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The wild-type yeast strain Zygosaccharomyces bisporus CBS 702 produced a-hydroxy- 
ketones (acyloins) from amino acid precursors after transamination to the corresponding 
2-oxo acids. The key enzyme of the subsequent decarboxylation and C - C  bond forming 
reaction, pyruvate decarboxylase (PD C), was examined for its substrate- and stereo-specific- 
ity. A wide variety of saturated and unsaturated aliphatic and aromatic aldehydes was suc­
cessfully converted to acyloins. 19 of the biotransformation products identified had not been 
reported as natural substances before. Product yields were strongly affected by substrate 
structure.

Introduction
Pyruvate decarboxylase (PDC, E. C. 4.1.1.1) is a 

key enzyme in alcoholic fermentation and cataly­
ses the non-oxidative decarboxylation of pyruvate 
and other 2-oxo acids to the corresponding alde­
hydes. Thiamine diphosphate (ThDP) and Mg2+- 
ions are required as cofactors, which are bound to 
the apoenzyme in a quasi-irreversible manner at 
pH-values below 7.0 (Gounaris et al., 1975). PDC 
was first detected in yeast extracts by Neuberg and 
Karczag (1911) and has been found in many other 
fungi, plants, and bacteria (Bringer-Meyer et al., 
1986; Rivoal et al., 1990). The catalytically active 
form is tetrameric (dimer of dimers) with a molec­
ular mass of about 240 kDa in most species, but 
higher active association states have been de­
scribed for PDC from pea (Mücke et al., 1995) and 
wheat germ (Zehender et al., 1987).

The formation of acyloins (carboligation) as a 
side reaction of pyruvate decarboxylase has been 
assumed since Dirscherl’s work (1931). In fact, 
Neuberg and Hirsch (1921) were the first to ob­
serve the production of 7?-l-hydroxy-l-phenylpro- 
pan-2-one (PAC, phenylacetyl carbinol) from 
benzaldehyde by fermenting yeast, but considered 
a new enzyme called “carboligase“ to exist apart 
from PDC. The synthesis of R-PAC as a chiral pre­
cursor for L-ephedrine in the 1930ies was one of 
the first industrially applied biotransformations

and is a matter of continuing research (Pohl, 
1997). Unequivocal proofs for PDC as key enzyme 
of this biotransformation were obtained by several 
studies using partially purified PDC from different 
organisms to generate acyloins (Chen and Jordan, 
1984; Bringer-Meyer and Sahm, 1988; Crout 
etal., 1991).

The carboligase reaction of PDC from yeast has 
been intensively studied with acetaldehyde as do­
nor, which may be condensed to a wide range of 
aromatic and heterocyclic aldehydes, while ali­
phatic aldehydes usually are reported to fail as 
acetyl acceptors (Fuganti and Grasselli, 1985; 
Long et al., 1989; Cardillo et al., 1991; Crout et al., 
1991; Bornemann et al., 1996). Most of these 
studies have been performed with fermenting 
yeast cells as in the case of the only detailed inves­
tigation reporting the successful conversion of ali­
phatic aldehydes (Schmauder and Gröger, 1968). 
During our work with different wild type yeast 
species, a strain of Zygosaccharomyces bisporus 
was found to transform amino acids into aromatic 
(Neuser et al., 1999) and aliphatic acyloins that had 
not been described in literature before. After the 
setup of a fast purification method for PDC from 
Z. bisporus, the objective of our studies was to ex­
amine the suitability of aliphatic aldehydes and
2-oxo acids to serve as substrates in the PDC cata­
lysed formation of a-hydroxyketones.
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Materials and Methods

Biotransformations with fermenting yeast

Zygosaccharomyces bisporus CBS 702 was ob­
tained from the Centraalbureau voor Schimmel- 
cultures (Baarn, Netherlands). After 48 h of pre­
cultivation at 24 °C in a standard medium (30 g I-1 
glucose, 3 g l " 1 yeast extract, 4.5 g l“1 asparagine, 
1 g I-1 M g S04, 1.5 g I“1 KH2P 0 4, pH 6.0), yeast 
cells were transferred to shake flasks containing 
100 ml transformation medium (10 g I-1 glucose, 
8% (v/v) ethanol, 1 g I-1 M gS04, 0.5 g l-1 
KH2P 0 4, 2 mg I-1 thiamine, 2 mg l-1 biotin, 
pH 6.0). The respective amino acid precursor was 
the only source of nitrogen (10 mM). If aldehydes 
or oxo acids were to be converted (10 mM, added 
in two portions on growth days 2 and 5), 1 g I-1 
(NH4)2S 0 4 was provided as nitrogen source. After
7 d of cultivation, cells were separated by centrifu­
gation (5000 x g) and the broth was extracted with 
ethyl acetate (3 x 40 ml). The extract was dried 
over anhydrous sodium sulfate and concentrated 
using a Vigreux column.

Enzyme purification

For the isolation of pyruvate decarboxylase, 
yeast cells were transferred after precultivation 
to a growth medium containing 50 g l-1 glucose, 
10 g I-1 yeast extract, 4.5 g I-1 asparagine, 1 g I-1 
M gS04, 1.5 g I-1 KH2P 0 4 (pH 6.0, 300 ml, shake 
flasks, 24 °C). Cells were harvested by centrifuga­
tion (5000 x g) after 48 h and disintegrated in a 
bead mill. PDC was purified to homogeneity from 
the crude extract as described elsewhere (Neuser 
et al., 2000).

Biotransformations with isolated PDC

The reaction mixtures contained 2 mM ThDP, 
20 mM M g S04, 5 U PDC (1 U catalyzes the decar­
boxylation of 1 [xmol pyruvate to acetaldehyde at 
25 °C in 1 min) and equimolar amounts of sodium 
pyruvate and the respective aldehyde or acetalde­
hyde and the respective 2-oxo acid (15-200  mM) 
in 0.1 m sodium citrate buffer (pH 6.0, final vol­
ume 4 ml). After incubation at 24 °C for 48 h, 
200 [ig 2£-hexene-l-ol was added as internal stan­
dard, the mixtures were extracted with diethyl 
ether ( 2 x 2  ml) and the extracts dried over so­
dium sulfate.

Identification of metabolites

The organic extracts were analysed by capillary 
gas chromatography (H RGC) and gas chromatog­
raphy-mass spectrometry (HRGC-M S). a-Hydro- 
xyketones were identified by comparing their 
Kovats indices and mass spectra with published 
data, if available, or with synthesized references 
(see below). HRGC was performed on a Fisons 
GC 8000 Series chromatograph equipped with an 
on-column inlet, a flame-ionization detector, a de­
activated FS-CW precolumn (3 m x 0.32 mm i.d., 
CS, Germany), and a CW 20M fused silica column 
(30 m x 0.32 mm i.d., film thickness 0.25 jim, 
Macherey & Nagel, Germany). Operating condi­
tions were as follows: Carrier gas H2 at 3.2 ml 
min-1, injector 40 °C, detector 250 °C. The tem­
perature was held at 40 °C for 3 min and then 
increased to 230 °C at a rate of 4 °C min-1. Mass 
spectra were recorded by a Fisons MD 800 mass 
spectrometer, using electron ionization at 70 eV, 
He as carrier gas and the same H RGC conditions 
as above.

Synthesis o f reference acyloins

Branched aliphatic acyloins (derived from the 
amino acids valine, leucine and isoleucine) were 
synthesized according to the method of Kawabata 
et al. (1978). For synthesis of the 2-hydroxy-3-oxo- 
acyloins (2), (4) and (6), 0.1 mol (11.8 g) ethyl 
L-lactate was amidated by passing dry ammonia 
gas through the stirred liquid for 24 h at room tem­
perature. After removal of the formed ethanol 
0.05 mol (4.46 g) L-lactamide was added to a Grig- 
nard reagent prepared from 0.25 mol (6.08 g) Mg 
turnings and 0.25 mol alkyl halide in 120 ml di­
ethyl ether (30.8 g 2-bromopropane for synthesis 
of acyloin (2), 34.3 g 2-bromobutane for (4), and 
34.3 g l-bromo-2-methylpropane for (6), respec­
tively). The acyloins were obtained after hydroly­
sis with HC1 (6 m ) and extraction with ether.

For synthesis of the 3-hydroxy-2-oxo-acyloins
(1), (3) and (5), 0.04 mol of the respective hydroxy 
acids 2-hydroxy isovaleric acid (5.15 g), 2-hydroxy-
3-methylvaleric acid (5.29 g) and 2-hydroxy iso- 
caproic acid (5.29 g) were methylated with MeOH 
(40 ml) in the presence of acetyl chloride (3 ml). 
Since 2-hydroxy-3-methylvaleric acid was not 
commercially available, it was prepared by reduc­
tion of 0.05 mol (7.30 g) 2-oxo-3-methylvaleric
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acid with 0.05 mol (2.0 g) NaBH4. The respective 
hydroxy acid methyl esters (0.03 mol) were ami- 
dated as described above and 0.025 mol amide was 
then added to a Grignard reagent prepared from 
0.125 mol (3.04 g) Mg turnings and 0.125 mol 
(17.7 g) iodomethane in 60 ml diethyl ether. All 
crude products were purified by column chroma­
tography on silica gel.

Enantiomeric pure /?-l-hydroxy-l-phenyl-2- 
propanone (24) was a gift from Knoll AG (G er­
many) and was racemized by treatment with 0.1 m 
sodium phosphate buffer (pH 7.7) at 90 °C. R- and 
5-3-hydroxy-4-phenyl-2-butanone (21) were syn­
thesized from 0.03 mol (5.0 g) R- and 5-phenyl lac­
tic acid, respectively, by methylation, amidation 
and Grignard addition with iodomethane, as ex­
plained above. S-S-hydroxy-l-phenyl^-butanone 
(22) was synthesized by addition of 0.05 mol 
(4.46 g) L-lactamide to a Grignard reagent pre­
pared from 0.25 mol (6.08 g) Mg and 0.25 mol 
(42.8 g) benzyl bromide in 120 ml ether. R,S-3-hy- 
droxy-l-phenyl-2-butanone was synthesized ac­
cording to the method of Gill et al. (1986). 0.1 mol 
(10.8 g) trimethylsilylchloride was added dropwise 
to a mixture of 0.1 mol D.L-lactonitrile and 0.1 mol 
(7.9 g) pyridine in 50 ml dry ether and stirred over 
night. The formed precipitate was seperated by 
filtration and the ether removed under reduced 
pressure. The silylated nitrile was then added to a 
Grignard reagent prepared from 0.1 mol (2.45 g) 
Mg and 0.1 mol (12.7 g) benzylchloride in 80 ml 
ether. Crude products were purified by prepara­
tive HPLC on a Lichrosorb Diol column (7 |im, 
250 x 25 mm, Merck, Germany). HPLC was per­
formed with a Jasco PU-980 intelligent HPLC gra­
dient pump, a Jasco gradient former and a LC-UV- 
Detector (Pye Unicam, \ = 260 nm). Chromato­
graphic conditions: Sample volume 2 ml, flow rate 
10 ml min“1, linear elution gradient from hexane 
(100%) to hexane/isopropanol (95/5 v/v) in 
80 min.

7?,5'-3-Hydroxy-2-octanone (23) was obtained by 
bromination of 0.04 mol (5.2 g) 2-octanone with 
0.16 mol (22.6 g) 2-bromo-2-methylpropane in 
0.08 mol (6.2 g) DMSO (12 h reflux) and following 
hydrolysis of the resulting 3-bromo-2-octanone 
with 50 ml saturated NaHCO^-solution (8 h at 
90 °C) (Spiteller et al., 1980: Armani et al., 1984).

Chiral analysis

The enantiomeric distribution of the enzymati­
cally produced a-hydroxyketones was determined 
by HRGC after derivatization to diastereomeric 
MTPA-esters. 10-100 |ig acyloin in 50 [_il dry di­
ethyl ether was mixed with 4 [il pyridine and 2 [il 
S-2-methoxy-2-trifluoromethyl-2-phenylacetyl 
chloride (S-MTPA-C1). After 16 h at room tem­
perature the mixture was diluted with ether and 
analysed by HRGC-MS (as described above) on a 
BC SE 54 column (30 m x 0.32 mm i.d., film thick­
ness 0.4 (im, Leupold, Germany) under isothermal 
conditions (180 °C for (21) and (24), 165 °C for 
(22) and 130 °C for (23), respectively). Absolute 
configurations were determined by comparison 
with racemic and enantiomeric pure standards, 
which were analysed in the same way. The abso­
lute configuration of enzymatically produced 3-hy- 
droxy-2-octanone was identified by measuring the 
optical rotation (Perkin Elmer polarimeter 341, 
X = 589 nm). a f  (S-(23)) = +92° (Bel-Rhlid et al.,
1989).

Enzymatically synthesized acyloins were isolated 
by column chromatography or preparative HPLC as 
described above for the reference substances.

Results

Yeast biotransformations

Five of several amino acids tested were con­
verted by fermenting yeast cells of Zygosaccharo­
myces bisporus to the corresponding a-hydroxy­
ketones (phenylalanine, tyrosine, valine, leucine, 
methionine), but only the two aromatic precursors 
gave larger product yields (Table I). No acyloin 
formation was observed with isoleucine, histidine, 
threonine and glutamic acid. Replacement of the 
convertable amino acids by their corresponding 
2-oxo acids (if available) led to improved product 
yields and, moreover, to the first detection of the 
acyloins derived from isoleucine (Table I). The 
main transformation products proved to be the 
alcohols formed by transamination of the amino 
acids, subsequent decarboxylation and reduction 
by ADH (Fig. 1). There are two possible pathways 
of acyloin formation, leading to the shown iso­
meric structures. If amino acids or 2-oxo acids 
were added to the yeast cultures, the 2-hydroxy-3- 
oxo-acyloins represented the predominant isomer
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Table I. Formation of acyloins (total of both isomers) 
by fermenting cells of Zygosaccharomyces bisporus from 
different precursors (concentration lO mM ).

Precursor Acyloin from 
amino acid 
[mg I“1]

Acyloin from 
2-oxo acid 
[mg l - 1]

Phenylalanine 15.9
Phenylpyruvic acid 17.5
Tyrosine 24.5
4-Hydroxyphenylpyruvic acid 25.9
Valine 0.19
3-Methyl-2-oxobutyric acid 0.49
Leucine 0.09
3-Methyl-2-oxovaleric acid 0.51
Isoleucine 0
4-Methyl-2-oxovaleric acid 0.23
Methionine 1.24

formed (>90%). Keto-enol tautomerization was 
observed with all secondary a-hydroxyketones 
and, thus, both possible isomers always occurred, 
especially in the presence of acids or higher tem­
peratures.

Biotransformations using isolated PDC

In order to confirm the two proposed pathways 
shown in Fig. 1 and to gain further insight in the 
role of pyruvate decarboxylase in the biosynthesis 
of the a-hydroxyketones obtained, incubation ex­
periments with isolated PDC from Zygosaccharo­
myces bisporus were carried out. First, aldehydes 
and 2-oxo acids corresponding to the successfully

converted amino acids (if available) were incu­
bated in the presence of pyruvate and acetalde- 
hyde, respectively. 12 further aldehydes and two 2- 
oxo acids containing different structure elements 
(branched, unsaturated) were then checked for 
their precursor properties. As summarized in 
Table II, all of the aldehydes and most of the
2-oxo acids were converted to the expected acy- 
loin isomers; merely 2-oxo glutaric acid and 4-hy- 
droxyphenylpyruvate failed to yield the expected 
products. The condensation of aldehydes and pyr­
uvate resulted in the formation of 3-hydroxy-2- 
oxo-acyloins as the main transformation products, 
while 2-oxo acids and acetaldehyde predominantly 
gave 2-hydroxy-3-oxo-acyloins. Acetoin resulting 
from condensation of pyruvate and acetaldehyde, 
or two molecules of acetaldehyde, was detected 
as side product only. The application of aliphatic 
aldehydes of different homologous series revealed 
several factors influencing their conversion to 
a-hydroxyketones by PDC. The improved sub­
strate suitability of long-chain aldehydes shows the 
importance of hydrophobic molecule properties, 
whereas the significantly worse transformation of 
branched aldehydes may be attributed to the steric 
hindrance of such structures. a,ß-unsaturated alde­
hydes showed lower conversion rates than their 
saturated analoga, which might be due to steric 
reasons (more rigid structure), changes in the re­
activity of the carbonyl group and/or slightly dif­
ferent polarities. Remarkable differences in acy- 
loin formation were shown upon incubation of the

COOH
TA

Nl-t 

amino add

PDC

/COOH

o r
0

2-oxo add

1.) - CO* 

2) +

PDC

-CO2

aldehyde alcohol

PDC

\ X O O H

| 1)+ s
2.) - CO*

2-hydroxy-3-oxo-acyloin

OH

3-hydroxy-2-oxo-acyloin

Fig. 1. Proposed formation of a-hydroxyketones from amino acids by yeasts (TA = transaminase, PDC = pyruvate 
decarboxylase, A D H  = alcohol dehydrogenase).
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Table II. Formation of acyloins (total of both isomers) from different precursors (c0 
118 mM) by isolated pyruvate decarboxylase.

Precursor Acyloin from aldehyde 
and pyruvate [mg I-1]

Acyloin from 2-oxo acid 
and acetaldehyde [mg I-1]

Propanal/ 197
2-Oxobutanoic acid 149

Butanal 300
Pentanal 636
Hexanal 1992
Heptanal 2489

2-Methylpropanal/ 62
3-Methyl-2-oxobutanoic acid 14

3-Methylbutanal/ 42
4-Methyl-2-oxopentanoic acid 43

2-Methylbutanal/ 83
3-Methyl-2-oxopentanoic acid 40
2-Methylpentanal 92

2£-Butenal 136
2.E-Pentenal 319
2£-H exenal 517

2-Methyl-2£'-butenal 65
3-M ethyl-2£-butenal 93

3-(Methylthio)propanal 50

Benzaldehyde/ 2382
Benzoylformic acid 189

Phenylacetaldehyde/ 238
Phenylpyruvic acid 8

aromatic compounds benzaldehyde and phenylac- 
etaldehyde, the latter one resulting in product 
amounts tenfold lower than observed with benz­
aldehyde.

Compounds (1) to (20) (with the exception of
(3), Moio et al., 1994) have not been reported as 
natural products before and no mass spectrometric 
data were thus available for their identification. 
Acyloins (1) to (6) were therefore synthesized as 
references. All of them showed mass spectra and 
retention indices identical to those obtained by en­
zymatic conversion. Highly characteristic fragmen­
tation patterns of these compounds also allowed 
the identification of further examined a-hydroxy- 
ketones by their mass spectra. In each case, two 
primary fragments, m/z = 45 and M+-45 (2-hy- 
droxy-3-oxo-acyloins), or m/z = 43 and M+-43 
(3-hydroxy-2-oxo acyloins), resulted from a-cleav- 
age between C2 and C3. Subsequently, CO is elim­
inated from the (M+-45)-fragment to give

(M+-45-28), whereas H20  is split off from 
(M+ -43) to give (M+ -43-18). Due to this recurr­
ing scheme and the fact that the respective acy­
loins were by far the main products of all studied 
biotransformations, further identifications were 
based on the mass spectrometric data without syn­
thesis of reference substances (Table III). Surpris­
ingly and in contrast to all other examples, the two 
isomers of acyloins branched at C4 (5) and (6), as 
well as (7) and (8), respectively, showed almost 
identical mass spectra, although being clearly sep­
arated by GC-MS. This may be explained by heat- 
catalysed elimination of water at C3 /C4 leading 
to a comparably stable tertiary carbocation, which 
is only possible from the 3-hydroxy-2-oxo-acyloin, 
thus favouring the keto-enol tautomerization in 
one direction. It has to be considered, however, 
that the hydroxy pentanones (1) and (2), branched 
at C4, too, did not show this peculiar fragmenta­
tion.
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Table III. Mass spectrometric data of acyloins produced by pyruvate decarboxylase.

565

Residue

R

" T

Products m/z (%  relative abundance) 

oh 0

FT 'V ' FT
0  OH

(I) 116 (M +, 0.4), 73 (96), 55 (100), 45 (27), 43 (94)
(2) 116 (1), 71 (28), 45 (100), 43 (84)

(3) 130 (0.3), 87 (25), 69 (63), 45 (42), 43 (100)
(4) 130 (0.7), 85 (65), 57 (100), 45 (83), 43 (31)

(5) 130 (0.3), 87 (33), 74 (26), 69 (27), 57 (22), 45 (55), 43 (100)
(6) 130 (0.4), 87 (32), 74 (28), 69 (26), 57 (22), 45 (52), 43 (100)

(7) 144 (0.2), 101 (32), 83 (50), 74 (35), 55 (61), 45 (55), 43 (100)
(8) 144 (0.2), 101 (61), 83 (52), 74 (35), 55 (59), 45 (57), 43 (100)

(9) 148 (18), 105 (16), 75 (75), 61 (100), 45 (36), 43 (62)
(10) 148 (23), 104 (15), 75 (52), 61 (100), 45 (84), 43 (38)

(II) 114 (2), 71 (100), 53 (37), 43 (83), 41 (59)
(12) 114 (1), 69 (100), 45 (45), 43 (21), 41 (49)

(13) 128 (1), 85 (93), 67 (33), 57 (56), 43 (100), 41 (66)
(14) 128 (1), 83 (100), 55 (54), 45 (100), 43 (66)

(15) 142 (0.2), 99 (28), 57 (100), 43 (35)
(16) 142 (0.2), 97 (64), 69 (10), 55 (100), 45 (34)

(17) 128 (3), 85 (100), 55 (30), 43 (71), 41 (48)
(18) 128 (2), 83 (67), 55 (100), 45 (48), 43 (28)

(19) 128 (1), 85 (100), 55 (32), 43 (37), 41 (51)
(20) 128 (1), 83 (100), 55 (50), 45 (14), 43 (13)

(21) 164 (0.3), 121 (49), 103 (59), 91 (100), 65 (32), 43 (46)
(22) 164 (1), 120 (21), 91 (100), 65 (33), 45 (53)

Substrate suitability

With regard to product yields, aldehydes proved 
to be the more effective precursors compared to 
the corresponding 2-oxo acids (Table II). Within 
the homologous series of saturated linear alde­
hydes, acyloin formation increased with growing 
carbon chain length. The same tendency was ob­
served with unsaturated linear aldehydes, but 
yielding considerably less product amounts than 
the saturated substrates of equal chain length. 
Branched aldehydes were poor precursors com­
pared to linear ones. Benzaldehyde was converted 
at much higher rates than the second aromatic

substrate, phenylacetaldehyde. The frequently dis­
cussed opinion that pyruvate decarboxylase would 
show a high substrate specifity for aromatic alde­
hydes in acyloin formation (Fuganti and Grasselli, 
1985; Long et al., 1989; Bornemann et al., 1996) 
did not apply for the enzyme of Z. bisporus.

Stereospecifity o f  acyloin form ation

The enantiomeric distribution of enzymatically 
produced acyloins was determined for 3-hydroxy-
4-phenyl-2-butanone (21) and 3-hydroxy-1-phe- 
nyl-2-butanone (22) as aromatic representatives,
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for 3-hydroxy-2-octanone as an aliphatic com­
pound (23), and for l-hydroxy-l-phenyl-2-propa- 
none (PAC) (24) as the best studied product in 
order to compare the obtained results with pub­
lished data. Benzaldehyde and benzoylformic acid 
were both converted to R-(24) in optical purities 
>98%  by isolated PDC as well as by fermenting 
yeast cells of Zygosaccharom yces bisporus (Ta­
ble IV). The isomeric 2-hydroxy-l-phenyl-l-pro- 
panone (25) as the expected main conversion pro-

Table IV. Enantiomeric distribution of a-hydroxyket- 
ones produced by purified pyruvate decarboxylase and 
fermenting yeast cells of Z. bisporus.

Precursor Main isomer and optical purity (% ee)
PDC Yeast

Benzaldehyde R< 24) >98% R-( 24) >98%
Benzoylformic acid K-(24) >98% -
Phenylacetaldehyde /?-(21) 58% -
Phenylpyruvate S-( 22) 30% S-( 22) 84%
Hexanal R-( 23) 69% -

duct of benzoylformic acid was detectable only in 
small amounts (<3%).

Conversion of phenylacetaldehyde and hexanal 
also yielded the respective /?-a-hydroxy-ketones. 
The products R-(21) and R-(23) were, however, of 
considerably lower optical purity than compound 
R-(24) (Table IV). In contrast, the biotransforma­
tion of phenylpyruvate by PDC or whole yeast 
cells led to acyloin S-(22), thus being of opposite 
configuration than all other examples studied here 
or reported in literature.

Discussion

The mechanism of decarboxylation and carboli- 
gation by pyruvate decarboxylase has been studied 
intensively serving as a model reaction for thia- 
mine-dependent enzymes (recent reviews: Pohl, 
1997; Schellenberger, 1998). The different steps re­
levant for ThDP-catalysed decarboxylation and 
the formation of a-hydroxyketones are summa­
rized in Fig. 2. Carbanion 1 as reactive intermedi­

ch3 ©m

4

R'
CH3 -CĤ

HO­

HO— <x
Fig. 2. Reaction path of enzymatic pyruvate decarboxylation and formation of a-hydroxy-ketones.
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ate performs a nucleophilic attack on the a-car- 
bonyl group of the keto acid. Decarboxylation 
leads to a carbanion-enamine intermediate 3, also 
known as “active aldehyde”, probably present in 
the mechanism of all ThDP-dependent enzymes 
(Iding et al., 1998). A further protonation step 
gives compound 4, which is regenerated to ThDP 
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