Uber hexakoordinierte gemischte Halogeno-Anionen des Te(IV): Kristallographische und Raman-spektroskopische Untersuchungen an Rb₂TeBr_{3,5}Cl_{2,5}

On Hexacoordinated Mixed Halogeno Anions of Te(IV): Crystallographic and Raman Spectroscopic Investigation of Rb₂TeBr_{3.5}Cl_{2.5}

Walter Abriel* und Hartmut Ehrhardt

Institut für Anorganische Chemie und SFB 173 der Universität Hannover, Callinstraße 9, D-3000 Hannover 1

Z. Naturforsch. 43b, 557-560 (1988); eingegangen am 7. Januar 1988

Tellurates, Crystal Structure, Raman Spectra

The title compound contains the anions $[TeBr_3Cl_3]^{2-}$ and $[TeBr_4Cl_2]^{2-}$ in a 1:1 ratio. The corresponding point symmetries, detected by Raman spectroscopic methods, are 3 m and 4/mmm, respectively. The crystal structure analysis exhibits a random distribution of these anions: K₂PtCl₆-type, space group Fm3m with a = 10.4602(5) Å and Z = 4, final R = 0.036 from 178 F₀ (MoKa).

Einführung

Die Anionen des Typs TeX_6^{2-} (X = Cl, Br, I) wurden wegen ihrer als Ausnahme der VEPA-Regeln [1] klassifizierten Stereochemie eingehend untersucht [2-4]. Im Gegensatz dazu sind Anionen $[\text{TeX}_{6-n}Y_n]^{2-}$ mit unterschiedlichen Halogen-Liganden bisher kaum beschrieben worden: Die von Ozin und Vander Voet [5] dargestellten Alkylammoniumsalze konnten nur in mikrokristalliner Form erhalten werden; die ausschließlich schwingungs-spektroskopische Untersuchung gestaltete sich schwierig (breite Banden, Zersetzung der Proben).

In dieser Arbeit gelang nun die Charakterisierung der Anionen $[TeBr_3Cl_3]^{2-}$ und $[TeBr_4Cl_2]^{2-}$ durch Anwendung der Raman-Spektroskopie und von Röntgen-Beugungsmethoden.

Präparatives

Die bequemste Darstellung der Hexahalogenotellurate(IV) erfolgt über das Auflösen von TeO_2 in konzentrierter, wäßriger Lösung von HX (X = Cl, Br, I) unter Bildung der stark dissoziierten Hexahàlogenotellur(IV)-Säure:

 $TeO_2 + 6 HX \rightarrow H_2TeX_6 + 2 H_2O$

Bei Zugabe der entsprechenden Kationen lassen sich die meist schwerlöslichen Hexahalogenotellurate(IV) fällen. Bei Verfügbarkeit der Tetrahalogenide $TeCl_4$, $TeBr_4$ und TeI_4 (Darstellung aus den Elementen nach Brauer [6]) läßt sich der Reaktionsweg modifizieren:

 $TeX_4 + 2 HX \rightarrow H_2TeX_6$

....

.....

Durch Auflösen von TeX_4 in der Säure HY sollten sich Hexahalogenotellurate(IV) mit unterschiedlichen Halogenatomen darstellen lassen. Folgende Ergebnisse wurden erzielt:

$$\operatorname{TeCl}_4 \xrightarrow{\operatorname{HBr}} \operatorname{TeBr}_6^{2-}$$
 (1)

$$TeBr_4 \xrightarrow{HF} TeBr_6^{2-}$$
 (2)

$$\text{TeBr}_4 \xrightarrow{\text{HI}} \text{TeI}_6^{2-}$$
 (3)

$$\text{TeBr}_4 \xrightarrow{\text{HCl}} [\text{TeBr}_{3.5}\text{Cl}_{2.5}]^{2-}$$
 (4)

Wie aus den Reaktionsschemata (1)-(4) ersichtlich, führte nur die Reaktion (4) zum gemischten Hexahalogenokomplex. Die gefällten und umkristallisierten Rubidiumsalze wurden röntgenographisch identifiziert: (1)-(3) mit Pulvertechnik, HUBER-Guiniersystem 600, CuK α 1-Strahlung [7], die Phase Rb₂TeBr_{3.5}Cl_{2.5} zusätzlich über Röntgen-Einkristallmethoden und Raman-Spektroskopie. Für letztere Verbindung wurde mit chemischen Analysemethoden bei insgesamt acht Bestimmungen der Cl-Gehalt zu 12,5(3)% und der Br-Gehalt zu 41,6(9)% ermittelt (Zusammensetzung demnach Rb₂TeBr_{3.6}Cl_{2.4}).

Kristallstrukturanalyse

Ein kuboktaedrischer Einkristall der gelborangen Substanz wurde für die Strukturaufklärung ausge-

^{*} Sonderdruckanforderungen an Priv.-Doz. Dr. W. Abriel.

 $Verlag \, der \, Zeitschrift für \, Naturforschung, D-7400 \, Tübingen \\ 0932-0776/88/0500-0557/\$ \ 01.00/0$

wählt. Nach Präzessionsaufnahmen (MoK α) kristallisiert die Verbindung F-zentriert in der Laue-Gruppe m $\bar{3}$ m. Die Gitterkonstante wurde aus dem Guinier-Pulverdiagramm bei 296 K zu a =10,4602(5) Å ermittelt (Verfeinerung mit 30 Reflexen). Bei einem anschließenden Abkühlexperiment auf 8 K (modifizierte Kühl/Heizvorrichtung mit Closed-cycle-He-Kryostat nach Ihringer [9]) war keine Symmetrieänderung des Pulverdiagramms zu erkennen.

Intensitätsmessungen mit einem rechnergesteuerten Zweikreisdiffraktometer (HUBER RHD-402) lieferten 1590 Reflexe mit $I > 2\sigma(I)$ aus den Schichten hk0-hk6 (MoKa-Strahlung, Graphitmonochromator, $\theta/2\theta$ -scan mit $\theta_{max} = 45^{\circ}$). Nach jedem 15. Reflex wurde ein Referenzreflex angefahren, dessen Abweichungen mit dem LP-Faktor in die Korrektur der Intensitäten einging. Für die Absorptionskorrektur wurde die Gestalt des Kristalls sphärisch approximiert ($\mu R = 1,99$); die Rechnung erfolgte mit den Korrekturfaktoren aus den Internationalen Tabellen [10]. Die Datenreduktion ergab 178 symmetrieunabhängige Reflexe ($R_{int} = 9,7\%$) als Grundlage für die Verfeinerung von zwei alternativen Strukturmodellen (SHELX 76 [11]). Die Ergebnisse dieser Strukturverfeinerungen werden in Tab. I vorgestellt*.

Zu Modell I: Bei einem *R*-Wert von 0,036 errechnen sich die Abstände zu Rb-Hal 3,698(2) Å, Te-Hal 2,615(2) Å und Hal-Hal 3,698(2) Å. Mit der Kenntnis der Abstände Te-Cl bzw. Te-Br (siehe [3]) kann die hier gefundene Te-Hal-Bindungslänge nur über eine Fehlordnung der Orientierung von TeBr_{6-n}Cl_n-Oktaedern erklärt werden. Diese Fehlordnung manifestiert sich auch in den unterschiedlichen Werten für den Temperaturfaktor U₁₁ bei Te und Hal, die bei Annahme eines starren oktaedrischen Anions gleich groß sein müßten (vgl. [4]). Aus dem Lagenbesetzungsfaktor für Hal errechnet sich die Zusammensetzung zu Rb₂TeBr_{3,78}Cl_{2.22}. Daraus folgt notwendigerweise die Entwicklung eines Splitmodells.

Zu Modell II: Mit einem *R*-Wert von 0,034 errechnet sich die Zusammensetzung zu Rb₂TeBr_{3.5}Cl_{2.5}. Der in Modell I gefundene Abstand Te-Hal, der als

Tab. I. Verfeinerte Parameter für zwei Strukturmodelle für $Rb_2TeBr_{3.5}Cl_{2.5}$ (Archetyp: K_2PtCl_6 -Struktur).

Modell I	Raumgruppe Fm3m
Te in 4a (0, 0, 0)	$U_{11} = 0.025(1)$
Hal in 24e $(x, 0, 0)$	$x = 0,2500(2), U_{11} = 0,027(1),$
	$U_{22} = 0.071(1).$
	Lagenbesetzungsfaktor = $0,1012(9) \triangleq$
	81% bei Verfeinerung mit Atomform-
	faktor für Br
Rbin8c(1/4, 1/4, 1/4)	$U_{11} = 0,053(1)$
Modell II	Raumgruppe Fm3m
Te in 4a (0, 0, 0)	$U_{11} = 0.0258(5)$
Br in 24e $(x, 0, 0)$	x = 0,258, nicht verfeinert, entspre-
	chend Abstand Te-Br von 2,70 Å.
	$U_{11} = 0,024(1), U_{22} = 0,069(3), Beset-$
	$zungsfaktor = 0,073(1) \triangleq 58,32\%$
Cl in 24e $(x, 0, 0)$	x = 0,2418, nicht verfeinert, entspre-
	chend Abstand Te-Cl von 2,53 Å.
	$U_{11} = 0,005(3), U_{22} = 0,056(8), Beset-$
	$zungsfaktor = 0.052(1) \triangleq 41.68\%$
Rbin8c(1/4, 1/4, 1/4)	$U_{11} = 0,0551(9)$

gemittelter Wert für alle Te-Hal-Abstände anzusehen ist, kann über die Beziehung

> $(3,5 \cdot b + 2,5 \cdot c)/6 = 2,63$ [Å] b = 2,7 Å (Abstand Te-Br); c = 2,53 Å (Abstand Te-Cl)

somit gut erklärt werden. Unter Berücksichtigung der chemischen Analysenwerte resultiert für die Stöchiometrie der Verbindung $Rb_2TeBr_{6-x}Cl_x$ der Parameter x = 2,5(1).

Raman-Spektroskopie

Allgemein liefern die Hexabromo- bzw. Hexachloro-Tellurat(IV)-Komplexe sehr gute Ramanspektren: Die entsprechenden Banden sind teilweise so intensiv und scharf, daß wir sie zum bequemen Eichen des Spektrometers mittels der Stokes- und Anti-Stokes-Banden verwenden konnten (Raman-Spektrometer CODERG LRT 800, Krypton-Laser Spectra Physics 2000, 4 W).

Das Rb₂TeBr₆ und das Rb₂TeCl₆ kristallisiert (bei Raumtemperatur) in der Struktur des K₂PtCl₆ [4]. Entsprechend bedingen die TeX₆²⁻-Oktaeder (X = Cl, Br) jeweils drei scharfe Raman-Banden der Rassen A_{1g}, E_g und F_{2g} (Abb. 1, Tab. II). Die Frage, ob die Verbindung Rb₂TeBr_{3.5}Cl_{2.5} die komplexen Anionen TeBr₆²⁻ und TeCl₆²⁻ im Verhältnis 7:5 enthält oder die komplexen Anionen [TeBr₃Cl₃]²⁻ und

^{*} Beobachtete und berechnete Strukturfaktoren sind an anderer Stelle dokumentiert: W. Abriel, Habilitationsschrift, Universität Marburg (1983).

Abb. 1. Ramanspektren (s. Text).

$TeBr_6^{2-}$ m3m	$[TeBr_4Cl_2]^{2-}$ 4/mmm	$\frac{[TeBr_3Cl_3]^{2-}}{3m}$	TeCl ₆ ²⁻ m3m
$\frac{1}{\nu_1(A_{1g})}$	$\frac{\nu_{\rm l}(A_{\rm lg})}{236}$	$ \nu(\mathbf{A}_1) $ 286	$ \frac{\nu_1(A_{1g})}{300} $
$ \nu_2(E_g) $ 154	$ \nu_{2a,b}(A_{1g}+B_{1g}) $ 169	$\nu_2(E)$ 190	$ \nu_2(E_g) 251 $
$\nu_3(F_{1u})$	$\frac{\nu_{3a,b}(A_{2u}+E_u)}{-}$	$\nu_{3a,b}(A_1+E)$ (251)	$\nu_{3}(F_{1u})$
$\nu_4(F_{1u})$	$ \frac{\nu_{4a,b}(A_{2u}+E_u)}{-} $	$ u_{4a,b}(A_1+E) $ 120 (Schulter)	$\nu_4(F_{1u})$
$ \nu_5(F_{2g}) 90 $	$ \nu_{5a,b}(B_{2g}+E_g) $ 96	$\nu_{5a,b}(A_1+E)$ 133	$ \nu_5(F_{2g}) $ 141
$\nu_6(\mathbf{F}_{2u})$	$\nu_{6a,b}(B_{2u}+E_u)$	$ \nu_{6a,b}(A_2 + E) $ 35	$\nu_6(F_{2u})$

Tab. II. Zuordnung der Raman-aktiven Banden (in cm⁻¹).

 $[TeBr_4Cl_2]^{2-}$ im Verhältnis 1:1, ist röntgenographisch nicht lösbar. Das Raman-Spektrum zeigt jedoch, daß (ein) Anion(en) mit erniedrigter Symmetrie enthalten ist (sind).

Beim Übergang von einem regulären AX_6 -Oktaeder der Punktgruppe m $\overline{3}$ m zu einem AX_4Y_2 -Polyeder kann entweder die Punktgruppe 4/mmm (*trans*-Anordnung) oder die Punktgruppe mm2 (*cis*-Anordnung) in Frage kommen. Entsprechend erniedrigt sich die Oktaeder-Symmetrie beim Übergang zu einem AX_3Y_3 -Polyeder entweder bis zur Punktgruppe 3m oder zur Punktgruppe mm2. Da in bezug auf die Raman-Aktivität für mm2 sämtliche Entartungen und Aktivitätsverbote aufgehoben sind, müßten pro AX_4Y_2 - und AX_3Y_3 -Polyeder jeweils bis zu 15 Banden sichtbar werden. Dem Spektrum zufolge (Abb. 1) scheidet somit die Punktgruppe mm2 aus.

Bei einem AX₃Y₃-Polyeder der Punktgruppe 3m sollten die dem regulären Oktaeder (m $\bar{3}$ m) zuzuordnenden Banden $\nu_1(A_{1g})$ und $\nu_2(E_g)$ als Banden der Rassen A₁ und E wieder erscheinen. Die im regulären Oktaeder inaktive Bande $\nu_6(F_{2u})$ kann unter der Punktgruppe 3m in die Rassen A₂ und E aufspalten, wobei aber nur die Schwingung der Rasse E Ramanaktiv ist.

Bei einem AX₄Y₂-Polyeder der Punktgruppe 4/mmm kann die dem regulären Oktaeder zuzuordnende Bande $\nu_2(E_g)$ aufspalten in Schwingungen der Rassen A_{1g} und B_{1g}, wobei hier beide Banden Raman-aktiv sind. Die Oktaeder-Frequenz $\nu_6(F_{2u})$ kann in Schwingungen der Rassen B_{2u} und E_u aufspalten, jedoch bleiben beide Raman-inaktiv.

Die im m3m-Oktaeder Raman-inaktiven Banden ν_3 und ν_4 (beide F_{1u}) vermögen im AX₃Y₃-Komplex der Punktgruppe 3m in Raman-aktive Schwingungen der Rassen A₁ und E aufzuspalten. Im AX₄Y₂-Komplex der Punktgruppe 4/mmm kann Aufspaltung in Schwingungen der Rassen A_{2u} und E_u auftreten, jedoch bleiben beide Banden Raman-inaktiv.

Da insgesamt die Verzerrungen der AX_3Y_3 - bzw. AX_4Y_2 -Komplexe nur gering sind, kommt es im Raman-Spektrum zu keinen eigentlichen Bandenaufspaltungen. Wohl aber reichen die Erniedrigungen der Symmetrie zur Aufhebung der Aktivitätsverbote aus. Die Bandenzuordnungen sind Tab. II zu entnehmen.

Diskussion

Die im präparativen Teil aufgeführten Reaktionsschemata zeigen die wachsende Stabilität der Te-X- Bindung beim Übergang zu den schwereren Halogenen. In der sauren wäßrigen Lösung wird am TeX_6^{2-} -Anion Chlor durch Brom bzw. Brom durch Iod ersetzt. Zum Verständnis der Bildung der Phase $Rb_2TeBr_{3.5}Cl_{2.5}$ können folgende Gleichgewichte formuliert werden:

 $TeBr_4 \leftrightarrows TeBr_3^+ + Br^- \tag{a}$

$$TeBr_3^{-} + Cl^{-} \hookrightarrow TeBr_3Cl \qquad (b)$$
$$TeBr_2Cl + 2Cl^{-} \leftrightarrow [TeBr_2Cl_1]^{2-} \qquad (c)$$

$$1eBr_3Cl + 2Cl \implies [1eBr_3Cl_3]^-$$
(c)

$$\operatorname{IeBI}_4 + 2\operatorname{CI} \xrightarrow{} [\operatorname{IeBI}_4\operatorname{CI}_2] \tag{(d)}$$

Die Existenz des TeBr₃⁺-Ions folgt einmal aus der polaren Grenzbeschreibung der TeX₄-Struktur (X = Cl, Br) als einer Anordnung von TeX_3^+ - und X⁻-Ionen (vgl. [12]), zum anderen lassen sich TeX_3^+ -Ionen in Verbindungen wie (TeCl₃)(AlCl₄) [13] oder (TeBr₃)(AsF₆) [14] stabilisieren. Die mit (a) und (b) bezeichneten Gleichgewichtsreaktionen des TeBr₃⁺-Ions sind für das System bestimmend. Eine weitere Dissoziation des TeBr₃⁺ bzw. vollständige Chlorierung des Te wird kaum zu erwarten sein, da bei einer Konkurrenz zwischen verschiedenen Halogenatomen stets das leichtere, also schwächer gebundene Atom abgespalten wird. Eine nennenswerte Konzentration einer Spezies TeBr₂Cl⁺ wird wohl nicht realisiert werden. Bei einem Überschuß von Cl⁻-Ionen werden die komplexen Anionen $TeBr_3Cl_3^{2-}$ und $TeBr_4Cl_2^{2-}$ gebildet (Gleichungen (c) und (d)). Ausgehend vom Verhältnis Br:Cl = 3,5:2,5 im Kristall liegen diese Anionen im Verhältnis 1:1 in der Lösung vor. Über das spektroskopische Experiment konnte diesen Teilchen die Punktsymmetrie zugeordnet werden: $[TeBr_3Cl_3]^{2-}$ besitzt die Punktgruppe 3m, $[TeBr_4Cl_2]^{2-}$ die Punktgruppe 4/mmm. Die Te-X-Abstände sind im Bereich um 2,53 Å (für Te-Cl) und 2,7 Å (für Te-Br) anzusiedeln, die Bindungswinkel im Komplex sind mit etwa 90° zu benennen. Bei beiden Komplexen wird das Isomere mit der höchsten Symmetrie realisiert. Die doch noch ungenauen Strukturdaten für die Anionen sind für quantitative Aussagen zur Stereochemie des freien Elektronenpaares ungeeignet.

Wie das Tieftemperatur-Beugungsexperiment zeigt, bleibt die kubische Struktur von $Rb_2TeBr_{3.5}Cl_{2.5}$ bis 8 K erhalten. Im Gegensatz zu Rb_2TeBr_6 , das bei 45 K eine Phasenumwandlung als Resultat des Ausfrierens einer Gitterschwingung zeigt [8], ist bei der Chlor-reicheren Spezies die Packung *a priori* optimiert. Letzteres wird durch die identischen Abstände Rb-Hal und Hal-Hal in der dichtest angeordneten Rb(Hal)₃-Packung unterstrichen.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für finanzielle Unterstützung.

- R. J. Gillespie, Molekülgeometrie, Verlag Chemie, Weinheim (1975).
- [2] W. Abriel, Acta Crystallogr. B 42, 449 (1986).
- [3] W. Abriel, Z. Naturforsch. 42b, 415 (1987).
- [4] W. Abriel und E.-J. Zehnder, Z. Naturforsch. 42b, 1273 (1987).
- [5] G. A. Ozin und A. Vander Voet, J. Mol. Struct. 13, 435 (1972).
- [6] G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Bd. I, 432–435, Enke-Verlag, Stuttgart (1975).
- [7] Röntgenographische Daten für Rb₂TeBr₆ siehe [8], für Rb₂TeI₆ in: W. Abriel, Mat. Res. Bull. **17**, 1341 (1982).

- [8] W. Abriel und J. Ihringer, J. Solid State Chem. 52, 274 (1984).
- [9] J. Ihringer, J. Appl. Crystallogr. 15, 1 (1982).
- [10] International Tables for X-ray Crystallography, Vol. II, Kynoch Press, Birmingham (1972).
- [11] G. M. Sheldrick in: Computing in Crystallography, S. 34, Delft University Press (1978).
- [12] B. Buss und B. Krebs, Inorg. Chem. 10, 2795 (1971).
- [13] B. Krebs, B. Buss und D. Altena, Z. Anorg. Allg. Chem. 386, 257 (1971).
- [14] J. Passmore, E. K. Richardson, T. K. Whidden und P. S. White, Can. J. Chem. 58, 851 (1980).