Synthesis, Crystal Structure and Magnetic Behaviour of Dimeric and Polymeric Gadolinium Trifluoroacetate Complexes

Daniela John, Alexander Rohde, and Werner Urland

Institut für Anorganische Chemie, Universität Hannover, Callinstr. 9, D-30167 Hannover, Germany

Reprint requests to Prof. Dr. W. Urland. E-mail: urland@acc.uni-hannover.de

Z. Naturforsch. **61b**, 699 – 707 (2006); received January 27, 2006

Dedicated to Professor Wolfgang Jeitschko on the occasion of his 70th birthday

The gadolinium(III) trifluoroacetates ((CH₃)₂NH₂)[Gd(CF₃COO)₄] (1), ((CH₃)₃NH)[Gd(CF₃COO)₄(H₂O)] (2), Gd(CF₃COO)₃(H₂O)₃ (3) as well as Gd₂(CF₃COO)₆(H₂O)₂(phen)₃ · C₂H₅OH (4) (phen = 1,10-phenanthroline) were synthesized and structurally characterized by X-ray crystallography. These compounds crystallize in the space group $P\bar{1}$ (No. 2, Z=2) (1, 2 and 4) and P 2₁/c (No. 14, Z=4) (3), respectively, with the following lattice constants 1: a=884.9(2), b=1024.9(2), c=1173.1(2) pm, $\alpha=105.77(2)$, $\beta=99.51(2)$, $\gamma=107.93(2)^{\circ}$; 2: a=965.1(1), b=1028.6(1), c=1271.3(2) pm, $\alpha=111.83(2)$, $\beta=111.33(2)$, $\gamma=90.44(2)^{\circ}$; 3: a=919.6(2), b=1890.6(4), c=978.7(2) pm, $\beta=113.94(2)^{\circ}$; 4: a=1286.7(8), b=1639.3(8), c=1712.2(9) pm, $\alpha=62.57(6)$, $\beta=84.13(5)$, $\gamma=68.28(5)^{\circ}$. The compounds consist of Gd³⁺ ions which are bridged by carboxylate groups either to chains (1 and 2) or to dimers (3 and 4). In addition to the Gd³⁺ dimers, compound (4) also contains monomeric Gd³⁺ units. The magnetic behaviour of 2 and 3 was investigated in a temperature range of 1.77 to 300 K. The magnetic data for these compounds indicate weak antiferromagnetic interactions.

Key words: Trifluoroacetates, Gadolinium Carboxylates, Synthesis, Crystal Structure, Magnetic Behaviour

Introduction

In the last decade the interest in the magnetic properties of polynuclear lanthanide compounds has increased [1-13]. For the magnetic investigation compounds containing Gd³⁺ ions often were used, as in this case ligand field interactions can be neglected in the calculation of magnetic susceptibilities [14]. To design such compounds different ligands were used as linkers between the Gd³⁺ ions. Here the carboxylate group was of special interest because of its different linking types to the cation [15]. Most of these compounds show antiferromagnetic interactions [16-27], but for $Gd(sal)_3(H_2O)$ $(H_2sal = salicylic acid)$ [28], $Gd_2(\mu_2\text{-OOCFc})_2(OOCFc)_4(MeOH)_2(H_2O)$. $2\text{MeOH} \cdot 2\text{H}_2\text{O} \text{ (Fc} = (\eta^5 - \text{C}_5\text{H}_5)\text{Fe}(\eta^5 - \text{C}_5\text{H}_4)) [29],$ $Gd(H_2sal)(Hsal)(sal) \cdot H_2O$ [30], $Gd(CH_3COO)_3$ $(H_2O)_2 \cdot 2H_2O$ [31], $Gd_2(mal)_3(H_2O)_6$ $(H_2mal =$ malonic acid) [32], and $Gd_2(H_2O)_2(DPA)_3$ ($H_2DPA =$ 2,2'-diphenic acid) [33] ferromagnetic interactions were found. Recently we reported on intramolecular ferromagnetic interactions within a dimeric unit on

which intermolecular antiferromagnetic interactions are imposed [34,35]. In our research we modify the structural properties of Gd^{3+} compounds containing halogenoacetates in order to get different bridging types and as a consequence of this to get different magnetic interactions between the Gd^{3+} ions [23,25–27,31,34,35]. Up to now only few Gd^{3+} halogenoacetates are structurally known and not all of them were magnetically investigated [36–39].

In this work we describe the crystal structures of four different Gd^{3+} trifluoroacetates. We have synthesized and characterized the compounds $((CH_3)_2NH_2)[Gd(CF_3COO)_4]$ (1), $((CH_3)_3NH)[Gd(CF_3COO)_4(H_2O)]$ (2) and $Gd_2(CF_3COO)_6(H_2O)_2$ (phen) $_3 \cdot C_2H_5OH$ (4) and compare their structural properties with those of the "pure" trifluoroacetate $Gd(CF_3COO)_3(H_2O)_3$ (3). The crystal structure of 3 was solved by Jingjun *et al.* in 1988 [37] and the results could be confirmed. We also investigated the magnetic behaviour of 2 and 3 in the temperature range of 1.77 to 300 K.

0932-0776 / 06 / 0600-0699 \$ 06.00 © 2006 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Compound	1	2	3	4
Formula	$C_{10}H_8F_{12}GdNO_8$	$C_{11}H_{12}F_{12}GdNO_{9}$	C ₆ H ₆ F ₉ GdO ₉	$C_{50}H_{34}F_{18}Gd_2N_6O_{15}$
$MW [g \cdot mol^{-1}]$	655.41	687.45	550.34	1611.29
Crystal colour		cole	ourless	
Crystal size [mm ³]	$0.15 \cdot 0.16 \cdot 0.53$	$0.15 \cdot 0.22 \cdot 0.26$	0.26 · 0.33 · 0.67	$0.37 \cdot 0.33 \cdot 0.38$
Crystal system	triclinic	triclinic	monoclinic	triclinic
Space group	$P\bar{1}$	$P\bar{1}$	$P2_1/c$	$P\bar{1}$
<i>a</i> [pm]	884.9(2)	965.1(1)	919.6(2)	1286.7(8)
<i>b</i> [pm]	1024.9(2)	1028.6(1)	1890.6(4)	1639.3(8)
c [pm]	1173.1(2)	1271.3(2)	978.7(2)	1712.2(9)
α [°]	105.77(2)	111.83(2)	90	62.57(6)
β [°]	99.51(2)	111.33(2)	113.94(2)	84.13(5)
γ [°]	107.93(2)	90.44(2)	90	68.28(5)
$V[10^6 \text{ pm}^3]$	937.4(3)	1076.3(2)	1555.2(5)	2967.8(3)
T[K]		2	293	
Z	2	2	4	2
$D_{\rm calc.} [{\rm g\cdot cm^{-3}}]$	2.322	2.121	2.351	1.803
F(000)	622	658	1036	1564
θ -Range [°]	2.37 - 28.22	2.16 - 26.09	2.15 - 25.96	3.07 - 31.94
hkl-Ranges	$-11 \le h \le 11$	$-11 \le h \le 11$	$-10 \le h \le 10$	$-17 \le h \le 15$
	$-13 \le k \le 13$	$-12 \le k \le 12$	$-23 \le k \le 23$	$-20 \le k \le 20$
	$-15 \le l \le 15$	$-15 \le l \le 15$	$-12 \le l \le 12$	$-17 \le l \le 22$
Absorption correction	1 –	-	numerical	_
$\mu(\text{Mo-K}_{\alpha}) \text{ [mm}^{-1}]$	3.695	3.227	4.406	2.340
Max./min. transm.	_	_	0.1258 / 0.1915	_
Measured refl.	16348	15413	21911	23683
Independent refl.	4195	3971	2909	12947
Refl. with $I > 2\sigma(I)$	3781	3562	2631	10251
$R_{ m int}$	0.0406	0.0659	0.0382	0.0332
Program used	SHELXS-97	[43], SHELXL-97	[44], X-Shape [4	7] and X-Red [48]
Refinement method		full-matrix lea	ist-squares on F^2	
Refined parameter	291	318	251	826
Residuals	$R_1 = 0.0367$	$R_1 = 0.0399$	$R_1 = 0.0307$	$R_1 = 0.0487$
with $I > 2\sigma(I)^a$	$wR_2 = 0.0986$	$wR_2 = 0.1036$	$wR_2 = 0.0802$	$wR_2 = 0.1462$
Residuals (all data) ^a	$R_1 = 0.0415$	$R_1 = 0.0463$	$R_1 = 0.0339$	$R_1 = 0.0649$
	$wR_2 = 0.1076$	$wR_2 = 0.1127$	$wR_2 = 0.0821$	$wR_2 = 0.1851$
$GooF^a$	1.060	1.083	1.038	1.119
Min./max. res.	-1.038/1.821	-1.164/1.543	-0.759/1.052	-2.040/3.520
$[10^{-6} e \cdot pm^{-3}]$				
CCDC number [49]	285300	285301	280700	295465

Table 1. Crystallographic data and details for the structure determination of ((CH $_3$)₂NH₂)-[Gd(CF $_3$ COO)₄] (1), ((CH $_3$)₃-NH)[Gd(CF $_3$ COO)₄(H₂O)] (2), Gd(CF $_3$ COO)₆(H₂O)₂(phen)₃ \cdot C₂H $_5$ OH (4).

1			2			3			4		
Gd	-O11	240.1(4)	Gd	-O11	235.7(5)	Gd	-O11	235.1(4)	Gd1	-O11	236.3(4)
	-O12	241.4(4)		-O12	234.4(5)		-O12 ^c	237.6(3)		-O12	242.2(4)
	-021	248.3(4)		-O21	232.6(4)		-021	246.4(4)		-O21	239.1(4)
	-O22	236.7(4)		-022	241.5(5)		-022	235.2(4)		-O22	238.7(4)
	-O31	246.8(4)		-O31	238.0(5)		-O31	237.6(4)		-O31	234.7(4)
	-O32	236.8(4)		-032	238.9(4)		-O1W	242.3(4)		-N1A	255.9(5)
	-041	237.1(4)		-041	242.8(4)		-O2W	244.0(4)		-N2A	254.4(5)
	-042	239.0(4)		-O1W	246.8(5)		-O3W	239.6(4)		-O1W	236.7(4)
	-Gd ^a	450.5(2)		-Gd ^a	456.0(5)		$-Gd^d$	447.7(9)		-Gd1e	460.0(2)
	-Gd ^b	458.9(2)		-Gd ^b	510.5(5)						
									Gd2	-O41	242.5(4)
N1	-021	307.5(3)	N1	-042	273.6(4)					-O51	243.7(4)
	-O31	297.9(4)								-052	258.4(4)
										-O61	232.8(4)
										-N1B	261.0(5)
										-N2B	259.2(5)
										-N1C	256.2(5)
										-N2C	252.0(5)
										-O2W	239.0(4)

Table 2. Selected interatomic distances d /pm for ((CH₃)₂NH₂)-[Gd(CF₃COO)₄] (1), ((CH₃)₃-NH)[Gd(CF₃COO)₄(H₂O)] (2), Gd(CF₃COO)₃(H₂O)₃ (3) and Gd₂(CF₃COO)₆(H₂O)₂(phen)₃ · C₂H₅OH (4).

$$\begin{array}{l} ^{a}-x+1,\;-y,\;-z+1;\;^{b}-x,\;-y,\\ -z+1;\;^{c}-x+1,\;-y+1,\;-z+2;\\ ^{d}-x,\;-y,\;-z;\;^{e}-x+1,\;-y+1,\\ -z+1. \end{array}$$

^a Definition given in [44].

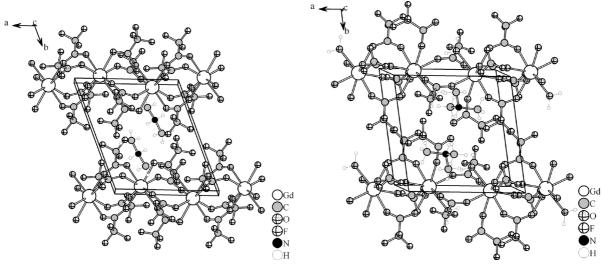


Fig. 1. Crystal structure of 1. The unit cell is shown.

Fig. 3. Crystal structure of 2. The unit cell is shown.

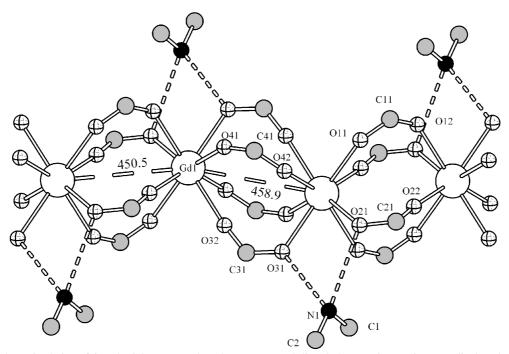


Fig. 2. Polymeric chains of 1; only Gd atoms, carboxylate groups and dimethylammonium cations are displayed. Hydrogen bonds are shown by dotted lines.

Results and Discussion

Crystal structures

Crystal data and details of the refinements for 1, 2,3 and 4 are summarized in Table 1, selected bond distances can be found in Table 2.

 $((CH_3)_2NH_2)[Gd(CF_3COO)_4]$ (1) crystallizes in the triclinic space group $P\bar{1}$ (No. 2, Z=2). The crystal structure is shown in Fig. 1. The Gd^{3+} ion is surrounded by eight oxygen atoms originating from eight carboxylate groups with Gd-O distances between 236.7(4) and 248.3(4) pm. The characteristic structural units are polymeric $\frac{1}{2}[Gd(CF_3COO)_4]$ chains, running

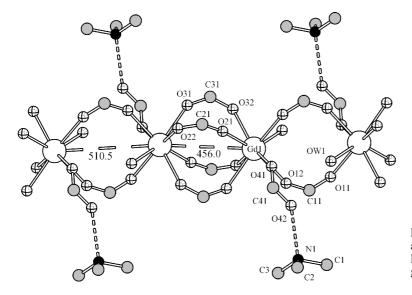


Fig. 4. Polymeric chains of 2; only Gd atoms, carboxylate groups and dimethylammonium cations are displayed. Hydrogen bonds are shown by dotted lines.

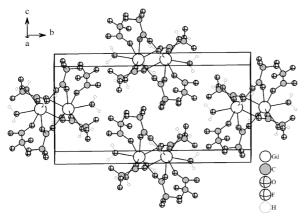


Fig. 5. Crystal structure of 3. The unit cell is shown.

along [100] (cf. Fig. 1 and 2) with bidentate bridging carboxylate groups (μ_2 -carboxylato- $\kappa^1 O$: $\kappa^1 O$ '). For each Gd-Gd bridge four carboxylate groups are required. Because of the similar bridging between the Gd³⁺ ions there are two comparable Gd-Gd distances (450.5(2) and 458.9(2) pm). The dimethylammonium cation is bonded via hydrogen bonds to two oxygen atoms of carboxylate groups. The O-N distances are 297.9(4) and 307.5(3) pm.

The crystal structure of ((CH₃)₃NH)[Gd(CF₃-COO)₄(H₂O)] (**2**) is shown in Fig. 3. **2** crystallizes in the triclinic space group $P\bar{1}$ (No. 2, Z=2). The Gd³⁺ ions are coordinated eightfold by seven carboxylate O atoms (Gd-O distances between 232.6(4) and 242.8(4) pm) and one water molecule (Gd-O distance 246.8(5) pm). The Gd³⁺ cations are bridged al-

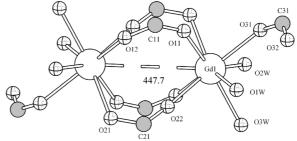


Fig. 6. Dimeric unit of 3.

ternately by two and by four carboxylate groups in a bidentate fashion (μ_2 -carboxylato- $\kappa^1 O$: $\kappa^1 O$ ') to chains (cf. Fig. 4). One carboxylate group is coordinated monodentately. As there are two rather different Gd-Gd distances (456.0(5) and 510.5(5) pm) the characteristic unit can be described as a chain of dimers. The trimethylammonium cation is bonded via a hydrogen bond to the non-coordinated oxygen atom of the monodentate carboxylate group (O-N distance 273.6(4) pm).

The crystal structure of $Gd(CF_3COO)_3(H_2O)_3$ (3) is shown in Fig. 5. The structure is built up of $Gd_2(CF_3COO)_6(H_2O)_6$ units (*cf.* Fig. 6). The Gd^{3+} ions are coordinated eightfold by oxygen atoms originating from five carboxylate groups (Gd-O distances: 235.1(4)-246.4(4) pm) and three water molecules (Gd-O distances: 239.6(4)-244.0(4) pm). The Gd^{3+} ions are connected to dimers by four of the six carboxylate groups in a μ_2 -carboxylato- κ^1O : κ^1O' -bridging mode (Gd-Gd distance: 447.7(9) pm).

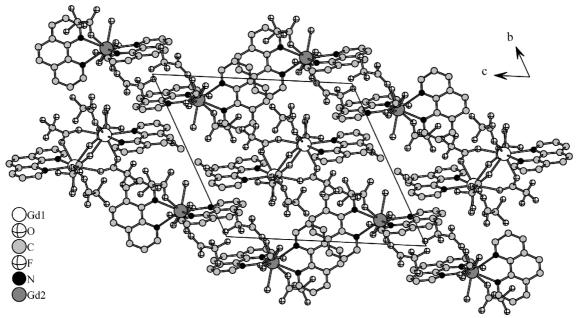


Fig. 7. Crystal structure of 4. H atoms are not displayed. The unit cell is shown.

The other carboxylate groups are connected monodentately. Compound **3** is isomorphous with $Ln(CF_3COO)_3(H_2O)_3$ (Ln = Pr - Lu) [40].

The crystal structure of Gd₂(CF₃COO)₆(H₂O)₂ $(phen)_3 \cdot C_2H_5OH$ (4) is shown in Fig. 7. It is built up of dimeric and monomeric units (cf. Fig. 8). The Gd³⁺ ions of the dimeric unit are coordinated eightfold by six oxygen atoms originating from five carboxylate groups and one water molecule (Gd-O distances: 234.7(4)-242.2(4) pm) and by two nitrogen atoms stemming from a 1,10-phenanthroline molecule (Gd-N distances: 254.4(5) and 255.9(5) pm). The Gd³⁺ ions are connected into dimers by four of the six carboxylate groups in a μ_2 -carboxylato- $\kappa^1 O$: $\kappa^1 O$ '-bridging mode (Gd-Gd distance: 460.0(2) pm). The other carboxylate groups are connected monodentately. The Gd³⁺ ion of the monomeric unit is coordinated ninefold by five oxygen atoms originating from four carboxylate groups and one water molecule (Gd-O distances: 232.8(4) - 258.4(4) pm) and by four nitrogen atoms stemming from two 1,10-phenanthroline molecules (Gd-N distances: 252.0(5) – 261.0(5) pm).

In all these compounds the Gd³⁺ ions are connected *via* bidentate bridged carboxylate groups to dimers and chains, respectively. The Gd-Gd distances lie between 447.7(9) and 510.5(5) pm. The rather large distance of 510.5 pm is caused by the smaller number of the bridging carboxylate groups.

Magnetic behaviour

The short Gd-Gd distances within the compounds **2** and **3** are of interest for the study of magnetic interactions. We previously reported the magnetic behaviour of similar compounds like Gd(CClF₂COO)₃(H₂O)₃ [25], Gd(CHF₂COO)₃(H₂O)₂ · H₂O [23] and (NH₃ CH₃)[Gd(CHCl₂COO)₄] [35]. In these compounds the Gd³⁺ ions are bridged by carboxylate groups also to dimers and chains in a μ_2 -carboxylato- $\kappa^1 O$: $\kappa^1 O$ '-bridging mode. The Gd-Gd distances are similar to the ones of **2** and **3**.

Magnetic susceptibility data for $\bf 2$ and $\bf 3$ were measured in the temperature range of 1.77 to 300 K at magnetic fields ($\bf H^{(ir)}$) of 500 and 1000 Oe for $\bf 2$ and 300 and 1000 Oe for $\bf 3$, respectively. The measured susceptibility values are field independent.

Figs. 9 and 10 show the measured effective Bohr magneton number ($\mu_{\rm eff}$ [41]) for 2 (Fig. 9) and 3 (Fig. 10). In both cases the r.t. values of $\mu_{\rm eff}$ are close to the expected value for the Gd³⁺ ion ($\mu_{\rm eff}$ ≈ 7.9). With the decrease of temperature, $\mu_{\rm eff}$ decreases slowly. At 2 K the $\mu_{\rm eff}$ values are about 7.5 and 7.65, respectively. This is a typical behaviour for weak antiferromagnetic interactions. A more detailed analysis shows that the molar magnetic susceptibility can be expressed by eq. (1) with $x = J_{\rm ex}/k_{\rm B}T$, derived from the spin Hamiltonian $\hat{H}_{\rm ex} = -2J_{\rm ex}\hat{\bf S}_{\rm Gdl}$.

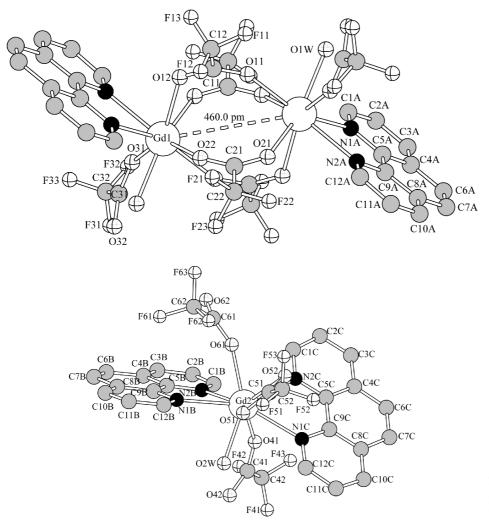


Fig. 8. Dimeric (above) and monomeric (below) unit of **4**.

$$\chi_{\rm m}^{\rm (ir)} = \frac{N_{\rm A}\mu_{\rm B}^2 g^2}{k_{\rm B}T} \frac{e^{2x} + 5e^{6x} + 14e^{12x} + 30e^{20x} + 55e^{30x} + 91e^{42x} + 140e^{56x}}{1 + 3e^{2x} + 5e^{6x} + 7e^{12x} + 9e^{20x} + 11e^{30x} + 13e^{42x} + 15e^{56x}}$$
(1)

 $\hat{\mathbf{S}}_{\text{Gd2}}$ ($S_{\text{Gd1}} = S_{\text{Gd2}} = 7/2$) [42], where N_{A} is the Avogadro constant, μ_{B} the Bohr magneton, g the Landé-factor, k_{B} the Boltzmann constant, T the absolute temperature, and J_{ex} the magnetic exchange parameter. The fitting procedure for $\mathbf{2}$ leads to $J_{\text{ex}} = -0.0099~\text{cm}^{-1}$, with $g = 1.98~(R = 8.82 \cdot 10^{-5};~R = \Sigma[(\mu_{\text{eff}})_{\text{obs}} - (\mu_{\text{eff}})_{\text{calc}}]^2/\Sigma[(\mu_{\text{eff}})_{\text{obs}}]^2)$, and for $\mathbf{3}$ to $J_{\text{ex}} = -0.0073~\text{cm}^{-1}$, with $g = 1.99~(R = 9.18 \cdot 10^{-7})$. The values of J_{ex} and the Gd-Gd distances d in $\mathbf{2}$ and $\mathbf{3}$ are comparable with the ones for similar compounds (Table 3), where an antiferromagnetic interaction was also found for the μ_2 -carboxylato- $\kappa^1 O$: $\kappa^1 O$ '-bridging

Table 3. Magnetic exchange parameter $J_{\rm ex}$ /cm⁻¹ and Gd-Gd distance d /pm for Gd³⁺ carboxylates with bidentate bridging modes (* this work).

Compound	J_{ex}	d	ref.
$Gd(CHF_2COO)_3(H_2O)_2 \cdot H_2O$	-0.0125	445.6(2)	[23]
$[NH_3C_2H_5][Gd(HCCl_2COO)_4]$	-0.010	453.7(7)	[34]
$((CH_3)_3NH)[Gd(CF_3COO)_4(H_2O)]$ (2)	-0.0099	456.0(5)	*
$Gd(CF_3COO)_3(H_2O)_3$ (3)	-0.0073	447.7(9)	*
[NH ₃ CH ₃][Gd(HCCl ₂ COO) ₄]	-0.007	451.6(7)	[35]
Gd(CClF ₂ COO) ₃ (H ₂ O) ₃	-0.006	447.6(2)	[25]

mode. Further studies on gadolinium compounds may give insight into the exchange coupling mechanism.

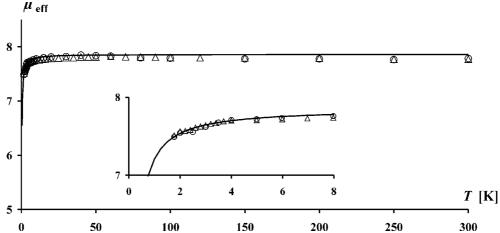


Fig. 9. Comparison of measured (Δ , $H^{(ir)}$: 500 Oe; \cdot , $H^{(ir)}$: 1000 Oe) and calculated (\longrightarrow) effective Bohr magneton numbers for 2.

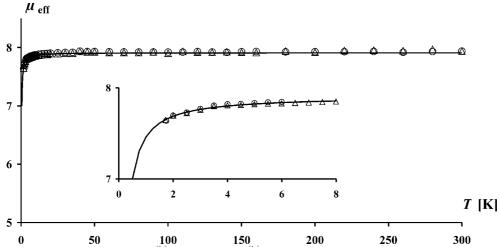


Fig. 10. Comparison of measured (Δ , $\mathbf{H}^{(ir)}$: 300 Oe; \diamond , $\mathbf{H}^{(ir)}$: 1000 Oe) and calculated (—) effective Bohr magneton numbers for 3.

Experimental Section

General

All reagents were commercially available and used without purification (Gd₂O₃: Strem Chemicals, 99.9%; trifluoroacetic acid, dimethylammonium chloride, trimethylammonium chloride: Fluka, 98%; 1,10-phenanthroline: Aldrich, 99%; ethanol: Sigma-Aldrich, 99.8%). The homogeneity of all samples was investigated using X-ray powder diffraction.

Preparation of 1

Compound 1 was prepared by the reaction of 0.58 g Gd₂O₃ (3.2 mmol Gd) and 1.37 g (12.01 mmol) trifluoroacetic acid in 10 ml H₂O at about 50 °C in a glass container. After

the oxide was dissolved, the solution was allowed to cool to r. t. and 0.24 g (2.94 mmol) dimethylammonium chloride was added. After a few weeks colourless crystals had formed. The crystals are suitable for X-ray single crystal structure analysis.

Preparation of 2

Compound 2 was prepared by the reaction of 0.54 g Gd₂O₃ (2.98 mmol Gd) and 1.35 g (11.84 mmol) trifluoroacetic acid in 10 ml H₂O at about 50 °C in a glass container. After the oxide was dissolved, the solution was allowed to cool to r.t. and 0.29 g (3.03 mmol) trimethylammonium chloride was added. After few weeks colourless crystals had formed.

Preparation of 3

 $1.09~g\ (3~mmol~Gd)~Gd_2O_3$ was suspended in water (10 ml) and $1.14~g\ (10~mmol)$ trifluoroacetic acid was added. In the solution colourless crystals formed after several days.

Preparation of 4

Compound **4** was prepared by reaction of 0.55 g of **3** (1 mmol Gd) and 0.36 g (1 mmol) 1,10-phenanthroline in a solution of ethanol and water (1:1). After a few days transparent, colourless, air stable crystals were obtained.

X-ray crystallographic studies

The intensities for all compounds were measured on a STOE imaging plate diffractometer. The data collection was carried out at r. t. The structures were solved by direct methods and were refined with anisotropic displacement parameters based on F^2 using SHELXS-97 [43] and SHELXL-97

[44] programs. The hydrogen atoms (compounds 1, 2 and 4) were positioned with idealized geometry and refined with isotropic displacement parameters. The crystal data and details of the refinement are summarized in Table 1.

Magnetic measurement

Crushed single crystals of **2** and **3** were measured with a SQUID magnetometer (MPMS5, Quantum Design) in a temperature range of 1.77 to 300 K at magnetic fields ($\mathbf{H}^{(ir)}$) of 0.5 and 1 kOe (**2**) and 0.3 and 1 kOe (**3**), respectively. No field dependence was observed. The sample was weighed into the lid of a gelatin capsule. To evade orientation effects during the measurement, the bottom of the gelatin capsule was pressed on the sample to fix it. A second lid closed the capsule. Then the container was sewn in a plastic straw. The raw magnetic data were corrected for diamagnetism of the sample carrier and the sample, using the increments of Haberditzl [45]. The presentation of the magnetic data follows the recommendation of Hatscher *et al.* [46].

- P. Guerriero, S. Tamburini, P. A. Vigato, Inorg. Chim. Acta 189, 19 (1991).
- [2] S. Liu, L. Gelmini, S.J. Rettig, R.C. Thompson, C. Orvig, J. Am. Chem. Soc. 114, 6081 (1992).
- [3] W. Plass, G. Fries, Z. Anorg. Allg. Chem. 623, 1205 (1997).
- [4] J.-P. Costes, A. Dupuis, J.-P. Laurent, Inorg. Chim. Acta 268, 125 (1998).
- [5] J.-P. Costes, F. Dahan, A. Dupuis, S. Lagrave, J.-P. Laurent, Inorg. Chem. 37, 153 (1998).
- [6] R. Hedinger, M. Ghisletta, K. Hegetschweiler, E. Tóth, A. E. Merbach, R. Sessoli, D. Gatteschi, V. Gramlich, Inorg. Chem. 37, 6698 (1998).
- [7] J.-P. Costes, F. Dahan, F. Nicodème, Inorg. Chem. 40, 5285 (2001).
- [8] F. Avecilla, C. Platas-Iglesias, R. Rodríguez-Cortiñas, G. Guillemot, J.-C.G. Bünzli, C.D. Brondino, C.F.G.C. Geraldes, A. de Blas, T. Rodríguez-Blas, J. Chem. Soc., Dalton Trans. 4658 (2002).
- [9] H. Zhao, M. J. Bazile, J. R. Galán-Mascarós, K. R. Dunbar, Angew. Chem. Int. Ed. 42, 1015 (2003).
- [10] R. Gheorghe, V. Kravtsov, Y. A. Simonov, J.-P. Costes, Y. Journaux, M. Andruh, Inorg. Chim. Acta 357, 1613 (2004).
- [11] A. Wun, F.-K. Zheng, W.-T. Chen, L.-Z. Cai, G.-C. Guo, J.-S. Huang, Z.-C. Dong, Y. Takano, Inorg. Chem. 43, 4839 (2004).
- [12] S. Wörl, I.O. Fritsky, D. Hellwinkel, H. Pritzkow, R. Krämer, Eur. J. Inorg. Chem. 759 (2005).
- [13] Z. He, E. Q. Gao, Z.-M. Wang, C.-H. Yan, M. Kurmoo, Inorg. Chem. 44, 862 (2005).

- [14] S. T. Hatscher, W. Urland, J. Solid State Chem. 176, 288 (2003).
- [15] A. Ouchi, Y. Suzuki, Y. Ohki, Y. Koizumi, Coord. Chem. Rev. 92, 29 (1988).
- [16] A. Panagiotopoulos, T. F. Zafiropoulos, S. P. Perlepes, E. Bakalbassis, I. Masson-Ramade, O. Kahn, A. Terzis, C. P. Raptopoulou, Inorg. Chem. 34, 4918 (1995).
- [17] A. Rizzi, R. Baggio, R. Calvo, M. T. Garland, O. Peña, M. Perec, Inorg. Chem. 40, 3623 (2001).
- [18] X. Li, R. Cao, D. Sun, Q. Shi, M. Hong, Y. Liang, Inorg. Chem. Commun. 5, 589 (2002).
- [19] S. Y. Niu, J. Jin, X. L. Jin, Z. Z. Yang, Solid State Sci. 4, 1103 (2002).
- [20] D. Sun, R. Cao, Y. Liang, Q. Shi, M. Hong, J. Chem. Soc., Dalton Trans. 1847 (2002).
- [21] A. W.-H. Lam, W.-T. Wong, S. Gao, G. Wen, X.-X. Zhang, Eur. J. Inorg. Chem. 149 (2003).
- [22] A. Rizzi, R. Baggio, M. T. Garland, O. Peña, M. Perec, Inorg. Chim. Acta 353, 315 (2003).
- [23] A. Rohde, S. T. Hatscher, W. Urland, J. Alloys Compd. **374**, 137 (2004).
- [24] A. M. Atria, R. Baggio, M. T. Garland, J. C. Muñoz, O. Peña, Inorg. Chim. Acta 357, 1997 (2004).
- [25] A. Rohde, W. Urland, Z. Anorg. Allg. Chem. 630, 2434 (2004).
- [26] D. John, W. Urland, Eur. J. Inorg. Chem. 4489 (2005).
- [27] D. John, W. Urland, Z. Anorg. Allg. Chem. 631, 2635 (2005).
- [28] J.-P. Costes, J.-M. Clemente-Juan, F. Dahan, F. Nicodème, M. Verelst, Angew. Chem. Int. Ed. 41, 323 (2002).

- [29] H. Hou, G. Li, L. Li, Y. Zhu, X. Meng, Y. Fan, Inorg. Chem. 42, 428 (2003).
- [30] J.-P. Costes, J.-M. Clemente-Juan, F. Dahan, F. Nicodème, Dalton Trans. 1272 (2003).
- [31] S. T. Hatscher, W. Urland, Angew. Chem. Int. Ed. 42, 2862 (2003).
- [32] M. Hernández-Molina, C. Ruiz-Pérez, T. López, F. Lloret, M. Julve, Inorg. Chem. 42, 5456 (2003).
- [33] A. Thirumurugan, S. K. Pati, M. A. Green, S. Natarajan, Z. Anorg. Allg. Chem. 630, 579 (2004).
- [34] A. Rohde, W. Urland, J. Alloys Compd. 408 412, 618 (2006).
- [35] A. Rohde, W. Urland, Z. Anorg. Allg. Chem. 631, 417 (2005).
- [36] Y. Sugita, A. Ouchi, Bull. Chem. Soc. Jpn. 60, 171 (1987).
- [37] Z. Jingjun, Z. Siyuan, M. Xiuqin, W. Gecheng, H. Ninghai, J. Zhongsheng, Yingyong Huaxue 5, 30 (1988)
- [38] A. Rohde, W. Urland, Z. Anorg. Allg. Chem. 629, 2069 (2003).
- [39] A. Rohde, D. John, W. Urland, Z. Kristallogr. 220, 177 (2005).
- [40] P.C. Junk, C.J. Kepert, L. Wei-Min, B.W. Skelton, A. H. White, Aust. J. Chem. 52, 459 (1999).

- [41] $\mu_{\text{eff}} = 2.8279 (T \chi_{\text{m}}^{(\text{ir})})^{1/2}$
- [42] H. Lueken, Magnetochemie, Teubner, Stuttgart (1999).
- [43] G. M. Sheldrick, SHELXS-97, A Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany (1990).
- [44] G. M. Sheldrick, SHELXL-97, A Program for the refinement of crystal structures from diffraction data; University of Göttingen: Göttingen, Germany (1997).
- [45] W. Haberditzl, Angew. Chem. Int. Ed. Engl. 5, 288 (1966).
- [46] S. T. Hatscher, H. Schilder, H. Lueken, W. Urland, Pure Appl. Chem. 77, 497 (2005).
- [47] STOE & Cie, X-Shape Version 1.01: Program for the crystal optimization for numerical absorption correction, STOE & Cie GmbH, Darmstadt, Germany (1996).
- [48] STOE & Cie, X-Red Version 1.08: Program for data reduction and absorption correction, STOE & Cie GmbH, Darmstadt, Germany (1996).
- [49] CCDC 285300 (1), 285301 (2), 280700 (3) and 295465 (4) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge *via* www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).