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We investigate instantons on sine-cones over Sasaki-Einstein and 3-Sasakian manifolds. It is shown
that these conical Einstein manifolds are Kihler with torsion (KT) manifolds admitting Hermitian
connections with totally antisymmetric torsion. Furthermore, a deformation of the metric on the sine-cone
over 3-Sasakian manifolds allows one to introduce a hyper-Kihler with torsion (HKT) structure. In the
large-volume limit these KT and HKT spaces become Calabi-Yau and hyper-Kihler conifolds, respectively.
We construct gauge connections on complex vector bundles over conical KT and HKT manifolds which
solve the instanton equations for Yang-Mills fields in higher dimensions.
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I. INTRODUCTION

Kéhler geometry is by now an established mathematical
field with strong interrelations to theoretical physics,
especially to supersymmetry and string theory. Another
important geometry used in string theories and M-theory is
Sasakian geometry (see [1-3] for reviews and references),
especially in the AdS/CFT correspondence in the physi-
cally interesting dimensions five and seven. Here, we shall
focus on Sasaki-Einstein manifolds and on 3-Sasakian
manifolds, which are of dimension 2n + 1 and 4n + 3,
respectively.

On a manifold M of real dimension 2n + 1, Sasakian
geometry is sandwiched between Kéhlerian geometries on
particular manifolds of the two neighboring dimensions. In
particular, the metric cone over any Sasakian manifold is
Kihler, and over any 3-Sasakian manifold it is hyper-
Kihler. If the metric on a Sasakian manifold is Einstein,
then the metric cone over it is a Calabi-Yau manifold. As
examples, some well-known homogeneous and some
recently discovered inhomogeneous Sasakian spaces often
occur in string compactifications [4—6]. These manifolds
admit a connection with nonvanishing torsion and a struc-
ture group of SU(n) cSO(2n+1) or Sp(n) C SO(4n + 3),
respectively. There exist brane solutions of ten-dimensional
supergravity which interpolate between an AdS ,,; X Xo_,,
near-horizon geometry and an asymptotic geometry
M, x C(Xy_,), where M, is p-dimensional Minkowski
space and C(X,_,) is a metric cone over Xo_, (see e.g. [7,8]
and references therein). Such kinds of brane solutions in
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heterotic supergravity with Yang-Mills instantons on the
metric cones C(X,_,) were considered in [9,10]. We intend
to generalize them by considering sine-cones with a Kihler-
torsion structure instead of metric cones with a Kéhler
structure.

In this paper we will consider sine-cones over Sasaki-
Einstein and 3-Sasakian manifolds and solve instanton
equations for Yang-Mills fields on these conical manifolds.
Recall that for any Riemannian metric g on a manifold M,
the warped product metric g on C(M) =R, xM is
defined as

g=4dr +f3(rg. (1.1)
where r € R, and f(r) is a warping function. (C(M), g) is
called the metric cone over M if f(r) = r, and it is known
as the sine-cone over M if f(r) = sin r. It is known that the
sine-cone metric g over a Sasaki-Einstein or 3-Sasakian
manifold is Einstein [2].l We show that these conical
manifolds admit Kédhler with torsion (KT) structures, i.e.
on them there exists a Hermitian connection with a totally
antisymmetric torsion T = Jdo. Here, J is an almost
complex structure, and (-, -) = g(J-, -) is the fundamental
2-form. For T = 0 the Hermitian structure is Kihler.

We also show that for any 3-Sasakian manifold one can
deform the sine-cone metric ¢ in such a way that C(M)
will be a hyper-Kéhler with torsion (HKT) manifold.
HKT geometry has been described in detail e.g. in [11]
and intensively studied since then (see e.g. [12—15] and
references therein). In fact, these Hermitian manifolds
with three integrable almost complex structures J?,
a =1, 2, 3, are not hyper-Kéhler for nonvanishing torsion

1 . . .. .
The corresponding metric-cone metric is even Ricci-flat.
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T =J'dd' = J2d@* = J*d@®, but we will follow the
established terminology. Here, @ (-, -) = g(J%,-) are three
Hermitian 2-forms.

After introducing the KT and HKT structures on the sine-
cones over Sasaki-Einstein and 3-Sasakian manifolds, we
consider the appropriate instanton equations on these
conical manifolds. Such first-order gauge equations, which
generalize the Yang-Mills anti-self-duality equations in
d = 4 to higher-dimensional manifolds with special hol-
onomy (or, more generally, G-structure), were introduced
and studied both in the physical [16-18] and mathematical
[19-21] literature. Some instanton solutions were found e.g.
in [22-28]. Due to the foliated structure of the considered
conical KT and HKT manifolds, a natural ansatz for the
gauge fields reduces the instanton equations to matrix-
model equations. We discuss their simplest analytic and
numerical solutions.

This article is arranged as follows. In Sec. II we collect
various geometric facts concerning Sasaki-Einstein, 3-
Sasakian, Kihler-torsion and hyper-Kéhler with torsion
manifolds. We introduce the KT and HKT structures on
sine-cones over Sasaki-Einstein and 3-Sasakian manifolds. In
Sec. III we discuss the instanton equations in more than four
dimensions and specialize them for KT and HKT manifolds.
Then we describe an ansatz reducing these instanton equa-
tions to matrix equations and present some solutions.

II. HERMITIAN MANIFOLDS WITH TORSION
A. KT manifolds

A G-structure on a smooth orientable manifold M
of dimension m is a reduction of the structure group
GL(m, R) of the tangent bundle 7M to a closed subgroup
G C GL(m, R). Choosing an orientation and a Riemannian
metric g defines an SO(m)-structure on M. We assume that
m = 2n is even and that (M, g) is an almost Hermitian
manifold. This means that there exists an almost complex
structure J € End(TM), with J> = —13y;, which is com-
patible with the metric g, i.e. g(JX,JY) = g(X,Y) for all
X,Y € TM. One can introduce the fundamental two-form
® as

o(X,Y)=9(JX,Y) forX,Y €TM, (2.1)
and the canonical objects (g, J, w) define a U(n)-structure
on M. The additional existence of a complex n-form Q
reduces the U(n)- to an SU(n)-structure. It implies that the
almost Hermitian manifold (M, g,J) has a topologically
trivial canonical bundle. If the almost complex structure J
is integrable, then (M, g,J) is a Hermitian manifold and
(M, g,J,Q) is Calabi-Yau.

On any almost Hermitian manifold (M, g, J) one has a
Hermitian connection® with totally antisymmetric torsion

*This connection V = d + I preserves ¢, J and .
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T. Two particularly interesting cases arise when the torsion
T is the real part of either a (3,0)-form or a (2,1)-form. In
the former case, the manifold M is called nearly Kéhler
[29,30]. The latter case entails a property called Kihler-
torsion (KT) [31,32]. Namely, on a Hermitian manifold
(M, g,J) the KT connection is a Hermitian connection "
with antisymmetric torsion 7' given by

T = Jdw, (2.2)

where J acts on the p-form e® A --- A e as

J(e Ae A Netr)=Je AJe Ao N Jer

with Jed = Jéeb. (2.3)
Here {e“} with a=1,...,2n is a local frame for the
cotangent bundle 7*M, and J§ are the corresponding
components of the almost complex structure J. Note that
J is integrable in the KT case and nonintegrable in the
nearly Kéhler case. For traceless anti-Hermitian I" the KT
manifolds are called Calabi-Yau torsion [33].

B. Remark
Let

¢ i=e¥14+ie¥ and 67:=60/ with j=1,...n

(2.4)

constitute a local frame for the (1,0) and (0,1) parts of the
complexified cotangent bundle. Then J, g and @ may be
chosen as follows:

JoI =i/,  g=> 0/®6¢ and
J=1

w—%jilef/\ﬁj. (2.5)
Their nonvanishing components are thus given by
T =isd, T =-ish;,
gj,gzééj,; and a)j,;zééj,; (2.6)

with respect to the @-basis. For g~! and w~! we have

¢* =28% and w* = -2is*, (2.7)
C. Cones
For any Riemannian manifold (M, g) we define
Ca(M) = ((0,Ar) x M, g) with
g =dr’ + A’sin? (%)g (2.8)
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to be the sine-cone over M. Here r € (0, Ax) which is an
open interval, and so the volume of the sine-cone is
AvolM. In the infinite-volume limit A — oo the sine-cone
becomes the metric cone’

Coo(M) =C(M) = (R x M, g)
(2.9)

Note that
g = dr? + AZsin? </’;> g = N%sin?p(d7z*> +¢g), (2.10)

where

A T
902% and Tzlog(Zr—Otan§>@r:ZAarctan(%)

(2.11)

with 7 € R and a constant r, € R, . In the limit A — oo,
(2.11) simplifies to

7 = log <L> &r=rye’

ro

(2.12)

which are valid for the metric cone with

~ dr?
g=dr*+r’g=r (74—9) =r3e?(de* +g). (2.13)

It follows from (2.12) and (2.13) that both cones are
conformally equivalent to the cylinder

Cyl(/\/l) = (R X M,gcy1> with Geyl = dz* + g. (214)

D. Sasaki-Einstein manifolds

A (2n + 1)-dimensional Riemannian manifold (M, g)
is called Sasakian if the metric cone (C(M), §) is Kihler."
A Sasakian manifold (M,g) is Sasaki-Einstein if in
addition the metric g is Einstein. In this case the metric
cone C(M) is a Ricci-flat Kihler manifold (Calabi-Yau),
so its holonomy group is reduced from U(n) to SU(n).
Sasaki-Einstein manifolds have a reduced structure group
of SU(n) € SO(2n + 1). They are endowed with 1-, 2-, 3-
and 4-forms 5, w, P and Q, which can be defined in a local
orthonormal basis {e?}, a =1,...,2n + 1, as

One usually omits the adjective “metric” and simply says
“cone”.

“This is one of several equivalent definitions of Sasakian
manifolds [2].

with g =dr? + r2g.
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n:_82n+l, w:Zer—l A e,
=1
1
P=nAw and ina)/\a). (2.15)
These forms satisfy the relations
de’*!' = 2@ and dP =4Q. (2.16)

Note that, in the above basis, the torsion 7" of the canonical
su(n)-valued connection I on M is not totally antisym-
metric and has the components (see e.g. [9])

7n+1

b 2
e’ Ne
2n ’

T“ P’ net and T =p

2n+1be

(2.17)

where {a} = {a,2n+ 1} witha =1, ...,2n.

E. 3-Sasakian manifolds

A (4n + 3)-dimensional Riemannian manifold (M, g) is
called 3-Sasakian if the metric cone (C(M),g) on M
is hyper-Kihler. The structure group of M then is
Sp(n) € SO(4n + 3), and we let the index a run from 1
to 4n. Note that any 3-Sasakian manifold is Einstein and
can be endowed with three 1-forms n*, three 2-forms @%, a
3-form P and a 4-form Q with ¢ = 1, 2, 3 [1,2]. In a local
orthonormal co-frame {e®} where {a} = {a,4n + a},
these forms can be written as

7,,(1 — _e4n+ul7 (2.18)
n ' ) ) )
wl — (84]_3 VAN 84] + e4J_2 A e4j_l)’ (219)
=
n
o = Z (=¥ 73 A eVl 4 eVT2 A oY), (2.20)
=1
n ' ) ] )
= Z (%73 A e¥72 4 eVl A oY), (2.21)

J=1

1
P=— (Zna A wa+’7123)

a

— _% (E % A etta + el A 4nt2 A e4n+3>’
a

W

(2.22)

1 a a
ng;w N (2.23)

4n+a

The forms e and w” satisfy the differential identities
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detnta — e BN T _ g, (2.24)

do® = =2¢4 e A (2.25)
where ¢ is the Levi-Civita tensor. The torsion 7 of the
canonical sp(n)-valued connection I" on any 3-Sasakian
manifold takes the form (see e.g. [9])

LeP A et

3 S
TO==P ..e’ ne and T“=3Py, e

2 abé¢ (226)

T is not totally antisymmetric for the Einstein metric on M.

F. KT structure on sine-cones

A well-known theorem [2] states that, if (M,g) is a
k-dimensional Einstein manifold with Einstein constant
k—1, then the sine-cone (C(M),g) over M with the
metric (2.10) for A = 1 is Einstein with Einstein constant k.
Here we will show that the sine-cone over any Sasaki-
Einstein manifold is not only Einstein but also carries a
Kihler-torsion structure.

Consider the cylinder

CylM) = (Rx M, gy) with

oyl = 856" @ &b + 2@ 22 (2.27)

where {a} = {a,2n + 1} witha = 1, ..., 2n, and compare
it to the sine-cone

M?+2 .= Cy(M) = ((0, Ax) x M, ) (2.28)
parametrized via
g2nt2 :dr:d—(p, (pzi, teR, ¢e(0,n).
sing A
(2.29)

Then the local basis {&%, £2"+2} on the latter is defined as

¢% = Asinge® and ¢*"*? = Asinge*"t2=dr, (2.30)
and its metric reads
g= 5&;35& ® éi; 1Pt @ g2, (2'31)
Let us also introduce the 2-form
@ = Asinp(w + ¥t A e2112), (2.32)

where w is the 2-form defined in (2.15) and obeying (2.16).
It is easy to check that

dp= 20210 ma _ —%tan%&) A 32,

A sing
(2.33)
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The canonical almost complex structure J on M?"*2 is
fixed by g and @ via (2.4)—(2.6) but with the range of j
extended to n + 1.

Finally one can define the torsion

~ 2

T = Jdio = —Ktan%d) A 321 (2.34)
which is proportional to P from (2.15). Since T is of type
(2,1) 4+ (1,2) with respect to J, the almost complex
structure J is integrable, and we obtain a KT structure
on the sine-cone (2.28) over any Sasaki-Einstein manifold.

G. Conical HKT structure

The sine-cone

M4 = Cy (M) = ((0, Ar) x M. §) (2.35)

over a (4n + 3)-dimensional 3-Sasakian manifold (M, g)
with a metric (2.10) is an Einstein manifold since (M, g)
is Einstein. Since (M, "3 @3 + ¥ A €412 ¢) is
Sasaki-Einstein, the previous subsection applies, and one
can introduce a KT structure on M*"** by choosing the
2-form

@ = A2 SiIl2 ¢(w3 + e4n+] A €4n+2 + e4n+3 A €4n+4)

(2.36)

as in (2.32)—(2.34), where @? is defined by (2.21) and

A
et = dr, 7 = log <2r—0tan %) Q= %
(2.37)
Here {e?, e*4} = {e?, e¥t% ¥4} witha = 1, ...,4n s

a local basis of one-forms on the cylinder M x R with the
metric

gcyl = 5abea ® eb + 5ﬂye4n+ﬂ ® e4n+u’ (238)
where we introduced the index set {u} = {a,4}. Recall
that e’ and w® defined in (2.18)-(2.21), satisfy the

identities (2.24) and (2.25).
We have

1
% =~ wf et A e’ fora=1,...,4n,

5 (2.39)

where the components @9, of the 2-forms w” can be read
off from (2.19)—(2.21). For later use we define three more
2-forms,

1
w(j_ = 7,,];:”64)14#4 A e4n+u7 (240)

2
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where 77, are the components of the ’t Hooft tensor,

ny, = €5, and gy = g, = 5. (2.41)

Using (2.39)—(2.41), we may introduce on M*** three
almost complex structures J* with components

Je = g 5 and  J§UTH = yg 5 (2.42)
It is not difficult to show that
JOJP = —5%id + P17, (2.43)

i.e. the three almost complex structures define a quater-
nionic structure on M*"*4,

The 2-form @ in (2.36) is of type (1,1) with respect to J>.
Differentiating, we find

- B 2 B B
T = JPdao = —Xtang NG (2.44)
where we use local coframe fields
e = Asinge® and "t = Asinge* ™t (2.45)

on M*t* = Cy(M). Thus, M*** allows for a KT
structure.
In order to extend this to a HKT structure on M**+*, we
need three 2-forms
@ = N sin? o(f 0% + fr0%), (2.46)
where f| = f(¢) and f, = f,(¢) are yet undefined real
functions, and @* and w9 are given by (2.39) and (2.40),

respectively. Taking the exterior derivative of (2.46), we
obtain

1
do* = Azsinzfp{ (Blw“ + EBZSZ},e“"*ﬁ A e4”+7)

A ¥4 Byef e A a)y}, (2.47)
where
B, = fising + 2f; cos g — 2f5, (2.48)
B, = fosing + 2f, cos ¢ — 25, (2.49)
By = -2(f1 - f2). (2.50)

and the overdot indicates a derivative with respect to ¢. The
definitions of J* imply that

Jeaf = (=1)"Pwaf  and (2.51)
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]l e4n+l — _e4n+4’ JZe4n+1 — e4n+3’ J3 e4n+] — _e4n+2’
]1 e4n+2 — _e4n+3’ 1284n+2 — —64”+4, ]3 e4n+2 — e4n+1 ,
]1 e4n+3 — e4n+2’ J264n+3 — _e4n+l , JS e4n+3 — _e4n+4’

Jae4n+4 — e4n+(1‘ (252)

In [13] it has been proven that the HKT condition is
equivalent to

J'de' = J2da? = JPdad =T, (2.53)

where T is the torsion of the sp(n + 1)-valued hyper-
Hermitian connection on M**™*. Using (2.51) and (2.52) as
well as demanding that T is proportional to P from (2.22),
we obtain from (2.53) the constraints

Bl - Bz == B3 (254)

which are equivalent to the differential equations

fsin(p—l—2fcosrpz 0 and

fasing +2f5(cosp—1)+2f =0 for f = f| = f.
(2.55)

Solutions of these equations can be chosen in the form

c 2¢5 c
= and =
sin’g f2 cos*% + sin’g
2¢, 2c
= = —|— - s 2.56
i cos*4  sin’gp (2.56)

where ¢ and ¢, are yet arbitrary constants of integration. In
the limit A — oo we would like our HKT space M*"** to
coincide with the standard hyper-Kéhler metric cone C(M)
with vanishing torsion T = 0. This is achieved for

91

where c; is constant. Then for A — co we get
@ = 20, (@0 + 0%) = & with d&*=0. (2.58)

The metric on the HKT manifold M*** with three
Hermitian® structures (2.46) takes the form

G=f16.¢" ® & + f25,," @ &

=1 (}i@bé“ ® 45,4 ® e> (2.59)
2

>Note that the conditions (2.53) imply the integrability of the
almost complex structures (2.42).
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It is conformally equivalent, with conformal factor f»,
to the metric on the sine-cone C, (M) over a 3-Sasakian
manifold M. The simplest case occurs for the choice
¢y =0 when f| = f,.

III. INSTANTONS ON CONICAL KT AND
HKT MANIFOLDS

A. Instanton equations

Let X be a differential form of degree m — 4 on an m-
dimensional Riemannian manifold M, and let £ be a
complex vector bundle over M endowed with a connection
A. The Z-anti-self-duality (or instanton) equations are
defined as the first-order equations [21]

*F=-2ANF (3.1)
for the connection A with curvature F =dA+ A A A.
Here * is the Hodge duality operator on M. Taking the
exterior derivative of (3.1) and using the Bianchi identity,
we obtain

d« F+AAN*F = (-1)"«FAA+«HAF =0,
(3.2)

where the 3-form H is defined by

«H = dE. (3.3)

The second-order equations (3.2) differ from the standard
Yang-Mills equations by the last term involving a 3-form
‘H, which can be identified with a totally antisymmetric
torsion on M. This torsion term naturally appears in string-
theory compactifications with fluxes [34]. For dX = 0, the
torsion term vanishes and the instanton equations (3.1)
imply the ordinary Yang-Mills equations. The latter also
holds true when the instanton solution F satisfies dX A
F = 0as well, as e.g. on nearly Kéhler 6-manifolds, nearly
parallel G,-manifolds and Sasakian manifolds [9].

The torsionful Yang-Mills equations (3.2) are the varia-
tional equations for the action

S:—/Tr(]:/\*]:+}"/\]:/\2), (3.4)
M

and the instanton equations (3.1) can be derived from this
action using a Bogomol'nyi argument. In the case of a
closed form X, the second term in (3.4) is topological and
the torsion (3.3) disappears from (3.2).

If a manifold is endowed with a 4-form Q, a natural
choice for the (m —4)-form X in the instanton equa-
tions (3.1) will be its Hodge dual, £ « Q. Therefore, on
KT manifolds with m = 2n + 2 one should take

QKT: O AN@® in *f:—*QKT/\f. (35)

N =

PHYSICAL REVIEW D 90, 065028 (2014)

On HKT manifolds there exist three 2-forms @“, from
which one can build the 4-form

- 1 -
QHKTZEw“/\(D“ in *f:—*QHKT/\]:. (36)

B. Reduction to matrix equations

Recall that the instanton equations on the cone C(M)
over Sasaki-Finstein or 3-Sasakian manifolds M are
equivalent to the equations on the cylinder Cyl(M) [9]
with the metric

Gg=d* +g, (3.7)
where ¢ is the metric on M and 7 is related with r by (2.11).
Let us denote by G and H the structure groups of the
canonical connection on C(M) and M, respectively. In
the KT case we have (G, H) = (SU(n + 1),SU(n)), and in
the HKT case (G,H) = (Sp(n+ 1), Sp(n)). As a vector
space, the Lie algebra g = LieG decomposes into §) =
LieH and its orthogonal complement m,

g=hHd m. (3.8)
The vector space m can be identified with the linear span of
the orthonormal basis {e?} on T* M.

In any given irreducible representation p of g, the
generators /; of § and I, of m obeying the commutation
relations

1. 1] = £k, i 1a] = fal; and

ads) = f 0o+ 21, (3.9)
act on a representation space V = CV, i.e. p:g — End(V).
Consider a complex vector bundle £ — Cyl(M) such that
the fibers are copies of V. Since H is a closed subgroup of
G, it also acts on the fibres of £, but the restriction of our g-
representation p to the subalgebra ¥) in general decomposes
into a direct sum of several irreducible h-representations,
with the corresponding invariant subspaces comprising V.

The canonical connection I' on TM is always an
instanton [9,10]. On the bundle &, it induces the p(})-
valued connection (denoted by the same letter)

=T, (3.10)

Its curvature
.
R=dl +T AT = (dF’ + 3 Ful A Fk)li (3.11)

satisfies the instanton equations (3.1) [9,10].
Let us consider some matrix-valued functions X,(7) €
End (V) and introduce on £ a p(g)-valued connection

065028-6



INSTANTONS ON SINE-CONES OVER SASAKIAN MANIFOLDS

A:=T + X,e. (3.12)
For X, depending on all coordinates of Cyl(M), this is the
general form of a connection on the bundle £ — Cyl(M).
Below, we shall impose independence of X, on the
coordinates of M and certain equivariance conditions,
which will reduce (3.1) to ordinary differential equations
for X,
Recall that

de? = —FZ Ael + T8 = _Flf?i; A eb —I—ETZéeb A ec,

(3.13)

where f“ are the structure constants from (3.9). From
(3.12) and (3.13) it follows that

1 . N .
F:d.A‘i_A/\A:R'f'E([X&,XB}+T;5X€.)€a /\eh

+Xde A e+ T A ([1LX,) - f2.X;),  (3.14)

where R is given in (3.11) and X =4 4 x.. In [27] it was
shown that F solves the instanton equations (3.1) if the
following matrix equations hold:

1 Xa] = X

(Xa Xp] + T8, Xe = NE X+ f1N,(2).

(3.15)
(3.16)

Here N ¢

below for each case, and N; are some p()-valued functions
defined by (3.16) after resolving the algebraic constraints
(3.15) and substituting their solutions X, into (3.16). For
X, satisfying (3.15) and (3.16), we have

1s some constant tensor which we shall specify

1 T S B
.7-"—R+§N,»f’&ge“/\eb—f—Xg,(dr/\e“—i—ENggeb/\eC),
(3.17)

where the term with f ’a 5 satisfies (3.1) all by itself (as does
R) due to the properties of the coset G/H, and the term

proportional to X, solves (3.1) after the proper choice of
N? . to be specified below.

C. Instantons on conical KT manifolds

Consider the sine-cone M?"+2 = C, (M) over a Sasaki-
Einstein manifold M of dimension 2n 4 1. The geometry
of M and M?'*? has been discussed in Sec. II. In this
case, we have {a}={a,2n+ 1} with a=1,...,2n,
G =SU(n + 1), H = SU(n) and

su(n+1) = su(n) @ m. (3.18)
The sine-cone M*"*? is conformally equivalent to the
cylinder Cyl(M) with the local basis 1-forms e“ and

PHYSICAL REVIEW D 90, 065028 (2014)

e?"*2_ The group SO(2n + 2) acts on the tangent spaces of
both Cyl(M) and Cy(M). We have
so(2n+2)=su(n+1) ® u(l) & P, (3.19)
so the space of antisymmetric (2n + 2) X (2n + 2) matri-
ces can be split into three mutually orthogonal subspaces,
which defines P. The su(n) subspace contains the first two
terms in (3.17), which are thus Z-anti-self-dual. Using the
explicit form of the projector from so(2n + 2) to su(n + 1)

[17], one can show that the subspace m in (3.18) is spanned
by the 2-forms (regarded as antisymmetric matrices)

1
e2ntl a p2n+2 _2_a)abea Ae?  and
n

e? A M2 — Jaeb A 2t (3.20)
which satisfy the instanton equations (3.1). Here @, and J§,
are as defined in Sec. II. Hence, if we choose Nl’:j . in such a
way that the last term in (3.17) becomes a linear combi-
nation of the 2-forms (3.20), then F from (3.17) will also
solve the instanton equations (3.1).

From (2.17), (2.29), (3.17) and (3.20) we finally obtain

n +1
T = n Jy = —fboyy1 and
Til/?rl = 2Pab2n+l = —20),”, - _f2n+1 (321)
n
N =I5 = —+ lfb2n+l and
1
Noy™ =0 = f2"“. (3.22)

Substituting (3.21) and (3.22) into (3.15) and (3.16), we
arrive at

X = f Xy and [I;, X, 1] =0, (3.23)

1 .
(X, X, = f2F 1<X2n+l +2 X2n+1> + f1,N;(2),

(3.24)

—X 3.25
=+ w1 h) ( )

The task now is to find solutions to the above matrix
equations (3.23)—(3.25). The simplest choice is

Xu(7)

introducing two functions y and y of z, which is related
with r via (2.11). For this choice, the conditions (3.23) are
fulfilled, and we get N; = y>1;. This reduces (3.24)—(3.25)
to the equations

[X2n+1 ’ Xu] = fl27n+1a (

= W(T)Ia and X2n+1(T) :X(T)I2n+l (326)
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FIG. 1 (color online). Equipotential lines for W(w, y) (left) and streamlines for n = 2 (right).
="y = 1) = -G and the comesponding sucamlines. The unique bounded sol
oW ution to (3.27) with 7 defined by (2.11) yields a Yang-Mills

(3.27)

which agrees with (4.21) and (4.22) of [9] for the metric
cone. Here, A = 2n/+/n + 1, and we introduced the flow
potential

n—+1 1
Wly.x) =—— <w2 +5x0 - w%) (3.28)

for the variables y and y = /4, so that the second equation
in (3.27) reads )”( = —0W /3. For an instanton solution, we
need y and y to remain bounded for all 7 € R. This requires
the flow to start and end in a critical point of W. Modulo the
obvious reflection symmetry y — —y, the critical points of
W are

the local minimum (y, y) = (0,0) and

the saddle point (v, y) = (1, 1), (3.29)

and the flow trajectory connecting them is a separatrix for
the vector field VW. It is given by

2p(1 = y)dy = 2(x — w?)dy, (3.30)
which admits analytic solutions only for
n=1:y=w and n— co:y=y>. (3.31)

These and the numerical solutions for n = 2, 4, 8 have been
plotted in Fig. 1 of [9]. Here, in our Fig. 1, we display the

instanton after substituting X, = v/, and X5, | = x>,
into (3.12) and (3.17).

D. Instantons on conical HKT manifolds

In Sec. II we have shown that, for M being 3-Sasakian
of dimension 4n + 3, on M*** = C, (M) one can intro-
duce a HKT structure with a metric conformally equivalent
to the metric on the cylinder Cyl(M). For this reason it
suffices to investigate the instanton equation (3.1) on
Cyl(M). In the 3-Sasakian case, {a} = {a,4n + a} with
a=1,...,4nand a = 1,2, 3, and we have G = Sp(n + 1)
and H = Sp(n), i.e.

sp(n+1)=sp(n) & m. (3.32)

The group SO(4n +4) acts on tangent spaces of both
Cyl(M) and M*"+*, One gets

so(4n+4)=sp(n+1)@®sp(l) ® P,

and the XZ-anti-self-dual 2-forms reside in the sp(n + 1)
subspace of the space of antisymmetric (4n + 4) x (4n +
4) matrices [17]. Now the first two terms in (3.17) sit in
sp(n) Csp(n+1) Cso(4n+4) and, therefore, satisfy
the instanton equation (3.1). Employing the explicit form
of the projector from so(4n +4) to sp(n+ 1) [17], one
can show that the 2-forms

065028-8
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fzﬁzye4n+/4 A e4n+v
:f2<€; eMth A ptntr _Dodnta A e4n+4) and
4

(f1f2)1/2<ea A etntd _|_Jzaeb A e4n+a) (333)
are 2-anti-self-dual and form a basis of the subspace m in
(3.32). Here ¢*"t* = dr, and J3¢ as well as the functions
f1. f> have been defined in Sec. II. From (2.26), (3.17) and
(3.33) it follows that the nonvanishing components are
given by

4nt+a __ _ p4nta b _ _¢b
Tab - f Ta 4n+p — fa 4n+p and

ab >

4n+a _ 4n+a
T4n+/3 dnt+y — ~JAntpanty (334)

a _ aa __ a __ fa
Npsnia = =I5 = =050 = [ aniar
1
4n+a _ sa _ _ finta

N4n+ﬁ dn+y Sﬁy - 2f4n+ﬂ 4n+y- (335)

Substituting (3.34) and (3.35) into (3.15) and (3.16), we
arrive at

[I,', Xa] = ff’aXb and [Ii, X4n+a] = 0, (336)
[Xw Xb] = f22+aX4n+a + fflei’ (337)
{Xa’ X4n+ﬁ] = fZ 4n+/}(Xb + Xb)’ (338)

n 1.
[X4n+a, X4n+‘/3] - fjnig 4l’l+/)) <X4n+y + §X4I‘l+}/> ) (3.39)

again independent of the functions f and f,. If we choose
the simplest ansatz

(3.40)

Xa(T) = W(T)Ia and X4n+a(T) :X(T)I4n+a7

then (3.36) will be satisfied identically. From (3.37) we
obtain N; = y?I;, and (3.38) and (3.39) reduce to

w=w(y-1) aswellas  y = y?,

(3.41)

and 7y =2%(y—1)

which is the n — oo limit of (3.27) and coincides with
(4.31)-(4.33) of [9] for the metric cone. The equations
decouple to

and 7 =2(y-1),

whose only bounded solution is

=yy+y-1) (3.42)
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7=y :%(1 —tanh(r — 79)). (3.43)
Substituting X, = wl, and Xy, , = yl4,,, into (3.12) and
(3.17), one obtains Yang-Mills instanton configurations on
the HKT manifold M*** after using (2.11) and the
relations (2.45) between the co-frame fields on M**+4
and the cylinder. More general instanton solutions may be
obtained by considering more general ansitze for the
matrices Xj.

IV. CONCLUSIONS

A Killing spinor on a Riemannian manifold M is a
spinor field € obeying the equation Ve = idy,e, where V,,
is the spinor covariant derivative, y, are Clifford y-matrices
and A is a constant. Manifolds with real Killing spinors
often occur in string-theory compactifications. All these
manifolds feature connections with non-vanishing torsion
and admit a non-integrable H-structure, i.e. a reduction of
the structure group SO(m) of the tangent bundle 7M to
H c SO(m). The metric cone C(M) over any such
manifold M has a special (reduced) holonomy group G C
SO(m + 1) and a Killing spinor ¢ with 1 =0 (called
parallel spinor). These manifolds were classified in [35],
and, besides the round spheres, they are the

(i) nearly Kéhler 6-manifolds, with H = SU(3) and

G = G2
(ii) nearly parallel 7-manifolds, with H = G, and
G = Spin(7)

(iii) Sasaki-Einstein (2n + 1)-manifolds, with H =
SU(n) and G = SU(n + 1)
(iv) 3-Sasakian (4n + 3)-manifolds, with H = Sp(n)
and G = Sp(n + 1).

Instantons on metric cones C(M) over the above
manifolds M were described in [9,23,24,27]. Instantons
on sine-cones over nearly Kéhler 6-manifolds and nearly
parallel 7-manifolds with G,-structure were investigated in
[26]. Here, we completed this study by describing Yang-
Mills instantons on sine-cones over Sasaki-Einstein and 3-
Sasakian manifolds. In [9,10] instantons on metric cones
were extended to brane-type solutions of heterotic super-
gravity. It would be of interest to perform a similar lift of
instantons on sine-cones.
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