎝

C11+b C12 θ̂4

C21 C22+b θ̂5

−θ̂ 4̄ −θ̂ 5̄ −2b

⎞
⎟⎠ , (3.12)

where (
C 0
0 0

)
+

(
b · 12 0

0 −2b

)
=

⎛
⎝ C11+b C12 0

C21 C22+b 0
0 0 −2b

⎞
⎠ (3.13)
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is the canonical u(2)-valued connection on the principal bundle G2 → G2/U(2) = Z , and θ̂4, θ̂5 are
(1,0)-forms on the CP2 fibres of the twistor bundle (3.1).

E. Curvature of the connection �̂

Consider the curvature R̂ = d�̂ + �̂ ∧ �̂ of the connection �̂ on TZ given by (3.12) and (3.4).
One can easily calculate R̂ from (3.9) and obtain

R̂ =

⎛
⎜⎝ FC

11 + db − θ̂44̄ FC
12 − θ̂45̄ dθ̂4+(C11+3b)∧θ̂4+C12∧θ̂ 5

FC
21 − θ̂54̄ FC

22 + db − θ̂55̄ dθ̂5+C21∧θ̂ 4+(C22+3b)∧θ̂5

−(dθ̂ 4̄+θ̂ 4̄∧(C11+3b)+θ̂ 5̄∧C21) −(dθ̂ 5̄+θ̂ 4̄∧C12+θ̂ 5̄∧(C22+3b)) −2db + θ̂44̄ + θ̂55̄

⎞
⎟⎠,

=

⎛
⎜⎝

1
3 (2θ̂ 11̄ − θ̂22̄ − θ̂33̄) θ̂ 12̄ θ̂ 13̄

θ̂ 21̄ 1
3 (−θ̂11̄ + 2θ̂22̄ − θ̂33̄) θ̂ 23̄

θ̂ 31̄ θ̂ 32̄ 1
3 (−θ̂11̄ − θ̂22̄ + 2θ̂33̄)

⎞
⎟⎠ , (3.14)

where

FC = dC + C ∧ C =
(

FC
11 FC

12

FC
21 FC

22

)
∈ su(2) . (3.15)

The components of FC and db can be read off from (3.14). Equation (3.14) also tells us that

d

(
θ̂4

θ̂5

)
+ (C + 3b · 12) ∧

(
θ̂4

θ̂5

)
=

(
θ̂13̄

θ̂23̄

)
. (3.16)

Together with (3.11), this can be considered as the Maurer-Cartan equations on Z for the forms θ̂ A,
A = 1, . . . , 5. Those are (1,0)-forms with respect to an almost complex structure J− = π∗ J ⊕ JCP2

on Z defined via

J−θ̂ A = i θ̂ A . (3.17)

The non-vanishing (0,2)-type components of the torsion T̂ A obstruct the integrability of J−.

F. Integrable almost complex structure on Z

We may introduce a different almost complex structure J+ on Z with the property

J+ϑ A = i ϑ A for ϑ1 := θ̂1, ϑ2 := θ̂2, ϑ3 := θ̂ 3̄, ϑ4 := θ̂4 and ϑ5 := θ̂5 (3.18)

and denote ϑ A =: ϑ Ā. Then from (3.11) and (3.16), we obtain

dϑ A + �̃A
B ∧ ϑ B = T̃ A ,

where the connection �̃ = (�̃A
B ) and the torsion T̃ =(T̃ A) are given by

�̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11+b C12 0 0 0

C21 C22+b 0 0 0

0 0 2b 0 0

0 0 0 C11+3b C12

0 0 0 C21 C22+3b

⎞
⎟⎟⎟⎟⎟⎟⎠

and T̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2√
3
ϑ32̄−ϑ43̄

− 2√
3
ϑ31̄−ϑ53̄

− 2√
3
ϑ12+ϑ41̄+ϑ52̄

ϑ13

ϑ23

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.19)
Note that �̃ is the canonical u(2)-valued connection on the tangent bundle TZ , and T̃ is the torsion
of �̃. The torsion T̃ A in (3.19) has no (0,2)-components with respect to the almost complex structure
J+. Therefore, J+ is integrable, i.e., (Z,J+) is a complex manifold.
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IV. TWISTOR DESCRIPTION OF INSTANTON BUNDLES OVER S6

A. Pulled-back curvature

Consider a complex vector bundle E over S6 with a connection one-form A having curvature
F . Recall that (E,A) is called an instanton bundle if A satisfies the Hermitian Yang-Mills (HYM
or DUY) Equation (2.11), which on S6 can be written in the form

F0,2 = 0 ⇔ � ∧ F = 0 , (4.1)

ω�F = 0 ⇔ ω ∧ ω ∧ F = 0 . (4.2)

Here, (ω, �) given in (2.3) are forms defining on S6 a nearly Kähler structure. Note that, in this case,
(4.2) follows from (4.1) due to (2.10).

Consider the twistor fibration (3.1). Let (Ẽ, Ã) = (π∗E, π∗A) be the pulled-back instanton
bundle over Z with curvature F̃ = dÃ + Ã ∧ Ã. We have

F̃ = 1
2 F̃αβ ϑα ∧ ϑβ + F̃αβ̄ ϑα ∧ ϑβ̄ + 1

2 F̃ᾱβ̄ ϑ ᾱ ∧ ϑβ̄ = π∗F . (4.3)

Using the relation (3.10) between θα and θ̂ α as well as the definition (3.18) of ϑA, we obtain

F̃1̄2̄ = 1
γ

{
F1̄2̄ + λ1F2̄3̄ + λ2F3̄1̄

}
. (4.4)

Vanishing of F̃1̄2̄ for all values of (λ1, λ2) ∈ CP2 is equivalent to the instanton Eqs. (4.1) and (4.2).
In contrast, for F̃1̄3̄ and F̃2̄3̄, we obtain complicated expressions, which vanish for all λ1, λ2 only if
all components of the curvature F vanish. This yields the trivial case of a flat connection on E. In
homogeneous coordinates yα on CP2, this condition can be written as

F̃1̄2̄ = 0 ⇔ yαεαβγFβγ = 0 , (4.5)

where the indices ᾱ, β̄, . . . are raised with the metric δαβ̄ .

B. Correspondence of bundles

Let us denote by LA vector fields on Z of type (1,0) (with respect to the complex structure J+)
and by L Ā their complex conjugates, A = 1, . . . , 5. Then we can introduce a rank-2 subbundle41 T 0,1

(2)

of T 0,1Z spanned by L 1̄ and L 2̄ as well as a rank-4 subbundle T 0,1
(4) of T 0,1Z with {L 1̄, L 2̄, L 4̄, L 5̄}

as a basis. Note that F̃1̄2̄ is the curvature of a partial connection ∇T 0,1
(2)

(see Ref. 33) along the

distribution T 0,1
(2) , and we can extend it to a partial connection ∇T 0,1

(4)
along T 0,1

(4) by putting Ã4̄ =
0 = Ã5̄. Neither T 0,1

(2) , nor T 0,1
(4) is integrable as a subbundle of T 0,1Z and, therefore, we cannot

consider π*E as a Cauchy-Riemann (CR) bundle. This follows from the explicit form of the torsion
(3.19) of the U(2)-structure on Z . It would be interesting to repeat our analysis for the other three
known homogeneous nearly Kähler spaces and to check whether there exist special cases where the
integrability obstructions vanish. However, this is beyond the scope of our paper, which deals with
S6 only.

In summary, we have the following picture:

(4.6)

where (E, ∇) with ∇ = d + A is a Hermitian Yang-Mills bundle with curvature F = ∇2 satisfying
(4.1) and (4.2). From the above discussion, we obtain the equivalence of two assertions:

(i) (π*E, π*∇) has its curvature F̃ = π∗F vanishing along the distribution T 0,1
(4) ⊂ T 0,1Z .
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(ii) (E,A) is a HYM (instanton) bundle over S6.
The non-integrability of the distribution T 0,1

(4) means that the HYM equations on S6 are not
integrable, contrary to the self-dual Yang-Mills equations on S4. Hence, constructing instanton
configurations in six dimensions is a task more complicated than one might expect.

C. Relation with instantons on R7

Note that the cone C(S6) over S6 with the metric

ds2
7 = dr2 + r2ds2

S6 with r ∈ R+ (4.7)

is flat space, C(S6) = R7\{0}, for a proper normalization of the S6 coframe {ea} such that ρ = 1 in
(2.10). Employing the forms (ω, �) defining the nearly Kähler structure on S6, we introduce on R7

the 3-form

ψ := r2ω ∧ dr + r3 Im� . (4.8)

It is not difficult to show that (up to index permutation) its only nonzero coefficients are

ψâb̂ĉ = 1 for (âb̂ĉ) = (136), (426), (145), (235), (127), (347), (567) (4.9)

in the basis {dxâ} with coordinates xâ on R7 such that δâb̂x â x b̂ = r2. The above 3-form ψ defines a
G2-structure on R7, i.e., it is invariant under the G2 ⊂ SO(7) action. Its components (4.9) are often
called octonionic structure constants.

Consider now a complex vector bundle E over R7 with a connection A′ and curvature F ′.
Employing the Hodge operator * in R7, we impose on A′ the first-order differential equations

∗ψ ∧ F ′ = 0 ⇔ ψâb̂ĉF ′ b̂ĉ = 0, (4.10)

which are called G2-instanton equations.25 Their solutions automatically satisfy the Yang-Mills
equations on R7.

It was shown by Tian26 that solutions A′ of (4.10) obeying also

∂r�A′ = 0 and ∂r�F ′ = 0 (4.11)

are equivalent to solutionsA of the HYM Equations (4.1) and (4.2) on S6. He calls such configurations
tangent instantons on R7. Examples of such instanton solutions were discussed in Ref. 29 and 37.

A twistor description of solutions to (4.10) on any 7-dimensional Riemannian manifold X with
G2-holonomy was recently proposed by Verbitsky.18 Namely, he introduced a so-called CR twistor
space of X as the bundle π : S6X → X of unit six-spheres in the tangent bundle TX. For R7, this space
is a direct product manifold

Tw(R7) = R7 × S6 . (4.12)

It was shown18 that the complexified tangent bundle of Tw(X) has an integrable complex rank-3
subbundle T 0,1

(3) if X is a G2-holonomy manifold. For a bundle E over X with a connection A′, one can
introduce the pulled-back bundle (π∗E, π∗A′) over Tw(X). It was proven that G2-instanton bundles
over X correspond to CR-bundles over Tw(X) with a flat partial (0,1)-connection ∂̄π∗E defined on the
distribution T 0,1

(3) .18 In other words, the G2-instanton equations on X are equivalent to the equations
∂̄2
π∗E = 0 on Tw(X). This theorem obviously applies to the case of X = R7. Specializing then to

tangent solutions (in the sense of (4.11)) to the G2-instanton Equation (4.10) on R7 will yield
solutions of the HYM equations on S6. Thus, the twistor description of instantons on S6 is related to
the twistor description of G2-instanton solutions on R7.
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