Chemischer Transport fester Lösungen, 25 [1]. Untersuchungen zur Mischphasenbildung und zum chemischen Transport in den Systemen TiS₂/MoS₂, TiSe₂/MoSe₂, TaS₂/MoS₂ und TaSe₂/MoSe₂

Chemical Vapour Transport of Solid Solutions, 25 [1]. Formation of Mixed Phases and Chemical Vapour Transport in the Systems TiS₂/MoS₂, TiSe₂/MoSe₂, TaS₂/MoS₂ and TaSe₂/MoSe₂

U. Hotje, R. Wartchow und M. Binnewies

Institut für Anorganische Chemie, Universität Hannover, Callinstr. 9, D-30167 Hannover Sonderdruckanforderungen an Prof. Dr. M. Binnewies. E-mail: binn@mbox.aca.uni-hannover.de

Z. Naturforsch. 60b, 1235 - 1240 (2005); eingegangen am 30. September 2005

Professor Gerhard Thiele zum 70. Geburtstag gewidmet

X-ray investigations have shown a complete miscibility in the systems TaS₂/MoS₂ and TaSe₂/MoSe₂. In these systems mixed crystals could be obtained by chemical vapour transport with iodine as transport agent in the temperature gradient 1000 \rightarrow 800 °C. By contrast, no mixed crystals are formed in the systems TiS₂/MoS₂ and TiSe₂/MoSe₂. The transport behaviour in these systems is reported.

Key words: Chemical Vapour Transport (CVT), Mixed Crystals of $Ta_{1-x}Mo_xS_2$, $Ta_{1-x}Mo_xS_2$

Einleitung

Vor einiger Zeit haben wir über Untersuchungen zur Mischbarkeit und zum chemischen Transport in den Systemen MoS₂/MoSe₂, NbS₂/NbSe₂, MoS₂/NbS₂ und MoSe₂/NbSe₂ berichtet [2]. In allen genannten Systemen haben wir eine lückenlose Mischkristallbildung beobachtet. Dies ist im Einklang mit dem Befund, dass die Kationen in den genannten Disulfiden und Diseleniden ausnahmslos trigonal prismatisch koordiniert sind. Die Verbindungen kristallisieren im MoS₂-Typ oder einem der davon abgeleiteten Polytypen. Voraussagen über mögliche Mischphasenbildung zwischen den Dichalkogeniden von Molybdän und denen von Titan und Tantal zu machen und das damit im Zusammenhang stehende Transportverhalten abzuschätzen, erscheint hingegen schwieriger: TiS₂ kristallisiert im CdI2-Typ mit oktaedrischer Koordination der Titan-Atome; in den verschiedenen Modifikationen von TaS₂ bevorzugen die Tantal-Atome die oktaedrische Koordination, die trigonal prismatische Koordination wird jedoch gleichfalls beobachtet, sodass in den Systemen TaS₂/MoS₂ und TaSe₂/MoSe₂ wohl eher mit einer Mischphasenbildung zu rechnen ist als in den Systemen TiS₂/MoS₂ und TiSe₂/MoSe₂.

Der Transport von TiS₂, TiSe₂, TaS₂, TaSe₂, MoS₂ und MoSe₂ ist lange bekannt [3-5]. Er erfolgt endotherm mit Iod als Transportmittel bei Temperaturen um 800 °C. Genauere Untersuchungen über die transportwirksamen Spezies sind jedoch nicht bekannt.

Ergebnisse und Diskussion

Nachfolgend berichten wir über präparative und röntgenographische Untersuchungen zur Mischbarkeit in den genannten Systemen sowie über deren Transportverhalten.

Untersuchungen zur Mischbarkeit in den Systemen TiS₂/MoS₂, TiSe₂/MoSe₂, TaS₂/MoS₂ und TaSe₂/MoSe₂

Vor der Durchführung der Transportversuche haben wir in einer gesonderten Versuchsreihe röntgenographisch das Ausmaß der Mischbarkeit in den Systemen TiS₂/MoS₂, TiSe₂/MoSe₂, TaS₂/MoS₂ und TaSe₂/MoSe₂ untersucht. Hierzu haben wir die Komponenten in unterschiedlichen Anteilen in Gegenwart von wenig Iod als Mineralisator bei 1000 °C vier Tage getempert und das gepulverte Produkt anschließend röntgenographisch untersucht. Es ergaben sich dabei ganz unterschiedliche Ergebnisse.

0932–0776 / 05 / 1200–1235 \$ 06.00 © 2005 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Abb. 1. Gitterkonstante a im System TaS₂/MoS₂.

Abb. 2. Gitterkonstante c im System TaS₂/MoS₂.

 $Ti S_2 / Mo S_2$

Im System TiS₂/MoS₂ findet bei der Reaktionstemperatur keine röntgenographisch erkennbare Mischphasenbildung statt. Die Ionenradien der Ti⁴⁺- und Mo⁴⁺-Kationen sind zwar sehr ähnlich $(r(Ti^{4+}) = 74,5 \text{ pm}, r(Mo^{4+}) = 79 \text{ pm}$ (Koordinationszahl 6)), die von den Kationen in diesen Disulfiden bevorzugten Koordinationsgeometrien sind jedoch unterschiedlich. Offenbar gelingt es durch Mischphasenbildung weder, den Ti⁴⁺-Ionen eine trigonal prismatische, noch den Mo⁴⁺-Ionen eine oktaedrische Koordination aufzuzwingen. Der Beitrag der Mischungsentropie wiegt offenbar den energetischen Verlust, der

Abb. 3. Zellvolumen V[*] im System TaS₂/MoS₂.

mit dem Wechsel der Koordinationsgeometrie verbunden ist, nicht auf.

$Ta\,S_2\,/\,Mo\,S_2$

In diesem System findet bei der Reaktionstemperatur eine lückenlose Mischphasenbildung statt. Die Gitterkonstante a wird mit steigendem Molybdängehalt kleiner und folgt nur näherungsweise der Vegard'schen Regel (Abb. 1). Die Gitterkonstante c hingegen wird mit steigendem Molybdängehalt tendenziell größer. Sie zeigt einen sehr unregelmäßigen Verlauf (Abb. 2). Das Zellvolumen V[*]* sinkt mit steigendem Molybdängehalt; es zeigt unregelmäßige Abweichungen von einem linearen Verlauf (Abb. 3). Auffallend sind die ungewöhnlich großen Standardabweichungen bei der Gitterkonstanten c und dem Zellvolumen V. Wir nehmen an, dass dies auf Stapelfehlordnungen zurückzuführen ist. Während TaS2 sowohl als 2H- als auch als 3R-Schichtfolge kristallisiert (in Tab. 1 ist die 2H-Modifikation angeführt), liegt MoS₂ stets in der 2H-Modifikation vor. Für x-Werte < 0.5 (Ta_{1-x}Mo_xS₂) liegen die Mischphasen in der 3R-Modifikation vor. Ausgangsbodenkörper mit höherem Molybdängehalt kristallisieren wie MoS₂ als 2H-Phase.

Der Einbau der Mo⁴⁺-Ionen mit ihrer d²-Elektronenkonfiguration führt zu einem anisotropen Effekt: Die Struktur kontrahiert innerhalb der Schichten, weitet sich hingegen senkrecht zu den Schichten auf.

^{*}Um die Zellvolumina der Elementarzellen verschiedener Stapelvarianten miteinander vergleichen zu können, wurden diese jeweils auf das Zellvolumen der 1T-Phase normiert. Das Zellvolumen der 2H-Phase wurde also durch 2, das der 3R-Phase durch drei dividiert.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ABK	QBK	SBK	
$\begin{array}{c ccccccccccc} Verbindung & c/pm & c/pm & c/pm & c/pm & rate/ \\ & V/pm^3 \cdot 10^6 & V/pm^3 \cdot 10^6 & V/pm^3 \cdot 10^6 & mg \cdot h^{-1} \\ \hline Stapelfolge & Stapelfolge & Stapelfolge & Stapelfolge \\ \hline \\ \hline \\ TaS_2 & \begin{array}{c} 331,7(2) & 331,6(1) & 331,5(2) \\ 1211(3) & 1196(3) & 1206(4) & 0,76 \\ 2H & 2H & 2H & 2H \\ & 2H & 2H & 2H \\ \hline \\ Mo_{0,1}Ta_{0,9}S_2 & \begin{array}{c} 329,6(1) & 329,1(2) & 331,5(1) \\ 1806(1) & 1806(1) & 1207(4) \\ 169,9(1) & 169,3(1) & 114,8(3) \\ 3R & 3R & 2H \\ \hline \\ 3R & 3R & 2H \\ \hline \\ Mo_{0,2}Ta_{0,8}S_2 & \begin{array}{c} 1820(1) & 1816(1) & 1210(1) \\ 167,6(1) & 168,4(1) & 115,1(1) \\ 3R & 3R & 2H \\ \hline \\ 326,4(1) & 325,9(1) & 333,6(1) \\ 167,4(1) & 166,8(1) & 172,5(2) \\ 3R & 3R & 3R \\ \end{array} \\ \hline \\ Mo_{0,4}Ta_{0,6}S_2 & \begin{array}{c} 1812(4) & 1813(1) & 1209(1) \\ 167,4(1) & 166,4(1) & 115,1(1) \\ 3R & 3R & 2H \\ \hline \\ 325,2(2) & 324,5(2) & 331,6(2) \\ 110,8(1) & 110,2(1) & 115,1(2) \\ 110,8(1) & 110,2(1) & 115,1(2) \\ 110,8(1) & 110,2(1) & 115,1(2) \\ 110,8(1) & 110,2(1) & 115,1(2) \\ 2H & 2H & 2H \\ \hline \\ Mo_{0,7}Ta_{0,3}S_2 & \begin{array}{c} 323,4(3) & 321,7(2) & 331,5(2) \\ 1213(3) & 1208(1) & 1209(1) \\ 109,8(3) & 108,2(1) & 1209(1) \\ 109,8(3) & 108,2(1) & 1209(1) \\ 109,8(3) & 108,2(1) & 115,0(1) \\ 108,9(4) & 161,2(2) & 172,0(10) \\ 2H & 2H & 2H \\ \hline \\ Mo_{0,9}Ta_{0,3}S_2 & \begin{array}{c} 1217(4) & 1813(1) & 1817(10) \\ 109,8(3) & 108,2(1) & 115,0(1) \\ 109,8(3) & 108,2(1) & 115,0(1) \\ 109,8(3) & 108,2(1) & 115,0(1) \\ 109,8(3) & 108,2(1) & 115,0(1) \\ 109,8(3) & 108,2(1) & 115,0(1) \\ 108,9(4) & 161,2(2) & 172,0(10) \\ 2H & 2H & 2H \\ \end{array} \\ Mo_{0,9}Ta_{0,1}S_2 & \begin{array}{c} 132,5(5) & 320,5(2) & 330,7(4) \\ 1217(4) & 1813(1) & 1817(10) \\ 108,9(4) & 161,2(2) & 172,0(10) \\ 2H & 2H & 2H \\ \end{array} \\ Mo_{0,9}Ta_{0,1}S_2 & \begin{array}{c} 132,5(5) & 1231(3) & 1201(5) \\ 107,9(4) & 106,8(1) & 111,3(2) \\ 107,9(4) & 106,8(1) & 111,3(2) \\ 107,9(4) & 106,8(1) & 111,3(2) \\ 107,9(4) & 106,8(1) & 111,3(2) \\ 107,9(4) & 106,8(1) & 111,3(2) \\ 108,9(4) & 161,2(1) & 316,9(1) \\ 1228(1) & 1234(3) & 1224(7) \\ 100,6(4) & 106,9(3) & 106,5(6) \\ \end{array} \\ \end{array} $		<i>a</i> /pm	a/pm	a/pm	Transport
$ \begin{array}{c cccc} V/pm^3 \cdot 10^6 & V/pm^3 \cdot 10^6 & V/pm^3 \cdot 10^6 & Mgeh^{-1} \\ \hline Stapelfolge & Stapelfolge & Stapelfolge \\ \hline \\ \hline \\ \hline \\ \hline \\ TaS_2 & \begin{array}{c} 331,7(2) & 331,6(1) & 311,5(2) \\ 1211(3) & 1196(3) & 1206(4) \\ 115,4(2) & 113,8(3) & 114,8(3) \\ 2H & 2H & 2H \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ Mo_{0,1}Ta_{0,9}S_2 & \begin{array}{c} 1806(1) & 1806(1) & 1207(4) \\ 169,9(1) & 169,3(1) & 114,8(3) \\ 3R & 3R & 2H \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ Mo_{0,2}Ta_{0,8}S_2 & \begin{array}{c} 236,2(1) & 327,2(1) & 331,5(1) \\ 1820(1) & 1816(1) & 1210(1) \\ 167,6(1) & 168,4(1) & 115,1(1) \\ 3R & 3R & 2H \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ Mo_{0,3}Ta_{0,7}S_2 & \begin{array}{c} 1814(1) & 1816(1) & 172,5(2) \\ 167,4(1) & 166,8(1) & 172,5(2) \\ 3R & 3R & 3R \\ \hline \\ \hline \\ \\ \hline \\ Mo_{0,4}Ta_{0,6}S_2 & \begin{array}{c} 1812(4) & 1813(1) & 1789(2) \\ 167,4(1) & 166,4(1) & 115,1(1) \\ 3R & 3R & 2H \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ Mo_{0,5}Ta_{0,5}S_2 & \begin{array}{c} 1210(1) & 1208(1) & 1212(2) \\ 110,8(1) & 110,2(1) & 115,1(2) \\ 2H & 2H & 2H \\ \hline \\ \hline \\ \hline \\ \hline \\ Mo_{0,6}Ta_{0,4}S_2 & \begin{array}{c} 232,3(4) & 322,7(2) & 331,5(2) \\ 110,8(1) & 110,2(1) & 115,1(2) \\ 109,8(3) & 108,2(1) & 115,0(1) \\ 2H & 2H & 2H \\ \hline \\ \hline \\ \hline \\ Mo_{0,6}Ta_{0,4}S_2 & \begin{array}{c} 1217(4) & 1813(1) & 1817(10) \\ 109,8(3) & 108,2(1) & 115,0(1) \\ 2H & 2H & 2H \\ \hline \\ \hline \\ \hline \\ Mo_{0,9}Ta_{0,3}S_2 & \begin{array}{c} 1217(4) & 1813(1) & 1817(10) \\ 109,8(3) & 109,8(2) & 329,4(2) \\ 109,0(2) & 107,2(2) & 113,2(2) \\ 100,0(2) & 107,2(2) & 113,2(2) \\ 100,0(2) & 107,2(2) & 113,2(2) \\ 100,0(2) & 107,2(2) & 113,2(2) \\ 100,0(2$	Verbindung	c/pm	c/pm	c/pm	rate/
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$V/\text{pm}^3 \cdot 10^6$	$V/\text{pm}^3 \cdot 10^6$	$V/\text{pm}^3 \cdot 10^6$	mg∙h
$ TaS_2 \begin{array}{cccccccccccccccccccccccccccccccccccc$		Stapelfolge	Stapelfolge	Stapelfolge	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		331,7(2)	331,6(1)	331,5(2)	
$\begin{split} \mathrm{Mag}_{2} & \begin{array}{ccccccccccccccccccccccccccccccccccc$	TaSa	1211(3)	1196(3)	1206(4)	0,76
$\begin{split} & \begin{array}{c} & \begin{array}{c} 2H & \end{array}{} \\ 1806(1) & 169,3(1) & 114,8(3) & \end{array}{} \\ 1169,9(1) & 169,3(1) & 114,8(3) & \end{array}{} \\ 1160,1 & \begin{array}{c} 210(1) & \begin{array}{c} 210(1) & \begin{array}{c} 2I & \begin{array}{c} 2H & \end{array}{} \\ 1820(1) & 1816(1) & 1210(1) & \end{array}{} \\ 150(1) & \begin{array}{c} 210(1) & \begin{array}{c} 2I & \end{array}{} \\ 1814(1) & 1813(1) & 1789(2) & \end{array}{} \\ 1789(2) & \begin{array}{c} 0,23 & \end{array}{} \\ 1814(1) & 1813(1) & 1209(1) & \end{array}{} \\ 1789(2) & \begin{array}{c} 0,23 & \end{array}{} \\ 1812(4) & 1813(1) & 1209(1) & \end{array}{} \\ 1209(1) & 0,12 & \end{array}{} \\ 1812(4) & 1813(1) & 1209(1) & \end{array}{} \\ 1209(1) & 0,12 & \end{array}{} \\ 1812(4) & 1813(1) & 1212(2) & \end{array}{} \\ 1210(1) & 1208(1) & 1212(2) & \end{array}{} \\ 1210(1) & 1208(1) & 1209(1) & \end{array}{} \\ 1210(1) & 1208(1) & 1209(1) & \end{array}{} \\ 1208(3) & 108,2(1) & 115,1(2) & \end{array}{} \\ 110,8(3) & 108,2(1) & 115,1(2) & \end{array}{} \\ 110,8(3) & 108,2(1) & 115,1(2) & \end{array}{} \\ 110,8(3) & 108,2(1) & 115,0(1) & \end{array}{} \\ 1217(4) & 1813(1) & 1817(10) & \end{array}{} \\ 1817(10) & 0,03 & \end{array}{} \\ 1217(4) & 1813(1) & 1817(10) & 0,03 & \end{array}{} \\ 1217(4) & 1813(1) & 1817(10) & 0,004 & \end{array}{} \\ 1232(2) & 1211(1) & 1205(2) & 0,005 & \end{array}{} \\ 1232(2) & 1211(1) & 1205(2) & 0,005 & \end{array}{} \\ 1232(2) & 1211(1) & 1205(2) & 0,005 & \end{array}{} \\ 1232(2) & 1211(1) & 1205(2) & 0,004 & \end{array}{} \\ 1232(1) & 1228(1) & 1234(3) & 1224(7) & 0,004 & \end{array}{} \\ 1232(1) & 1228(1) & 1234(3) & 1224(7) & 0,004 & \end{array}{} \\ \end{array}$	Tub	115,4(2)	113,8(3)	114,8(3)	
$\begin{split} & \text{Mo}_{0,1} Ta_{0,9} S_2 & \begin{array}{ccccccccccccccccccccccccccccccccccc$		2H	2H	2H	
$\begin{split} & \mathrm{Mo}_{0,1}\mathrm{Ta}_{0,9}\mathrm{S}_{2} & \begin{array}{c} 1806(1) & 1806(1) & 1207(4) & 0.72 \\ 169,9(1) & 169,3(1) & 114,8(3) \\ 3R & 3R & 2H \\ & 326,2(1) & 327,2(1) & 331,5(1) \\ 1820(1) & 1816(1) & 1210(1) & 0.2 \\ 167,6(1) & 168,4(1) & 115,1(1) \\ 3R & 3R & 2H \\ & 326,4(1) & 325,9(1) & 333,6(1) \\ & 3R & 3R & 2H \\ & 326,4(1) & 325,9(1) & 333,6(1) \\ & 167,4(1) & 166,8(1) & 172,5(2) \\ & 3R & 3R & 3R \\ & 3R & 3R \\ & 3R & 3R$		329,6(1)	329,1(2)	331,5(1)	
$\begin{split} \mathrm{Mo}_{0,1}\mathrm{Ho}_{0,9}\mathrm{I2}_{0,9}\mathrm{I2}_{0,9}\mathrm{I1}_{$	Moo 1 Tao 0S2	1806(1)	1806(1)	1207(4)	0,72
$\begin{split} & 3R & 3R & 2H \\ & 326,2(1) & 327,2(1) & 331,5(1) \\ & 1820(1) & 1816(1) & 1210(1) & 0,2 \\ & 167,6(1) & 168,4(1) & 115,1(1) \\ & 3R & 3R & 2H \\ & 326,4(1) & 325,9(1) & 333,6(1) \\ & 1814(1) & 1813(1) & 1789(2) & 0,23 \\ & 167,4(1) & 166,8(1) & 172,5(2) \\ & 167,4(1) & 166,8(1) & 172,5(2) \\ & 167,4(1) & 166,8(1) & 172,5(2) \\ & 167,4(1) & 166,4(1) & 115,1(1) \\ & 3R & 3R & 3R \\ & 3R & 3R & 2H \\ \\ & Mo_{0,4}Ta_{0,6}S_2 & 1812(4) & 1813(1) & 1209(1) \\ & 167,1(4) & 166,4(1) & 115,1(1) \\ & 3R & 3R & 2H \\ & 325,2(2) & 324,5(2) & 331,2(2) \\ & 167,1(4) & 166,4(1) & 115,1(1) \\ & 3R & 3R & 2H \\ \\ & Mo_{0,5}Ta_{0,5}S_2 & 1210(1) & 1208(1) & 1212(2) \\ & 110,8(1) & 110,2(1) & 115,1(2) \\ & 2H & 2H & 2H \\ & 323,4(3) & 321,7(2) & 331,5(2) \\ & 110,8(1) & 108,2(1) & 115,0(1) \\ & 2H & 2H & 2H \\ \\ & Mo_{0,6}Ta_{0,4}S_2 & 1213(3) & 1208(1) & 1209(1) \\ & 109,8(3) & 108,2(1) & 115,0(1) \\ & 108,9(4) & 161,2(2) & 172,0(10) \\ & 2H & 3R & 3R \\ \\ & Mo_{0,8}Ta_{0,2}S_2 & 1232(2) & 1211(1) & 1205(2) \\ & 109,0(2) & 107,2(2) & 113,2(2) \\ & 2H & 2H & 2H \\ \\ & Mo_{0,9}Ta_{0,1}S_2 & 1235(5) & 1231(3) & 1201(5) \\ & 107,9(4) & 106,8(1) & 111,3(2) \\ & 2H & 2H & 2H \\ \\ & Mo_{0,9}Ta_{0,1}S_2 & 136,2(1) & 316,2(1) \\ & 316,2(1) & 316,2(1) & 316,9(1) \\ & 1228(1) & 1234(3) & 1224(7) \\ & 106,4(1) & 106,9(3) & 106,5(6) \\ & 0,002 \\ & 2H & 2H & 2H \\ \end{array}$	1000,1100,902	169,9(1)	169,3(1)	114,8(3)	<i>.</i>
$\begin{split} & \mathrm{Mo}_{0,2}\mathrm{Ta}_{0,8}\mathrm{S}_{2} & \begin{array}{c} 326,2(1) & 327,2(1) & 331,5(1) \\ 1820(1) & 1816(1) & 1210(1) & 0,2 \\ 167,6(1) & 168,4(1) & 115,1(1) \\ 3R & 3R & 2H \\ \\ & \mathrm{Mo}_{0,3}\mathrm{Ta}_{0,7}\mathrm{S}_{2} & \begin{array}{c} 326,4(1) & 325,9(1) & 333,6(1) \\ 1814(1) & 1813(1) & 1789(2) & 0,23 \\ 167,4(1) & 166,8(1) & 172,5(2) \\ 3R & 3R & 3R \\ \\ & \mathrm{Mo}_{0,4}\mathrm{Ta}_{0,6}\mathrm{S}_{2} & \begin{array}{c} 326,3(2) & 325,5(1) & 331,6(1) \\ 1812(4) & 1813(1) & 1209(1) & 0,12 \\ 167,1(4) & 166,4(1) & 115,1(1) \\ 3R & 3R & 2H \\ \end{array} \\ & \mathrm{Mo}_{0,5}\mathrm{Ta}_{0,5}\mathrm{S}_{2} & \begin{array}{c} 1210(1) & 1208(1) & 1212(2) \\ 110,8(1) & 110,2(1) & 115,1(2) \\ 2H & 2H & 2H \\ \end{array} \\ & \mathrm{Mo}_{0,6}\mathrm{Ta}_{0,4}\mathrm{S}_{2} & \begin{array}{c} 323,4(3) & 321,7(2) & 331,5(2) \\ 1210(1) & 1208(1) & 1209(1) & 0,02 \\ 110,8(3) & 108,2(1) & 115,0(1) \\ 2H & 2H & 2H \\ \end{array} \\ & \mathrm{Mo}_{0,7}\mathrm{Ta}_{0,3}\mathrm{S}_{2} & \begin{array}{c} 323,4(3) & 321,7(2) & 331,5(2) \\ 1213(3) & 1208(1) & 1209(1) & 0,03 \\ 109,8(3) & 108,2(1) & 115,0(1) \\ 2H & 2H & 2H \\ \end{array} \\ & \mathrm{Mo}_{0,7}\mathrm{Ta}_{0,3}\mathrm{S}_{2} & \begin{array}{c} 319,7(3) & 329,5(2) & 330,7(4) \\ 1217(4) & 1813(1) & 1817(10) \\ 0,89(4) & 161,2(2) & 172,0(10) \\ 2H & 3R & 3R \\ \end{array} \\ & \mathrm{Mo}_{0,8}\mathrm{Ta}_{0,2}\mathrm{S}_{2} & \begin{array}{c} 319,7(3) & 319,7(3) & 329,4(2) \\ 1232(2) & 1211(1) & 1205(2) & 0,005 \\ 109,0(2) & 107,2(2) & 113,2(2) \\ 2H & 2H & 2H \\ \end{array} \\ & \mathrm{Mo}_{0,9}\mathrm{Ta}_{0,1}\mathrm{S}_{2} & \begin{array}{c} 319,7(3) & 319,7(3) & 329,4(2) \\ 1235(5) & 1231(3) & 1201(5) \\ 0,79(4) & 106,8(1) & 111,3(2) \\ 2H & 2H & 2H \\ \end{array} \\ & \mathrm{Mo}_{2} & \begin{array}{c} 316,2(1) & 316,2(1) & 316,9(1) \\ 1228(1) & 1234(3) & 1224(7) \\ 106,4(1) & 106,9(3) & 106,5(6) \\ 2H & 2H & 2H \\ \end{array} \\ & \mathrm{Mo}_{2} & \begin{array}{c} 316,2(1) & 316,2(1) & 316,9(1) \\ 1228(1) & 1234(3) & 1224(7) \\ 106,4(1) & 106,9(3) & 106,5(6) \\ \mathrm{H} & 2H & 2H \\ \end{array} \\ & \mathrm{Mo}_{2} & \begin{array}{c} 128 \\ 128 \\ \mathrm{Mo}_{2} & \mathrm{H} & 2H \\ \end{array} \\ & \mathrm{Mo}_{2} & \mathrm{H} & 2\mathrm{H} \\ \end{array} \\ & \mathrm{Mo}_{2} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ \end{array} \\ & \mathrm{Mo}_{2} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ \end{array} \\ & \mathrm{Mo}_{2} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ \end{array} \\ & \mathrm{Mo}_{2} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ \end{array} \\ & \mathrm{Mo}_{2} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ \end{array} \\ & \mathrm{Mo}_{2} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{Mo}_{2} & \mathrm{H} & \mathrm{H} \\$		3R	3R	2H	
$\begin{split} & \mathrm{Mo}_{0,2}\mathrm{Ta}_{0,8}\mathrm{S}_{2} & \begin{array}{c} 1820(1) & 1816(1) & 1210(1) & 0,2 \\ 167,6(1) & 168,4(1) & 115,1(1) \\ 3R & 3R & 2H \\ & 3R & 3R & 2H \\ & 326,4(1) & 325,9(1) & 333,6(1) \\ 1814(1) & 1813(1) & 1789(2) & 0,23 \\ & 167,4(1) & 166,8(1) & 172,5(2) \\ 3R & 3R & 3R & 3R \\ & 3R & 3R & 3R \\ & 3R & 3R$		326,2(1)	327,2(1)	331,5(1)	
$\begin{split} \mathrm{MO}_{0,2}\mathrm{Ta}_{0,8}\mathrm{S}_{2} & 167,6(1) & 168,4(1) & 115,1(1) & 0.12 \\ & 3\mathrm{R} & 3\mathrm{R} & 2\mathrm{H} \\ & 3\mathrm{R} & 3\mathrm{R} & 2\mathrm{H} \\ & 326,4(1) & 325,9(1) & 333,6(1) \\ & 1814(1) & 1813(1) & 1789(2) & 0,23 \\ & 167,4(1) & 166,8(1) & 172,5(2) \\ & 3\mathrm{R} & 3\mathrm{R} & 3\mathrm{R} \\ & 3\mathrm{R} & 3\mathrm{R} & 2\mathrm{H} \\ & 326,3(2) & 325,5(1) & 331,6(1) \\ & 167,1(4) & 166,4(1) & 115,1(1) & 0,12 \\ & 167,1(4) & 166,4(1) & 115,1(1) \\ & 3\mathrm{R} & 3\mathrm{R} & 2\mathrm{H} \\ & 325,2(2) & 324,5(2) & 331,2(2) \\ & 100_{0,5}\mathrm{Ta}_{0,5}\mathrm{S}_{2} & \frac{1210(1)}{1210(1)} & 1208(1) & 1212(2) & 0,02 \\ & 110,8(1) & 110,2(1) & 115,1(2) \\ & 2\mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & 323,4(3) & 321,7(2) & 331,5(2) \\ & 109,8(3) & 108,2(1) & 115,0(1) \\ & 2\mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & 321,5(5) & 320,5(2) & 330,7(4) \\ & 109,8(3) & 108,2(1) & 115,0(1) \\ & 2\mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & 321,5(5) & 320,5(2) & 330,7(4) \\ & 109,8(3) & 108,2(1) & 115,0(1) \\ & 2\mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & 317,5(3) & 319,7(3) & 329,4(2) \\ & 1232(2) & 1211(1) & 1205(2) & 0,005 \\ & 109,0(2) & 107,2(2) & 113,2(2) \\ & 2\mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & 3\mathrm{I}_{317,5(3)} & 317,4(2) & 327,2(4) \\ & \mathrm{Mo}_{0,9}\mathrm{Ta}_{0,1}\mathrm{S}_{2} & \begin{array}{c} 317,5(3) & 317,4(2) & 327,2(4) \\ 1235(5) & 1231(3) & 1201(5) & 0,004 \\ & 124\mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & 2\mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & 3\mathrm{I}_{316,2(1)} & 316,9(1) \\ & 1228(1) & 1234(3) & 1224(7) & 0,002 \\ & \mathrm{H} & 2\mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & \mathrm{Mo}_{2} & \mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & \mathrm{Mo}_{2} & \mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & \mathrm{Mo}_{2} & \mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & \mathrm{Mo}_{2} & \mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & \mathrm{Mo}_{2} & \mathrm{H} & 2\mathrm{H} & 2\mathrm{H} \\ & \mathrm{Mo}_{2} & \mathrm{H} & 2\mathrm{H} & \mathrm{H} \\ & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} \\ & \mathrm{H} & $	Mos a Tas a Sa	1820(1)	1816(1)	1210(1)	0.2
$\begin{split} & 3R & 3R & 2H \\ & 326,4(1) & 325,9(1) & 333,6(1) \\ & 1814(1) & 1813(1) & 1789(2) & 0,23 \\ & 167,4(1) & 166,8(1) & 172,5(2) \\ & 3R & 3R & 3R \\ & 3R & 3R & 3R \\ & 3R & 3R$	1000,2100,852	167,6(1)	168,4(1)	115,1(1)	-,-
$\begin{split} & Mo_{0,3}Ta_{0,7}S_2 & \begin{array}{c} 326,4(1) & 325,9(1) & 333,6(1) \\ 1814(1) & 1813(1) & 1789(2) \\ 167,4(1) & 166,8(1) & 172,5(2) \\ 3R & 3R & 3R \\ & 3R & 3R \\ \end{array} \\ & Mo_{0,4}Ta_{0,6}S_2 & \begin{array}{c} 326,3(2) & 325,5(1) & 331,6(1) \\ 1812(4) & 1813(1) & 1209(1) \\ 167,1(4) & 166,4(1) & 115,1(1) \\ 3R & 3R & 2H \\ \end{array} \\ & Mo_{0,5}Ta_{0,5}S_2 & \begin{array}{c} 325,2(2) & 324,5(2) & 331,2(2) \\ 1210(1) & 1208(1) & 1212(2) \\ 110,8(1) & 110,2(1) & 115,1(2) \\ 2H & 2H & 2H \\ \end{array} \\ & Mo_{0,6}Ta_{0,4}S_2 & \begin{array}{c} 323,4(3) & 321,7(2) & 331,5(2) \\ 1213(3) & 1208(1) & 1209(1) \\ 0,03 \\ 2H & 2H & 2H \\ \end{array} \\ & Mo_{0,7}Ta_{0,3}S_2 & \begin{array}{c} 321,5(5) & 320,5(2) & 330,7(4) \\ 1217(4) & 1813(1) & 1817(10) \\ 0,04 \\ 12H & 2H & 2H \\ \end{array} \\ & Mo_{0,8}Ta_{0,2}S_2 & \begin{array}{c} 319,7(3) & 319,7(3) & 329,4(2) \\ 1232(2) & 1211(1) & 1205(2) \\ 019,0(2) & 107,2(2) & 113,2(2) \\ 2H & 2H & 2H \\ \end{array} \\ & Mo_{0,9}Ta_{0,1}S_2 & \begin{array}{c} 319,7(3) & 317,4(2) & 327,2(4) \\ 1235(5) & 1231(3) & 1201(5) \\ 107,9(4) & 106,8(1) & 111,3(2) \\ 2H & 2H & 2H \\ \end{array} \\ & Mo_{0,9}Ta_{0,1}S_2 & \begin{array}{c} 316,2(1) & 316,2(1) \\ 1228(1) & 1234(3) & 1224(7) \\ 106,4(1) & 106,9(3) & 106,5(6) \\ 0,002 \end{array} \\ & MoS_2 & \begin{array}{c} 322,5(1) & 316,2(1) & 316,9(1) \\ 1228(1) & 1234(3) & 1224(7) \\ 106,4(1) & 106,9(3) & 106,5(6) \\ 0,002 \end{array} \\ \end{array} $		3R	3R	2H	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		326,4(1)	325,9(1)	333,6(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo To S	1814(1)	1813(1)	1789(2)	0.23
$\begin{split} & 3R & 3R & 3R & 3R \\ & 326,3(2) & 325,5(1) & 331,6(1) \\ & 1812(4) & 1813(1) & 1209(1) & 0,12 \\ & 167,1(4) & 166,4(1) & 115,1(1) \\ & 3R & 3R & 2H \\ \\ & Mo_{0,5}Ta_{0,5}S_2 & \begin{array}{c} 325,2(2) & 324,5(2) & 331,2(2) \\ & 1210(1) & 1208(1) & 1212(2) & 0,02 \\ & 110,8(1) & 110,2(1) & 115,1(2) \\ & 2H & 2H & 2H \\ \end{array} \\ & Mo_{0,6}Ta_{0,4}S_2 & \begin{array}{c} 323,4(3) & 321,7(2) & 331,5(2) \\ & 1213(3) & 1208(1) & 1209(1) & 0,03 \\ & 109,8(3) & 108,2(1) & 115,0(1) \\ & 2H & 2H & 2H \\ \end{array} \\ & Mo_{0,7}Ta_{0,3}S_2 & \begin{array}{c} 321,5(5) & 320,5(2) & 330,7(4) \\ & 1217(4) & 1813(1) & 1817(10) \\ & 1217(4) & 1813(1) & 1817(10) \\ & 108,9(4) & 161,2(2) & 172,0(10) \\ & 1217(4) & 1813(1) & 1817(10) \\ & 108,9(4) & 161,2(2) & 172,0(10) \\ & 2H & 3R & 3R \\ \end{array} \\ & Mo_{0,8}Ta_{0,2}S_2 & \begin{array}{c} 319,7(3) & 319,7(3) & 329,4(2) \\ & 1232(2) & 1211(1) & 1205(2) \\ & 109,0(2) & 107,2(2) & 113,2(2) \\ & 1232(2) & 1211(1) & 1205(2) \\ & 109,0(2) & 107,2(2) & 113,2(2) \\ & 1232(5) & 1231(3) & 1201(5) \\ & 107,9(4) & 106,8(1) & 111,3(2) \\ & 2H & 2H & 2H \\ \end{array} \\ & Mo_{0,9}Ta_{0,1}S_2 & \begin{array}{c} 316,2(1) & 316,2(1) \\ & 316,2(1) & 316,2(1) & 316,9(1) \\ & 1228(1) & 1234(3) & 1224(7) \\ & 106,4(1) & 106,9(3) & 106,5(6) \\ & H & 2H & 2H \\ \end{array} \\ \end{array} $	M00,3 1a0,7 52	167,4(1)	166,8(1)	172,5(2)	0,25
$\begin{split} & Mo_{0,4}Ta_{0,6}S_2 & \begin{array}{c} 326,3(2) & 325,5(1) & 331,6(1) \\ 1812(4) & 1813(1) & 1209(1) \\ 167,1(4) & 166,4(1) & 115,1(1) \\ 3R & 3R & 2H \\ \\ & Mo_{0,5}Ta_{0,5}S_2 & \begin{array}{c} 325,2(2) & 324,5(2) & 331,2(2) \\ 1210(1) & 1208(1) & 1212(2) \\ 110,8(1) & 110,2(1) & 115,1(2) \\ 2H & 2H & 2H \\ \end{array} \\ & Mo_{0,6}Ta_{0,4}S_2 & \begin{array}{c} 323,4(3) & 321,7(2) & 331,5(2) \\ 1213(3) & 1208(1) & 1209(1) \\ 109,8(3) & 108,2(1) & 115,0(1) \\ 2H & 2H & 2H \\ \end{array} \\ & Mo_{0,7}Ta_{0,3}S_2 & \begin{array}{c} 321,5(5) & 320,5(2) & 330,7(4) \\ 1217(4) & 1813(1) & 1817(10) \\ 108,9(4) & 161,2(2) & 172,0(10) \\ 2H & 3R & 3R \\ \end{array} \\ & Mo_{0,8}Ta_{0,2}S_2 & \begin{array}{c} 319,7(3) & 319,7(3) & 329,4(2) \\ 1232(2) & 1211(1) & 1205(2) \\ 109,0(2) & 107,2(2) & 113,2(2) \\ 2H & 2H & 2H \\ \end{array} \\ & Mo_{0,9}Ta_{0,1}S_2 & \begin{array}{c} 319,7(3) & 317,4(2) & 327,2(4) \\ 1235(5) & 1231(3) & 1201(5) \\ 107,9(4) & 106,8(1) & 111,3(2) \\ 2H & 2H & 2H \\ \end{array} \\ & MoS_2 & \begin{array}{c} 316,2(1) & 316,2(1) & 316,9(1) \\ 1228(1) & 1234(3) & 1224(7) \\ 106,4(1) & 106,9(3) & 106,5(6) \\ 2H & 2H & 2H \end{array} \\ \end{array} $		3R	3R	3R	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		326,3(2)	325,5(1)	331,6(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1812(4)	1813(1)	1209(1)	0.12
$\begin{split} & 3R & 3R & 2H \\ & 3R & 2H \\ & Mo_{0,5}Ta_{0,5}S_2 & \frac{325,2(2)}{1210(1)} & \frac{324,5(2)}{1208(1)} & \frac{331,2(2)}{1212(2)} & 0,02 \\ & \frac{325,2(2)}{110,8(1)} & \frac{324,5(2)}{1212(2)} & \frac{331,2(2)}{1110,8(1)} & \frac{323,4(3)}{1208(1)} & \frac{321,7(2)}{1209(1)} & 0,03 \\ & Mo_{0,6}Ta_{0,4}S_2 & \frac{323,4(3)}{109,8(3)} & \frac{321,7(2)}{109,8(3)} & \frac{331,5(2)}{109,8(3)} & \frac{108,2(1)}{115,0(1)} & 115,0(1) \\ & 2H & 2H & 2H \\ & & & & & & & \\ Mo_{0,7}Ta_{0,3}S_2 & \frac{321,5(5)}{1217(4)} & \frac{320,5(2)}{1217(4)} & \frac{330,7(4)}{108,9(4)} & \frac{161,2(2)}{172,0(10)} & 172,0(10) \\ & 2H & 3R & 3R \\ & & & & & & & \\ Mo_{0,8}Ta_{0,2}S_2 & \frac{319,7(3)}{1222(2)} & \frac{1211(1)}{1223(2)} & \frac{1205(2)}{109,0(2)} & 0,005 \\ & & & & & & & \\ Mo_{0,9}Ta_{0,1}S_2 & \frac{317,5(3)}{1235(5)} & \frac{1231(3)}{1231(3)} & \frac{1201(5)}{1201(5)} & 0,004 \\ & & & & & & & \\ MoS_2 & & & & & & & \\ MoS_2 & & & & & & & & \\ MoS_2 & & & & & & & & \\ 102 & M & & & & & & & \\ MoS_2 & & & & & & & & & \\ 102 & M & & & & & & & & \\ 102 & M & & & & & & & & \\ MoS_2 & & & & & & & & & & \\ 102 & M & & & & & & & & \\ 102 & M & & & & & & & & \\ 102 & M & & & & & & & & \\ 103 & M & & & & & & & & & \\ 103 & M & & & & & & & & & \\ 104 & M & & & & & & & & \\ 105 & M & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & & \\ 106 & M & & & & & & & & & \\ 106 & M & & & & & & & & & \\ 106 & M & & & & & & & & \\ 106 & M & & & & & & & & & \\ 106 & M & & & & & & & & & \\ 106 & M & & & & & & & & & \\ 106 & M & & & & & & & & & & \\ 106 & M & & & & & & & & & & \\ 106 & M & & & & & & & & & & \\ 106 & M & & & & & & & & & & & \\ 106 & M & & & & & & & & & & & & \\ 106 & M & & & & & & & & & & & & \\ 106 & M & & & & & & & & & & & & & & \\ 106 & M & & & & & & & & & & & & & & & & & $	$Mo_{0,4} Ia_{0,6} S_2$	167,1(4)	166,4(1)	115,1(1)	0,12
$ \begin{split} & Mo_{0,5}Ta_{0,5}S_2 & \begin{array}{c} 325,2(2) & 324,5(2) & 331,2(2) \\ 1210(1) & 1208(1) & 1212(2) & 0,02 \\ 110,8(1) & 110,2(1) & 115,1(2) & 0,02 \\ 2H & 2H & 2H & 2H \\ & & 2H & 2H & 0 \\ \end{array} \\ & Mo_{0,6}Ta_{0,4}S_2 & \begin{array}{c} 323,4(3) & 321,7(2) & 331,5(2) \\ 1213(3) & 1208(1) & 1209(1) & 0,03 \\ 109,8(3) & 108,2(1) & 115,0(1) & 0,03 \\ 109,8(3) & 108,2(1) & 115,0(1) & 0,03 \\ 2H & 2H & 2H & 0 \\ \end{array} \\ & Mo_{0,7}Ta_{0,3}S_2 & \begin{array}{c} 321,5(5) & 320,5(2) & 330,7(4) \\ 1217(4) & 1813(1) & 1817(10) & 0,004 \\ 108,9(4) & 161,2(2) & 172,0(10) & 0,004 \\ 108,9(4) & 161,2(2) & 172,0(10) & 0,004 \\ 2H & 3R & 3R & 3R & 0 \\ \end{array} \\ & Mo_{0,8}Ta_{0,2}S_2 & \begin{array}{c} 319,7(3) & 319,7(3) & 329,4(2) \\ 1232(2) & 1211(1) & 1205(2) & 0,005 \\ 124 & 2H & 2H & 0 \\ 109,0(2) & 107,2(2) & 113,2(2) & 0,005 \\ 109,0(2) & 107,2(2) & 113,2(2) & 0,005 \\ 124 & 2H & 2H & 0 \\ \end{array} \\ & Mo_{0,9}Ta_{0,1}S_2 & \begin{array}{c} 317,5(3) & 317,4(2) & 327,2(4) \\ 1235(5) & 1231(3) & 1201(5) & 0,004 \\ 1235(5) & 1231(3) & 1201(5) & 0,004 \\ 2H & 2H & 2H & 0 \\ \end{array} \\ & MoS_2 & \begin{array}{c} 316,2(1) & 316,2(1) & 316,9(1) \\ 1228(1) & 1234(3) & 1224(7) & 0,002 \\ 2H & 2H & 2H & 0 \\ \end{array} \\ & MoS_2 & \begin{array}{c} 316,2(1) & 316,2(1) & 316,9(1) \\ 1228(1) & 1234(3) & 1224(7) & 0,002 \\ 2H & 2H & 2H & 0 \\ \end{array} \end{array} $		3R	3R	2H	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		325.2(2)	324,5(2)	331.2(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1210(1)	1208(1)	1212(2)	0.02
$\begin{split} & \begin{array}{c} & 2H & 2H & 2H & 2H \\ & 2H & 2H & 2H \\ & \begin{array}{c} & 2H & 2H \\ & \begin{array}{c} & 2H \\ & \begin{array}{c} & 2H \\ & \end{array} \\ & \begin{array}{c} & 2H \\ & 1209(1) \\ & 1209(1) \\ & 1209(1) \\ & 1209(1) \\ & 1209(1) \\ & 1209(1) \\ & 1209(1) \\ & 1209(1) \\ & 1209(1) \\ & 1209(1) \\ & 1209(1) \\ & 108,2(1) \\ & 115,0(1) \\ & \begin{array}{c} & 1209(1) \\ & 1209(1) \\ & 108,2(1) \\ & 115,0(1) \\ & \begin{array}{c} & 1209(1) \\ & 108,2(1) \\ & 1217(4) \\ & 1813(1) \\ & 1817(10) \\ & 108,9(4) \\ & 161,2(2) \\ & 172,0(10) \\ & \begin{array}{c} & 0,004 \\ & \end{array} \\ & \begin{array}{c} & 0,004 \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \begin{array}{c} & \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \begin{array}{c} & & \\ & \end{array} \\ & \begin{array}{c} & & \\ & & \end{array} \\ & \begin{array}{c} & & \\ & & \end{array} \\ & \begin{array}{c} & & \\ & & \end{array} \\ & \begin{array}{c} & & & \\ & & \end{array} \\ & \begin{array}{c} & & & \\ & & \end{array} \\ & \begin{array}{c} & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & & \\ & & & \end{array} \\ & \begin{array}{c} & & & & & & \end{array} \\ & \begin{array}{c} & & & & & & \\ & & & & \end{array} \\ & \begin{array}{c} & & & & & & \\ & & & \end{array} \\ \\ & \begin{array}{c} & & & & & & \end{array} \\ & \begin{array}{c} & & & & & & \end{array} \\ \\ & \begin{array}{c} & & & & & & \end{array} \\ & \begin{array}{c} & & & & & & \end{array} \\ & \begin{array}{c} & & & & & & \end{array} \\ \\ & \begin{array}{c} & & & & & & \end{array} \\ & \begin{array}{c} & & & & & & \end{array} \\ \\ & \begin{array}{c} & & & & & & \end{array} \\ & \begin{array}{c} & & & & & & & \end{array} \\ & \begin{array}{c} & & & & & & & \end{array} \\ & \begin{array}{c} & & & & & & & \end{array} \\ & \begin{array}{c} & & & & & & & \end{array} \\ & \begin{array}{c} & & & & & & & \end{array} \\ & \begin{array}{c} & & & & & & & \end{array} \\ & \begin{array}{c} & & & & & & & \end{array} \\ \\ & \begin{array}{c} & & & & $	$Mo_{0,5}Ta_{0,5}S_2$	110,8(1)	110,2(1)	115,1(2)	0,02
$ \begin{split} & Mo_{0,6}Ta_{0,4}S_2 & \begin{array}{c} 323,4(3) & 321,7(2) & 331,5(2) \\ 1213(3) & 1208(1) & 1209(1) & 0,03 \\ 109,8(3) & 108,2(1) & 115,0(1) \\ 2H & 2H & 2H \\ \end{array} \\ & Mo_{0,7}Ta_{0,3}S_2 & \begin{array}{c} 321,5(5) & 320,5(2) & 330,7(4) \\ 1217(4) & 1813(1) & 1817(10) \\ 108,9(4) & 161,2(2) & 172,0(10) \\ 2H & 3R & 3R \\ \end{array} \\ & Mo_{0,8}Ta_{0,2}S_2 & \begin{array}{c} 319,7(3) & 319,7(3) & 329,4(2) \\ 1232(2) & 1211(1) & 1205(2) \\ 109,0(2) & 107,2(2) & 113,2(2) \\ 2H & 2H & 2H \\ \end{array} \\ & Mo_{0,9}Ta_{0,1}S_2 & \begin{array}{c} 317,5(3) & 317,4(2) & 327,2(4) \\ 1235(5) & 1231(3) & 1201(5) \\ 107,9(4) & 106,8(1) & 111,3(2) \\ 2H & 2H & 2H \\ \end{array} \\ & MoS_2 & \begin{array}{c} 316,2(1) & 316,2(1) & 316,9(1) \\ 1228(1) & 1234(3) & 1224(7) \\ 106,4(1) & 106,9(3) & 106,5(6) \\ 2H & 2H & 2H \end{array} \\ & H & 2H \end{array} $		2H	2H	2H	
$\begin{split} & \text{Mo}_{0,6}\text{Ta}_{0,4}\text{S}_2 & \begin{array}{cccc} 1213(3) & 1208(1) & 1209(1) & 0,03 \\ 109,8(3) & 108,2(1) & 115,0(1) & 0,03 \\ 2H & 2H & 2H & 2H \\ & & & & & & \\ 321,5(5) & 320,5(2) & 330,7(4) \\ 1217(4) & 1813(1) & 1817(10) & 0,004 \\ 108,9(4) & 161,2(2) & 172,0(10) & 0,004 \\ 2H & 3R & 3R & & \\ & & & & & \\ 319,7(3) & 319,7(3) & 329,4(2) \\ 1232(2) & 1211(1) & 1205(2) & 0,005 \\ 109,0(2) & 107,2(2) & 113,2(2) & 0,005 \\ 109,0(2) & 107,2(2) & 113,2(2) & 0,005 \\ 2H & 2H & 2H & 2H & \\ & & & & & \\ Mo_{0,9}\text{Ta}_{0,1}\text{S}_2 & \begin{array}{ccc} 317,5(3) & 317,4(2) & 327,2(4) \\ 1235(5) & 1231(3) & 1201(5) & 0,004 \\ 1235(5) & 1231(3) & 1201(5) & 0,004 \\ 124 & 2H & 2H & 2H & \\ & & & & & \\ MoS_2 & \begin{array}{ccc} 316,2(1) & 316,2(1) & 316,9(1) \\ 1228(1) & 1234(3) & 1224(7) & 0,002 \\ 2H & 2H & 2H & 2H & \\ & & & & & \\ & & & & & \\ MoS_2 & \begin{array}{ccc} 123(2) & 1234(3) & 1224(7) & 0,002 \\ 106,4(1) & 106,9(3) & 106,5(6) & 0,002 \\ 2H & & & & & \\ & & & & & & \\ & & & & & & $		323.4(3)	321.7(2)	331.5(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1213(3)	1208(1)	1209(1)	0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Mo_{0,6}Ta_{0,4}S_2$	109.8(3)	108.2(1)	115.0(1)	0,03
$ \begin{split} & Mo_{0,7}Ta_{0,3}S_2 & \begin{array}{ccccccccccccccccccccccccccccccccccc$		2H	2H	2H	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		321.5(5)	320.5(2)	330.7(4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1217(4)	1813(1)	1817(10)	0.004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Mo_{0,7}Ta_{0,3}S_2$	108.9(4)	161.2(2)	172.0(10)	0,004
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2H	3R	3R	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		319 7(3)	3197(3)	3294(2)	
$ \begin{array}{ccccccc} Mo_{0,8}Ta_{0,2}S_2 & 1254(2) & 1217(1) & 1255(2) & 0,005 \\ & 2H & 2H & 2H \\ & 317,5(3) & 317,4(2) & 327,2(4) \\ Mo_{0,9}Ta_{0,1}S_2 & 1235(5) & 1231(3) & 1201(5) \\ & 107,9(4) & 106,8(1) & 111,3(2) \\ & 2H & 2H & 2H \\ & 316,2(1) & 316,2(1) & 316,9(1) \\ & 1228(1) & 1234(3) & 1224(7) \\ & 106,4(1) & 106,9(3) & 106,5(6) \\ & 2H & 2H & 2H \end{array} $		1232(2)	1211(1)	1205(2)	0.005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Mo_{0,8}Ta_{0,2}S_2$	109.0(2)	107.2(2)	113.2(2)	0,005
$ \begin{array}{ccccccc} Mo_{0,9}Ta_{0,1}S_2 & \begin{array}{c} 317,5(3) & 317,4(2) & 327,2(4) \\ 1235(5) & 1231(3) & 1201(5) \\ 107,9(4) & 106,8(1) & 111,3(2) \\ 2H & 2H & 2H \\ & \\ MoS_2 & \begin{array}{c} 316,2(1) & 316,2(1) & 316,9(1) \\ 1228(1) & 1234(3) & 1224(7) \\ 106,4(1) & 106,9(3) & 106,5(6) \\ 2H & 2H & 2H \end{array} \right) \\ \end{array} \right) \\ \end{array} $		2H	2H	2H	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		317 5(3)	3174(2)	327.2(4)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1235(5)	1231(3)	1201(5)	
$MoS_{2} \begin{array}{ccccc} 2H & 2H & 2H \\ 316,2(1) & 316,2(1) & 316,9(1) \\ 1228(1) & 1234(3) & 1224(7) \\ 106,4(1) & 106,9(3) & 106,5(6) \\ 2H & 2H & 2H \end{array}$	$Mo_{0,9}Ta_{0,1}S_2$	1233(3) 107 9(4)	106.8(1)	1113(2)	0,004
$MoS_{2} \begin{array}{cccc} 316,2(1) & 316,2(1) & 316,9(1) \\ 1228(1) & 1234(3) & 1224(7) \\ 106,4(1) & 106,9(3) & 106,5(6) \\ 2H & 2H & 2H \end{array}$		2H	2H	2H	
$MoS_{2} \begin{array}{cccc} & 310,2(1) & 310,9(1) \\ 1228(1) & 1234(3) & 1224(7) \\ 106,4(1) & 106,9(3) & 106,5(6) \\ 2H & 2H & 2H \end{array} $		$\frac{-1}{3162(1)}$	316.2(1)	316.9(1)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MoS ₂	1228(1)	1234(3)	1224(7)	
2H 2H 2H		1064(1)	1069(3)	1065(6)	0,002
		2H	2H	2H	

Tab. 1. Übersicht über die durchgeführten Transportexperimente im System $Ta_{1-x}Mo_xS_2$.

$Ti\,Se_2\,/\,Mo\,Se_2$

Im System TiSe₂/MoSe₂ findet bei der Versuchstemperatur wie im analogen Sulfidsystem keine röntgenographisch erkennbare Mischphasenbildung statt.

Abb. 4. Gitterkonstante *a* im System TaSe₂/MoSe₂.

Abb. 5. Gitterkonstante c im System TaSe₂/MoSe₂.

$Ta Se_2 / Mo Se_2$

In diesem System haben wir bei der Versuchstemperatur eine lückenlose Mischphasenbildung gefunden. Die Gitterkonstante a wird auch hier mit steigendem Molybdängehalt kleiner und folgt näherungsweise der Vegard'schen Regel (Abb. 4), die Werte liegen jedoch über den gesamten Bereich der Zusammensetzung etwas oberhalb einer Vegard'schen Geraden. Die Gitterkonstante c verläuft in unregelmäßiger Weise durch ein Minimum (Abb. 5). Sie liegt bei allen Zusammensetzungen deutlich unterhalb einer Vegard'schen Geraden. Offenbar führt das "Mischen"von Ta⁴⁺ und Mo⁴⁺-Ionen in der Kationenunterstruktur bei mittleren Zusammensetzungen zu besonders starken bindenden Wechselwirkungen in Richtung der c-Achse. Das Zellvolumen V liegt tendenziell unterhalb einer Vegagard'schen Geraden (Abb. 6).

	ABK	QBK	SBK	
Verbindung	<i>a</i> /pm	a/pm	<i>a</i> /pm	Transport
	c/pm	c/pm	c/pm	rate/
	$V/\text{pm}^3 \cdot 10^6$	$V/\text{pm}^3 \cdot 10^6$	$V/\text{pm}^3 \cdot 10^6$	mg∙h ^{−1}
	Stapelfolge	Stapelfolge	Stapelfolge	
	343,7(2)	343,3(2)	343,6(2)	
T-C-	1280(1)	1274(1)	1300(4)	37
TaSe ₂	130,9(1)	130,0(1)	132,9(3)	5,7
	2H	2H	2H	
	342,5(2)	339,8(1)	343,8(2)	
М. Т. С.	1919(1)	1917(1)	1279(3)	0.73
$Mo_{0,1}$ $Ia_{0,9}Se_2$	195,0(2)	191,6(1)	131,0(3)	0,75
	3R	3R	2H	
	341,8(3)	339,7(2)	343,6(2)	
Mo To So	1916(2)	1919(4)	1287(12)	0.33
W10 _{0,2} 1a _{0,8} 5e ₂	193,9(2)	191,8(3)	131,6(12)	0,55
	3R	3R	2H	
	339,6(1)	335,1(3)	343,5(1)	
Mo To So	1915(3)	1913(3)	1278(2)	0.13
M00,3 1a0,7 Se2	191,2(3)	186,1(4)	130,6(2)	0,15
	3R	3R	2H	
	338,2(1)	336,4(1)	343,5(1)	
Mo To So	1914(1)	1912(1)	1275(1)	0.09
M00,4 1a0,65e2	189,6(1)	185,7(1)	130,3(1)	0,07
	3R	3R	2H	
	336,7(1)	334,9(2)	343,5(1)	
Mo To So	1913(1)	1911(1)	1273(1)	0.05
M00,5 1a0,5 Se2	185,9(1)	185,6(2)	130,0(1)	0,05
	3R	3R	2H	
	335,4(1)	335,3(1)	343,5(1)	
Mo. Ta. Sa.	1906(1)	1911(1)	1275(1)	0.01
$100_{0,6} 1a_{0,4} 3e_2$	185,7(1)	186,1(1)	130,3(1)	0,01
	3R	3R	2H	
	334,2(1)	333,9(1)	343,5(1)	
Mos Tas a Sea	1913(1)	1910(1)	1275(1)	0.004
W100,7 1a0,3 Se2	185,0(1)	184,5(1)	130,2(1)	0,001
	3R	3R	2H	
Mo _{0,8} Ta _{0,2} Se ₂	332,5(2)	332,1(2)	334,3(2)	
	1286(4)	1277(1)	1911(6)	0.005
	123,1(4)	121,9(1)	185,0(5)	.,
	2H	2H	3R	
Mo _{0,9} Ta _{0,1} Se ₂	330,9(1)	331,5(2)	332,3(3)	
	1283(1)	1286(1)	1909(3)	0.004
	121,7(1)	122,3(1)	182,6(2)	0,001
	2H	2H	3R	
MoSe ₂	329,0(1)	329,2(1)	329,0(1)	
	1292(1)	1292(1)	1291(3)	0.06
	121,1(1)	121,2(1)	121,1(3)	0,00
	2H	2H	2H	

Tab. 2. Übersicht über die durchgeführten Transportexperimente im System $Ta_{1-x}Mo_xSe_2$.

Die Mischphasen $Ta_{0,2}Mo_{0,8}Se_2$ und $Ta_{0,1}Mo_{0,9}Se_2$ liegen in der gleichen Schichtfolge 2H vor wie auch die Randphasen $TaSe_2$ und $MoSe_2$. Die Mischphasen mit anderen Zusammensetzungen weisen eine 3R-Schichtfolge auf (Tab. 2, Spalte 2).

Der Einbau der Mo⁴⁺-Ionen mit ihrer d²-Elektronenkonfiguration führt auch hier zu einer Kontrak-

Abb. 6. Zellvolumen V [*] im System TaSe2/MoSe2.

tion der Struktur innerhalb der Schichten. Der Einfluss der Substitution auf die Größe der Gitterkonstante *c* ist jedoch unterschiedlich: Bei niedrigen Molybdändiselenid-Anteilen wird diese gleichfalls niedriger, bei höheren Gehalten hingegen größer.

Transportexperimente

Die Transportexperimente wurden im Temperaturgradienten $1000 \rightarrow 800$ °C mit Iod als Transportmittel durchgeführt. Als Ausgangsbodenkörper wurden Gemenge der wie oben beschrieben röntgenographisch charakterisierten Sulfide bzw. Selenide eingesetzt. Die Zusammensetzung der eingesetzten Gemenge wurde systematisch in Schritten von 10 mol% variiert und das Transportverhalten untersucht. Die eingesetzten Ausgangsbodenkörper sowie die Quellen- und Senkenbodenkörper nach dem Transport wurden röntgenographisch charakterisiert. Die Zusammensetzung von Mischphasen wurde röntgenographisch aus den Gitterkonstanten bestimmt. Bei allen Transportexperimenten wurde nur ein geringer Anteil des Quellenbodenkörpers in die Senke überführt.

$Ti\,S_2\,/\,Mo\,S_2$

In den getemperten Ausgangsbodenkörpern, den Quellenbodenkörpern nach dem Transport und in den abgeschiedenen Senkenbodenkörpern liegen zwei Phasen nebeneinander vor. In der Senke wird phasenreines Molybdän(IV)-Sulfid neben phasenreinem Titan(IV)-Sulfid abgeschieden. Der Anteil des Mo(IV)-Sulfids in der Senke ist viel geringer als im eingesetzten Ausgangsbodenkörper. Dies ist im Einklang mit den unterschiedlichen Transportraten der binären Ausgangsverbindungen. Wie Tab. 3 zu entnehmen ist, sind die

Tab. 3. Transportraten im System MoS₂/TiS₂.

Transport-	Verbindung	Transport-	Ion
rate/mg·h ^{−1}		$rate/mg \cdot h^{-1}$	
0,030	Mo _{0,6} Ti _{0,4} S ₂	0,005	I^+
0,008	Mo _{0,7} Ti _{0,3} S ₂	0,007	TaO^+
0,002	Mo _{0,8} Ti _{0,2} S ₂	0,020	I_2^+
0,007	Mo _{0,9} Ti _{0,1} S ₂	0,020	TaI ⁺
0,015	MoS ₂	0,002	TaI_3^+
0,011			TaI_4^+

MoS ₂ -Anteil im ABK/ %	MoS ₂ -Anteil im SBK/ %	Tab. 4. MoS ₂ -Gehalt im Ausgangs- und
70	3	Senkenbodenkörper.
80	12	
90	28	

Transportraten niedrig, die von TiS₂ liegt um den Faktor 15 höher als die von MoS₂.

$Ta S_2 / Mo S_2$

Mo_{0,5}Ti_{0,5}S₂

Beim chemischen Transport in diesem System treten molybdänhaltige Senkenbodenkörper nur dann auf, wenn der MoS2-Gehalt in der Quelle größer als 70 mol% ist. Bei geringeren MoS₂-Anteilen wird reines TaS₂ transportiert (Tab. 4). Der Molybdängehalt der Senkenbodenkörper steigt mit steigendem Molybdängehalt des Ausgangsbodenkörpers. Beim Transport findet eine sehr starke Anreicherung von Tantal statt. Die Transportraten nehmen mit steigendem Molybdängehalt der Ausgangsbodenkörper ab. Eine sprunghafte Änderung der Transportraten um den Faktor 10 beobachten wir zwischen den Ausgangsbodenkörpern Mo_{0.6}Ta_{0.4}S₂ und Mo_{0.7}Ta_{0.3}S₂. Dies ist im Einklang mit der Beobachtung, dass der Transport von Mischphasen beginnt, wenn der Ausgangsbodenkörper die Zusammensetzung Mo_{0.7}Ta_{0.3}S₂ erreicht. Der Transport von molybdänärmeren Ausgangsbodenkörpern führt zu reinem TaS₂ in der Senke.

Ti Se₂ / Mo Se₂

Der Transport von Gemengen aus TiSe₂ und MoSe₂ führt unabhängig von deren Zusammensetzung stets zu TiSe₂ in der Senke.

Ta Se₂ / Mo Se₂

Beim chemischen Transport in diesem System tritt als Senkenbodenkörper bei MoSe₂-Gehalten unterhalb von 80 % TaSe₂ in der Senke auf. Bei den Mischphasen mit einem MoSe2-Gehalt von mehr als 80 % erhält man als Senkenbodenkörper eine molybdänhaltige Mischphase mit geringerem Molybdängehalt als im Ausgangsbodenkörper. Insgesamt kommt es auch

hier zu einer starken Anreicherung von Tantal in der Senke.

Massenspektrometrische Untersuchungen

Um Aufschluss über die transportwirksamen Gasspezies zu erhalten, haben wir massenspektrometrische Untersuchungen durchgeführt. Hierbei haben wir eine früher beschriebene Messanordnung verwendet [6]. Bei derartigen Untersuchungen ist zu beachten, dass die Messbedingungen sich wesentlich von denen innerhalb einer geschlossenen Transportampulle unterscheiden. Während in der Ampulle bei der Reaktion ein Druck von ungefähr 1 bar herrscht, liegen die Drücke bei den massenspektrometrischen Untersuchungen in einem Bereich von 10^{-8} bis 10^{-4} bar.

Dies hat zur Folge, dass das Transportmittel Iod überwiegend atomar und nicht wie bei den präparativen Experimenten molekular vorliegt. Bei Reaktionen, die unter Teilchenzahlverringerung ablaufen, bewirkt der niedrige Druck eine Verschiebung der Gleichgewichtslage auf die Seite der Edukte. Eine Abschätzung der Gleichgewichtslage bei der Reaktion von TaS₂ mit Iod zeigt, dass so nicht mit einem massenspektrometrischen Nachweis gasförmiger Tantaliodide gerechnet werden kann. Günstiger sollte die Gleichgewichtslage sein, wenn die Reaktion von Tantal-Metall mit Iod untersucht wird. In der Tat beobachten wir in diesem Fall im Massenspektrum Ionen, die gasförmigen Tantal/Iod-Verbindungen zuzuordnen sind. Tab. 5 zeigt in tabellarischer Form die gemessenen Massenspektren (EI, 70 eV). Das intensitätsstärkste Ion ist TaOI₃⁺. Dies ist ein sicherer Hinweis auf die gasförmigen Spezies TaOI3. Offenbar reichen geringste Spuren an Sauerstoff oder Wasser aus, um diese sauerstoffhaltige Spezies zu bilden. Auch eine Reaktion gasförmiger Tantalverbindungen mit der Gefäßwand ist denkbar. Das Ion mit der höchsten Masse ist TaI_4^+ . Dies kann auf TaI_4 oder aber TaI_5 als Gasspezies hindeuten. Die relativ hohen Intensitäten von TaI₃⁺ und TaI₂⁺ lassen es auch nicht unwahrscheinlich erscheinen, dass auch $TaI_3(g)$ eine Rolle

Relative

Häufigkeit/%

2,8

4,6

5.1

12

18,9

Tab. 5. Massenspektrum der Gasphase im System Ta(s)/I₂(g).

Ion

Ta⁻

TaOI+

 TaI_2^+

TaOI₂+

TaOI₃⁺

Relative

Häufigkeit/%

100

3,3

4,9

7,4

6.7

19

spielt. Der Einsatz von Molybdän als Bodenkörper führte nicht zum massenspektroskopischen Nachweis von Molybdäniodiden; offenbar sind diese deutlich weniger stabil als die des Tantals. Berechnet man aus den thermodynamischen Daten für Mo(s), I(g) und MoI₄(g) [7] die Gleichgewichtskonstante für die Reaktion Mo(s) + 4I(g) \rightleftharpoons MoI₄(g), erhält man einen Wert von 1,4 · 10⁴ bar⁻³. Bei einem geschätzten Druck des Iods p(I) von etwa 10⁻⁶ bar lässt dies einen MoI₄-Druck in der Größenordnung von 10⁻²⁰ bar erwarten, ein Wert, der weit unter der Nachweisgrenze der angewendeten Methode liegt. Die niedrigen Transportraten für MoS₂ und MoSe₂ sind also offenbar auf die sehr geringe thermodynamische Stabilität von Molybdäniodiden zurückzuführen.

Zusammenfassung

Eine beträchtliche Anzahl von Arbeiten aus der Literatur haben gezeigt, dass Ionenverbindungen auch dann im festen Zustand, insbesondere bei höheren Temperaturen, in gewissem Umfang Mischphasen bilden, wenn sie nicht isotyp sind [8]. Überraschenderweise zeigte sich in dieser Arbeit, dass TiS₂ und MoS₂ bzw. TiSe₂ und MoSe₂ im festen Zustand praktisch unmischbar sind. Offenbar ist es für Mo⁴⁺-Ionen energetisch derart ungünstig, eine oktaedrische Umgebung aus Schwefel- bzw. Selenatomen anzunehmen, dass die Mischungsentropie diesen Energieverlust nicht wettmacht. Entsprechendes gilt für Ti⁴⁺-Ionen in trigonal prismatischer Umgebung. Ta⁴⁺-Ionen hingegen lassen sich in beliebigem Umfang in MoS₂bzw- MoSe₂-Wirtsgitter einbauen. Diese Mischphasen kristallisieren im MoS₂-Typ. Beim Transport dieser Mischphasen kommt es zu einer starken Abreicherung von Molybdän als Folge geringer thermodynamischer Stabilität gasförmiger Molybdäniodide.

Experimenteller Teil

Die Proben wurden in zylindrischen Quarzglasampullen mit einem Innendurchmesser von 10 mm (Wandstärke 1 mm) und einer Länge von *ca.* 150 mm getempert.

Mischphasen wurden aus den Elementen Ti-Pulver (99 %, E. Merck AG), Mo-Pulver (99,7 %, Fluka), Schwefelblu-

- [1] 24. Mitt.: U. Hotje, M. Binnewies, Z. Anorg. Allg. Chem., im Druck.
- [2] U. Hotje, M. Binnewies Z. Anorg. Allg. Chem. 631, 2467 (2005).
- [3] D. L. Greenaway, R. Mitsche, J. Phys. Chem. Solids 26, 1445 (1965).
- [4] R. Nitsche, Fortschr. Mineral. 44, 231 (1967).

me (99,5 %, E. Merck AG) und Se-Pulver (grau) (99,5 %, E. Merck AG) dargestellt. Dazu wurden die Proben in den gewünschten Zusammensetzungen eingewogen und in Quarzglasampullen gefüllt. Die befüllten Ampullen wurden evakuiert (10^{-1} mbar) und mittels eines Gebläsebrenners ausgeheizt, um an den Quarzwandungen anhaftendes Wasser zu entfernen. Anschließend wurde mit Stickstoff belüftet und *ca.* 10 mg Iod (99,9 %, Riedel de Haen) als Mineralisator hinzugefügt. Die Ampullen wurden mit flüssigem Stickstoff eingekühlt, um die Sublimation des Iods zu unterbinden, erneut evakuiert und abgeschmolzen. Die Mischungen wurden in einem Röhrenofen bei 1000 °C vier Tage getempert.

Die Transportversuche wurden in zylindrischen Quarzglasampullen mit einem Innendurchmesser von 10 mm, (Wandstärke 1 mm) und einer Länge von 200 mm durchgeführt. Die getemperten Edukte wurden in Quarzampullen vorgelegt und nach dem oben beschriebenen Prozedere abgeschmolzen. Als Transportmittel wurden 15 mg Iod eingesetzt. Die Transportampullen wurden in einen Röhrenofen mit zwei unabhängig voneinander regelbaren Heizzonen eingebracht. Ein Temperaturgradient von $1000 \rightarrow 800$ °C hat sich als günstig erwiesen. Vor dem chemischen Transport wurde ein zwölfstündiger Klartransport durchgeführt. Die Transportdauer war bei den einzelnen Experimenten unterschiedlich, bei sehr geringen Transportraten bis zu *ca*. 50 Tagen.

Anschließend wurden die Gitterparameter der getemperten Edukte sowie der Quell- und Senkenbodenkörper aus den Pulverdiffraktogrammen (Stoe Pulverdiffraktometrie System Stadi P mit PDS, Cu-K_{α 1}) mit dem Werner Algorithmus (STOE WinXPow Ver. 1.08) bestimmt. Die Zusammensetzungen der Senkenbodenkörper wurden aus den Gitterparametern ermittelt. Zur Kontrolle wurden EDX-Analysen (EDAX: Phoenix, Genesis) durchgeführt. Die massenspektrometrischen Untersuchungen wurden mit einem Massenspektrometer MAT 212, (Varian MAT, Bremen) durchgeführt.

Dank

Für finanzielle Förderung danken wir der DFG, die diese Arbeit im Rahmen des SPP 1136 unterstützt hat sowie dem Fonds der Chemischen Industrie. Herrn Dr. E. Milke danken wir für die massenspektrometrischen Untersuchungen.

- [5] R. Nitsche, H. U. Bölsterli, M. Lichtensteiger, J. Phys. Chem. Solids 21, 199 (1961).
- [6] M. Binnewies, Z. Anorg. Allg. Chem. 435, 156 (1977).
- [7] M. Binnewies, E. Milke, Thermochemical Data of Elements and Compounds, 2nd Ed. Wiley-VCH, Weinheim, New York (2002).
- [8] The Americam Ceramic Society, Phase Equilibria Diagrams, Westerville, OH (1992).