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W e discuss a m e t h o d of calcula t ing t h e m e a n energy of a q u a n t u m sys tem if t he l a t t e r is sub-
jec ted to t ime periodic pe r tu rba t ions . This, e .g . , includes the possibil i ty of de termining shapes 
of spect ra l lines for a n a r b i t r a r y d i s t r ibu t ion of n o n p e r t u r b e d energy levels. The me thod is s tud ied 
on a sys tem of o rder 2 whose spect ra l line is exac t ly lorentzian. We prove t h a t the n e x t to lowest 
a p p r o x i m a t i o n reproduces th i s fo rm exac t ly . 

1. Introduction 

In quantum physics, we often consider quantum 
mechanical systems consisting of a set of levels that 
interact with time periodic perturbations. Such is 
the situation, for instance, of an atom upon which a 
periodic electromagnetic wave is incident. If the 
quantum electrodynamic effects are neglected, 
these systems are governed by linear differential 
equations with time periodic coefficients. Mathe-
matical investigations of such differential equations 
set in with the basic paper by Floquet [1], and since 
then a huge number of articles treating this subject 
has appeared. For a review, see [2], pp. 55—59, and 
[3]. pp. 78 — 81. A particularly suitable method, 
restricted to small perturbations, for the deter-
mination of the solutions and of characteristic 
exponents was developed by Cesari (see [2], 
pp. 68 — 72, and [4]) where he also proves the 
convergence of the limit processes developed there. 

From the quantum physicist's point of view, 
while the characteristic exponents might be relevant, 
the actual solutions are unobservable and therefore 
are less relevant. What is, for instance, measurable 
is the mean energy contained in the system, as it is 
defined by Eqs. (12) and (13). We remark that this 
mean energy is closely related to the shape of 
spectral lines if the perturbations are of electro-
magnetic nature. I t would, therefore, be more 
advantageous to develop methods which enable one 
to calculate the observable quantities directly. 

This is actually done in the following section 
where the observable quantity of interest will be 
the above mentioned mean energy. We achieve it 
by an infinite process whose quality must be 
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examined. For such purposes, it is most suitable to 
consider quantum systems which can be exactly 
solved. A system of order 2 of the type (37) provides 
such an example where the associated spectral line 
is rigorously lorentzian. The necessary details are 
presented in the third section. The last section is 
reserved to a demonstration of the following inter-
esting property: the calculation of the spectral line 
in the next to lowest order (according to the process 
devised in the second section) yields the exact 
result. This is quite surprising because it is indepen-
dent of the strength of the perturbation. 

2. The 3!ethod 

Quantum mechanical systems we will be inter-
ested in are governed by the set of equations 

i-ci(t) = 2Hij(t)cj( t), (1) 
j 

where for t > 0 

H [t + T) = H (t), H+ (f) = H(t), (2) 

T being the period of the system. In (2) we use the 
matrix notation 

(H(t))tJ = Hij(t), (H+ (t))ij = HfS), (3) 

where the asterisk denotes the complex conjugate 
quantity. I t is also convenient to introduce the 
vector notation for Ci(t)\ the symbol |c(£)> denotes 
the w-column vector with the components Ci(t). 
We put 

( |c(0»t = Ci(0, «c(«)|) i = c<*(0 (4) 
and 

<c(0|c(0> = 2 c « * ( 0 c i ( 0 . (5) 
i 

For the sake of brevity, we shall write | c) for 
|c(0)>. With the help of this notation, (1) can be 
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written in the form 

i-^\c(t)> = H(t)\c(t)> (6) 

Let G(t) denote the unique fundamental n x n 
matrix of the system (6) with(r(0) = I ( / t he identity 
matrix of order n), then 

|c(0> = G ( 0 | e > . (7) 

The periodicity condition (2) implies now the basic 
relation 

\c(t+T)} = G(t)\c(T)y 

or, if combined with (7), 

G(t+ T) — G(t) G(T). 

(8) 

(9) 

We now assume that 

H(t) = E -f 7(0 , 7 (0 = 0 for t < 0, (10) 

where the matrix elements of E, 

E i j — E i d i j , (11) 

are supposed to be time independent. Since 7 
depends on time, the total energy is not conserved 
but we still can introduce the concept of the energy e 
embodied in the system as 

e(0 = 2 |Cf(0\2Et = <c(t)\E\c(0> • (12) 
i 

The mean amount of energy of the system is 
given by 

1 1 

e = lim — Jdt' e(t') 
t —* oo t o 

(13) 

Generally, A (or A (t)) shall designate in the follow-
ing the time mean value of A (t) defined analogously 
to (13) where ^4(0 is a function of time. We shall 
adopt this definition also for the case of A (t) being 
a matrix whose matrix elements depend on time; 
then, of course, Ä is also a matrix. 

I t is obvious why the quantity defined by (13) is 
of interest: the spectral lines of emitting or absorb-
ing systems are closely related to e. Indeed, what 
is measured is I — Ei where Ei is the energy of the 
system before the perturbation 7 (0 has been 
switched on. Accordingly 

e(0 = 16r+ (0 EG(t) | c) (14a) 

whence 

In general, however, it is not easy to evaluate (14b) 
because of the limiting procedure in (13). On the 
other hand, if we specialize to systems with the 
property (2), we can fortunately calculate (14b) 
relatively simply. As the first step, we utilize (9) to 
get 

G(t) = G{t- T[t/T]G) GWT^{T), (15) 

where [a]G stands for the gaussian symbol: for a 
real, [a\G designates the integer part of a, 

[a]G^a<[a]G+l . (16) 

Here we see that whereas t is arbitrary positive, the 
argument of the first G matrix on the right side of 
(15) fulfills the inequality 

T[t/T]G< T . (17) 

This relation reveals the fundamental property of 
the theory: it suffices completely to know G(t) for 
0 ^ t < T to calculate (14b), for which, in the 
second step, we rewrite (13): 

j NT j N-l(n + l)T 
e = J d « e ( 0 = l i m — - 2 J dt e(t). 

y-+oo o n = 0 n T 
(18) 

The third step consists in diagonalizing the matrix 
G(T): 

Gij(T) = ZUtigkUkj, 
k 

(19) 

where use has been made of the fact that the matrix 
G(T) (as well as G(t)) is unitary. This property is a 
consequence of the hermiticity of the matrix H(t), 
Eq. (2); for more details see [5], pp. 722—724. 

Now, since the matrix U in (19) is unitary, we 
easily find ([t/T]G is integer) 

(20) 

e = <e|G+(0 E G(t) \ c> (14b) 

To evaluate (18), we make use of (14a) into which 
(15) and (20) have to be inserted. Consequently, 

£ (0 = 2 < c I u + \ 9 * [ t l T ] a g f T ] a < ? \ u \ c > 
ij 
•<i | UG+(t-T[tlT]c) (21) 
•EG(t- T[tlT]G) U+\j>, 

where the vectors | i> are supposed to form a basis 
of the complex w-dimensional vector space, in 
which the matrix H (t) acts. This form of e(t) used 
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in (18) gives rise to the following equation: 

i = lim 2 y rn 2 J d^ <c | U+\ iy 
X —>oo ij n = 0 nT 

•g*[t,Thg[!,Th<j\ u\cy (22) 

•<t | UG+(t-T[tlT]G) 
• EG(t — T[HT]g) u+ I jy . 

It is natural to introduce the transformation 

t — n T t, (23) 

which has the consequence for the new t that 

0^t<T, [(t + nT)/T]G = n. (24) 

Hence 
e= 2<C\ !*><?'| U\c> 

• fdf <»| UG+(t) EG(t) U+\jy 
6 

X — I 
• lim N-12 gfn gj • 
X oo n = 0 

(25) 

This version is undoubtedly superior to (14b) since 
the integration extends over a finite region and the 
limiting procedure can be done independently. 

To do the latter we group the eigenvalues gt in 
sets . . . , which are composed of equal gi. 
If we realize that g\ are eigenvalues of a unitary 
matrix then we have 

gi = ei<Fi 

which implies 

lim N-*Z9tn9j = 
1 for g( = g}, 

N _> oo i 0 otherwise . 

(26) 

(27) 

We thus finally arrive at 

« = 2 2 < c l u \ c > 
i k.leAi 

T 
• T - i f dt (k | UG+ (<) EG {t) U+\Vy. (28) 

o 
Should it happen that all gi are distinct then (28) 
obviously reduces to 

i = 2l<cl U+\i>\*T-i 

Jdt <»| UG+(t) EG{t) U+\iy , (29) 

which will play a particular role in our further con-
siderations. 

How to evaluate (29) in practice ? We have to 
determine the matrices G(t) and U. For the former 

we go back to the Dyson expansion [6] writing 

G{t) = G0(t)D(t), (30) 

where 

G0(t) = e-iEt 
and 

(31) 

(32) 

D{t) = I + ( - ») f dt' eiEt' F(f ' ) e-w 
o 

t 
+ ( - i)2 fdt' eiEt' V(t') e~iEt' 

o 
V 

• j dt" eiEt" V{t")e~iEt" + ••• 

However, it is pointed out in [2] and [4] that this 
classical series has drawbacks (e.g. it may give 
polynomial approximations of functions which are 
periodic). I t is therefore necessary to modify (32) so 
as to avoid these drawbacks, and in [2] and [4] one 
such a modification (and a proof of its convergence) 
can be found. In the following, we present another 
modification of (32) but are unable to give a 
rigorous proof of its convergence. An investigation 
on a computer has, however, shown that the process 
converges if applied to a system of order 2 (explained 
in the third section), the convergence being indepen-
dent of the strength of F. We shall now briefly 
expound this process. 

It goes without saying that the unitarity property 
of D(t) is lost if we retain only several lowest order 
terms in the expansion (32); let us designate this 
approximate D{t) as D'(t). In order to restore the 
unitarity, we could e.g. proceed as follows: first 
diagonalize D'(t) 

D'(t)=W+(t)d{t)W{t). (33) 

Secondly, modify the diagonal elements of the 
diagonal matrix d(t) to be in accordance with (26): 

dj(t) = di(t)l\di(t) \ , (34) 

and approximate 

D{t) * D{t) = W+{t)d[T) W{t). (35) 

Clearly, D(t) is unitary and we use it in place of 
D(t) in (30), 

G(t) ^ G (t) = Go (t) D (t). (36) 

The matrix U is obtained from (21) on replacing G 
by G. 

Before we apply these formulas, we shall first 
discuss a soluble model for which (14b) can be 
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evaluated exactly. This is of course important 
because it is possible only for such cases to recognize 
the quality of our approximation scheme (29) —(36). 

3. A System of Order 2 (Zener [7]) 

I t was probably first found by Zener [7] that a 
system of order 2 is particularly suitable for 
approximating complex physical processes (such 
as non-adiabatic crossing of energy levels). This 
author realized that a system of order 2 

ic1(t) = H11c1(t) + H12c2(t), 
ic2(t) = H21cx(t) + H22c2(t), (37) 

H n , . . . , H o 2 being functions of time t, admits 
rigorous solutions for various interesting physical 
situations. He showed, for example, that the motion 
of two atoms influences the transition between two 
electronic states (all other states being neglected) 
in a way described by Equations (37). Assuming 
that the transition region is small, Zener introduced 
the additional simplification that 

Hii — H22 ~ t, Hi2 = H2i = 0 . (38) 

I t is then possible to solve (37) exactly because (37) 
can be reduced to the Weber equation. 

Another application of (37) is provided by con-
sidering 2 electronic states of an atom which is 
subjected to a periodic electromagnetic field. We 
may then assume that 

Hu = Ex, #22 = E2, H12 = = F e^t, (39) 

where E\ and E2 are energies of the unperturbed 
electronic states. I t is now not difficult to demon-
strate that the solution of (37) can be given in a 
closed form. Making use of (7) we arrive at 

Gn (t) = (E-2 + 4 | F12)-1 /2 exp ( - \ it E~) 
• {iE-sin[±t(E-2 + 4 |F | 2 ) 1 / 2 ] (40) 
+ (E-2 + 4 | F |2)1 /2 

•cos [!*(JE/_2 + 4 | F | 2 ) 1 / 2 ] } , 

Gi2(f) = — 2i V{E-2 + 4 | F | 2 ) - 1 / 2 (41) 
• e x p ( - ± i t E - ) s m [ ± t ( E - 2 + 4 |F | 2 ) i / 2 ] , 

G21{t) = — 2i V* (EJ2 + 4 | F |2)~1/2 (42) 
• e x p ( - i i t E + ) sin[\t(E-2 + 4 |F | 2) 1 / 2] , 

G22 (t) = (E_2 + 4 | V12)-i'2 exp ( - l i t E+) 
• { - i E-sin[±t(E-2 + 4 | F |2)1 / 2] 
+ (E-2 + 4 |F | 2 ) 1 / 2 (43) 
• cos[± t(E-2 + 4 |F | 2 )1 / 2 ]} 

where 
E± — E2 — E\ J : co, 
E± = E2 + EI ± OJ. (44) 

For the sake of convenience, we introduce the 
matrix T 

T = G+(t)EG(t). (45) 

To calculate the mean energy e of this two-level 
system, we may use (14b). The calculation of 
matrix elements of T is now straight-forward: 

T ii E i 

T 22 = E2 

and 

rr TI* -L 12 = J- 21 = 

2 | V\2(E2 - Ei) 
E-2 + 41 F |2 

2 \V\2(E1 - E2) 
E_ 2 + 4 | F | 2 

VE — (E2 - Ex) 
E-2 + 41 F12 

(46) 

(47) 

(48) 

Assume that the system at t — 0 may be charac-
terized by 

c i = l , c 2 = 0 ( E X < E 2 ) . ( 49 ) 

Substituting (46) —(48) into (14 b) we obtain 

2\V\2(E2 - EX) 
e-E i = E-2+ 4 I F I2 (50) 

where (45) has been used. This is the famous 
Lorentz formula ([5], pp. 994—1001) for the shape 
of a spectral line. 

The Zener model (37) provides valuable informa-
tion concerning periodic perturbations of atomic 
systems. Our main aim, however, is to apply the 
results of the preceding section to the present 
system of order 2. We shall prove that this method 
reproduces (50) exactly if in expansion (32) the two 
leading terms are retained. 

4. The Lowest Order Calculation of the Matrix T 

As stated above wre wish to focus our attention 
on the following problem: Let 

E -
Ex 0 
0 E2)' V{t)~\v* 

From (32) we obtain 

0 V eimt\ 
V* e-*«* 0 

. (51) 

D'(t) = I - i jdt' eiEt' V (t') , (52) 
ö 
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where only first order terms in V have been retained. 
Using the approximation (52) it is possible to derive 
(46)-(48). G(t) of (29) is to be replaced by G(t) 
(G(t) is constructed via (52) and (33)-(36)). 

Comparing (14b) and (45) with (29) we obtain 
the following expression for T: 

T = £ E/+ | i> T-1 
i 

T 
• fdf<» ' | UG+(t)EG(t) U+\i)(i\ U. (53) 
ö 

Using (30) —(36) of Sect. 2 we may now evaluate 
(52). In view of (51) we obtain 
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I 1 i 

where 

i r ( t ) = ^ J - ( e - i E - t - 1). (55) 
i ti-

ln order to restore unitarity of D'(t) we use (33) — (35) 
so that 

D(0 = [i + \ r ( t ) \*\-v*iy{t) . (56) 

Therefore, according to (36), the corrected funda-
mental matrix G(t) becomes 

a (t) = [1 + | r (t) 12J-1/2 exp [ - l i t (E! + E2)} 

exp [ - | i t (Ei - E2)] i exp [ - f it(Ex - E2)] r~(t) \ 
Ki exp [ - J it(E2 - Ei)} r*(t) exp [ - \ it(E2 - ) 

(57) 

and a straight-forward calculation confirms the 
unitarity of G(t). G(t) is now used in place of G(t) 
in (53) and the quantity 

G+(t)EG(t) = [l + \>T(t)\2]-i 
El + E2 I ir(t) 12 i (El - E2) r^(t)\ 

x\i(E2-Ei)r*(t) Ei\r(t)\2 + E2) (o8) 

may be derived, which has a simple structure. 
Once the expression G+(t) EG(t) has been 

obtained the unknown matrix U may now be 
derived. The matrix U is defined by (19) with G(T) 
replaced by G(T). Now, G(T) can be written in the 
form 

G(T) = [ 1 + |"T(T)|2]-i/2 

• exp [— \ iT (Ei + E2)] K , (59) 

where the matrix K has the structure 

K = 
a b 

— b* a* 
(60) 

a and b being complex numbers. Therefore, both 
G(T) and K can be diagonalized by the same 
unitary matrix U. We may then infer from (60) 

. \b\ 

U = 2 - 1 / 2 [ Im (a)2 + I 612]_1 

A 

b* 
| b | 
b* 

A + 

with 

and 

(61) 

A± = {[Im (a)2 + | b \ 2]^/2 ± I m (a)Y<2 (62) 

a = exV[-\iT(Ei-E2)}-
b = iexp[— \ iT(Ei — E2)] i^(t) . (63) 

Equations (46) —(48) may be easily recovered in the 
following manner. Insert (63) into (62) and (61). 
Insert (61) and (58) into (53). It should be noted 
that the integrand in (53) is time independent. 

5. Summary 

In the preceding sections we learned a method 
for calculating time mean values of observables. 
We assumed that these observables refer to a 
quantum mechanical system subjected to time 
periodic perturbations. In order to prove that the 
method is indeed valuable in practical calculations, 
we applied it to Zener's model. This is essentially a 
system of order 2 admitting exact solutions for 
various interesting physical situations. We found 
the following surprising property of this method. 
The lowest order calculation (described in the 
preceding section) yields exact results. This lets us 
hope that the application of the method developed 
in this paper should provide very good results also 
in a more complex physical situation. 
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