Darstellung und Kristallstruktur von NdSe_{1,9}

Preparation and Crystal Structure of NdSe_{1.9}

W. Urland*, P. Plambeck-Fischer und M. Grupe

Institut für Anorganische Chemie der Universität Hannover, Callinstraße 9, D-3000 Hannover

Z. Naturforsch. 44b, 261-264 (1989); eingegangen am 14. November 1988

Synthesis, Crystal Structure

NdSe_{1.9} has been prepared as grey, strongly reflecting platelets by reaction of elemental neodymium with selenium in the ratio 1:2 and subsequent chemical vapour phase transport with iodine. It crystallizes in the tetragonal space group P4₂/n with a = 925.36(7), c = 1679.2(3) pm and Z = 20. The structure determination results in a formulation of NdSe_{1.9} as Nd₂₀(Se(I)₂)₈Se(I)₂ \Box_2 Se(II)₂₀, where the defect layer built from the Se(I)₂²⁻ and Se(I)²⁻ ions corresponds to the F layer in the PbFCl substructure.

Einleitung

Klemm et al. [1] stellten entsprechend LaSe₂, CeSe₂ und PrSe2 erstmals ein Polyselenid des Neodyms dar, wobei die Proben aber ein Selendefizit aufwiesen und nie die Zusammensetzung 1:2 erreichten. Über die Struktur dieses Polyselenids machten Klemm et al. keine Angaben. In jüngerer Zeit wurde von Eliseev et al. ein Strukturvorschlag einer Verbindung mit der röntgenographisch ermittelten Zusammensetzung NdSe19 gemacht [2]. Die angegebene Struktur entspricht dem PbFCl-Typ mit einer statistischen Verteilung von Lücken in der "F-analogen" Schicht. Doch erweist sich dieser Strukturvorschlag als sehr unbefriedigend, da die bei den Polyseleniden bestehende Tendenz zur Ausbildung von Se2-Hanteln mit dem Strukturmodell nicht vereinbar ist [3,4] und für Neodym eine Valenz größer als 3 angenommen werden muß. Wir haben die Untersuchung der Polyselenide des Neodyms wieder aufgenommen, um Klarheit über Zusammensetzung und Kristallstruktur zu schaffen.

Experimentelles

Darstellung

Metallspäne von Neodym (Ventron-Alfa, 99,999%) wurden mit Selenschrot (Johnson Matthey, 99,9%) im Atomverhältnis 1:2 vermengt und in einer evakuierten Quarzampulle eingeschmolzen. Die Ampulle wurde 2 Tage auf 500 °C erhitzt, dann wurde die Ofentemperatur auf 900 °C erhöht und für 3 Tage konstant gehalten. Um Einkristalle zu erhalten, wurde das so dargestellte Neodympolyselenid transportiert. Dazu wurden 1 g des Polyselenids zusammen mit 40 mg Iod in einer evakuierten Quarzampulle von 170 mm Länge und 15,5 mm Durchmesser eingeschmolzen. Die Ampulle wurde anschließend in einen Zweizonenofen gelegt. Das eine Ende der Ampulle wurde bei einer Temperatur von 1000 °C, das andere bei einer Temperatur von 700 °C gehalten. Das Edukt befand sich in dem Ende mit der höheren Temperatur. Nach 4 Wochen wurden plättchenförmige quadratische Kristalle erhalten. Die Einkristalle sind von grauer Farbe und zeigen stark reflektierende Flächen (Abb. 1).

Abb. 1. Kristalle von NdSe1.9.

^{*} Sonderdruckanforderungen an Prof. Dr. W. Urland.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/89/0300–0261/\$ 01.00/0

Analyse

Die Zusammensetzung der Kristalle konnte mit der ICP-Methode zu NdSe_{1,90±0,01} bestimmt werden. Unabhängig davon wurde auf Sauerstoff und Wasserstoff geprüft, wobei signifikante Mengen nicht nachgewiesen werden konnten. Die Gegenwart von Silicium oder Iod konnte durch eine qualitative Analyse mittels Mikrosonde ausgeschlossen werden.

Kristallstrukturanalyse

Auf Präzessionsaufnahmen (MoK α -Strahlung) waren neben starken Reflexen, die auf die tetragonale Subzelle der PbFCl-Struktur hinwiesen, schwache Reflexe erkennbar, die die Zellabmessungen vergrößerten:

$$\vec{a}' = \vec{a} + 2\vec{b} \qquad \vec{b}' = -2\vec{a} + \vec{b} \qquad \vec{c}' = 2\vec{c}$$
$$\vec{a}' = \vec{b}' = \sqrt{5}\vec{a} \qquad \vec{c}' = 2c$$

Durch die schwachen Reflexe reduziert sich die Lauesymmetrie zu 4/m. Mit den systematischen Auslöschungen (hk0 mit h+k = 2n, 00l mit l = 2n) konnte die Raumgruppe P4₂/n eindeutig bestimmt werden. Einzelheiten über die röntgenographische Datensammlung sind in Tab. I wiedergegeben*.

Ergebnisse und Diskussion

Die Struktur von NdSe_{1.9} ist isotyp mit den Strukturen von CeSe_{1.9} und PrSe_{1.9} [4]. Dabei handelt es sich um eine verzerrte PbFCl-Struktur mit Lücken. Die PbFCl-Struktur kann als Schichtstruktur beschrieben werden. Die einzelnen Schichten bestehen jeweils aus einer Atomsorte und zeigen die Abfolge Cl, Pb, F, Pb, Cl (Abb. 2). Die F-Schicht ist relativ zu den Schichten der anderen Atome doppelt so dicht besetzt. Das Pb-Atom ist neunfach koordiniert.

Aufgrund der Struktur läßt sich NdSe_{1,9} als Nd₂₀(Se(I)₂)₈Se(I)₂ \Box_2 Se(II)₂₀ formulieren, wobei die

* Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD 53609, der Autoren und des Zeitschriftenzitats angefordert werden.

Verbindung	indung NdSe _{1.9}	
Farbe und Form	graue Plättchen	mung.
Kristallvolumen (mm ³)	0.005471	
Meßgerät	Siemens AED 2. Graphitmonochr.	
0	MoK _a -Strahlung	
Bestimmung der Gitterkonstanten:	B	
Meßbereich (°)	$3.0 \le \theta \le 30.0$	
Gitterkonstanten bei 293 K (pm)	a = 925,36(7), c = 1679,2(3)	
Raumgruppe	$P4_{2}/n$	
Z	20	
Berechnete Dichte $(g cm^{-3})$	6,8	
Messung der Reflexintensitäten:		
max. $\sin \theta / \lambda$ (Å ⁻¹)	0,7555	
h, k, l-Bereich	$\overline{14}, \overline{14}, \overline{26}$ bis 14, 14, 13	
Abtastung	ω	
min. Meßwinkel (°)	1,05	
max. Meßzeit (s)	31,5	
Standardreflexe	126, 126, 246	
Schwankungen in den Intensitäten	< 1,5%	
Zahl der gemessenen Reflexe	17522	
Zahl der symmetrieunabhängigen,		
beobachteten Reflexe (F > $3\sigma(F)$)	1923	
R _{int}	0,1234	
Absorptionskorrektur:		
minmax. Transmission	0,0054 - 0,1238	
$\mu (\mathrm{cm}^{-1})$	402,85	
Methode der Strukturbestimmung	isotyp mit CeSe _{1.9} und PrSe _{1.9}	
Strukturverfeinerung (mit F-Werten):		
$R^*, R^*_{w}, (w = 1/\sigma^2(F_o)), S^*$	0,0425, 0,033, 2,08	
Zahl der verfeinerten Reflexe	68	
max. und min. $\Delta \varrho$ (eÅ ⁻³)	1,95, -4,58	
Verwendetes Rechenprogramm	STRUCSY	
Atomformfaktoren $\Delta \mathbf{f}', \bar{\Delta} \mathbf{f}''$ International Tables (1974)		* Definitionen nach Acta Cry- stallogr. B38 , 699 (1982).

Abb. 2. Abfolge der Schichten in der Struktur von PbFCl.

Abb. 3. Se(I)-Schicht in der Struktur von NdSe_{1.9}. Werte für Se-Se-Abstände d_1 , d_2 und d_3 sind in Tab. III aufgeführt.

Atom	Position	x	у	Z	U_{eq}
Nd(1)	8g	0,95719(3)	0,84798(4)	0,37985(2)	0,0086(2)
Nd(2)	8g	0,05356(3)	0,14704(4)	0,10484(2)	0,0083(2)
Nd(3)	4e	3/4	1/4	0,38413(4)	0,0076(2)
Se(I1)	8g	0,88012(7)	0,06712(6)	0,24935(5)	0,0113(3)
Se(I2)	8g	0,97216(7)	0,31969(7)	1/4	0,0130(3)
Se(13)	2b	3/4	3/4	1/4	0,0099(4)
Se(II1)	8g	0,95106(6)	0,84766(7)	0,07221(5)	0,0083(4)
Se(II2)	8g	0,35081(6)	0,05247(6)	0,063131(4)	0,0082(4)
Se(II3)	4e	1/4	3/4	0,43478(7)	0,0081(4)

* 1/3 Spur U.

,F-analoge' Schicht von Se(I)²⁻-Hanteln und Se(I)²⁻-Ionen aufgebaut wird, während die der Cl-Schicht analoge Schicht allein aus Se(II)²⁻-Ionen besteht. Die Hanteln sind so zueinander ausgerichtet, daß sie zusammen eine Se⁸⁻-Baugruppe bilden. Die dabei auftretenden Lücken in der Se(I)-Schicht führen zu einer unterschiedlichen Koordination des Neodyms (Abb. 3). Daraus resultiert die Koordinationszahl neun für Nd(1), Nd(3) und acht für Nd(2) (Abb. 4). Die entsprechenden Atomkoordinaten und die äquivalenten Auslenkungsfaktoren sind in Tab. II angegeben. Ausgewählte Atomabstände sind in Tab. III aufgeführt. Gegenüber CeSe1,9 und PrSe1,9 [4] nehmen, wie erwartet, die Lanthanoid-Selen-Abstände ab, z.B. Ce(3)-Se(I1): 311,0 pm, Pr(3)-Se(I1): 309,1 pm, Nd(3)-Se(I1): 307,1 pm. Aussagen zur Elektronenstruktur von NdSe1,9 geben Bandstrukturrechnungen [5].

Abb. 4. Strukturausschnitt mit den 8-fach koordinierten Neodymatomen (\bullet) .

Tab. II. Relative Atomkoordinaten und äquivalente Auslenkungsfaktoren U_{eq}^* ; U_{eq} -Werte als 10^{-4} -fache in pm².

263

		NdSe _{1.9}
Nd(1) 2 2 2	Se(I1) Se(I2) Se(I3) Se(I1) Se(I12) Se(I13)	$\begin{array}{c} 307,1(1), 319,3(1)\\ 321,6(2)\\ 304,2(1)\\ 305,5(1), 308,5(1)\\ 307,6(1), 307,8(2)\\ 300,2(1) \end{array}$
Nd(2) 2 2 2	Se(I1) Se(I2) Se(II1) Se(II2) Se(II3)	300,2(1) 301,1(2), 315,2(2) 297,3(2), 297,8(1) 297,0(1), 300,1(1) 304,0(1)
Nd(3) 2 2 2 2	Se(I1) Se(I2) Se(II1) Se(II2) Se(II3)	$\begin{array}{l} 307,2(1) (2\times) \\ 311,7(2) (2\times) \\ 300,1(1) (2\times) \\ 308,1(1) (2\times) \\ 304,1(2) \end{array}$
Se(I1) 3	Se(I2) Se(I3)	$\begin{array}{l} d_1 = 248,7(1), \ d_2 = 291,4(1), \\ 342,4(1) \\ d_3 = 317,3(1) \end{array}$

Tab. III. Interatomare Abstände (pm) von NdSe_{1.9}.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung.

- [1] W. Klemm und A. Koczy, Z. Anorg. Allg. Chem. 233, 84 (1937).
- [2] A. A. Eliseev und V. G. Kuznetsov, Izv. Akad., Nauk SSSR Neorgan. Materialy 2, 1157 (1966); Inorg. Materials [USSR] 2, 990 (1967).
- [3] P. Böttcher, Angew. Chem. **100**, 781 (1988); Angew. Chem., Int. Ed. Engl. **27**, 759 (1988).
- [4] P. Plambeck-Fischer, W. Abriel und W. Urland, J. Solid State Chem., im Druck.
- [5] W. Tremel, P. Plambeck-Fischer und W. Urland, J. Less-Common Met., in Vorbereitung.