A-Pr₂S₃, D-Ho₂S₃ und E-Yb₂S₃: Synthese und Einkristallstrukturuntersuchungen

 $A-Pr_2S_3$, $D-Ho_2S_3$ and $E-Yb_2S_3$: Synthesis and Single Crystal Structure Investigations

Thomas Schleid*, Falk Lissner

Institut für Anorganische Chemie der Universität, Callinstraße 9, D-30167 Hannover

Z. Naturforsch. 51b, 733-738 (1996); eingegangen am 4. Oktober 1994

Lanthanides, Sesquisulfides, Synthesis, Crystal Structure

The oxidation of reduced chlorides (MCl₂) or chloride-hydrides (MClH_x) of the lanthanides with sulfur (700–850 °C, 7 d, sealed tantalum capsules or evacuated silica vessels) usually results in the formation of the sesquisulfides M₂S₃ as the main products. In the presence of appropriate fluxes (*e.g.*, alkali halides), the products often are obtained as single crystals, and the flux decides which modification is favoured. Ternary halides of the trivalent lanthanides with the corresponding alkali metal can mostly be found as the second components. Crystal growth and structural investigations of thus produced single crystals of Pr₂S₃ (from PrCIH_{0.67} + S + NaCl, 5:5:1, A type: orthorhombic, Pnma (No. 62), *Z* = 4, *a* = 748.22(5), *b* = 405.51(3), *c* = 1560.74(9) pm, *R* = 0.024, *R*_w = 0.020), Ho₂S₃ (from U–Ho₂S₃ + KI, 1:1, D type: monoclinic, P2₁/*m* (No. 12), *Z* = 6, *a* = 1746.15(9), *b* = 400.23(3), *c* = 1012.43(6) pm, *β* = 98.529(4)°, *R* = 0.041, *R*_w = 0.035), and Yb₂S₃ (from T–Yb₂S₃ + KI, 1:1, E type: trigonal, R3c (No. 167), *Z* = 6, *a* = 674.97(2), *c* = 1820.11(9) pm, *R* = 0.019, *R*_w = 0.018) are reported here. In accordance with the lanthanide contraction, the trivalent cations (M³⁺) exhibit sulfur coordination numbers of 7 and 8 in A–Pr₂S₃, 6 and 7 in D–Ho₂S₃, and 6 in E–Yb₂S₃ (corundum-type structure).

1. Einleitung

Sesquisulfide dreiwertiger Lanthanide treten in bislang neun Strukturtypen auf (vgl. Abb. 1). Im A-Typ (Prototyp: α -Gd₂S₃ [1]) betätigen die Kationen (M = La-Nd, Sm, Gd-Dy) [2] Koordinationszahlen von 7 und 8 gegenüber den Sulfidionen. Der **B-Typ** (Prototyp: β -La₂S₃ [3]) scheint wohl nur für M = La als "reine" Phase zu existieren, während für M = Ce-Nd und Sm sauerstoffarme Oxidsulfide der Zusammensetzung M₁₀OS₁₄ [4] vorliegen, in denen O²⁻ partiell – nie jedoch vollständig – gegen S²⁻ ausgetauscht werden kann. Die Kationen weisen hier Koordinationszahlen von 7+1 (2×) und 8 gegenüber den Chalkogenid-Anionen auf. Sesquisulfide vom C-Typ werden für sämtliche Lanthanide als Hochtemperatur- [5] oder Hochdruckphase [6] beobachtet. Hier wurde bereits früh die Th₃P₄-Struktur in einer Defektvariante gemäß $M_{2,67}S_4$ ($\equiv M_2S_3$, Prototyp: γ -Ce₂S₃ [7], CN(M) = 8) als Aufbauprinzip erkannt. Mit kleineren Kationen (M = Dy-Yb) tritt der **D-Typ** der Sesquisulfide (Prototyp: δ -Ho₂S₃ [8]) auf, in dem die Kationen hälftig sechs- und siebenfach koordiniert sind. Schließlich wird für die kleinsten Lanthanide (M = Tm-Lu) der **E-Typ** (Prototyp: ε -Lu₂S₃ [9], Korund-Struktur) sowie der **T-Typ** (Prototyp: τ -Yb₂S₃ [10], Tl₂O₃- oder Bixbyit-Struktur) angetroffen, wo die Kationen in beiden Fällen die Koordinationszahl 6 aufweisen.

Hochdruck-Untersuchungen von Range und Mitarbeitern haben für M = Ho-Lu den U_2S_3 -(M_2S_3 -III; Prototyp: $U-Tm_2S_3$ [11]) oder **U-Typ** hinzugefügt, der kürzlich für Gd_2S_3 [12], Tb_2S_3 und Dy_2S_3 [13] auch ohne Hochdrucktechniken erhalten wurde. Den Kationen kommen hier die Koordinationszahlen 7 und 7+1 zu. Schließlich sind noch die "Mitteldruck-Phasen" M_2S_3 -II und –IV zu erwähnen, die mit M = Tm-Lu (II; Prototyp: Tm_2S_3 -II [14], **F-Typ;** vgl. dazu auch [15] bez. $F-Er_2S_3$) bzw. als Lu_2S_3 -IV [16] (**H-Typ**) gewonnen werden konnten, wo Koordinationszahlen

0932-0776/96/0500-0733 \$06.00 © 1996 Verlag der Zeitschrift für Naturforschung. All rights reserved.

^{*} Sonderdruckanforderungen an Prof. Dr. Th. Schleid.

Neue Anschrift: Institut für Anorganische und Analytische Chemie der Albert-Ludwigs-Universität Freiburg, Albertstraße 21, D-79104 Freiburg i. Br.

von 6 (2×), 7 und 8 (II) bzw. 6 und 8 (IV) auftreten.

Orientierende Versuche haben gezeigt, daß bei der Oxidation "reduzierter" Chloride (MCl₂) und Chlorid-Hydride (MClH_x) der Lanthanide mit Schwefel meist deren Sesquisulfide (M₂S₃) als sulfidisches Hauptprodukt entstehen [17]. In Gegenwart geeigneter Flußmittel (z. B. NaCl bzw. CsCl) fallen diese in der Regel einkristallin an, wobei häufig das Flußmittel entscheidet, welche Modifikation bevorzugt gebildet wird [12, 13, 17, 18]. Systematische Untersuchungen hierzu schienen angebracht.

2. Experimentelles

2.1 Ausgangsstoffe

Trichloride der Lanthanide, MCl_3 (M = Pr, Ho, Yb; gewonnen mit Hilfe der Ammoniumchlorid-Methode [19]), wurden zunächst in geeignete "reduzierte" Chloride überführt. CsYbCl₃ erhält man bei der metallothermischen Reduktion von YbCl₃ mit Caesium (äquimolares Verhältnis, 750 °C, 7 d, verschweißte Tantalampulle; vgl. etwa [20] zur Technik). Die Chlorid-Hydride $MClH_{0.67}$ (M = Pr, Ho) sind durch Synproportionierung äquimolarer Gemenge von MCl₃, M und MH₂ (aus den Elementen) in Tantalampullen (800–900 °C, 7–10 d) zugänglich. Die verwendeten Metalle (Pr und Ho) sowie die betreffenden Oxide (Pr₆O₁₁, Ho₂O₃ und Yb₂O₃) stammen sämtlich von Johnson-Matthey (99,9% bzw. 99,99%), die eingesetzten Alkalihalogenide (NaCl, CsCl und KI) sowie NH₄Cl und konz. Salzsäure (*ca.* 35-proz. wäßrige Lösung) von E. Merck (suprapur oder p.a.). Caesium wurde nach Hackspill [21] aus CsCl und Calcium-Granalien (Merck-Schuchardt, 99%) gewonnen und durch Vakuumdestillation gereinigt. Schließlich kamen Wasserstoff (99,999%) und Chlorwasserstoff (99,9%) von Messer-Griesheim zum Einsatz.

2.2 Synthesen

Bei der Umsetzung von $PrClH_{0,67}$ (aufgefüllter ZrBr-Typ [22], trigonal, $R\bar{3}m$, a = 399,17(3); c = 2756,9(3) pm, Z = 6) mit Schwefel (Johnson-Matthey, 99,9995%) in Gegenwart von NaCl (molares Verhältnis 5:5:1, verschweißte Tantalampulle, 850 °C, 7 d) entsteht $A-Pr_2S_3$ in Form von tiefdunkelroten, stäbchenförmigen Einkristallen neben blaßgrünem "Na₃Pr₅Cl₁₈" [23] gemäß:

 $15 PrClH_{0,67} + 15S + 3 NaCl = Na_3Pr_5Cl_{18} + 5 Pr_2S_3 + 5H_2.$

Das Chlorid wird mit Wasser aus dem Rohprodukt entfernt, Pr_2S_3 bleibt unzersetzt zurück. In Gegenwart geringer Mengen an Sauerstoff (etwa als PrOCl im Ausgangschlorid) wird $Pr_{10}OS_{14}$ [4] zum Hauptprodukt. Größere Mengen an Flußmittel (NaCl oder PrCl₃) bewirken in solchen Fällen die Bildung von $Pr_4OS_4Cl_2$ [24]. Wird $A-Pr_2S_3$ mit KI (oder NaCl) vermengt und in evakuierten Quarzglasampullen mehrere Tage bei 850 °C erhitzt, so tritt keine Veränderung ein, außer daß sich geringe Anteile an $Pr_4S_3[Si_2O_7]$ [25] (bzw. Na $Pr_9S_2[SiO_4]_6$ [26]) durch Reaktion mit der Gefäßwand bilden.

Bei der Umsetzung von HoClH_{0,67} (aufgefüllter ZrCl-Typ [27], trigonal, R3m, a = 372,64(3); c = 2734,2(3) pm, Z = 6) mit Schwefel in Gegenwart von NaCl (molares Verhältnis 3:3:1, verschweißte Tantalampulle, 850 °C, 7 d) entsteht U–Ho₂S₃ in Form von tiefdunkelroten, stäbchenförmigen Einkristallen neben gelbem NaHoCl₄ [28] gemäß:

3HoClH_{0.67} + 3S + NaCl = NaHoCl₄ + Ho₂S₃ + H₂.

Das Chlorid wird mit Wasser aus dem Rohprodukt entfernt, Ho_2S_3 bleibt unzersetzt zurück. In Gegenwart geringer Mengen an Sauerstoff (etwa als HoOCl im Ausgangschlorid) sind Ho_2OS_2 [29, 30] und Ho_2O_2S [31, 32] als Nebenprodukte nachzuweisen. Wird U-Ho_2S_3 mit KI vermengt und in evakuierten Quarzglasampullen mehrere Tage bei 850 °C erhitzt, so wandelt es sich quantitativ in das thermodynamisch stabilere D-Ho_2S_3 um, das unter Mitwirkung des Flußmittels in Form von bernsteinfarbenen, nadelförmigen Einkristallen anfällt. Die Bildung geringer Anteile an Ho_4S_3[Si_2O_7] [25] durch Reaktion mit der Gefäßwand ist allerdings auch hier kaum zu vermeiden.

Bei der Umsetzung von CsYbCl₃ (Perowskit-Typ [33], kubisch, Pm 3 m, a = 543,43(2) pm; Z = 1) mit Schwefel (molares Verhältnis 2:1, evakuierte Quarzglasampulle, 750 °C, 7 d) entsteht T-Yb₂S₃ in Form von orangefarbenen, perlenförmigen Einkristallen neben farblosem Cs₃Yb₂Cl₉ [34] gemäß:

$$6 C_{s} Y_{b} C_{l_{3}} + 3 S = 2 C_{s_{3}} Y_{b_{2}} C_{l_{9}} + Y_{b_{2}} S_{3}.$$

Das Chlorid wird mit Wasser aus dem Rohprodukt entfernt, Yb_2S_3 bleibt unzersetzt zurück. In Gegenwart geringer Mengen an Sauerstoff (etwa als Yb_4OCl_6 im Ausgangschlorid) läßt sich Yb_2O_2S [31, 32] als Nebenprodukt nachweisen. Wird T- Yb_2S_3 mit KI vermengt und in evakuierten Quarzglasampullen mehrere Tage bei 850 °C erhitzt, so wandelt es sich quantitativ in das thermodynamisch stabilere E- Yb_2S_3 um, das unter Mitwirkung des Flußmittels in Form von zitronengelben, plättchenförmigen Einkristallen anfällt. $Yb_4S_3[Si_2O_7]$ ist nicht nachzuweisen.

2.3 Röntgenstrukturuntersuchungen

Sämtliche Produkte wurden mittels röntgenographischer Pulveruntersuchungen identifiziert (Guinier-Kamera FR 552, Enraf-Nonius; Cu-Ka-Strahlung, Johansson-Monochromator, Flächenpräparate, Meßtemperatur: 20 °C) und durch Filmaufnahmen charakterisiert (Auswertung: Programme LAZY PULVERIX [35] und SOS [36] zur Bestimmung der Gitterkonstanten).

Darüber hinaus wurden geeignete Einkristalle von $A-Pr_2S_3$, $D-Ho_2S_3$ und $E-Yb_2S_3$ unter Paraffinöl ausgewählt, in Glaskapillaren eingeschmolzen, mit Hilfe von röntgenographischen Filmmethoden auf ihre Qualität geprüft und anhand von Vierkreisdiffraktometer-Daten strukturell analysiert. Tab. I informiert über Einzelheiten zu den Strukturuntersuchungen.

Zusätzlich zu den strukturellen Daten in Tab. II können Listen mit Koeffizienten der anisotropen Temperaturfaktoren sowie der berechneten und beobachteten Strukturfaktoren beim Fachinformationszentrum Karlsruhe GmbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 58490, der Autoren und des Zeitschriftenzitats angefordert werden.

3. Ergebnisse und Diskussion

A-Pr₂S₃ (orthorhombisch, Pnma, Gitterkonstanten aus Pulverdaten: a = 748,22(5), b =405,51(3), c = 1560,74(9) pm, $V_m = 71,293(8)$ cm³/ mol, Z = 4) entsteht als thermodynamisch stabiles Produkt bereits bei der Oxidation von PrClH_{0.67} mit Schwefel in Gegenwart von NaCl als Flußmittel. Versuche, durch ein anderes Flußmittel (KI) in evakuierten Ouarzglasampullen eine Phasenumwandlung zu bewirken, sind demzufolge zum Scheitern verurteilt. In der Kristallstruktur (vgl. Tab. II bez. der kristallographischen Daten und Zitate [1, 12, 17, 41] für eingehendere Strukturbeschreibungen) liegen zwei kristallographisch unterschiedliche Pr^{3+} vor. Diese sind von acht (Pr1) bzw. sieben S^{2-} (Pr2) in Form von doppelt oder einfach bekappten trigonalen Prismen umgeben.

	$A - Pr_2S_3$	$D-Ho_2S_3$	$E - Yb_2S_3$				
Kristallsystem	orthorhombisch	monoklin	trigonal				
Raumgruppe	Pnma (Nr. 62)	$P2_1/m$ (Nr. 12)	R3c (Nr. 167)				
Zahl der Formeleinheiten	4	6	6				
Gitterkonstanten ^a							
<i>a</i> [pm]	749,3(1)	1746,8(3)	675,2(1)				
<i>b</i> [pm]	405,54(7)	400,26(7)	675,2(1)				
<i>c</i> [pm]	1561,6(2)	1012,7(2)	1821,1(4)				
β [°]	90	98,54(3)	90				
Molares Volumen ^a							
$V_m [cm^3 \cdot mol^{-1}]$	71,44(2)	70,28(2)	72,16(2)				
Datensammlung	Vierkreisdiff	aktometer Siemens-	Stoe AED2				
Strahlung	Mo-K α (Grap)	hit-Monochromator,	$\lambda = 71,07 \text{ pm}$)				
Scan	ω (Breite und Geschwindigkeit: variabel; "learnt-profile"-Methode [37])						
θ_{\max} [°]	33	32	25				
F(000)	664	1092	1128				
Datenkorrekturen	Untergrund, Polarisations- und Lorentzfaktoren						
Absorption	ψ -scan f	ür 20 unabhängige l	Reflexe				
$\mu [\rm cm^{-1}]$	213,23	351,82	397,50				
Extinktion $[g \cdot 10^4]$	0,7(2)	1,6(1)	4,9(2)				
Gemessene Reflexe	4117	5650	1670				
Symmetrieunabhängige							
Reflexe	1016	2640	143				
R _{int}	0,036	0,054	0,045				
Beobachtete Reflexe	911	2511	138				
Kriterium		$ \mathbf{F}_{o} \geq 2 \cdot \sigma(\mathbf{F}_{o})$					
Strukturverfeinerung	Pro	gramm SHELX-76 [38]				
Streufaktoren	na	ich Cromer et al. [39	2]				
R	0,024	0,041	0,019				
$R_w (w = \sigma(\mathbf{F}_0)^{-2})$	0,020	0,035	0,018				

Tab. I. $A-Pr_2S_3$, $D-Ho_2S_3$ und $E-Yb_2S_3$: Kristallographische Daten der Einkristalluntersuchungen.

^a Einkristall-Vierkreisdiffraktometerdaten (Meßtemperatur: 20 °C).

A-Pr	${}_{2}S_{3}$ (alle Teile	chen besetzer	n die Punk	tlage (4	c): <i>x/a</i> , 1/4, <i>z/</i>	'c)		1ab. II. $A - Pr_2S_3$, D-Ho ₂ S ₃ und E-Yb ₂ S ₃
	x/a	z/c	$U_{eq}{}^a$		x/a	z/c	$U_{eq}{}^{a}$	Lageparameter und äqui
Pr1 S1 S3	0,14151(5) 0,0084(2) 0,1472(2)	0,20465(3) 0,3909(1) 0,7804(1)	139(2) 156(7) 145(7)	Pr2 S2	0,26416(5) 0,3723(2)	0,95597(3) 0,5672(1)	141(2) 148(7)	valente anisotrope Tempe raturfaktoren [pm ²].
D-H	0 ₂ S ₃ (alle Tei	lchen besetze	n die Punl	tlage (2	2e): <i>x/a</i> , 1/4, <i>z</i>	z/c)		
	x/a	z/c	U _{eq} ^b		x/a	z/c	$U_{eq}{}^{b}$	
Ho1 Ho3 Ho5 S1 S3 S5 S7 S9	0,02050(3) 0,78094(3) 0,39805(3) 0,5755(2) 0,9667(2) 0,9241(2) 0,5320(2)	0,18891(6) 0,82928(6) 0,48649(6) 0,0519(3) 0,6155(3) 0,0071(3) 0,9507(3) 0,3673(3)	153(3)162(2)173(3)170(14)145(12)173(13)173(13)178(13)	Ho2 Ho4 Ho6 S2 S4 S6 S8	0,43018(3) 0,72036(3) 0,11504(3) 0,8731(2) 0,2818(2) 0,6306(2) 0,1837(2)	0,12469(6) 0,18703(6) 0,54928(6) 0,2678(3) 0,6379(3) 0,7106(3) 0,3205(3)	156(2) 171(3) 159(3) 163(13) 208(14) 169(13) 191(13)	^a U = 1/3 · (U, + U, -
E-Yt	o_2S_3 (Yb in (1	12c): 0, 0, <i>z/c</i> ,	; S in (18e): <i>x/a</i> , 0,	, 1/4)			U_{33} [40]; ^b $U_{eq} = 1/3$
	z/c	U_{eq}^{c}			x/a	U_{eq}^{c}		$[0_{22} + (0_{11} + 0_{33} + 2.0_{13})]$ $\cos\beta) \cdot \sin^{-2}\beta] [40]; ^{\circ} U_{eq} =$
Yb	0,34975(4)	127(4)		S	0,3030(5)	152(16)		$1/3 \cdot [U_{33} + 4/3 \cdot (U_{11} - U_{22} - U_{12})]$ [40].
								- 44 - 147

Die Sulfidionen ihrerseits weisen jeweils Koordinationszahlen von fünf gegenüber den Kationen auf und befinden sich in trigonal-bipyramidaler (S1) bzw. quadratisch-pyramidaler Umgebung (S2 und S3). Wichtige internukleare Abstände sind in Tab. III zusammengestellt.

U-Ho₂S₃ (orthorhombisch, Pnma, Gitterkonstanten aus Pulverdaten: a = 1057,24(7), b = $384,48(4), c = 1041,15(7) \text{ pm}, V_{\text{m}} = 63,716(9) \text{ cm}^{3/2}$ mol, Z = 4 [17] bildet sich als metastabiles Produkt bei der Oxidation von HoClH_{0.67} mit Schwefel in Gegenwart von NaCl als Flußmittel. Hier ist es wohl dem durch freigesetzten Wasserstoff aufgebauten Druck innerhalb der Tantalampulle zu verdanken, daß diese bislang nur als Hochdruckmodifikation (III) [11] bekannte Form von Ho₂S₃ entsteht, wo die Kationen Koordinationszahlen von 7 und 7+1 gegenüber den S^{2-} aufweisen (vgl. z.B. Zitate [11, 12] für ausführlichere Strukturbeschreibungen). Es verwundert daher nicht, daß durch längeres Tempern in Gegenwart eines anderen Flußmittels (KI) in evakuierten Quarzglasampullen die Phasenumwandlung in das thermodynamisch stabile D-Ho₂S₃ bewirkt wird. Diese ist unter analogen Bedingungen auch in Gegenwart von NaCl zu beobachten, hierbei bildet sich jedoch zusätzlich NaHoS₂ als ternäre Konkurrenzphase [42].

In der Kristallstruktur von $D-Ho_2S_3$ (monoklin, $P2_1/m$, Gitterkonstanten aus Pulverdaten: a =

Tab. III. $A-Pr_2S_3$, $D-Ho_2S_3$ und $E-Yb_2S_3$: Wichtige internukleare Abstände [pm]^a.

	the second se			
$A-Pr_2S_3$:	$\begin{array}{c} \Pr{1-S3} & (2\times) \\ \Pr{1-S2} & (2\times) \\ \Pr{1-S3'} & (2\times) \\ \Pr{1-S1} & (1\times) \\ \Pr{1-S1'} & (1\times) \\ \end{array}$	283,0 295,4 297,2 307,3 312,4	$\begin{array}{c} Pr2-S1 & (2\times) \\ Pr2-S2 & (2\times) \\ Pr2-S3 & (1\times) \\ Pr2-S2' & (1\times) \\ Pr2-S1' & (1\times) \\ \end{array}$	283.5 285.8 287.7 295.4 300.9
D-Ho ₂ S ₃ :	$\begin{array}{l} Ho1-S7 \ (2\times) \\ Ho1-S7' \ (1\times) \\ Ho1-S3 \ (2\times) \\ Ho1-S2 \ (1\times) \\ Ho1-S8 \ (1\times) \end{array}$	296,4 271,0 272,9 280,1 280,6 296,1 278,8	d(PF2-S, CN = 7) $Ho2-S1 (2x)$ $Ho2-S1' (1x)$ $Ho2-S9 (1x)$ $Ho2-S5 (1x)$ $Ho2-S5 (1x)$	288.9 267.5 274.5 281.0 290.5 290.6 280.3
	Ho3-S7 (1×) Ho3-S8 (2×) Ho3-S6 (1×) Ho3-S5 (2×) \overline{d} (Ho3-S, CN = 6)	261,7 263,9 272,0 281,0 270,6	$\begin{array}{l} Ho4-S2 & (1\times) \\ Ho4-S4 & (2\times) \\ Ho4-S1 & (1\times) \\ Ho4-S5 & (2\times) \\ \hline d(Ho4-S, CN=6) \end{array}$	267.1 267.7 269.1 283.4 273.1
	$\begin{array}{l} Ho5-S9 & (2\times) \\ Ho5-S4 & (1\times) \\ Ho5-S9' & (1\times) \\ Ho5-S6 & (2\times) \\ \hline d (Ho5-S, CN=6) \end{array}$	267,4 271,9 278,6 281,8 274,8	Ho6-S2 (2×) Ho6-S8 (1×) Ho6-S3 (1×) Ho6-S3' (2×) Ho6-S4 (1×)	271.4 276.2 277.0 284.9 291.7
$E - Yb_2S_3$:	$\begin{array}{ll} Yb-S & (3\times)\\ Yb-S' & (3\times)\\ \overline{d}(Yb-S, CN=6) \end{array}$	265,5 273,5 269,5	d(Ho6-S, CN = 7)	279.6

^a Die angegebenen Abstände wurden anhand der im Text referierten Gitterkonstanten aus Guinier-Pulverdaten und der Lageparameter aus Tab. II berechnet.

1746,15(9), b = 400,23(3), c = 1012,43(6) pm, $\beta = 98,529(4)^{\circ}$, $V_m = 70,230(7)$ cm³/mol, Z = 6; vgl. Tab. II bez. der kristallographischen Daten und

Zitate [8, 17, 43] für umfassendere Strukturbeschreibungen) liegen sechs kristallographisch unterschiedliche Ho³⁺ vor. Diese sind von sieben (Ho1, Ho2 und Ho6) bzw. sechs S²⁻ (Ho3, Ho4 und Ho5) in Form von einfach bekappten trigonalen Prismen bzw. verzerrten Oktaedern umgeben. Von den neun Sulfidionen weisen drei (S3, S5 und S6) CN = 5, die übrigen CN = 4 gegenüber den Kationen auf. Über wichtige internukleare Abstände informiert Tab. III.

 $T-Yb_2S_3$ (kubisch, Ia $\overline{3}$, Gitterkonstante aus Pulverdaten: a = 1246,83(3) pm, $V_m = 72,953(5)$ cm^{3}/mol , Z = 16) [18] fällt als metastabiles Produkt bei der Oxidation von CsYbCl3 mit Schwefel an, wurde jedoch bereits auch durch Umsetzung der Elemente in Gegenwart geeigneter Flußmittel (NaCl, KI etc.) bei nicht allzu hohen Temperaturen und kurzen Reaktionszeiten erhalten [10]. Tantalampullen sind hierfür allerdings ungeeignet, da sie als reduzierendes Tiegelmaterial die Bildung von Yb₂S₃ verhindern (vgl. dazu auch [17]). T-Yb₂S₃ in der Bixbyit- bzw. Tl₂O₃-Struktur stellt die Verbindung mit dem größten molaren Volumen unter allen bislang bekannten Formen von Sesquisulfiden der Lanthanoide dar (vgl. Abb. 1). Es liegen zwei kristallographisch unterschiedliche Kationen in mehr oder weniger verzerrt oktaedrischer Koordination der Sulfidionen vor, die ihrerseits tetraedrisch von Yb³⁺ umgeben sind (vgl. Zitate [10, 18] bez. detaillierterer Strukturbeschreibungen). Es erscheint daher plausibel, daß bei längerem Tempern in Gegenwart eines anderen Flußmittels (KI) in evakuierten Quarzglasampullen die Phasenumwandlung in das thermodynamisch stabile E-Yb₂S₃ mit Korund-Struktur erfolgt. In Gegenwart von NaCl wird diese Phasenumwandlung allerdings zugunsten der Bildung von NaYbS₂ nahezu vollständig unterdrückt [42].

Über die Kristallstruktur von $E-Yb_2S_3$ (vgl. Tab. II bez. der kristallographischen Daten), die bereits für $E-M_2S_3$ mit M = Tm und Lu [9, 17] verfeinert werden konnte, liegen in der Literatur widersprüchliche Angaben vor. Anhand von Pulverdaten schlugen Flahaut und Mitarbeiter bereits 1964 die Korund-Struktur für ε -Yb₂S₃ vor [9]. Eliseev und Mitarbeiter verfeinerten die Kristallstruktur mit Hilfe von Einkristalldaten in hexagonalen Raumgruppen hoher Laue-Symmetrie (P6/mmm [44] bzw. P6₃cm [45]) an offenbar nicht als solchen erkannten Revers-Obvers-Zwillingen

Abb. 1. Molare Volumina von Sesquisulfiden der Lanthanide, $V_m(M_2S_3)$, als Funktion des molaren Kationenvolumens, $V_m(M^{3+})$.

(vgl. dazu etwa [17] bez. E-Lu₂S₃) zu Strukturmodellen, die im krassen Widerspruch zu den Pulveraufnahmen stehen. Die nun erfolgte Strukturbestimmung an unverzwillingten Einkristallen von E-Yb₂S₃ belegt eindeutig das Vorliegen der "regulären" Korund-Struktur (trigonal, R3c, Gitterkonstanten aus Pulverdaten: a = 674,97(2), c =1820,11(9) pm, $V_m = 72,076(6) \text{ cm}^3/\text{mol}, Z = 6$), in der Yb³⁺ trigonal-antiprismatisch von sechs S²⁻ umgeben ist. Die Flächenverknüpfung zweier $[YbS_6]$ -Einheiten zu Oktaederdoppeln $[Yb_2S_9]$ $(d(Yb^{3+}-Yb^{3+}) = 363 \text{ pm})$ stellt das charakteristische Strukturmotiv dar. Durch deren Weiterverknüpfung über Ecken werden alle Sulfidionen kristallographisch und funktionell identisch (vgl. Tab. II), indem sie verzerrt tetraedrisch von vier Yb3+ koordiniert sind (s. Tab. III bez. wichtiger internuklearer Abstände). Zum gleichen Schluß gelangte jüngst auch eine französische Arbeitsgruppe durch Verfeinerung der Korund-Struktur für Einkristalle von E-Yb₂S₃ in der rhomboedrisch-primitiven Aufstellung von $R\bar{3}c$ (a = 719,3(3) pm, $\alpha = 55,88(3)^\circ$, $V_m = 72(1) \text{ cm}^3/\text{mol}$, Z = 2 [46].

Dank

Wir danken Herrn Prof. Dr. Gerd Meyer für das Interesse an dieser Arbeit und die großzügige

- [1] C. T. Prewitt, A. W. Sleight, Inorg. Chem. **7**, 1090 (1968).
- [2] A. W. Sleight, C. T. Prewitt, Inorg. Chem. 7, 2282 (1968).
 [2] P. C. Li L. C. Li L. C. Chem. 7, 2282 (1972).
- [3] P. Besançon, J. Solid State Chem. 7, 232 (1973);
 P. Besançon, D. Carré, P. Laruelle, Acta Crystallogr. B29, 1064 (1973).
- [4] Th. Schleid, F. Lissner, J. Less-Common Met. 175, 309 (1991).
- [5] J. Flahaut, M. Guittard, M. Patrie, M. P. Pardo, S. M. Golabi, L. Domange, Acta Crystallogr. 19, 14 (1965); K.-J. Range, A. Gietl, U. Klement, K. G. Lange, J. Less-Common Met. 158, L 21 (1990).
- [6] N. L. Eatough, A. W. Webb, H. T. Hall, Inorg. Chem. 8, 2069 (1969).
- [7] W. H. Zachariasen, Acta Crystallogr. 1, 265 (1948).
- [8] J. G. White, P. N. Yocom, S. Lerner, Inorg. Chem. 6, 1872 (1967).
- [9] J. Flahaut, L. Domange, M. P. Pardo, C.R. Acad. Sci. Paris **258**, 594 (1964); K.-J. Range, R. Leeb, Z. Naturforsch. **30b**, 637 (1975); K.-J. Range, H. Drexler, A. Gietl, U. Klement, K. G. Lange, Acta Crystallogr. **C46**, 487 (1990).
- M. Patrie, Bull. Soc. Chim. Fr. **1969**, 1600 (1969);
 G. M. Kuz'micheva, V. A. Efremov, S. Yu. Khluystova, A. A. Eliseev, Russ. J. Inorg. Chem. **31**, 1273 (1986).
- [11] K.-J. Range, R. Leeb, Z. Naturforsch. 30b, 889 (1975).
- [12] Th. Schleid, Z. Anorg. Allg. Chem. 590, 111 (1990).
- [13] A. Meetsma, G. A. Wiegers, R. J. Haange, J. L. de Boer, G. Boom, Acta Crystallogr. C47, 2287 (1991); Th. Schleid, Z. Naturforsch. 47b, 45 (1992).
- [14] K.-J. Range, R. Leeb, Z. Naturforsch. 31b, 311 (1976).
- [15] C. M. Fang, A. Meetsma, G. A. Wiegers, G. Boom, J. Alloys Comp. 201, 255 (1993).
- [16] K.-J. Range, K. G. Lange, H. Drexler, Comments Inorg. Chem. 3, 171 (1984).
- [17] Th. Schleid, F. Lissner, Z. Anorg. Allg. Chem. 615, 19 (1992).
- [18] Th. Schleid, F. Lissner, J. Alloys Comp. 189, 69 (1992).
- [19] G. Meyer, P. Ax, Mater. Res. Bull. 17, 1447 (1982);
 G. Meyer, Inorg. Synth. 25, 146 (1989).
- [20] J. D. Corbett, Inorg. Synth. 22, 15 (1983).
- [21] L. Hackspill, Bull. Soc. Chim. Fr. **1911**, 464 (1911).
 [22] R. L. Daake, J. D. Corbett, Inorg. Chem. **16**, 2029 (1977); F. Ueno, K. Ziebeck, Hj. Mattausch, A. Simon, Rev. Chim. Minér. **21**, 804 (1984); G. Meyer, Sh.-J. Hwu, S. Wijeyesekera, J. D. Corbett, Inorg. Chem. **25**, 4811 (1986).
- [23] F. Lissner, K. Krämer, Th. Schleid, G. Meyer, Zh. Hu, G. Kaindl, Z. Anorg. Allg. Chem. 620, 444 (1994).
- [24] Th. Schleid, Eur. J. Solid State Inorg. Chem. 28, 737 (1991); Th. Schleid, F. Lissner, Z. Naturforsch. 49b, 340 (1994).
- [25] T. Siegrist, W. Petter, F. Hulliger, Acta Crystallogr.
 B 38, 2872 (1982); M. Grupe, F. Lissner, Th. Schleid,
 W. Urland, Z. Anorg. Allg. Chem. 616, 53 (1992);

Bereitstellung von Institutsmitteln sowie der Deutschen Forschungsgemeinschaft für finanzielle Unterstützung.

C. Sieke, Th. Schleid, Z. Naturforsch., in Vorbereitung.

- [26] J. Felsche, J. Solid State Chem. 5, 266 (1972); J. C. Elliott, E. Dykes, P. E. Mackie, Acta Crystallogr. B37, 435 (1981); C. Sieke, Th. Schleid, Z. Anorg. Allg. Chem., in Vorbereitung.
- [27] D. G. Adolphson, J. D. Corbett, Inorg. Chem. 15, 1820 (1976); Th. Schleid, G. Meyer, Z. Anorg. Allg. Chem. 552, 90 (1987); J. Less-Common Met. 156, 161 (1989).
- [28] Th. Schleid, G. Meyer, Z. Anorg. Allg. Chem. 590, 103 (1990); M. S. Wickleder, G. Meyer, Z. Anorg. Allg. Chem. 621, 546 (1995).
- [29] K.-J. Range, G. Lange, A. Gietl, J. Less-Common Met. 158, 137 (1990).
- [30] Th. Schleid, Eur. J. Solid State Inorg. Chem. 28, 557 (1991); Z. Anorg. Allg. Chem. 602, 39 (1991);
 F. Lissner, Th. Schleid, Z. Naturforsch. 47b, 1614 (1992).
- [31] W. H. Zachariasen, Acta Crystallogr. 1, 265 (1948):
 2, 60 (1949); H. A. Eick, J. Am. Chem. Soc. 80, 43 (1958); B. Morosin, D. J. Newman, Acta Crystallogr. B 29, 2647 (1973).
- [32] M. Leskelä, L. Niinistö, J. Solid State Chem. 19, 245 (1976); F. Lissner, Th. Schleid, Z. Kristallogr. 205, 117 (1993); K.-J. Range, A. Gietl, U. Klement, K. G. Lange, Z. Kristallogr. 208, 95 (1993).
- [33] G. Meyer, Naturwissenschaften 65, 258 (1978); L. R. Morss, Th. Schleid, G. Meyer, Inorg. Chim. Acta 140, 109 (1987).
- [34] G. Meyer, A. Schönemund, Mater. Res. Bull. 15, 89 (1980).
- [35] W. Jeitschko, K. Yvon, E. Parthé, J. Appl. Crystallogr. **10**, 73 (1977).
- [36] J. Soose, G. Meyer, SOS: Programm zur Auswertung von Guinier-Aufnahmen, Gießen (1980).
- [37] W. Clegg, Acta Crystallogr. A37, 22 (1981).
- [38] G. M. Sheldrick, SHELX-76: Program for Crystal Structure Determination, Cambridge, U.K. (1976).
- [39] D. T. Cromer, J. B. Mann, Acta Crystallogr. A24, 321 (1968); D. T. Cromer, D. Liberman, J. Chem. Phys. 53, 1891 (1970).
- [40] R. X. Fischer, E. Tillmanns, Acta Crystallogr. C44, 775 (1988).
- [41] P. Besançon, C. Adolphe, J. Flahaut, P. Laruelle, Mater. Res. Bull. 4, 227 (1969); A. A. Eliseev, S. I. Uspenskaya, A. A. Fedorov, V. A. Tolstova, J. Struct. Chem. (USSR) 13, 66 (1972).
- [42] Th. Schleid, F. Lissner, Eur. J. Solid State Inorg. Chem. 30, 829 (1993); K.-J. Range, W. Meister, U. Klement, Z. Kristallogr. 207, 145 (1993).
- [43] Th. Schleid, Eur. J. Solid State Inorg. Chem. 29, 1015 (1992).
- [44] A. A. Eliseev, A. A. Grizik, G. M. Kuz'micheva. G. P. Borodulenko, Russ. J. Inorg. Chem. 20, 973 (1975).
- [45] G. M. Kuz'micheva, A. A. Eliseev, Russ. J. Inorg. Chem. 22, 497 (1977).
- [46] Z. El Fadli, P. Lemoine, M. Guittard, A. Tomas. Acta Crystallogr. C50, 166 (1994).