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Abstract. We study irreducible Smale spaces with totally disconnected stable sets and
their associated K -theoretic invariants. Such Smale spaces arise as Wieler solenoids, and
we restrict to those arising from open surjections. The paper follows three converging
tracks: one dynamical, one operator algebraic and one K -theoretic. Using Wieler’s
theorem, we characterize the unstable set of a finite set of periodic points as a locally
trivial fibre bundle with discrete fibres over a compact space. This characterization gives
us the tools to analyse an explicit groupoid Morita equivalence between the groupoids of
Deaconu–Renault and Putnam–Spielberg, extending results of Thomsen. The Deaconu–
Renault groupoid and the explicit Morita equivalence lead to a Cuntz–Pimsner model
for the stable Ruelle algebra. The K -theoretic invariants of Cuntz–Pimsner algebras are
then studied using the Cuntz–Pimsner extension, for which we construct an unbounded
representative. To elucidate the power of these constructions, we characterize the Kubo–
Martin–Schwinger (KMS) weights on the stable Ruelle algebra of a Wieler solenoid. We
conclude with several examples of Wieler solenoids, their associated algebras and spectral
triples.
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1. Introduction
Inspired by Williams [53], Wieler [52] recently proved that irreducible Smale spaces with
totally disconnected stable sets always arise as solenoids—inverse limits associated with
continuous surjections. Due to Wieler’s characterization of such spaces, we call them
Wieler solenoids. In view of [15], Wieler solenoids arising from an open surjection can
be studied by means of Cuntz–Pimsner algebras, a class of C∗-algebras that provide a
different picture than the usual Smale space groupoid C∗-algebras. The purpose of this
paper is to study the connection between Wieler solenoids defined from an open mapping
and Cuntz–Pimsner algebras. This connection allows us to improve our understanding of
the K -theoretic invariants of such Smale spaces. We do this by linking Putnam’s stable
Ruelle algebra [39, 43] with unbounded Kasparov theory on Cuntz–Pimsner algebras
studied by Adam Rennie and the second and third listed authors [19, 20].

Wieler’s classification result states that any irreducible Smale space with totally
disconnected stable sets can be written in the form of an inverse limit X = V

g
←− V

g
←− · · · ,

where g : V → V is a continuous finite-to-one surjection satisfying two additional axioms,
which are weakened versions of g being locally expanding and open. For our construction,
g must be an open map, rather than the weakened version appearing in Wieler’s second
axiom. When g is open and satisfies Wieler’s first axiom, we show that g is a local
homeomorphism. We discuss several different assumptions on g in §3 and show that they
are all equivalent to the condition that g is an open map.

Our main results revolve around a systematic study of the C∗-algebras associated
with Wieler solenoids arising from an open mapping. We arrive at our results through
combining dynamics, operator algebras and K -theoretic invariants. In particular, we
describe: (i) the global unstable set Xu(P) as a locally trivial bundle over the base space
V ; (ii) the stable Ruelle algebra as a Cuntz–Pimsner algebra; and (iii) the KK-theory of
the stable Ruelle algebra. An immediate consequence of the Cuntz–Pimsner model for the
stable Ruelle algebra is the complete classification of Kubo–Martin–Schwinger (KMS)
weights on the stable Ruelle algebra for the natural gauge dynamics of the Cuntz–Pimsner
algebra.

The structure of a Smale space naturally occurs in hyperbolic and symbolic dynamics;
see [14, 39–43, 47–49, 52, 54]. The study of Smale spaces through invariants of their C∗-
algebras has been central to the theory since its very beginning. In [47], Ruelle introduced
C∗-algebra theory into the study of Smale spaces and studied their non-commutative
dynamics using equilibrium (KMS) states. Continuing Ruelle’s programme, Putnam and
Spielberg [39, 43] showed that the stable and unstable Ruelle algebras are separable,
simple, stable, nuclear, purely infinite and satisfy the universal coefficient theorem (UCT).
It follows that K -theory is a complete invariant for the stable and unstable Ruelle algebras
using the Kirchberg–Phillips classification theorem [37]. The computation of K -theory for
these algebras is therefore of fundamental importance. One of our main results provides
a new method of computing K -theory for the stable Ruelle algebra of a Wieler solenoid
through a six-term exact sequence.

Invariants of the Smale spaces themselves led Putnam to define a homology theory
for Smale spaces [41]. Inspired by KK-theoretic correspondences, together with Brady
Killough, the first and fourth listed authors used Putnam’s homology theory to define
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dynamical correspondences for Smale spaces [16]. This paper is a first step towards
understanding dynamical correspondences from the point of view of KK-theory [23, 24].
The reason for taking this first step for Wieler solenoids is the presence of an explicit
Morita equivalence between the stable Ruelle algebra and a Cuntz–Pimsner algebra over
C(V ). This allows us to describe the non-commutative geometry (unbounded KK-
theory [6, 13]; see also [30, 31]) and non-commutative dynamics (KMS weights [27, 28])
of the stable Ruelle algebra in an explicit way. Our motivation for doing so is to make the
Smale space origin clear and susceptible to generalization.

The dynamics of expanding continuous surjections g : V → V is well studied in the
literature [1, 15, 18, 20, 28, 34, 49, 51, 53, 54]. This fact guarantees us that the tools
we need are available. For instance, [49, Ch. 4.4] treated Smale spaces constructed from
expansive mappings with a dense set of periodic points; see more details in Remark 3.13
below. Although the starting point for the paper is [52], the inspiration for several results
describing the dynamical structure of Smale spaces with totally disconnected stable sets
comes from work of Thomsen; see [49]. In particular, one of our aims is to make explicit
the Morita equivalence obtained from [49, Remark 1.14, Lemma 4.16 and Theorem 4.19].
Such ideas first appeared in the context of subshifts of finite type in [14] and later in [10]
in the context of topologically mixing expanding maps. Since this paper is a first step
towards understanding the KK-theory of Smale spaces, we are careful to keep the paper
self-contained and all of our constructions in non-commutative geometry and dynamics
are explicit.

We now conclude the introduction with our main results and the organization of the
paper. In §2, we recall the relevant definitions of Smale spaces. Section 3 introduces
Wieler’s characterization of irreducible Smale spaces with totally disconnected stable
sets. In particular, Wieler showed that such Smale spaces (X, ϕ) always arise from a
continuous surjection g : V → V of a compact Hausdorff space V in the sense that X
is the inverse limit X := V

g
←− V

g
←− · · · and ϕ : X→ X the shift map. The following

is the main dynamical result of our paper, and appears as Theorem 3.12. This result
should be compared to the structural results of Hurder, Clark and Lukina on matchbox
manifolds [11, 12].

THEOREM 1. Suppose that (X, ϕ) is an irreducible Wieler solenoid arising from an open
continuous surjection. Let P ⊆ X be a finite ϕ-invariant set of periodic points and

Xu(P) :=
{

x ∈ X : ∃p ∈ P such that lim
n→∞

dX (ϕ
−n(x), ϕ−n(p))= 0

}
.

Then the projection map π0 : Xu(P)→ V , (x0, x1, x2, . . .) 7→ x0 defines a covering map.
In particular, π0 : Xu(P)→ V is a locally trivial bundle with discrete fibres.

In §4, we discuss Cuntz–Pimsner algebras associated with a continuous surjective
local homeomorphism, following [15]. This Cuntz–Pimsner algebra is isomorphic to
a Deaconu–Renault groupoid algebra. We conclude by relating our findings to Wieler
solenoids. Pavlov and Troitskii’s results on branched coverings [36] show that, if
g : V → V satisfies Wieler’s axioms, it is necessary that g is a local homeomorphism in
order to have an associated Cuntz–Pimsner algebra.
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In §§5 and 6, we define an unbounded K -cycle representing the Cuntz–Pimsner
extension of OE and show that it applies to the stable Ruelle algebra through an explicit
Morita equivalence. The following result combines Theorem 6.6 and Proposition 6.15 to
relate the stable Ruelle algebra C∗(Gs(P))o Z with the Cuntz–Pimsner algebra OE ; here
Gs(P) denotes the stable groupoid of the Smale space.

THEOREM 2. Let (X, ϕ) be an irreducible Wieler solenoid arising from an open mapping
g : V → V and suppose that P ⊆ X is a finite ϕ-invariant set of periodic points. The
crossed product groupoid Gs(P)o Z is groupoid Morita equivalent to the Deaconu–
Renault groupoid Rg , which satisfies OE ∼= C∗(Rg).

Moreover, the stable Ruelle algebra C∗(Gs(P))o Z is itself isomorphic to a
Cuntz–Pimsner algebra OẼ , defined using the C(V )-Hilbert C∗-module HC(V ) :=

L2(Xu(P))C(V ) and the bi-Hilbertian KC(V )(HC(V ))-bimodule Ẽ :=HC(V ) ⊗ E ⊗C(V )

H ∗.

To describe the K -theoretic invariants of C∗(Gs(P))o Z, we make use of the Cuntz–
Pimsner extension for OE . The Cuntz–Pimsner extension describes C∗(Gs(P))o Z in the
triangulated category K KT using C(V ) (carrying the trivial action of the circle group T)
and [E] ∈ K KT

0 (C(V ), C(V )) defined by equipping E with the T-action z · ξ := zξ , for
z ∈ T⊆ C and ξ ∈ E . This allows us to compute K -theoretic invariants, T-equivariant or
not, from knowledge of E and C(V ) alone. The form of the Cuntz–Pimsner extension
is determined by a distinguished class ∂ ∈ K KT

1 (C
∗(Gs(P))o Z, C(V )) that we now

describe by combining Theorems 5.10 and 6.21.

THEOREM 3. Let (X, ϕ) be an irreducible Wieler solenoid arising from an open mapping
g : V → V , P ⊆ X a finite set of periodic points and let C∗(Gs(P))o Z be the stable
Ruelle algebra. Then there is a six-term exact sequence

K0(C(V ))
1−θ∗
−−−−→ K0(C(V ))

ιR∗
−−−−→ K0(C∗(Gs(P))o Z)

∂

x y∂
K1(C∗(Gs(P))o Z) ιR∗

←−−−− K1(C(V ))
1−θ∗
←−−−− K1(C(V ))

Moreover, each connecting map is represented by an explicit unbounded Kasparov module.

We note that the element ιR ∈ K KT
0 (C(V ), C∗(Gs(P))o Z) is induced from a stable

inclusion (cf. Corollary 6.13), the ∗-homomorphism θ : C(V )→ C(V, MN (C)) is defined
from a partition of unity as in (5.5) and ∂ ∈ K KT

1 (C
∗(Gs(P))o Z, C(V )) is explicitly

represented by the unbounded Kasparov module appearing in Theorem 6.21.
In fact, a more general statement is true: the C∗-algebra C∗(Gs(P))o Z fits into an

exact triangle with C(V ), as in Theorem 6.21. Using this description allows us to compute
K -theoretic invariants in the sense of Corollary 5.11. Since the K -theory computation is T-
equivariant, one can also use it to compute the K -theory of the stable algebra C∗(Gs(P));
see Remark 6.8. The fact that all KK-classes appearing in Theorem 3 are explicitly
represented by unbounded Kasparov modules makes the result suitable for computations.
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The stable Ruelle algebra C∗(Gs(P))o Z carries a dual T-action, so we can study the
KMS weights of the associated R-action. In Corollary 7.6, we combine a result of Laca
and Neshveyev [27] and the Morita equivalence of Theorem 2 to prove the following.

THEOREM 4. Let (X, ϕ) be an irreducible Wieler solenoid arising from an open mapping
g : V → V , P ⊆ X a finite set of periodic points and π0 the map from Theorem 1. For
β > 0, there is a bijective correspondence between the measures µ on V satisfying g∗µ=
eβµ and KMSβ weights on C∗(Gs(P))o Z via µ 7→ φµ, where the KMSβ weight φµ is
defined on Cc(Gs(P)o Z) by

φµ( f ) :=
∫

Xu(P)
f (x, 0, x) d(π∗0µ).

The C∗-algebra C∗(Gs(P))o Z always admits at least one KMSβ weight. If (V, g) is
mixing, there is a unique β > 0 for which there exists a KMSβ weight and that KMSβ
weight is unique.

Throughout the paper, n-solenoids feature as our running example. In addition, we
consider two other examples in §8. These include subshifts of finite type, where the
results in the present paper, together with previous results of the second and third listed
authors [19], prove that the K -homology of the stable and unstable Ruelle algebras is
exhausted by explicit θ -summable spectral triples whose phases are finitely summable
Fredholm modules (see Theorem 8.1). We study self-similar groups in §8.2. The
construction of limit sets of regular self-similar groups provides a broad range of examples
fitting into the framework of the paper.

In §9, we study solenoids constructed from local diffeomorphisms g : M→ M acting
conformally on a closed Riemannian manifold M . In this case, we can construct explicit
spectral triples on the stable Ruelle algebras that are not Kasparov products with the class
∂ in Theorem 3. These spectral triples are defined from an elliptic log-polyhomogeneous
pseudo-differential operator (in some cases acting on the GNS space of the KMS weight).

2. Smale spaces and their C∗-algebras
In this section, we will recall some well-known facts about Smale spaces and their
associated C∗-algebras; see [39, 41–43, 47, 49]. For a more detailed presentation, we
refer the reader to [41].

2.1. Smale spaces. A dynamical system (X, ϕ) consists of a compact metric space X
and a continuous map ϕ : X→ X . A Smale space is a dynamical system in which ϕ is a
homeomorphism and the space can be locally decomposed into the product of a coordinate
whose points get closer together under the map ϕ and a coordinate whose points get farther
apart under the map ϕ. Ruelle axiomatized the notion of a Smale space with the following
definition.

Definition 2.1. ([41, p. 19], [48]) Suppose that X is a compact metric space and ϕ : X→
X is a homeomorphism. Consider the data (X, dX , ϕ, [· , ·], λ, εX ), where εX > 0 and
0< λ < 1 are constants and

[· , ·] : {(x, y) ∈ X × X : dX (x, y)≤ εX } → X, (x, y) 7→ [x, y]
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FIGURE 1. The local coordinates of x, y ∈ X and their bracket maps.

is a continuous mapping, called the bracket mapping. We say that (X, dX , ϕ, [· , ·], λ, εX )

is a Smale space if the following axioms hold:
B1 [x, x] = x ;
B2 [x, [y, z]] = [x, z] if both sides are defined;
B3 [[x, y], z] = [x, z] if both sides are defined;
B4 ϕ[x, y] = [ϕ(x), ϕ(y)] if both sides are defined;
C1 for x, y ∈ X such that [x, y] = y, we have dX (ϕ(x), ϕ(y))≤ λ dX (x, y); and
C2 for x, y ∈ X such that [x, y] = x , we have dX (ϕ

−1(x), ϕ−1(y))≤ λ dX (x, y).
We denote a Smale space by (X, ϕ); the other data is taken to be implicit.

To see that Ruelle’s axioms define a local product structure, for x ∈ X and 0< ε ≤ εX ,
define

X s(x, ε) := {y ∈ X : dX (x, y) < ε, [y, x] = x} and

Xu(x, ε) := {y ∈ X : dX (x, y) < ε, [x, y] = x}.

It follows that for y, y′ ∈ X s(x, ε) we have dX (ϕ(y), ϕ(y′))≤ λ dX (y, y′). We call
X s(x, ε) a local stable set of x . Similarly, for z, z′ ∈ Xu(x, ε) we have dX (ϕ

−1(z),
ϕ−1(z′))≤ λ dX (z, z′), and we call Xu(x, ε) a local unstable set of x . The local product
structure on a Smale space arises in the following way. For 0< ε ≤ εX and x ∈ X , the
bracket mapping defines a mapping

[· , ·] : X s(x, ε)× Xu(x, ε)→ X, (2.1)

which is a homeomorphism onto an open neighbourhood of x (see [41, Proposition 2.1.8]).
We also note that if x, y ∈ X with dX (x, y) < εX/2, then [x, y] is the unique

point X s(x, εX ) ∩ Xu(y, εX ) and [y, x] is the unique point X s(y, εX ) ∩ Xu(x, εX ); see
Figure 1. This fact implies that (X, dX , ϕ, [· , ·], λ, εX ) is uniquely determined by (X,
dX , ϕ) (up to changing εX and λ).

Given a Smale space (X, ϕ) and x, y ∈ X , we define equivalence relations by

x ∼s y whenever dX (ϕ
n(x), ϕn(y))→ 0 as n→∞ and

x ∼u y whenever dX (ϕ
−n(x), ϕ−n(y))→ 0 as n→∞.

We denote the stable equivalence class of x ∈ X by X s(x) and note that X s(x, ε)⊂ X s(x).
Similarly, we denote the unstable equivalence class of x ∈ X by Xu(x). A locally compact
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Hausdorff topology on X s(x) is generated by the open sets

{X s(y, ε) : y ∈ X s(x), 0< ε < εX }.

A similar topology is defined in the unstable case. The reader should note that the
topologies of X s(x) and Xu(x) are in general different from the subspace topologies
coming from the inclusions into X .

Lastly, we are interested in dynamical systems with topological recurrence conditions.
In the following definition, we do not assume that (X, ϕ) is a Smale space.

Definition 2.2. Suppose that (X, ϕ) is a dynamical system. We say that (X, ϕ) is:
(1) non-wandering if, for all x ∈ X and all open sets U containing x , there exists N ∈ N

such that ϕN (U ) ∩U 6=∅;
(2) irreducible if, for all non-empty open sets U, V ⊆ X , there exists N ∈ N such that

ϕN (U ) ∩ V 6=∅;
(3) mixing if, for all non-empty open sets U, V ⊆ X , there exists N ∈ N such that

ϕn(U ) ∩ V 6=∅ for all n ≥ N .

In the previous definition, it is clear that (3) H⇒ (2) H⇒ (1). In general, none of the
reverse directions hold.

2.2. C∗-algebras of Smale spaces. The first C∗-algebras associated to Smale spaces
were defined by Ruelle in [47]; Ruelle considered the homoclinic algebra. The C∗-algebras
of interest in this paper are associated with the stable and unstable equivalence relations.
They are now called the stable and unstable algebras of a Smale space. Putnam [39]
showed that there are natural crossed product C∗-algebras of the stable and unstable
algebras; he called them the stable and unstable Ruelle algebras. These algebras generalize
Cuntz–Krieger algebras in the sense that if the Smale space is a subshift of finite type, then
the stable Ruelle algebra is Morita equivalent to the Cuntz–Krieger algebra OAAA, where AAA
is the 0–1 matrix defining the subshift (see more in Example 4.1 and §8.1 below). All
of these algebras are defined using groupoids. However, in [39] the groupoids were not
étale. Putnam and Spielberg [43] showed that, up to Morita equivalence, one can take the
groupoids to be étale by restricting to an abstract transversal. We will use the construction
from [43].

Suppose that (X, ϕ) is a Smale space. It is well known that the set of ϕ-periodic points
in X is non-empty. This follows from the following two facts: the set of non-wandering
points in X is non-empty [48, Appendix A.2] and is equal to the closure of the set of
periodic points (see [48, §7.3] and [7, Lemma 3.8]). For a comprehensive treatment of
these results, see [42, Proposition 1.1.3 and Theorem 4.4.1]. In particular, if (X, ϕ) is
non-wandering, then the periodic points are dense in X .

We choose a non-empty finite set of ϕ-invariant periodic points P . We define Xu(P)=⋃
p∈P Xu(p) and endow this set with the locally compact and Hausdorff topology

generated by the set {Xu(x, ε) : x ∈ Xu(P), ε ∈ (0, εX ]}. The stable groupoid is defined
by

Gs(P) := {(v, w) ∈ X × X : v ∼s w and v, w ∈ Xu(P)} (2.2)
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and has unit space Xu(P). For the groupoid Gs(P), the partial product operation is given
by (v, w)(w, z) := (v, z) and inversion is given by (v, w)−1

:= (w, v). We construct a
basis for an étale topology on Gs(P) as follows.

Suppose that v ∼s w and choose N ∈ N such that ϕN (v) ∈ X s(ϕN (w), εX/2). There
is a relatively open neighbourhood U of w such that ϕN (U )⊂ Xu(ϕN (w), εX/2). This
means that [ϕN (x), ϕN (v)] ∈ Xu(ϕN (v), εX/2) is defined for all x ∈U . The map

hs
N :U → X, x 7→ ϕ−N

[ϕN (x), ϕN (v)]

is a local homeomorphism with hs
N (w)= v. More precisely, if we take δ > 0 small enough

and U = Xu(w, δ), then hs
N : X

u(w, δ)→ Xu(v, εX/2) is a homeomorphism onto its
image. The mapping hs

N depends on the choice of v and w, which we suppress from the
notation as they will be clear from the context. Using this, a base of local neighbourhoods
of (v, w) ∈ Gs(P) is given by the sets

V s(v, w, N ,U ) := {(hs
N (x), x) : x ∈U ⊂ Xu(w, εX/2)}, (2.3)

where N ∈ N is such that ϕN (v) ∈ X s(ϕN (w), εX/2) and the set U is relatively open with
ϕN (U )⊂ Xu(ϕN (w), εX/2). With this topology, Gs(P) is an étale groupoid.

We define the stable algebra C∗(Gs(P)) as the reduced groupoid C∗-algebra associated
with Gs(P). In the case that (X, ϕ) is irreducible, it is shown in [43] that C∗(Gs(P))
is strongly Morita equivalent to C∗(Gs(Q)) for any other finite ϕ-invariant set of
periodic points Q. The same is true in the non-wandering case provided both P and Q
intersect every irreducible component that arises in Smale’s decomposition theorem [41,
Theorem 2.1.13]. That is, for P large enough and X non-wandering, C∗(Gs(P)) is
independent of P up to stable isomorphism.

The map α := ϕ × ϕ induces an automorphism of the C∗-algebra C∗(Gs(P)). The
stable Ruelle algebra is the crossed product C∗(Gs(P))oα Z. The stable Ruelle algebra,
as defined here, is strongly Morita equivalent to the stable Ruelle algebra originally defined
by Putnam in [39]. In [43], the Ruelle algebras were shown to be separable, stable, nuclear,
purely infinite and satisfy the UCT when (X, ϕ) is irreducible and simple when (X, ϕ) is
mixing. The discussion above carries over to the unstable algebra using the Smale space
(X, ϕ−1) equipped with the opposite bracket [x, y]op := [y, x]. The unstable groupoid
with unit space X s(P) is denoted by Gu(P).

3. Wieler solenoids
Irreducible Smale spaces with totally disconnected stable sets were recently characterized
by Wieler [52]. We outline the main results [52, Theorems A and B] in Wieler’s paper that
every continuous surjection g : V → V satisfying Wieler’s axioms defines a Smale space
with totally disconnected stable sets, and that all such irreducible Smale spaces arise in this
way. Assuming that g is open, we define a fibre bundle structure that will be used later in
the paper. The bundle structure is similar to a construction in [53] and related ideas appear
implicitly in [49].

Definition 3.1. Suppose that f is a map on a compact metric space Y . We say that f is
locally expanding if there exist constants δ > 0 and λ > 1 such that dY (x, y) < δ implies
that dY ( f (x), f (y))≥ λ dY (x, y). We say that f is locally expanding for λ > 1 within
distance δ.
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Definition 3.2. [52, p. 2068] Suppose that V is a compact metric space and g : V → V is a
continuous surjection. We say that (V, g) satisfies Wieler’s axioms if there exist constants
β > 0, K ∈ N+ and γ ∈ (0, 1) such that the following hold.
Axiom 1. If v, w ∈ V satisfy dV (v, w) < β, then

dV (gK (v), gK (w))≤ γ K dV (g2K (v), g2K (w)).

Axiom 2. For all v ∈ V and ε ∈ (0, β],

gK (B(gK (v), ε))⊆ g2K (B(v, γ ε)).

Remark 3.3. As discussed in [52], Wieler’s axioms are weakenings of g being locally
expanding and open, respectively. Furthermore, note that [52, Lemma 3.4] shows that
Wieler’s Axiom 1 implies that g is finite-to-one. In fact, if g satisfies Wieler’s axioms
then on combining [52, Lemma 3.4] with [36, Theorem 2.9] it follows that the map g is a
branched covering if and only if g is open (see §4.3 below).

Suppose that V is a compact metric space and g : V → V is a continuous surjection.
We define

XV := {(vi )i∈N ∈ VN
: vi = g(vi+1)} (3.1)

along with a map ϕg : XV → XV given by

ϕg(v0, v1, . . .) := (g(v0), v0, v1, . . .)= (g(v0), g(v1), g(v2), . . .). (3.2)

Definition 3.4. A Wieler solenoid is a dynamical system of the form (XV , ϕg) defined as
above from a pair (V, g) satisfying Wieler’s axioms (see Definition 3.2).

We often use juxtaposition to write (v0, v1, v2, . . .)= v0v1v2 · · · . Note that XV is a
compact metric space when equipped with the following metric (see [52, p. 2071] for
details):

dXV (x, y)=
K∑

k=0

γ−k supi∈N γ
i dV (xi+k, yi+k) for x, y ∈ XV . (3.3)

THEOREM 3.5. (Wieler [52, Theorems A and B])
(A) Suppose that (V, g) satisfies Wieler’s axioms. The associated Wieler solenoid

(XV , ϕg) is a Smale space with totally disconnected stable sets. If (V, g) is
irreducible, then (XV , ϕg) is as well.

(B) Suppose that (X, ϕ) is an irreducible Smale space with totally disconnected stable
sets. There exists an irreducible dynamical system (V, g) satisfying Wieler’s axioms
such that (X, ϕ) is conjugate to the Wieler solenoid (XV , ϕg).

Remark 3.6. Suppose that (V, g) satisfies Wieler’s axioms. It is unclear to the authors if
applying the construction in the proof of [52, Theorem B] (see Theorem 3.5(B) above) to
the irreducible Smale space (XV , ϕg) reproduces (V, g) up to some suitable equivalence
relation.
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Suppose that (XV , ϕg) is a Wieler solenoid. The projection maps πk : X→ V are
defined by πk(v0, v1, . . .) := vk . We note that

πk ◦ ϕg = g ◦ πk and πk ◦ ϕ
−1
g = πk+1. (3.4)

It natural to consider stronger conditions than Wieler’s Axioms 1 and 2. For example,
one could assume that g satisfies Axiom 1 and is open, one could assume that g is locally
expanding and satisfies Axiom 2 or one could assume that g is locally expanding and
open. The next two results show that each of these strengthenings of Wieler’s axioms are
equivalent to g being a local homeomorphism with gK locally expanding.

LEMMA 3.7. Suppose that V is a compact metric space and g : V → V is an open
surjection satisfying Wieler’s Axiom 1. Then g is a local homeomorphism and gK

: V → V
is locally expanding for γ−K , where γ ∈ (0, 1) and K ∈ N+ appear in Wieler’s axioms.

Proof. Let β > 0, K ∈ N+ and γ ∈ (0, 1) be the fixed constants from Wieler’s axioms.
Suppose that gK is not locally expanding for γ−K . For any n ∈ N, there exist vn, wn ∈ V
such that:
(1) dV (vn, wn) < 1/n; and
(2) dV (vn, wn) > γ

K dV (gK (vn), gK (wn)).
By compactness, {vn}n∈N has a limit point, which we denote by x . Also, let x ′ denote a
pre-image of x under gK .

Take 0< r ≤ β/2. The mapping g is open, so gK (Br (x ′)) is an open set. We
can therefore choose N ∈ N such that vN and wN are in gK (Br (x ′)). Since vN , wN ∈

gK (Br (x ′)), there are pre-images v′ andw′ in Br (x ′) such that gK (v′)= vN and gK (w′)=

wN . By the triangle inequality, dV (v
′, w′) < 2r ≤ β. Applying Wieler’s first axiom to v′

and w′ gives

dV (vN , wN )= dV (gK (v′), gK (w′))≤ γ K dV (g2K (v′), g2K (w′))

= γ K dV (gK (vN ), gK (wN )).

This is a contradiction to (2) above, so gK is locally expanding. If gK is locally expanding,
then gK is locally injective, so g is locally injective. Since g is open and V is compact, it
follows that g is a local homeomorphism. �

LEMMA 3.8. Suppose that V is a compact metric space, g : V → V satisfies Wieler’s
Axiom 2 and gK is locally expanding. Then g is a local homeomorphism.

Proof. Since gK is locally expanding, it is locally injective. Thus, we need only show that
it is open. Standard results imply that we need only show that for each v ∈ V and ε > 0,
there exists δ > 0 such that B(gK (v), δ)⊆ gK (B(v, ε)). We can assume that ε ≤ β and
gK
|B(gK (v),(ε/γ )) is injective. By Axiom 2,

gK
(

B
(

gK (v),
ε

γ

))
⊆ g2K (B(v, ε)).

Since gK
|B(gK (v),(ε/γ )) is injective, we have

B
(

gK (v),
ε

γ

)
⊆ gK (B(v, ε)).

It follows that gK is open and hence that g is also open. �
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Remark 3.9. By combining Lemma 3.7 with [36, Theorem 2.9], we can conclude that
if g : V → V is a branched covering satisfying Wieler’s axioms, then g is open and,
by Lemma 3.7, a finite sheeted covering (i.e. a surjective local homeomorphism); cf.
Remark 3.3 and §4.3.

LEMMA 3.10. Suppose that V is a compact metric space and g : V → V is a locally
expanding continuous surjection satisfying Wieler’s axioms. Let K ∈ N+ be the constant
in Wieler’s axioms and let δ > 0 be such that (V, gK ) is locally expanding within distance
2δ. Suppose that M is a multiple of K and x = x0x1 . . . , y = y0 y1 · · · ∈ XV satisfy:
(1) dX (x, y) < εX ; and
(2) for each m ≤ M, dV (xm, ym) < δ.
Then, for each m ≤ M, [x, y]m = xm .

Proof. By assumption (1), [x, y] is defined. We use induction on m ≤ M . For m = 0,
the result follows from the definition of the bracket; see [52, Lemma 3.3] and the
discussion following its proof. Thus, we need to show that [x, y]m = xm assuming that
[x, y]m−1 = xm−1. The construction of the bracket in [52, proof of Lemma 3.3] implies
that dV ([x, y]m, ym) < δ. Moreover, by assumption, dV (xm, ym) < δ, so the triangle
inequality implies that

dV ([x, y]m, xm) < 2δ. (3.5)

Using the induction hypothesis, we have

gK ([x, y]m)= gK−1([x, y]m−1)= gK−1(xm−1)= gK (xm). (3.6)

Thus, combining (3.5) and (3.6) with g being locally expanding implies that

λ dV ([x, y]m, xm)≤ dV (gK ([x, y]m), gK (xm))= 0.

We conclude that [x, y]m = xm . �

Suppose that V is a compact metric space and g : V → V is a map. Define

V (N , g) := {(v0, v1, . . . , vN ) ∈ V N+1
: g(vi )= vi−1 ∀1≤ i ≤ N }.

Let πN
0 denote the projection map (v0, v1, . . . , vN ) 7→ v0.

LEMMA 3.11. Suppose that g : V → V is an onto mapping. Then g is a local
homeomorphism if and only if for each N ≥ 0, the projection map πN

0 : V (N , g)→ V
is a finite-to-one covering map.

Proof. Take N > 0. The map g is a local homeomorphism if and only if gN is. The
space V (N , g) is homeomorphic to the graph of gN in a way that is compatible with πN

0 .
In particular, πN

0 : V (N , g)→ V is a local homeomorphism if and only if gN is a local
homeomorphism. �

THEOREM 3.12. Let (X, ϕ) be an irreducible Wieler solenoid defined from an open
surjection g : V → V . For any finite set of ϕ-invariant periodic points P ⊆ X, the mapping
π0 : Xu(P)→ V is a covering map.
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Remark 3.13. A mapping g : V → V is called expanding in [49] if it is open, surjective and
there exists δ > 0 such that dV (gn(x), gn(y))≤ δ for all n implies that x = y. In the proof
of [49, Theorem 4.19], Thomsen gives the proof of a statement similar to Theorem 3.12
under the assumption that g is expanding and the set of periodic points in X is dense.

Proof of Theorem 3.12. We first show that πk : Xu(P)→ V is surjective for any k. Using
(3.4), it suffices to prove that π0 : Xu(P)→ V is surjective. Let v ∈ V ; since g is
surjective, pick x ∈ X such that x0 = v. Since Xu(P)⊆ X is dense, there exists y ∈ Xu(P)
such that dX (x, y) < εX . Then [x, y] ∈ Xu(P) and [x, y]0 = x0 = v by Lemma 3.10, so
[x, y] ∈ π−1

0 (v).
Lemma 3.7 implies that the map g is a local homeomorphism. By Lemma 3.11, it

suffices to prove that there exists an M ∈ N such that πM : Xu(P)→ V is a covering map.
We take M and δ > 0 as in the hypotheses of Lemma 3.10, such that δ is also sufficiently
small so that if x, y ∈ X satisfy dV (xm, ym) < δ for all m ≤ M , then dX (x, y) < εX/4.
Note that we can take M and δ such that M is a multiple of the constant K appearing in
Wieler’s axioms and that (V, g) is locally expanding for 2δ.

Using the fact that g is continuous and a short induction argument, we have that for
fixed v ∈ V , there exists an open set U ⊆ V such that v ∈U and

dV (gk(w1), gk(w2)) < δ for any w1, w2 ∈U and each 0≤ k ≤ M. (3.7)

In particular, for such an open set U , we have π−1
M (U )⊆ X s(x, εX )× Xu(x, εX ) for

x ∈ π−1
M (v), where we identify X s(x, εX )× Xu(x, εX ) with an open neighbourhood of

x in X using the bracket mapping as in equation (2.1). Suppose that v ∈ V and let U ⊆ V
be an open set satisfying (3.7). For any x ∈ π−1

M (v), define

9v : π
−1
M (U )→U × (X s(x, εX ) ∩ Xu(P)), 9v(z)= (πM (z), [x, z]).

We first claim that 9v is well defined. By the choice of U and M , the bracket [x, z]
is defined, and is an element of X s(x, εX ) since [[x, z], x] = x by B1 and B3. Similarly,
[x, z] ∈ Xu(z, εX )⊂ Xu(P). Thus, 9v(z) ∈U × (X s(x, εX ) ∩ Xu(P)).

Next we show that 9v is independent of the choice of x ∈ π−1
M (v) in its definition.

Suppose that x ′ ∈ π−1
M (v). Then, by the choice of M , dX (x, x ′) < εX/4. Since x ∼s x ′,

we have [x, z] ∈ X s(x ′, εX ). Using B2, we have the identity

[x, z] = [x ′, [x, z]] = [x ′, z].

The mapping 9v is therefore independent of the choice of x ∈ π−1
M (v).

That 9v is continuous follows immediately, since the projection and bracket maps are
continuous. We now show that 9v is one-to-one. Suppose that 9v(z)=9v(z′) for z, z′ ∈
π−1

M (U ). Then, since πM (z)= πM (z′) and z ∈ X s(z′, εX ), using B2 and B1 we have

z′ = [z, z′] = [z, [x, z′]] = [z, [x, z]] = [z, z] = z.

Thus, 9v is one-to-one. The set

Fv := {y : y = [x, z] for some z ∈ π−1
M (U )} ⊆ X s(x, εX ) ∩ Xu(P)

has the discrete topology because X s(x, εX ) ∩ Xu(P) is discrete. We will show that the
map9v : π−1

M (U )→U × Fv is a homeomorphism. We have shown that9v is one-to-one,
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onto and continuous. In fact, we have an explicit inverse. Let ψv :U × Fv→ π−1
M (U )

be defined by ψv((w, y))= [z′, y], where z′ satisfies πM (z′)= w ∈U and dV (z′n, yn) <

δ < εX for each n ≤ M . The existence of z′ is guaranteed by (3.7).
We note that the bracket [z′, y] is well defined by the properties of U . Furthermore, if

both z′ and z′′ satisfy πM (z′)= w = πM (z′′), then z′′ ∈ X s(z′, εX ). Using B3, we compute

[z′, y] = [[z′′, z′], y] = [z′′, y].

Hence, ψv is well defined.
We show that ψv is continuous. Since Fv has the discrete topology and the topology

of local unstable sets coincides with the subspace topology, we need only show that given
εψ > 0, there exists δψ > 0 such that if (w, y) and (ŵ, y) are in U × Fv with dV (w, ŵ) <

δψ , then
dX (ψ(w, y), ψ(ŵ, y))= dX ([z′, y], [ẑ′, y]) < εψ ,

where z′ satisfies the following: πM (z′)= w ∈U and dV (z′n, yn) < δ < εX for each
n ≤ M and ẑ′ satisfies the analogous condition.

Based on the definition of the metric on X , we need only show that there exists δ̂ψ > 0
such that, for each n, dV ([z′, y]n, [ẑ′, y]n) < εψ whenever dV (w, ŵ) < δ̂ψ . We have that
[z′, y] and [ẑ′, y] are both in the local unstable set of y. It follows that there exists L ≥ 0
such that for any n ≥ L , dV (z′n, ẑ′n) < εψ . For small n, since g is a local homeomorphism,
πM (z′)= w and πM (ẑ′)= ŵ, there exists δ̂ψ > 0 such that

dV (z′n, ẑ′n) < εψ

for 0≤ n ≤ L . This completes the proof that ψv is continuous.
To see thatψv is the inverse of9v , we first check that πM ([z′, y])= w. By construction,

dV (z′n, yn) < δ for 0≤ n ≤ M and dX (z′, y) < εX , so by Lemma 3.10 we have that

[z′, y]M = z′M = w,

as desired. Furthermore, using B2 and B1, we compute

(ψv ◦9v)(z)= [z, [x, z]] = [z, z] = z.

Using B2, we deduce that

(9v ◦ ψv)(w, y)= (πM ([z′, y]), [x, [z′, y]])= (w, [x, y])= (w, y).

Here we have used the fact that y ∈ X s(x, εX ) to conclude that [x, y] = y. �

Example 3.14. There are several examples of open maps satisfying Wieler’s axioms. In
this example, we will introduce a particularly simple class, the n-solenoids. We take n ∈
Z \ {−1, 0, 1} and consider V = S1

:= R/Z with the mapping g(x)= nx (mod 1). We
set the global Smale space constants to be εX = 1/2 and λ= |n|−1. For the remainder of
this example, we will abuse notation and write nx for nx (mod 1). The space

X S1 := {(x0, x1, x2, . . . ) : xi ∈ [0, 1), xi − nxi+1 ∈ Z}

is a compact metric space with respect to the product metric

dX S1 ((x0, x1, x2, . . . ), (y0, y1, y2, . . . ))=

∞∑
i=0

n−i inf{|xi − yi + k| : k ∈ Z}.
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We remark that this metric differs from that used in Wieler’s construction; see equation
(3.3). The dynamics ϕg from (3.2) is given by

ϕg(x0, x1, x2, . . . )= (nx0, x0, x1, x2, . . . )= (nx0, nx1, nx2, . . . ).

Suppose that x, y are in X S1 with dX S1 (x, y) < εX . Let t = x0 − y0; then the bracket map
is defined by

[x, y] := (y0 + t, y1 + n−1t, y2 + n−2t, . . . ).

With these definitions in hand, it is routine to verify the Smale space axioms. These details
can also be found in Putnam’s Smale space notes [42, §3.4].

More generally, any matrix A ∈ Md(Z) induces a mapping gA : (S1)d → (S1)d .
The mapping gA is a local homeomorphism exactly when det(A) 6= 0 and gA is a
homeomorphism when |det(A)| = 1. Moreover, if det(A) 6= 0, gA satisfies Wieler’s
axioms if and only if ‖A−1

‖Mn(R) < 1. By [28, §2.2], the action of gA on (S1)d is an
example of the shift mapping acting on the limit space of a self-similar group. This
construction is discussed further in §8.2.

There are also examples that satisfy Wieler’s axioms where the relevant map is not
open, so our constructions do not apply to these examples. Examples 1 and 3 in [52]
are two such examples. An additional example is the Smale space associated with an
aperiodic substitution tiling; the details are in [3]. A Cuntz–Pimsner model for the stable
Ruelle algebra of an aperiodic substitution tiling is constructed in forthcoming work by
Peter Williamson. In the next section, we construct a Cuntz–Pimsner model over C(V ) for
the stable Ruelle algebra of a Wieler solenoid defined from an open surjection g : V → V .
It is an interesting challenge to find K -theoretically relevant Cuntz–Pimsner models for
Ruelle algebras of more general Wieler solenoids or even more general Smale spaces.

4. Cuntz–Pimsner algebras and topological dynamics
In this section, we recall a construction from [15] of Cuntz–Pimsner models describing the
dynamics of a surjective local homeomorphism g : V → V . We discuss the limitations of
this assumption on g in §4.3, but emphasize that the results in this section do not need g to
satisfy Wieler’s axioms. For the general construction of Cuntz–Pimsner algebras, see [38].

4.1. The Cuntz–Pimsner algebra of a local homeomorphism. Consider a compact space
V and a surjective local homeomorphism g : V → V . A map g∗ : C(V )→ C(V ) is
defined by g∗(a) := a ◦ g. We consider E := C(V ) as a right Hilbert module over itself
via the action g∗ and the inner product

〈ξ, η〉E := L(ξ̄η) where L(ξ)(y) :=
∑

g(z)=y

ξ(z). (4.1)

We equip E with the left action defined from the pointwise action. To emphasize this
dependence, we write Eg = idC(V )g∗ . For k ≥ 0, there is a unitary isomorphism

νk : E⊗k
g = Eg⊗ Eg⊗ · · ·⊗ Eg→ idC(V )g∗k , η1 ⊗ · · · ⊗ ηk 7→

k∏
j=1

g∗( j−1)(η j ).
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Here idC(V )g∗k is equipped with the inner product 〈ξ, η〉idC(V )g∗k := Lk(ξ̄η). We define

E⊗0
:= idC(V )id. An element ξ ∈ E induces a Toeplitz operator

Tξ : E⊗k
→ E⊗k+1, η1 ⊗ · · · ⊗ ηk 7→ ξ ⊗ η1 ⊗ · · · ⊗ ηk .

The following computation is immediate:

T ∗ξ η1 ⊗ · · · ⊗ ηk =


〈ξ, η1〉E η2 ⊗ · · · ⊗ ηk, k > 1,

〈ξ, η1〉E , k = 1,

0, k = 0.

Under the collection of isomorphisms νk , we have

T̃ξ := νk+1Tξν−1
k : idC(V )g∗k → idC(V )g∗(k+1) , η 7→ ξg∗(η)

and, for η ∈ idC(V )g∗k , we have

T̃ ∗ξ η =

{
L(ξ̄η), k > 0,

0, k = 0.

The Fock module of E is the C(V )-Hilbert module FE :=
⊕
∞

k=0 idC(V )g∗k . The
Toeplitz algebra TE ⊆ End∗C(V )(FE ) is the C∗-algebra generated by the Toeplitz operators
{T̃ξ : ξ ∈ E} and the compact operators KC(V )(FE ). The Cuntz–Pimsner algebra of E is

OE := TE/KC(V )(FE ).

If we equip E with the T-action z · ξ := zξ , there is an induced T-action on FE making
FE into a T-equivariant C(V )-Hilbert module for the trivial action on C(V ). Then TE

and KC(V )(FE ) are invariant under the adjoint action. We equip these C∗-algebras and the
Cuntz–Pimsner algebra OE with the T-action induced from the adjoint action.

Example 4.1. In the special case of a subshift of finite type, the construction above
reproduces the associated Cuntz–Krieger algebra. Let AAA be an N × N matrix consisting
of zeros and ones. We consider the compact space

�AAA := {(si )i∈N ∈ {1, . . . , N }N : AAAxi ,xi+1 = 1 ∀i},

which is equipped with the topology induced from the product topology. If AAA is
irreducible, then �AAA is a Cantor set. The mapping σ(si )i∈N := (si+1)i∈N is a surjective
local homeomorphism. If we construct the C(�AAA)-module E from (�AAA, σ ), we obtain the
Cuntz–Krieger algebra defined from the matrix AAA. To prove this, consider the elements
Si := T̃χCi

mod KC(�AAA), where Ci := {(si )i∈N ∈�AAA : s0 = i} is the clopen cylinder set
on words starting with i . A direct computation gives

S∗i Sk = δikL(χCi )= δik

N∑
j=1

AAAi jχC j and S j S∗j = χC j .

Hence, {Si }
N
i=1 satisfies the Cuntz–Krieger relations defined from AAA. This defines the

isomorphism OAAA→ OE .



16 R. J. Deeley et al

4.2. The Cuntz–Pimsner algebra of a topological graph. In this section, we consider
the Cuntz–Pimsner algebras of topological graphs, and make use of an étale groupoid
previously considered in [15, 44, 45]. Suppose that V is a compact topological space
and consider a closed subset G ⊆ V × V . We set t (x, y)= y and o(x, y)= x for
(x, y) ∈ G. This situation is a special case of the notion of a topological graph (see [15,
Definition 1.1]). Consider the one-sided sequence space

X+(G) :=
{
(xi )i∈N ∈

∏
i∈N

V : (xi , xi+1) ∈ G ∀i ∈ N
}
.

There is a shift mapping σG : X+(G)→ X+(G), σ+(xi )i∈N := (xi+1)i∈N. We define the
set

RG := {(x, n, y) ∈ X+(G)× Z× X+(G) : ∃k with σ n+k
G (x)= σ k

G(y)}.

We can make RG into a groupoid by defining

r(x, n, y) := x, d(x, n, y) := y and (x, n, y)(y, m, z) := (x, n + m, z). (4.2)

With the additional assumption that t, o : G→ V are surjective local homeomorphisms,
the groupoid RG is topologized by the following basis. For k, l ∈ N and open subsets
U1,U2 ⊆ X+(G) such that σ k

+|U1 and σ l
+|U2 are homeomorphisms with the same open

range, we declare the following set open:

U(U1, k, l,U2) := {(x, k − l, y) ∈U1 × Z×U2 : σ
k
+(x)= σ

l
+(y)}. (4.3)

This construction makes RG into an étale groupoid. Henceforth, we will always assume
that both t and o are surjective local homeomorphisms.

Consider the C(V )-bimodule C(G) with left and right actions defined by o∗ and t∗,
respectively. There is a transfer operator LG : C(G)→ C(V ) defined by

LG(ξ)(y) :=
∑

(x,y)∈G
ξ(x, y).

We equip C(G) with the inner product 〈ξ, η〉C(G) := LG(ξ̄η). Then [15, Proposition 3.3]
proves that

OC(G) ∼= C∗(RG),

whenever t and o are surjective local homeomorphisms. This isomorphism is T-equiva-
riant for the T-action on C∗(RG) induced from the groupoid cocycle cG(x, n, y) := n.

The situation from [15] fits into the theme of this paper through the graph

Gg := {(x, g(x)) ∈ V × V : x ∈ V }, (4.4)

for the surjective local homeomorphism g : V → V considered in the previous subsection.
This satisfies all the conditions above and it is routine to show that E ∼= C(G) as Hilbert
bimodules using the pullback along o : G→ V . It is immediate from the definition that
there is a conjugacy between (X+(Gg), σGg ) and (V, g), and that

RGg
∼=Rg := {(x, n, y) ∈ V × Z× V : ∃k with gn+k(x)= gk(y)}. (4.5)

We summarize the discussion above into the following result.
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THEOREM 4.2. Suppose that g : V → V is a surjective local homeomorphism defining
a ∗-monomorphism g∗ on C(V ). Let Eg := idC(V )g∗ , and let Rg be as in equation
(4.5). The ∗-homomorphism C(V )→ C∗(Rg) defined from the diagonal inclusion and
the mapping

t : E→ C∗(Rg), t (ξ)(x, n, y) :=

{
ξ(x), g(x)= y, n = 1,

0 otherwise
define a covariant representation that induces a T-equivariant isomorphism

πE : OE → C∗(Rg).

Remark 4.3. The graph Gop
g = {(g(x), x) ∈ V × V : x ∈ V } gives rise to a dynamics very

different from that of Gg . Using (3.1), we have that X+(Gop
g )= XV . The C(V )-Hilbert

C∗-module C(Gop
g ) is unitarily equivalent to Eop

:= ϕC(V )id with the inner product
〈ξ, η〉Eop = ξ̄ η. Moreover, the identification X+(Gop

g )= XV induces a conjugacy

(X+(Gop
g ), σGop

g
)∼= (XV , ϕ

−1
g ).

That is, σGop
g

is a homeomorphism. Hence, RGop
g
∼= XV oϕ Z as groupoids and,

by [15, Proposition 3.3], there is a T-equivariant isomorphism OEop ∼= C(XV )oϕ Z when
equipping C(XV )oϕ Z with the dual T-action.

4.3. Wieler’s axioms and Cuntz–Pimsner algebras. Let us discuss the assumption of
g being a local homeomorphism. For the purposes of the present paper, the minimal
assumptions on g should not only ensure that XV is a Smale space but also that there
is an associated Cuntz–Pimsner algebra. In view of Theorem 4.2, to use E := C(V )g∗
it is necessary that E admits a right Hilbert C∗-module structure. That is, the existence
of a right inner product with values in C(V ) that is compatible with g. The question of
existence of such inner products was considered in detail by Pavlov and Troitsky [36] as
follows.

COROLLARY 4.4. [36, Theorems 1.1 and 2.9] Let g : V → V be a finite-to-one surjection.
Then the following are equivalent:
(1) E = C(V )g∗ admits a right C(V )-Hilbert C∗-module structure;
(2) g is a branched covering in the sense of [36, Definition 2.4]; and
(3) g is open.

Thus, we obtain a Cuntz–Pimsner model for C∗(Rg) using E only when g : V → V is
an open map. Since g also satisfies Wieler’s axioms, we obtain the following result using
Remark 3.9.

PROPOSITION 4.5. Let g : V → V be a surjection satisfying Wieler’s axioms. Then the
following are equivalent:
(1) E = C(V )g∗ admits a right C(V )-Hilbert C∗-module structure;
(2) g is a local homeomorphism; and
(3) g is open.

Thus, the assumption that g is a local homeomorphism covers the study of Wieler
solenoids that admit a Cuntz–Pimsner model of the kind described in Theorem 4.2 (cf.
§6.3 on p. 30 below).
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5. The Cuntz–Pimsner extension as an unbounded Kasparov module
As in §4, we consider a surjective local homeomorphism g : V → V . Again, the results
in this section do not assume that g satisfies Wieler’s axioms. In this section, we study an
explicit unbounded representative for the boundary mapping in K KT

1 (OE , C(V )) coming
from the T-equivariant short exact sequence

0→KC(V )→ TE → OE → 0. (5.1)

The consequences in K -theory and K -homology will be studied in §5.3.

5.1. The κ-function. For a subshift of finite type, the groupoid Rg encodes the
relation of shift–tail equivalence. The continuous cocycle c(x, n, y) := n allows for a
decomposition of Rg into clopen subsets. In [19, Lemma 5.1.1], it was observed that this
decomposition can be further refined using the natural number k arising in the analogue of
(4.5). We now show that a decomposition of the groupoid Rg , as described in [19], exists
for a general local homeomorphism g : V → V .

Definition 5.1. For a surjective local homeomorphism g : V → V , we define κ :Rg→ Z
by

κ(x, n, y) :=min{k ∈ N : gn+k(x)= gk(y)}.

We also define cRg :Rg→ Z by

cRg (x, n, y) := n.

It is implicitly understood in the definition of κ that k + n ≥ 0, so that both sides of the
equation gn+k(x)= gk(y) are well defined.

PROPOSITION 5.2. The functions κ and cRg from Definition 5.1 are locally constant and
continuous.

Proof. It suffices to prove that cRg and κ are locally constant; then continuity follows
automatically. On an open set of the form U(U1, k, l,U2)⊆Rg from the basis of the
topology in (4.3), we have that

κ|U(U1,k,l,U2) = l and cRg |U(U1,k,l,U2) = k − l.

Thus, κ and cRg are locally constant. �

We often suppress the index from cRg . Since κ is locally constant, we can decompose
Rg into a disjoint union of clopen sets:

Rg =
⋃̇

n∈Z

⋃̇
k≥−n

Rn,k
g where Rn,k

g := c−1({n}) ∩ κ−1({k}). (5.2)

Define the C(V )-Hilbert C∗-modules4n,k := C(Rn,k
g )⊆ Cc(Rg). We equip4n,k with the

T-action defined from c; that is, z · ξ := znξ for ξ ∈4n,k . Also, let L2(Rg)C(V ) denote
the completion of Cc(Rg) as a C(V )-Hilbert C∗-module in the inner product defined from
the expectation

% : Cc(Rg)→ C(V ), %( f )(x) := f (x, 0, x). (5.3)

We then equip L2(Rg)C(V ) with the T-action defined from c; that is, (z · f )(x, n, y) :=
zn f (x, n, y).
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Remark 5.3. Under the identification k = r − n, the notation 4n,k aligns with the notation
used in [20] for the decomposition of a Cuntz–Pimsner algebra.

PROPOSITION 5.4. The modules 4n,k are finitely generated projective C(V )-modules.
Moreover, the identification

E⊗n ∼= C(V ×g V ×g · · · ×g V )∼= Cc(Rn,0
g )=4n,0

defines a T-equivariant unitary isomorphism un : E⊗n
→4n,0.

Proof. It follows from Lemma 3.11 that Rn,k
g → V is a finite-to-one covering map, so

4n,k is a finitely generated projective C(V )-module. That un is a unitary operator follows
from a short computation. �

PROPOSITION 5.5. There is an orthogonal direct sum decomposition of T-equivariant
C(V )-Hilbert C∗-modules

L2(Rg)C(V ) =
⊕
n∈Z

⊕
k≥−n

4n,k .

Proof. It is immediate from equation (5.2) that L2(Rg)C(V ) coincides with the closed
linear span of 4n,k as n and k vary. The construction of the inner product shows that
elements of Cc(Rg) with disjoint supports are orthogonal; hence, 4n,k ⊥4n′,k′ if n 6= n′

or k 6= k′. �

5.2. The unbounded representative. The functions c and κ combine into an unbounded
KK-cycle in the same way as in [19]. Let T := {(n, k) ∈ Z× N : k ≥−n}. We consider
the function

ψ : T → Z, ψ(n, k) :=

{
n, k = 0,

−|n| − k, k > 0.

PROPOSITION 5.6. The closure of the operator D0 := ψ(c, κ) : Cc(Rg)→ Cc(Rg)

defines a T-equivariant self-adjoint regular operator D : Dom(D)→ L2(Rg)C(V ) with
compact resolvent and spectrum Z. The positive spectral projection of D coincides with
the projection onto

⊕
∞

n=0 4n,0.

Proof. The operator (i ± D0)
−1
: Cc(Rg)→ Cc(Rg) is bijective and D0 is symmetric for

the inner product induced by the expectation (5.3); hence, its closure D is regular and
self-adjoint. Moreover, we can write

(i ± D)−1
=

∑
n,k

(i ± ψ(n, k))−1 pn,k,

where pn,k denotes the projection onto the finitely generated projective module4n,k . Since
ψ(n, k)→∞ as (n, k)→∞ in T , it follows that (i ± D)−1 is the norm limit of finite-
rank operators. Moreover, ψ(n, k)≥ 0 if and only if k = 0 and the last statement in the
proposition follows. �
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Recall the notation πE : OE → C∗(Rg) for the isomorphism from Theorem 4.2.
Let βE : OE →Q(FE ) := End∗C(V )(FE )/KC(V )(FE ) denote the T-equivariant Busby
invariant of the extension (5.1). For a Hilbert C∗-module E , we let

q : End∗C(V )(E)→Q(E) := End∗C(V )(E)/KC(V )(E)

denote the quotient mapping. Recall the definition of un : E⊗n
→4n,0 from

Proposition 5.4.

PROPOSITION 5.7. The T-equivariant inner product preserving adjointable mapping u :=
⊕n∈Nun : FE →

⊕
∞

n=0 4n,0 ↪→ L2(Rg)C(V ) satisfies

βE = q ◦ Ad(u) ◦ πE : OE →Q(FE ).

Proof. It suffices to prove that βE (a)= q ◦ Ad(u) ◦ πE (a) for a ∈ C(V ) ∪ {T̃ξ mod K :
ξ ∈ E} because this set generates OE . The equation is trivially satisfied for a ∈ C(V ). For
ξ ∈ E , Theorem 4.2 shows that πE (T̃ξ )= tξ . The element η ∈ E⊗n

= C(V ×g · · · ×g V )
is mapped by un to the element

uη(x, n, y)= η(x, g(x), . . . , gn−1(x), y).

We have

tξuη(x, n + 1, y)= ξ(x)η(g(x), g2(x), . . . , gn(x), y)= [u(ξ ⊗C(Y ) η)](x, n + 1, y).

Therefore, u∗tξu = T̃ξ and βE (T̃ξ )= q ◦ Ad(u) ◦ πE (T̃ξ ). �

THEOREM 5.8. Let g : V → V be a surjective local homeomorphism on a
compact space V . The T-equivariant unbounded K K1-cycle (L2(Rg)C(V ), D) for
(C∗(Rg), C(V )) represents the extension (5.1) in K KT

1 (OE , C(V )) under the
isomorphism πE .

Proof. By Proposition 5.6, (L2(Rg)C(V ), D) is a T-equivariant unbounded Kasparov
module if D has bounded commutators with a dense subalgebra of C∗(Rg). We proceed
to show that for f ∈ C(R1,0

g ), the commutator

[D, f ] : Cc(Rg)→ Cc(Rg)

extends to a bounded operator on L2(Rg)C(V ). Since Cc(Rg) is a core for D and C(R1,0
g )

generates Cc(Rg) as a ∗-algebra, this suffices.
We compute

[D, f ]h(x, n, y)= (D( f ∗ h)− f ∗ Dh)(x, n, y)

=

∑
(x,m,z)∈supp f

[ψ(x, n, y) f (x, m, z)h(z, n − m, y)

− f (x, m, z)ψ(z, n − m, y)h(z, n − m, y)]

= (ψ(x, n, y)− ψ(g(x), n − 1, y)) f (x, 1, g(x))h(g(x), n − 1, y)

= (ψ(x, n, y)− ψ(g(x), n − 1, y))( f ∗ h)(x, n, y).

A standard computation shows that pointwise multiplication by a bounded function in
Cb(Rg) defines an adjointable operator on L2(Rg)C(V ). Thus, it suffices to establish that

(x, n, y) 7→ ψ(x, n, y)− ψ(g(x), n − 1, y) (5.4)

is a bounded function. This follows from distinguishing the following four cases.
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(1) κ(x, n, y)= κ(g(x), n − 1, y)= 0: in this case ψ(x, n, y)− ψ(g(x), n − 1, y)=
n − (n − 1)= 1.

(2) 0= κ(x, n, y) < κ(g(x), n − 1, y): κ(x, n, y)= 0 gives that n ≥ 0 and gn(x)= y,
whereas k := κ(g(x), n − 1, y) > 0 means that gk(y)= gn−1+k(g(x))= gn+k(x).
This contradicts the minimality of κ(x, n, y) unless n = 0, in which case it must
hold that κ(g(x), n − 1, y)= 1. Then

ψ(x, n, y)− ψ(g(x), n − 1, y)= n + |n − 1| + κ(g(x), n − 1, y)= 2.

(3) 0= κ(g(x), n − 1,y) < κ(x, n,y): this case is void because κ(g(x), n − 1,y)= 0
gives that n − 1≥ 0 and gn(x)= y, whereas k := κ(x, n, y) > 0 means that
gn+k(x)= gk(y), which contradicts the minimality of κ(x, n, y).

(4) min{κ(x, n, y), κ(g(x), n − 1, y)}> 0: in this case we compute

|ψ(x, n, y)− ψ(g(x), n − 1, y)|

= |−|n| − κ(x, n, y)+ |n − 1| + κ(g(x), n − 1, y)|

≤ 1+ |κ(x, n, y)− κ(g(x), n − 1, y)| ≤ 2.

The last inequality follows from the observation that n + κ
(x, n, y)≥ 0 and, if n + κ(x, n, y) > 0, then κ(x, n, y)= κ(g(x), n − 1, y) by
minimality considerations. If n + κ(x, n, y)= 0, then n < 0 and it must hold that
κ(g(x), n − 1, y)= κ(x, n, y)+ 1.

Therefore, |ψ(x, n, y)− ψ(g(x), n − 1, y)| ≤ 2 for all (x, n, y), and (5.4) defines a
bounded function.

One observes that Proposition 5.7 implies that the T-equivariant Busby invariant of
the extension (5.1) is unitarily equivalent to the Busby invariant associated with the T-
equivariant unbounded K K 1-cycle (L2(Rg)C(V ), D) to OE . �

Remark 5.9. In the case that (V, g) is a subshift of finite type associated to a matrix AAA and
λ is a finite AAA-admissible word, a family of unbounded cycles (C∗(Rg), L2(Rg)C(V ), Dλ)
was constructed in [19, Theorem 5.1.7]. The cycle in Theorem 5.8 recovers this
construction for λ= ◦, the empty word. The proof that [D, f ] is bounded is verbatim
the same as the proof of [19, Lemma 5.1.6] for λ= ◦. Moreover, Theorem 5.8 can also be
obtained as a special case of [20, Theorem 2.19]. This is done by adapting the discussion
in [20, Examples 1.7 and 2.6 and §§2.3 and 2.5.2] to the case of a general surjective local
homeomorphism.

5.3. The Pimsner sequence and its consequences. The extension (5.1) plays an
important role in the computation of the K -theory and K -homology of Cuntz–Pimsner
algebras (see [20, 38]). The next theorem follows from Theorem 5.8 and results in
[38, §4]. The results in [38] are formulated in the non-equivariant setting, but the proofs
extend mutatis mutandis to the T-equivariant setting.
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THEOREM 5.10. Let g : V → V be a surjective local homeomorphism on a compact space
V . There is an exact triangle in the triangulated category K KT:

C(V )
1−[Eg] // C(V )

ι
��

C∗(Rg)

◦

[L2(Rg)C(V ),D]

__

Here ι ∈ K KT
0 (C(V ), C∗(Rg)) is induced from the inclusion C(V ) ↪→ C∗(Rg) and

[Eg] ∈ K KT
0 (C(V ), C(V )) from the bimodule Eg equipped with the T-action z · ξ := zξ .

In practice, the theorem above is most useful to deduce six-term exact sequences in
KK-theory.

COROLLARY 5.11. For any separable C∗-algebra B, we have the following two six-term
exact sequences:

K K0(B, C(V ))
1−[Eg]
−−−−→ K K0(B, C(V ))

ι∗
−−−−→ K K0(B, C∗(Rg))

−⊗[L2(Rg)C(V ),D]
x y−⊗[L2(Rg)C(V ),D]

K K1(B, C∗(Rg))
ι∗

←−−−− K K1(B, C(V ))
1−[Eg]
←−−−− K K1(B, C(V ))

K K0(C∗(Rg), B)
ι∗

−−−−→ K K0(C(V ), B)
1−[Eg]
−−−−→ K K0(C(V ), B)

[L2(Rg)C(V ),D]⊗−
x y[L2(Rg)C(V ),D]⊗−

K K1(C(V ), B)
1−[Eg]
←−−−− K K1(C(V ), B)

ι∗

←−−−− K K1(C∗(Rg), B)

The same statement holds in T-equivariant KK-theory if B is a separable T− C∗-algebra.

The next proposition is useful for computations with the sequences in Corollary 5.11; it
is inspired by [18, §3]. We first introduce some notation. We choose a cover (U j )

N
j=1 of V

such that g|U j is injective for any j . Choose a subordinate partition of unity (χ2
j )

N
j=1. It is

well known that χ j is a frame for Eg and the right module mapping

v : Eg→ C(V )N , x 7→ (〈χ j , x〉E )N
j=1

is inner product preserving, i.e. v∗v = idEg . More generally, whenever (e j )
N
j=1 is a frame

for Eg we can define v as above. We denote the associated left representation by

θ : C(V )→ C(V, MN (C)), a 7→ vav∗. (5.5)

PROPOSITION 5.12. Let [θ ] ∈ K KT
0 (C(V ), C(V )) denote the class associated with

the equivariant ∗-homomorphism θ and t ∈ K KT
0 (C, C)∼= R(T)∼= Z[t, t−1

] the class
associated with the representation given by the inclusion T⊆ C. Then

[Eg] = t ⊗C [θ ] ∈ K KT
0 (C(V ), C(V )).



Wieler solenoids, Cuntz–Pimsner algebras and K -theory 23

Define g Eg as the bimodule g∗C(V )g∗ or, equivalently, the trivial bimodule structure
associated with the right module structure on Eg . Then

[Eg] ⊗C(V ) [g∗] = [g Eg] in K KT
0 (C(V ), C(V )).

In particular, if Eg is free of rank r as a right module, then [Eg] ⊗C(V ) [g∗] = r t ⊗C
[1C(V )].

Proof. Let E⊥g denote the right module (1− vv∗)C(V )N equipped with the trivial left
action of C(V ) and the trivial T-action. Let θC(V )N denote the right Hilbert module
C(V )N equipped with the left action defined from θ and the trivial T-action. The
isometry v and the inclusion E⊥g ⊆ C(V )N implement an equivariant unitary equivalence
of bimodules (t−1

⊗ Eg)⊕ E⊥g ∼= θC(V )N . The second statement follows immediately
from the first statement since v is C(V )-linear, so θ(g∗(a))= vg∗(a)v∗ = g(a)vv∗. �

Remark 5.13. The applicable aspect of Corollary 5.11 is the computation of K -
theoretic invariants from the knowledge of the action of Eg on KK-theory. The non-
equivariant version gives K -theoretic information about C∗(Rg). The equivariant version
produces information about the fixed point algebra C∗(Rg)

T. This is of interest
below for the stable and unstable algebras of Smale spaces; see the discussion in
Remark 6.8. The K -theory of C∗(Rg)

T is computed using the Green–Julg theorem and the
Morita equivalence C∗(Rg)o T∼M C∗(Rg)

T induces an isomorphism KT
∗ (C

∗(Rg))∼=

K∗(C∗(Rg)
T). Moreover, if C∗(Rg) is T-equivariantly Poincaré dual to a T− C∗-algebra

D, then K∗(D o T)∼= K ∗+ j
T (C∗(Rg)), where j is the dimension of the Poincaré duality.

Example 5.14. Let us do some computations on the equivariant K -theory and K -
homology of the solenoid associated with an expanding matrix A ∈ Md(Z) from
Example 3.14. This computation extends [18, Theorem 4.9]. We let gA : (S1)d → (S1)d

denote the mapping associated with the expanding integer matrix A.
The module EgA is free of rank |det(A)| as a right C((S1)d)-module (see [18,

Lemma 2.6]). By Proposition 5.12,

[EgA ] ⊗C((S1)d ) [g
∗

A] = |det(A)|t ⊗C [1C((S1)d )] in K KT(C((S1)d), C((S1)d)).

We emphasize that the T-action on C((S1)d) is trivial and t is the generator of the
representation ring R(T). The equivariant K -theory group KT

∗ (C((S
1)d))∼= ∧∗Zd

⊗

Z[t, t−1
] can be computed as a module over R(T)∼= Z[t, t−1

]. One easily verifies that
[g∗A] acts as ∧∗A ⊗ idZ[t,t−1] under this isomorphism, so [EgA ] acts as B ⊗ t , where

B =
d⊕

j=0

B j ∈

d⊕
j=0

End(∧ jZd)

satisfies B j ∧
j A = N id∧ jZd . The matrix B is computed in [18, Proposition 4.6]. From

these considerations and Corollary 5.11, we then have

KT
i (OEgA

)∼=
⊕

j∈i+2Z
coker(1− B j t : ∧ jZd

⊗ Z[t, t−1
] → ∧

jZd
⊗ Z[t, t−1

]). (5.6)
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This gives a new proof of the computation of K∗(OEgA
) in [18, Theorem 4.9] using

the Pimsner–Voiculescu sequence, i.e. a localization in the trivial T-representation.
For instance, if d = 1 and A = n ∈ Z \ {−1, 0, 1}, then KT

0 (OEgA
)= Z[1/n] and

KT
1 (OEgA

)= Z with t acting as 1/|n| in degree 0 and as sign(n) in degree 1.
Similarly, using the fact that 1− BT

j is injective for 0≤ j < d (see [18, Proposition
4.6]) and Corollary 5.11, we compute that

K i (OEgA
)∼=



Z⊕
⊕

j<d, odd

coker(1− BT
j ) for i even and det(A) > 1,

Z⊕
⊕

j<d, even

coker(1− BT
j ) for i odd and det(A) > 1,⊕

j≤d, odd

coker(1− BT
j ) for i even and det(A) <−1,⊕

j≤d, even

coker(1− BT
j ) for i odd and det(A) <−1.

COROLLARY 5.15. Suppose that x ∈ K K∗(C∗(Rg), B). The equation

x = [L2(Rg)C(V ), D] ⊗C(V ) y, y ∈ K K∗−1(C(V ), B)

admits a solution y if and only if ι∗(x)= 0 holds in K K∗(C(V ), B). The analogous T-
equivariant statement holds as well.

6. The Morita equivalence with the stable Ruelle algebra
The standing assumption in this section is that (V, g) is a pair satisfying Wieler’s axioms
such that the associated Smale space (X, ϕ) is irreducible. Suppose that P is a finite ϕ-
invariant set of periodic points of (X, ϕ). Recall from §2.2 the stable groupoid Gs(P), the
stable algebra C∗(Gs(P)) and the stable Ruelle algebra C∗(Gs(P))o Z constructed from
(X, ϕ). We will define a groupoid Morita equivalence Gs(P)o Z∼Rg that will give rise
to a Morita equivalence C∗(Gs(P))o Z∼M OE using Theorem 4.2. We then proceed
to compute the product of the cycle in Theorem 5.8 with the Morita equivalence, using a
κ-type function as in §5.

6.1. The topological space Zu(P). The étale groupoid Gs(P) carries a continuous
action of the integers Z defined by αn

: (x, y) 7→ (ϕn(x), ϕn(y)) (the map α was defined
in §2.2). Recall the construction of crossed products of a groupoid with a group action.
Assume that G is an étale groupoid with a right action of a discrete group 0. We can form
the crossed product groupoid G o 0 with unit space G(0) by setting G o 0 := G × 0 with
domain, range and inverse mappings

dGo0(g, γ )= dG(gγ ), rGo0(g, γ ) := rG(g) and (g, γ )−1
:= (gγ, γ−1).

The composition is defined whenever d(g1γ1)= r(g2) and is given by

(g1, γ1) · (g2, γ2)= (g1(g2γ
−1
1 ), γ1γ2).

Notation 6.1. For notational convenience and compatibility with Rg (cf. (4.2)), we
identify the groupoid Gs(P)o Z with the set of triples (x, n, y) with (x, ϕ−n(y)) ∈
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Gs(P) and n ∈ Z. The range and domain maps in this model of Gs(P)o Z are given
by r(x, n, y) := x and d(x, n, y) := y, respectively. The composition is defined by
(x, n, y)(y, m, z)= (x, n + m, z).

Definition 6.2. Similarly to Definition 5.1, we define the groupoid cocycle

cGs (P)oZ : Gs(P)o Z→ Z, cGs (P)oZ(x, n, y) := n.

The Z-grading on C∗(Gs(P)o Z) defined from cGs (P)oZ coincides with the grading
coming from the crossed product structure C∗(Gs(P)o Z)∼= C∗(Gs(P))o Z.

We define the space

Z := {(x, j, v) ∈ X × Z× V : ∃k such that gk+ j (π0(x))= gk(v)}

and consider the subspace

Zu(P) := {(x, j, v) ∈ Z : x ∈ Xu(P)} ⊂ Z . (6.1)

We will provide a locally compact Hausdorff topology on Zu(P) below.

LEMMA 6.3. If (x, j, v) ∈ Zu(P) and y ∈ X is such that π0(y)= v, then y ∼s ϕ
j (x).

Proof. Write x = (x0, x1, . . .) and observe that by definition of Zu(P) there exists k ∈ N
such that gk+ j (x0)= gk(v). For y1, y2, . . . ∈ V such that y := (v, y1, . . .) ∈ X , we have

ϕk(y)= (gk(v), gk−1(v), . . . , v, y1, . . .)= (gk+ j (x0), . . .).

Therefore, ϕk(y)0 = ϕk+ j (x)0. Using [52, Observation preceding Lemma 3.1] and a
short induction argument, we find that dX (ϕ

n+ j (x), ϕn(y))= γ n−k dX (ϕ
k+ j (x), ϕk(y))

for n ≥ k. In particular, we deduce that

lim
n→∞

dX (ϕ
n+ j (x), ϕn(y))= 0,

so that ϕ j (x)∼s y. �

To define a topology on Zu(P), we construct a neighbourhood basis of (x, j, v) ∈
Zu(P) as follows. By Lemma 6.3, (ϕ j (x), y) ∈ Gs(P) for any y ∈ Xu(P) with
π0(y)= v. Such a y always exists by Theorem 3.12. Take a local neighbourhood
V s(ϕ j (x), y, N ,U )⊆ Gs(P) of (ϕ j (x), y) as in equation (2.3), with the following
additional requirements:
(1) π0 :U → π0(U ) is a homeomorphism;
(2) gN is injective on π0(U );
(3) π0 : ϕ

− j (hs
N (U ))→ π0(ϕ

− j (hs
N (U ))) is a homeomorphism;

(4) gN+ j is injective on π0(ϕ
− j hs

N (U )).
Existence of sufficiently many such sets U also follows from Theorem 3.12. We declare
the following set to be an element in the basis of the topology of Zu(P):

W s((x, j, v), N ,U ) := {(ϕ− j (x ′), j, π0(y′)) ∈ Zu(P) : (x ′, y′) ∈ V s(ϕ j (x), y, N ,U )}.
(6.2)

Note that (ϕ− j (x ′), j, π0(y′)) ∈ Zu(P) for all (x ′, y′) ∈ V s(ϕ j (x), y, N ,U ) by the
following argument. We have [ϕN (y′), ϕN (x)] ∈ X s(ϕN (y′), εX/2). By Lemma 3.10,
it follows that

π0([ϕ
N (y′), ϕN (x)])= π0(ϕ

N (y′)).

Then gN+ j (π0(ϕ
− j (hs

N (y
′)))= π0([ϕ

N (y′), ϕN (x)])= π0(ϕ
N (y′))= gN (π0(y′)).
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PROPOSITION 6.4. The maps ρL : Zu(P)→ Xu(P), (x, j, v) 7→ x, ρR : Zu(P)→ V ,
(x, j, v) 7→ v and π0 : Zu(P)→Rg , (x, j, v) 7→ (π0(x), j, v) are surjective local
homeomorphisms.

Proof. The statement for ρL follows directly from the definition of the local
neighbourhoods of Zu(P). For ρR , we know by Theorem 3.12 that π0 : Xu(P)→ V
is a covering map. Thus, for v ∈ V , there exists x ∈ Xu(P) with π0(x)= v and
(x, 0, v) ∈ Zu(P). Then v = ρR(x, 0, v), so ρR is surjective too. For a local
neighbourhood W s((x, j, v), N ,U ) with U sufficiently small, we have that the open
set ρR(W s((x, j, v), N ,U ))= π0(U ) is homeomorphic to U because of Theorem 3.12.
For the map π0, the local neighbourhoods in Zu(P) are defined in such a way that
W s((x, j, v), N ,U ) is homeomorphic to π0(W s((x, j, v), N ,U )), which proves the
statement. �

We now establish that the groupoids Gs(P)o Z and Rg are Morita equivalent in the
sense of [32]. This implies that the groupoid C∗-algebras C∗(Rg) and C∗(Gs(P)o Z) are
strongly Morita equivalent. An equivalence of groupoids is implemented by a topological
space carrying appropriate left and right actions. We now show that the space Zu(P)
constructed above implements the desired Morita equivalence.

PROPOSITION 6.5. The map

ζ : Zu(P)→ Xu(P)π0 ×r Rg := {(x, g) ∈ Xu(P)×Rg : π0(x)= r(g)}

given by (x, j, v) 7→ (x, (π0(x), j, v)) is a homeomorphism, where the right-hand side
is equipped with the topology from the inclusion Xu(P)π0 ×r Rg ⊆ Xu(P)×Rg . In
particular, the actions

(Gs(P)o Z)d ×ρL Zu(P)→ Zu(P), (x, n, y) · (y, j, v)= (x, j + n, v),

Zu(P)ρR ×r Rg→ Zu(P), (x, j, v) · (v, n, w)= (x, j + n, w)

are well defined, free and proper.

The topology of Zu(P) is constructed in such a way that ζ is a homeomorphism; the
inverse of ζ is the continuous mapping ζ−1(x, (π0(x), j, v))= (x, j, v). That the actions
are free and proper follows from a lengthier computation, which we omit. We deduce the
following theorem from Proposition 6.5.

THEOREM 6.6. Let (X, ϕ) be an irreducible Wieler solenoid arising from an open
surjection g : V → V and suppose that P ⊆ X is a finite ϕ-invariant set of periodic points.
The space Zu(P) defines an étale groupoid Morita equivalence

Gs(P)o Z∼M Rg

that respects the cocycles cGs (P)oZ (see Definition 6.2) and cRg (see Definition 5.1). In
particular, there is a T-equivariant Morita equivalence C∗(Gs(P))o Z∼M OE .
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Remark 6.7. The (C∗(Gs(P))o Z, C∗(Rg)) Morita equivalence bimodule
L2(Zu(P))C∗(Rg) is defined from the étale Morita equivalence Zu(P) through the
C∗(Rg)-valued inner product (see [32, p. 12])

〈 f1, f2〉(v, n, w) :=
∑

(x, j,v)∈Zu(P)

f1(x, j, v) f2(x, j + n, w) (6.3)

and gives a representation of C∗(Gs(P))o Z on the space L2(Zu(P))C∗(Rg) ⊗C∗(Rg)

L2(Rg)C(V ). The latter space can be identified with the completion of Cc(Zu(P)) in the
C(V )-valued inner product

〈 f1, f2〉(v) :=
∑

(x, j,v)∈Zu(P)

f1(x, j, v) f2(x, j, v). (6.4)

For f1, f2 ∈ Cc(Zu(P)), the sums on the right-hand side are finite. The C(V )-valued inner
product (6.4) on Cc(Zu(P)) can be realized by a convolution product Cc(Zu(P)op)×

Cc(Zu(P))→ Cc(Rg) composed with the conditional expectation % on Cc(Rg). We
use the notation L2(Zu(P))C(V ) := L2(Zu(P))C∗(Rg) ⊗C∗(Rg) L2(Rg)C(V ). To avoid
notational confusion, we remark that L2(Zu(P))C(V ) and L2(Zu(P))C∗(Rg) are different
as vector spaces in general.

Remark 6.8. As a consequence of Theorem 6.6, there are isomorphisms

K∗(C∗(Gs(P)))∼= KT
∗ (OE ) and K∗(C∗(Gs(P))o Z)∼= K∗(OE ).

Both of these groups can be computed using Corollary 5.11. It was proven in [22] that
C∗(Gs(P))o Z and C∗(Gu(P))o Z are Poincaré dual (with dimension shift 1). In
particular, K∗(C∗(Gu(P))o Z)∼= K ∗+1(C∗(Gs(P))o Z) can also be computed using
Corollary 5.11; cf. Remark 5.13. If the Poincaré duality of [22] holds T-equivariantly,
then K∗(C∗(Gu(P)))∼= KT

∗+1(C
∗(Gs(P))o Z), which could also be computed using

Corollary 5.11.

6.2. A closer look at the bimodule Cc(Zu(P)). We wish to compute the Kasparov
product of the bimodule induced by Zu(P) (see Theorem 6.6) with the T-equivariant
unbounded (OE , C(V ))-cycle constructed in Theorem 5.8. To do so, we describe the
module L2(Zu(P))C∗(Rg) obtained by completing the space Cc(Zu(P)) in the inner
product (6.3). The module has a fairly simple structure. This is due to the fibre product
structure of the space Zu(P)= Xu(P)π0 ×r Rg from Proposition 6.5. We also provide a
Cuntz–Pimsner model of C∗(Gs(P))o Z along the way.

LEMMA 6.9. Assume that f ∈ Cc(Zu(P)) decomposes as a pointwise product f (z)=
f1(z) f2(z) with fi ∈ Cc(Zu(P)) and supp fi ⊂W s(z0, N , W ), for some z0, N and W
(cf. equation (6.2)). Then there exist u ∈ Cc(Xu(P)) and v ∈ Cc(Rg) such that f (z)=
u(ρL(z))v(π0(z)).

Proof. For W small enough, W s(z0, N , W ) is homeomorphic to

U := ρL(W s(z0, N , W ))= ϕ− j hs
N (W )
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and to
V := π0(W s(z0, N , W ))= U(π0(U ), N , j, W ).

For a reminder on the notation U , see equation 4.3. Let ρU
L :U →W s(z0, N , W ) and ρV

L :

V →W s(z, N , W ) denote the inverse mappings. Define u := f1 ◦ ρ
U
L and v := f2 ◦ ρ

V
L

and extend to Xu(P) and Rg , respectively, by declaring

supp u ⊂U, supp v ⊂ V . (6.5)

In particular, both u and v have compact support. The identity

W s(z0, N , W )= ρ−1
L (U ) ∩ π−1

0 (V ) (6.6)

holds because if (x, j, v) ∈ ρ−1
L (V ) then x ∈ Vi = ϕ

− j hs
N (W ) and if (x, j, v) ∈ π−1

0 (U )
then (π0(x), j, v) ∈U , so v ∈ π0(W ). This means that (x, j, v) ∈W s(z0, N ,U ). The
other inclusion is obvious. Thus, we have that u(ρL(z))v(π0(z)) 6= 0 implies that

z ∈ ρ−1
L (U ) ∩ π−1

0 (V )=W s(z0, N , W )

by (6.5) and (6.6). Then

u(ρL(z))v(π0(z))= f1(ρ
U
L ρL(z)) f2(π

V
0 π0(z))= f1(z) f2(z)= f (z),

as desired. �

Remark 6.10. Note that because Zu(P) is locally compact and Hausdorff, the
decomposition f = f1 f2 assumed in Lemma 6.9 can always be achieved if f is supported
in a set of the form W s(z0, N , W ). For our purposes, the above formulation of the lemma
suffices.

LEMMA 6.11. For f ∈ Cc(Zu(P)), there exist n ∈ N and functions ui ∈ Cc(Xu(P)) and
fi ∈ Cc(Rg) such that f (z)=

∑n
i=1 ui (ρL(z)) fi (π0(z)).

Proof. Let K := supp f and choose a finite open cover of K sets of the form Wi :=

W s(zi , Ni , Wi ) for i = 1, . . . , N . Adding W0 := Zu(P) \ K gives a finite open cover
of Zu(P). Let (χ2

i )
n
i=1 be a partition of unity subordinate to (Wi )

n
i=1, so

f (z)=
n∑

i=1

χ2
i (z) f (z)=

n∑
i=1

χi (z)χi (z) f (z).

The functions χi and χi f are supported in Wi . By Lemma 6.9, there exist functions ui ∈

Cc(Xu(P)) and fi ∈ Cc(Rg) such that χ2
i (z) f (z)= uiρL(z) fi (π0(z)). Thus, we have

f (z)=
∑n

i=1 ui (ρL(z)) fi (π0(z)). �

By Theorem 3.12, the map π0 : Xu(P)→ V is a covering map. As such, π0 induces a
conditional expectation

π0∗ : Cc(Xu(P))→ C(V ), π0∗ f (v) :=
∑

x∈π−1
0 (v)

f (x).

We denote the C(V )-Hilbert C∗-module completion of Cc(Xu(P)) by L2(Xu(P))C(V ).
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PROPOSITION 6.12. Let (X, ϕ) be an irreducible Wieler solenoid arising from an open
surjection g : V → V and suppose that P ⊆ X is a finite ϕ-invariant set of periodic points.
The mapping

ρ∗L ⊗ π
∗

0 : Cc(Xu(P))⊗C(V ) Cc(Rg)→ Cc(Zu(P)), f ⊗ h 7→ ρ∗L f · π∗0 h (6.7)

is a T-equivariant inner product preserving surjection. The mapping (6.7) induces a T-
equivariant unitary isomorphism of C∗-modules

L2(Xu(P))C(V ) ⊗C(V ) C∗(Rg)→ L2(Zu(P))C∗(Rg).

Moreover, there exists a T-equivariant isomorphism of C∗(Rg)-Hilbert C∗-modules

H⊗ C∗(Rg)∼= L2(Zu(P))C∗(Rg), (6.8)

for a separable Hilbert space H with a trivial T-action.

Proof. To see that the map ρ∗L ⊗ π
∗

0 is well defined, we first assume that f ⊗ h is such
that h is supported in a basic open neighbourhood U(U1, k, N ,U2) in Rg which lifts to a
basic open neighbourhood W s(z, N , V2) and f is supported in V1 := ρL(W s(z, N , V2)).
For such f ⊗ h, we have that

supp ρ∗L( f ) · π∗0 (h)⊂ ρ
−1
L (V1) ∩ π

−1
0 (V2)=W s(z, N , V2).

Therefore, the support of (ρ∗L ⊗ π
∗

0 )( f ⊗ h) is compact. Using the balancing relation, a
partition of unity argument and Proposition 6.4, we have that arbitrary tensors f ⊗ h can
be written as a sum f ⊗ h =

∑n
i=1 fi ⊗ hi for which each fi and hi satisfy the above

support requirements. Thus, the map ρ∗L ⊗ π
∗

0 is well defined. Surjectivity follows from
Lemma 6.11. We prove preservation of the inner products:

〈 f1 ⊗ h1, f2 ⊗ h2〉(v, n, w)

= h∗1 ∗ 〈 f1, f2〉h2(v, n, w)

=

∑
(v, j,w)

∑
x∈π−1

0 (v)

h1(u,− j, v) f1(x) f2(x)h2(u, n − j, w)

=

∑
(v, j,w)

∑
x∈π−1

0 (v)

ρ∗L f1 · π
∗

0 h1(x,− j, v)ρ∗L f2 · π
∗

0 h2(x, n − j, w)

=

∑
(x, j,v)∈Zu(P)

ρ∗L f1 · π
∗

0 h1(x, j, v)ρ∗L f2 · π
∗

0 h2(x, n + j, w)

= 〈ρ∗L f1 · π
∗

0 h1, ρ
∗

L f2 · π
∗

0 h2〉 by equation (6.3).

The second statement of the proposition follows immediately. The locally trivial bundle
Xu(P) gives rise to a Hilbert space bundle on V , which by Kuiper’s theorem is trivial. The
third statement of the theorem is similar, so that L2(Xu(P))C(V ) ∼=H⊗ C(V ) as C(V )-
Hilbert C∗-modules. �

COROLLARY 6.13. Let (X, ϕ) be an irreducible Wieler solenoid arising from an open
surjection g : V → V and suppose that P ⊆ X is a finite ϕ-invariant set of periodic points.
The isomorphisms of Theorem 4.2 and (6.8) give rise to a T-equivariant ∗-isomorphism

C∗(Gs(P))o Z∼= OE ⊗K,
where K denotes the C∗-algebra of compact operators on a separable Hilbert space with
a trivial T-action.
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Remark 6.14. A result similar to Corollary 6.13 was proven in [49, Theorem 4.19] for the
fixed point algebra of the T-action assuming that g is expansive and the periodic points are
dense in V . An equivariant version of [49, Theorem 4.19] implies Corollary 6.13 under
these slightly stronger assumptions on g.

6.3. A Cuntz–Pimsner model for the stable Ruelle algebra. It is possible to construct
C∗(Gs(P))o Z as a Cuntz–Pimsner algebra defined from a non-unital coefficient algebra.
We follow the terminology of [5]. For notational purposes, we write

KV (P) :=KC(V )(L2(Xu(P))C(V )).

Based on Proposition 6.12, we define Ẽ := L2(Xu(P))C(V ) ⊗ E ⊗C(V ) L2(Xu(P))∗,
which is a KV (P)-bi-Hilbertian bimodule with finite Jones–Watatani index. The Cuntz–
Pimsner algebra OẼ over the coefficient algebra KV (P) is therefore well defined. By
Theorems 4.2, 6.6 and 6.12, there are isomorphisms

C∗(Gs(P))o Z∼=KC∗(Rg)(L
2(Xu(P))C(V ) ⊗ C∗(Rg))

∼= L2(Xu(P))C(V ) ⊗ OE ⊗C(V ) L2(Xu(P))∗.

Under these isomorphisms, the obvious linear mapping Ẽ→ L2(Xu(P))C(V ) ⊗
OE ⊗C(V ) L2(Xu(P))∗ induces a linear mapping Ẽ→ C∗(Gs(P))o Z. It is readily
verified that this is a covariant representation as in [38, Theorem 3.12] producing a ∗-
homomorphism π̃ : OẼ → C∗(Gs(P))o Z. The mapping π̃ is bijective and we deduce
the following result.

PROPOSITION 6.15. Let (X, ϕ) be an irreducible Wieler solenoid arising from an open
surjection g : V → V and suppose that P ⊆ X is a finite ϕ-invariant set of periodic points.
The mapping π̃ : OẼ → C∗(Gs(P))o Z is a ∗-isomorphism. In particular, Ẽ provides a
Cuntz–Pimsner model for the stable Ruelle algebra with coefficient algebra KV (P) :=
KC(V )(L2(Xu(P))C(V )).

Remark 6.16. Theorem 6.6 and Proposition 6.15 are in a sense complementary. The
algebra OE is defined using a unital coefficient algebra, making it easier to work with,
but it is only related to C∗(Gs(P))o Z via a Morita equivalence. The algebra OẼ is
defined using a non-unital coefficient algebra (isomorphic to C(V,K)), but is explicitly
isomorphic to C∗(Gs(P))o Z.

6.4. The κ-function on Zu(P). To compute the Kasparov product of the cycle in
Theorem 5.8 with the Morita equivalence from Theorem 6.6 as an explicit unbounded
(C∗(Gs(P))o Z, C(V ))-cycle, we make use of a natural κ-function defined on Zu(P).
To construct a self-adjoint regular operator on the module L2(Zu(P))C(V ), we look at the
pullback of the function κ :Rg→ N through the map π0. Consider the functions

κZ (x, j, v) :=min{k ≥max{0,− j} : gk+ j (π0(x))= gk(v)}, cZ (x, j, v)= j.

LEMMA 6.17. The functions κZ and cZ are locally constant and hence continuous.

Proof. For cZ , this is an obvious fact. For κZ , this follows from the observation that
κZ = κ ◦ π0, where π0 : Zu(P)→Rg . �
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The operator
DZ := ψ(c, κZ ) : Cc(Zu(P))→ Cc(Zu(P))

defines a self-adjoint regular operator on L2(Zu(P))C(V ). The tensor product
module L2(Zu(P))C∗(Rg) ⊗C∗(Rg) L2(Rg)C(V ) can be identified with the module
L2(Zu(P))C(V ) studied in Proposition 6.12. On the dense subspace Cc(Zu(P))⊗Cc(Rg)

Cc(Rg), this identification is realized by the convolution product. We use the standard
notation

Tx : Cc(Rg)→ Cc(Zu(P))⊗Cc(Rg) Cc(Rg)= Cc(Zu(P)), f → x ⊗ f = x ∗ f

defined for elements x ∈ Cc(Zu(P)).

LEMMA 6.18. For x ∈ Cc(Zu(P)), the commutator

DZ Tx − Tx D : Cc(Rg)→ Cc(Zu(P))

extends to a bounded operator L2(Rg)C(V )→ L2(Zu(P))C(V ).

Proof. By Lemma 6.11 and Proposition 6.12, it suffices to prove the statement for elements
x = ρ∗L(u) · π

∗

0 (v), with u ∈ Cc(Xu(P)) and v ∈ Cc(Rg). Moreover, since

ρ∗L(u) · π
∗

0 (v)= ρ
∗

L(u) · π
∗

0 (1V ∗ v)= ρ
∗

L(u) · π
∗

0 (1V ) ∗ v

and, for any x ∈ Cc(Zu(P)),

DZ Tx∗v − Tx∗vD = (DZ Tx − Tx D) ∗ v + Tx [D, v],

we can further reduce the proof to the case where x = ρ∗L(u) · π
∗

0 (1V ). For such x and
f ∈ Cc(Rg), we have

(DZ Tx − Tx D) f (t, j, w)

= (ψ( j, κZ (t, j, w))− ψ( j, κ(π0(t), j, w)))u(t) f (π0(t), j, w)= 0,

as desired. �

Remark 6.19. The operator DZ can be constructed from D in other ways. One other
way is to choose a cover (U j )

N
j=1 of V such that each π0 : π

−1
0 (U j )⊆ Xu(P)→ V is

trivializable, via a trivialization ψ j , say. Pick a partition of unity (χ2
j )

N
j=1 subordinate

to (U j )
N
j=1. Associated with the data (U j , ψ j , χ j )

N
j=1 there is an adjointable inner

product preserving C∗(Rg)-linear mapping v : L2(Zu(P))C∗(Rg)→ `2(N)⊗ C∗(Rg). A
short computation shows that DZ = v

∗(1⊗ D)v on the dense submodule Cc(Zu(P))⊆
L2(Zu(P))C(V ). This is the usual connection construction [31], which implies
Lemma 6.18.

Yet another way uses Proposition 6.15 and the unbounded representative of the Cuntz–
Pimsner extension in the non-unital case from [5]. The argument in [20, §§2.3 and 2.5.2]
easily generalizes to show that DZ is the operator constructed in [5, Theorem 3.7].

We wish to show that (L2(Zu(P)C(V ), DZ ) is a K KT
1 -cycle for (C∗(Gs(P))o

Z, C(V )) and that it represents the Kasparov product of the Morita equivalence
L2(Zu(P)C∗(Rg) with the cycle (L2(Rg)C(V ), D) constructed in Theorem 5.8. We begin
with a useful observation concerning the unbounded Kasparov product with a Morita
equivalence bimodule.
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PROPOSITION 6.20. Let E be a T-equivariant (A, B)-Morita equivalence bimodule and
(F, D) an odd T-equivariant unbounded Kasparov module for (B, C). Suppose that
D̃ is a T-equivariant self-adjoint regular operator on E ⊗B F and that X ⊂ E is a set
that generates E as a B-module, such that for all x ∈ X the operators Tx : f → x ⊗ f
satisfying

Tx : Dom D→ Dom D̃ and D̃Tx − Tx D : Dom D→ E ⊗B F (6.9)

extend to adjointable operators F→ E ⊗B F. Then (E ⊗B F, D̃) is a T-equivariant
(A, B)-unbounded Kasparov module that represents the Kasparov product [(E, 0)] ⊗B

[(F, D)] in K KT
1 (A, C).

Proof. Since E is a Morita equivalence, A ∼=K(E) and (E, 0) is an unbounded (A, B)-
Kasparov module. The argument in [31, Lemma 4.3] and (6.9) imply that (a ⊗ 1)(D̃ ±
i)−1 is compact in E ⊗B F for all a ∈ A. The operators Tx T ∗y , with x, y ∈ X, generate a
dense subalgebra of K(E)⊗ 1∼= A ⊗ 1. Since

[D̃, Tx T ∗y ] = (D̃Tx − Tx D)T ∗y + Tx (DT ∗y − T ∗y D̃)

is a bounded operator, (E ⊗B F, D̃) is an (A, C) unbounded Kasparov module. To prove
that this cycle represents the Kasparov product, we need to verify conditions (1)–(3) as
given in [25, Theorem 13]. Condition (1) is the statement of equation (6.9). Conditions
(2) and (3) are trivially satisfied for the product with the unbounded Kasparov module
(E, 0) from the left. �

The following result is an immediate consequence of Lemma 6.18 and Proposition 6.20.

THEOREM 6.21. Assume that (X, ϕ) is an irreducible Wieler solenoid defined from an
open surjection g : V → V . The pair (L2(Zu(P))C(V ), DZ ) is a T-equivariant unbounded
Kasparov module for the pair (C∗(Gs(P))o Z, C(V )), which represents the Kasparov
product

[(L2(Zu(P))C∗(Rg), 0)] ⊗C∗(Rg) [(L
2(Rg)C(V ), D)] ∈ K KT

1 (C
∗(Gs(P))o Z, C(V )).

In particular, there is an exact triangle in the triangulated category K KT of the form

C(V )
1−[Eg] // C(V )

ιR
{{

C∗(Gs(P))o Z

◦

[L2(Zu(P))C(V ),DZ ]

dd

where ιR ∈ K KT
0 (C(V ), C∗(Gs(P))o Z) is defined from the inclusion C(V ) ↪→ C∗(Rg)

and Corollary 6.13.

Remark 6.22. From the computations in Example 5.14, using Remark 5.13, we can
compute the K -theory group K∗(C∗(Gs(P))) for an expanding dilation matrix on (S1)d

to be the expression of equation (5.6) (see p. 23).
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7. KMS weights on the stable Ruelle algebra
Cuntz–Pimsner algebras come equipped with a natural gauge action that extends to an
action of the real numbers. The analysis of equilibrium states (or KMS states) is then of
particular interest for these algebras. Such equilibrium states were first studied by Kubo,
Martin and Schwinger and a comprehensive study of KMS states is provided by Bratteli
and Robinson in [8].

Suppose that B is a C∗-algebra and that σ : R→ Aut B is a strongly continuous action.
An element a ∈ B is said to be σ -analytic if the function t 7→ σt (a) extends to an entire
function on C. For β ∈ (0,∞], a state φ on B is called a KMSβ state if it satisfies

φ(ab)= φ(bσiβ(a)) (7.1)

for all analytic elements a, b ∈ B. For β = 0, the KMSβ states are the σ -invariant traces
on B. We often call (7.1) the KMSβ condition.

Olesen and Pedersen [35] first studied KMS states for the periodic gauge action on the
Cuntz algebras ON , where they discovered that there is a unique KMS state at inverse
temperature β = log N . Enomoto et al [17] generalized this result to the Cuntz–Krieger
algebras OAAA of an irreducible N × N matrix AAA. In this case, the unique KMS state
occurred at β = log ρ(AAA), where ρ(AAA) is the spectral radius of the matrix AAA, i.e. its Perron–
Frobenius eigenvalue. More recently, Laca and Neshveyev [27] studied KMS states of
Cuntz–Pimsner algebras and proved that KMS states arise as traces on the coefficient
algebra of the underlying Hilbert module. In so doing, [27] initialized a programme that is
directly related to our work in several situations, most notably for local homeomorphisms
in [1] and for self-similar groups in [28]. Similar results for expansive maps are also found
in Thomsen’s work [50] and in Kumjian and Renault’s work [26]. Note that a locally
expanding local homeomorphism is automatically expansive; compare Definition 3.1 with
the definition of expansive on [26, p. 2069].

In this section, we first consider the Cuntz–Pimsner algebra OE associated with a local
homeomorphism g : V → V satisfying Wieler’s axioms making the associated Wieler
solenoid irreducible, as described in §4. Recall that the Toeplitz algebra TE is generated
by the Toeplitz operators {T̃ξ : ξ ∈ E}. Let Sξ be the image of T̃ξ in the Cuntz–Pimsner
algebra OE , which is then generated by {Sξ : ξ ∈ E}. We show that every KMS state for
the natural gauge action on OE gives rise to a KMS weight on the stable Ruelle algebra
C∗(Gs(P))o Z through the isomorphism described in Proposition 6.15.

We let γ : T→ Aut OE denote the strongly continuous gauge action defined in §4.1.
The gauge action extends to a periodic action of the real line through the equation σt = γei t .
Thus, there is an action σ : R→ Aut OE defined on the generating set by σt (Sξ )= ei t Sξ
for ξ ∈ E .

THEOREM 7.1. Suppose that g : V → V is an open surjection satisfying Wieler’s axioms
and OE is the associated Cuntz–Pimsner algebra generated by {Sξ : ξ ∈ E}. Let σ : R→
Aut OE denote the strongly continuous action defined by σt (Sξ )= ei t Sξ for ξ ∈ E. Then
the following hold.
(1) There is a bijective correspondence between tracial states τ on C(V ) satisfying

τ(L(a))= eβτ(a) (7.2)
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and KMSβ states on (OE , σ ). Through the T-equivariant isomorphism OE ∼=

C∗(Rg), the bijection is given by τ → ωτ , where ωτ is defined on Cc(Rg) by

ωτ ( f ) :=
∫

V
f (v, 0, v) dµ, (7.3)

such that µ is the probability measure that τ defines on V . There is always at least
one β > 0 and one tracial state τ such that (7.2) holds.

(2) If (V, g) is mixing (Definition 2.2(3)), then there is a unique pair (τ, β) satisfying
(7.2). That is, there is a unique β for which there exists a KMSβ state of (OE , σ )

and the KMSβ state is unique. Moreover, for v ∈ V ,

β = h(g)= lim
n→∞

log
(
Ln+11
Ln1

(v)

)
, (7.4)

where h(g) is the topological entropy of (V, g).

Remark 7.2. Part (2) of Theorem 7.1 contains the statement that

v 7→ lim
n→∞

log
(
Ln+11
Ln1

(v)

)
is a constant function on V that equals β.

Remark 7.3. In part (1) of Theorem 7.1, we are only using that g is a local
homeomorphism. In part (2), we are only using that g is a mixing and locally expanding
local homeomorphism. We assume Wieler’s axioms at this point, since the applications
we have in mind are to Smale spaces.

Remark 7.4. The proof of [20, Lemma 1.9] extends to local homeomorphisms. This fact
shows that the conditional expectation8∞ : OEg → C(V ), constructed for a large class of
Cuntz–Pimsner algebras in [46], satisfies 8∞( f )(x) := f (x, 0, x) for f ∈ Cc(Rg). The
correspondence in Theorem 7.1 part (1) between tracial states τ satisfying L∗τ = eβτ
and KMSβ states on OEg is then implemented by τ 7→ τ ◦8∞. In [46, §4], a related
correspondence was considered for a larger class of modules using an R-action defined
from the Jones–Watatani index. In the case under consideration in this paper, the Jones–
Watatani indices are 1 (cf. [20, Example 1.7]) and the R-action considered in [46, §4] is
trivial.

Proof of Theorem 7.1. We will apply [27, Theorems 2.1 and 2.5] and start by verifying the
hypothesis of said theorems. Since the gauge dynamics on E corresponds to the action of
scalars on C(V ), the ‘positive-energy’ hypothesis of [27, Theorem 2.1] holds; the Arveson
spectrum SpU (a) is equal to 1 for all a ∈ E . Thus, in our situation, combining [27,
Theorems 2.1 and 2.5] implies that ψ is a KMSβ state on OE if and only if there is a
tracial state τ on C(V ) such that τ(L(a))= eβτ(a) and, for ξ ∈ E⊗m and η ∈ E⊗n ,

ψ(Sξ S∗η)=

{
e−βmτ(〈η, ξ 〉E⊗m ) if n = m,

0 if n 6= m.



Wieler solenoids, Cuntz–Pimsner algebras and K -theory 35

From this identity and the fact that τ(L(a))= eβτ(a), we deduce that

ψ(Sξ S∗η)=

{
e−βmτ(Lm(ηξ)) if n = m

0 if n 6= m
=

{
τ(ηξ) if n = m,

0 if n 6= m,
(7.5)

where we use the identification E⊗m ∼= C(V ) as linear spaces. Since V is a compact
Hausdorff space, every tracial state τ on C(V ) is given by integrating against a probability
measure. From equation (7.5), we deduce that ψ is a KMSβ state on OE if and only if
there is a probability measure µ on V such that

L∗µ= eβµ (7.6)

and ψ = ωτ , where ωτ is defined in equation (7.3).
The existence of probability measures µ on V satisfying (7.6) was taken up by Walters

in [51]. If g : V → V is expansive (locally expanding), [51, Corollary 2.3] implies that
there is at least one pair (µ, β) satisfying (7.6). Since g is assumed to be a local
homeomorphism, it follows that (V, g) is locally expanding (see Remark 3.13) and
therefore (1) holds.

In the case that g : V → V is a locally expanding local homeomorphism satisfying the
weak specification condition, [51, Theorem 2.16(i)] implies that there is a unique pair
(µ, β) on (V, g) such that (7.6) holds. In [26, Proposition 2.1], Kumjian and Renault
showed that the weak specification property is equivalent to the condition that (V, g) is
mixing. Moreover, [51, Theorem 2.16(iv)] shows that the unique value β satisfies (7.4).
Therefore, (2) holds as well. �

Before turning to the C∗-algebra C∗(Gs(P))o Z, we note the following result, which
follows from a short algebraic manipulation with matrix units.

PROPOSITION 7.5. Let K denote the C∗-algebra of compact operators on a separable
Hilbert space with trivial R-action and tr the operator trace on K. If B is a unital R− C∗-
algebra, then the mapping ω 7→ ω ⊗ tr defines a bijection between the KMSβ states on B
and the KMSβ weights on B ⊗K.

COROLLARY 7.6. Let (X, ϕ) be an irreducible Wieler solenoid arising from an open
surjection g : V → V and suppose that P ⊆ X is a finite ϕ-invariant set of periodic
points. There is a bijective correspondence between measures µ on V satisfying (7.6) and
KMSβ weights on C∗(Gs(P))o Z via µ 7→ φµ, where the KMSβ weight φµ is defined on
Cc(Gs(P)o Z) via

φµ( f ) :=
∫

Xu(P)
f (x, 0, x) d(π∗0µ).

In particular, C∗(Gs(P))o Z always admits a KMSβ weight and, if (X, ϕ) is mixing,
then there is a unique β > 0 for which there exists a KMSβ weight and that KMSβ weight
is unique.

Proof. Since π0 : Xu(P)→ V is a covering (see Theorem 3.12), the measure π∗0µ is well
defined on Xu(P). We choose a T-equivariant ∗-isomorphism

ρ : C∗(Gs(P))o Z
∼=
−→ OE ⊗K
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as in Corollary 6.13. By Proposition 7.5, there is a bijective correspondence between
KMSβ states ω on OE and KMSβ weights on C∗(Gs(P))o Z given by ω 7→ (ω ⊗ tr) ◦ ρ.
Theorem 7.1 implies that any KMSβ state on OE takes the form ωτ , where τ ∈ C(V )∗ is
defined from a probability measure µ on V satisfying equation (7.6). Since tr is invariant
under unitary transformations and ρ is C(V )-bilinear, it follows from an argument in local
trivializations of π0 : Xu(P)→ V that for f ∈ Cc(Gs(P)o Z) we have

(ωτ ⊗ tr) ◦ ρ( f )=
∫

V

[ ∑
x∈π−1

0 (v)

f (x, 0, x)
]

dµ(v)=
∫

Xu(P)
f (x, 0, x) d(π∗0µ)(x).

From Theorem 7.1, we deduce that C∗(Gs(P))o Z always admits a KMSβ weight
and, if (V, g) is mixing, the KMSβ weight is unique. The corollary now follows from [4,
Theorem 3.5.3], which says that if g : V → V is a continuous surjection, then g : V → V
is mixing if and only if ϕ : X→ X is mixing. �

Remark 7.7. If V is an oriented manifold and τ(a)=
∫

V a ∧ ω for a differential form ω,
the condition L∗τ = eβτ is equivalent to g∗ω = eβω.

8. Examples
In this section, we will consider examples of irreducible Wieler solenoids arising from an
open surjection g : V → V . In these examples, Theorem 6.21 enables computations of
explicit K -theoretic invariants and construction of concrete spectral triples.

8.1. Subshifts of finite type. The Smale spaces where both the stable and unstable
sets are totally disconnected are the subshifts of finite type. They were discussed in
Example 4.1. In this case, the stable and unstable Ruelle algebras can be treated on an
equal footing. Consider an N × N matrix AAA consisting of zeros and ones, and assume
that AAA is irreducible. The compact space �AAA is defined in Example 4.1 and the associated
Wieler solenoid (X�AAA , ϕAAA) is conjugate to the two-sided shift

6AAA := {(x j ) j∈Z ∈ {1, . . . , N }Z : AAAx j ,x j+1 = 1}, ϕAAA(x j ) j∈Z := (x j+1) j∈Z.

As above, we chose a finite ϕAAA-invariant set P ⊆6AAA of periodic points. We write

Zu
AAA(P) := {(x, j, v) ∈6u

AAA(P)× Z×�AAA : ∃k, xl+ j = vl ∀l ≥ k}.

It follows from Theorem 6.6 that C∗(Gs
AAA(P))o Z∼M OAAA via the T-equivariant Morita

equivalence Zu
AAA(P). The K -theory and K -homology groups of the Cuntz–Krieger algebra

OAAA are well known, and given by

K ∗(OAAA)∼= K∗+1(OAAAT )∼=

{
ker(1− AAA), ∗ = 0,

coker(1− AAA), ∗ = 1.

Since�AAA is totally disconnected, K 1(C(�AAA))= 0 and the exact K -homology sequence in
Corollary 5.11 reduces to

0→ K 0(C∗(Gs(P)o Z)) ι
∗

−→ K 0(C(�AAA))

1−[Eg]
−−−−→ K 0(C(�AAA))

∂
−→ K 1(C∗(Gs(P)o Z))→ 0.
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In particular, the boundary map ∂ is surjective, and the description of explicit
representatives of K 1(OAAA)∼= ZN/(1− AAA)ZN in [19] shows that ∂ is surjective already
when restricted to classes in K 0(C(�AAA)) given by point evaluations of C(�AAA): each class
in K 1(OAAA) is given by a spectral triple obtained by localizing the unbounded Kasparov
module from Theorem 5.8 in a character of C(�AAA). We see that the same statement is true
for the stable Ruelle algebra of the two-sided shift. Let (ei )

N
i=1 denote the standard basis

of ZN . We deduce the following result from [19, Theorem 5.2.3].

THEOREM 8.1. Let v ∈�AAA be a one-sided sequence starting in the letter i ∈ {1, . . . , N }.
Define the Hilbert space

Hv := `
2(ρ−1

R (v)) where ρ−1
R (v)= {(x, n) ∈6u

AAA(P)× Z : (x, n, v) ∈ Zu
AAA(P)}.

We let C∗(Gs(P))o Z act on Hv via identifying Hv with the localization of
L2(Zu(P))C(V ) in v ∈�AAA. Consider the self-adjoint operator Dv defined by

Dv f (x, n) := ψ(n, κZ (x, n, v)) f (x, n).

Then (Cc(Gs(P))oalg Z,Hv, Dv) is a θ -summable spectral triple representing the
equivalence class ei mod (1− AAA)ZN under the isomorphism K 1(OAAA)∼= ZN/(1−
AAA)ZN . The bounded Fredholm module (Cc(Gs(P))oalg Z,Hv, Dv|Dv|−1) is finitely
summable.

This provides an exhaustive explicit description of the odd K -homology of the stable
Ruelle algebra of a subshift of finite type. The group K 0(C∗(Gs(P)o Z)) stands in stark
contrast; a description of even spectral triples on the stable Ruelle algebra is at this point
in time still elusive.

8.2. Self-similar groups. Self-similar groups are a relatively new area of group theory.
They were discovered by Grigorchuk through his construction of a group with intermediate
growth that is amenable but not elementary amenable. Since then much of the abstract
theory has been developed by Nekrashevych [33].

In [34], Nekrashevych constructed a Smale space from a contracting and regular self-
similar group. In this section, we recast Nekrashevych’s result by showing that the limit
space of a contracting, regular self-similar group satisfies Wieler’s axioms and the shift
map is a local homeomorphism. The shift on the limit space of a self-similar group gives
rise to another Cuntz–Pimsner model for self-similar groups that generalizes the Cuntz–
Pimsner algebra O f constructed by Nekrashevych in [34, §6.3]. We note that the results
of §§5, 6 and 7 apply to this example. We obtain a plethora of Kasparov cycles, KMS
states on the Cuntz–Pimsner algebra OE and KMS weights on the stable Ruelle algebra.
We also remark that all of these results generalize to Exel and Pardo’s self-similar groups
on graphs through the forthcoming paper [9].

A self-similar group (G, X) consists of a group G, a finite set X and a faithful action
of G on the set X∗ of finite words in X such that, for each g ∈ G and x ∈ X , there exist
y ∈ X and h ∈ G satisfying g · xw = y(h · w) for all w ∈ X∗. Faithfulness of the action
implies that the group element h is unique, so there is a map (g, x) 7→ h and we call h
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the restriction of g to x and denote it by g|x . Thus, the defining relation for a self-similar
group can be written

g · xv = (g · x)(g|x · w) for all w ∈ X∗. (8.1)

A self-similar group is said to be contracting if there is a finite subset S ⊂ G such that for
every g ∈ G, there exists n ∈ N such that {g|v : |v| ≥ n} ⊂ S. The (unique) smallest such
set is called the nucleus and is denoted by N .

We now briefly construct the limit space JG in the case that (G, X) is contracting; for
further details, see [33, §3.6]. The space of left infinite words with letters in X is denoted
X−∞. Two sequences . . . x3x2x1 and . . . y3 y2 y1 are said to be asymptotically equivalent
if there exists a sequence {gn}

∞

n=1 of nucleus elements such that gn · xn . . . x1 = yn . . . x1.
The limit space JG is the quotient of X−∞ by the asymptotic equivalence relation, and
we let q : X−∞→ JG denote the quotient map. The asymptotic equivalence relation is
invariant under the shift map σ : X−∞→ X−∞ given by σ(. . . x3x2x1)= . . . x3x2, so
σ : JG→ JG is a continuous surjection. That JG is a compact metric space is proved
in [33, Theorem 3.6.3] and in a more general framework in [9].

In [9], it is proved that (JG , σ ) satisfies Wieler’s axioms in the generality of Exel
and Pardo’s self-similar graphs. The proofs require an additional assumption: a self-
similar group is said to be regular if for every g ∈ G and x ∈ X∞, either g · x 6= x or
g fixes x as well as all points in a clopen neighbourhood of x . In [34, Proposition 6.1],
Nekrashevych showed that (G, X) is regular if and only if σ : JG→ JG is a covering. We
now summarize the results of [9].

PROPOSITION 8.2. [9] Suppose that (G, X) is a contracting and regular self-similar
group with limit space JG . Then σ : JG→ JG is a local homeomorphism that satisfies
Wieler’s axioms and the dynamical system (JG , σ ) is mixing.

Let (X, ϕ) be the mixing Wieler solenoid associated with (JG , σ ). Since σ : JG→

JG is a continuous open surjection satisfying Wieler’s axioms, there is a Cuntz–Pimsner
model for the stable Ruelle algebra of (X, ϕ) by Proposition 6.15. Moreover, Corollary 7.6
implies that there is a unique KMS weight on the stable Ruelle algebra of a contracting
and regular self-similar group.

9. Solenoids constructed from covering maps on manifolds
In this section, we will consider the solenoid construction on a smooth closed manifold M .
The outcome will be a procedure to lift certain K -homology classes on M to the Cuntz–
Pimsner algebra constructed from M . The results are complementary to the constructions
in §§5 and 6 as they produce K -homology classes that are not factorizable over the Cuntz–
Pimsner extension in the sense of Corollary 5.15. In certain special cases, the Hilbert
space appearing in the spectral triple is the GNS space of the KMS weight. To elucidate
our results, we will run the details of M = S1 in Example 3.14 in parallel to the general
construction. We show that for M = S1, the K -homology classes we construct along with
the products with the Cuntz–Pimsner extension exhaust the K -homology of the stable
Ruelle algebra C∗(Gs(P))o Z.
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We consider a closed manifold M and an n-fold smooth covering map g : M→ M
acting conformally on a Riemannian metric hM on M . That is, g∗hM = NhM for N ∈
C∞(M, R>0). The function g satisfies Wieler’s axioms if N > 1 on M . We follow the
notation from the previous sections and write L(ξ)(x) :=

∑
g(y)=x ξ(y) for ξ ∈ C(M).

Remark 9.1. It follows from Remark 7.7 that the volume measure dVh satisfies equation
(7.6) with β = (d/2) log(N ) if N is constant. Specifically, if N is constant, then the
volume measure defines a KMSβ state on OEg (as in Theorem 7.1) and a KMSβ weight
on C∗(Gs(P))o Z (as in Corollary 7.6).

Definition 9.2. Let S→ M denote a hermitian vector bundle with hermitian metric hS

such that g lifts to S (in the sense that there is a unitary vector bundle isomorphism
gS : g∗S→ S giving rise to a unitary isomorphism gS,y : Sg(y)→ Sy for any y ∈ M). We
define the transfer operator

LS : C(M, S)→ C(M, S), LS(ξ)x :=
∑

g(y)=x

g−1
S,yξy .

The operator LS is C(M)-linear in the sense that LS(ξ · g∗a)= LS(ξ)a for any
a ∈ C(M) and ξ ∈ C(M, S). Define the mapping V0 : L2(M, S)→ L2(M, S) as the
composition of the pullback g∗ : L2(M, S)→ L2(M, g∗S) and the fibrewise action of gS .

PROPOSITION 9.3. Assume that M is a closed d-dimensional manifold with the data
specified above. The operator V := N d/4n−1/2V0 is an isometry on L2(M, S) such that

V ∗ = LS N−d/4n−1/2, V aV ∗ = g∗aV V ∗ and V ∗aV =
1
n
L(a).

Proof. We first prove that V is an isometry. Let dVh denote the volume density constructed
from hM . Note that g∗ dVh = N d/2 dVh . We have for f1, f2 ∈ C(M, S) that

〈V f1, V f2〉L2(M,S) =
1
n

∫
M
〈g∗ f1, g∗ f2〉S N d/2 dVh

=
1
n

∫
M

g∗(〈 f1, f2〉S dVh)

= 〈 f1, f2〉L2(M,S).

Next, we prove the identity V ∗aV = (1/n)L(a). For f1, f2 ∈ C(M, S), a similar
computation as above gives

〈V ∗aV f1, f2〉L2(M,S) = 〈aV f1, V f2〉L2(M,S) =
1
n

∫
M

ag∗(〈 f1, f2〉S dVh)

=
1
n

∫
M
L(a)〈 f1, f2〉S dVh =

〈
1
n
L(a) f1, f2

〉
L2(M,S)

.

The identity V aV ∗ = g∗aV V ∗ follows from the simple computation V (a f )= g∗a · V f ,
which holds for a ∈ C(M), f ∈ C(M, S).

Finally, we compute V ∗. For f1, f2 ∈ C(M, S),

〈V f1, f2〉L2(M,S) =

∫
M
〈g∗ f1, N−d/4n−1/2 f2〉S N d/2 dVh

=

∫
M
〈 f1, LS(N−d/4n−1/2 f2)〉S dVh . �
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Example 9.4. The prototypical example is the n-solenoid on M = S1 from Example 3.14.
We return to this example throughout the section. In this example, M = S1

= R/Z and
g(x) := nx (mod 1). We can take S to be the trivial line bundle on S1 and hS1 to be
the flat metric on S1, so N = n2 and V f (x)= f (nx). An orthonormal basis for L2(S1)

is given by ek(x) := exp(2π ikx) for k ∈ Z. In this case, the identity V ek = ekn shows
straight away that V is an isometry. In this case, the transfer operator L takes the form

L(a)(x)=
n−1∑
j=0

a
(

x + j
n

)
.

Here we identify functions on S1 with periodic functions on R. On L2(S1), we have
V ∗ = n−1L.

Example 9.5. We consider a higher dimensional example mentioned towards the end
of Example 3.14. Consider a matrix A ∈ Md(Z) with non-zero determinant and let
gA : (S1)d → (S1)d denote the associated smooth local homeomorphism. If AT A = N for
some N > 0, then gA acts conformally on the flat metric on (S1)d = Rd/Zd . Let us give
some non-trivial examples of such matrices. For d = 2, such a matrix takes the general
form (

x ±y
y ∓x

)
, x2

+ y2
= N .

Asymptotically, the number of local homeomorphisms acting conformally on (S1)2 with
N ≤ r2 is determined by Gauss’ circle problem and behaves like 2πr2 as r→∞. The
equation x2

+ y2
= N admits solutions if and only if the prime factors p|N with p = 3

(mod 4) occur with even multiplicity in N . In dimension d = 3, the general form isx1 y1 z1

x2 y2 z2

x3 y3 z3

 where

{
x2

j + y2
j + z2

j = N for j = 1, 2, 3,

x j xk + y j yk + z j zk = 0 for j 6= k.

By Legendre’s three-square theorem, such a matrix exists only if N is not of the form
4a(8b + 7) for natural numbers a, b.

In this case, the Lebesgue measure m on (S1)d satisfies g∗Am = N d/2m. Theorem 7.1
shows that the Lebesgue measure induces the unique KMS state on OEgA

and,
by Corollary 7.6, the unique KMS weight on C∗(Gs(P))o Z, both having inverse
temperature β = (d/2) log(N ).

PROPOSITION 9.6. Let M be a d-dimensional manifold, g : M→ M an n-fold smooth
covering map acting conformally on a metric hM that lifts to the hermitian bundle S→ M
and V the isometry on L2(M, S) constructed as in Proposition 9.3. Write Eg := idC(M)g∗
as in §4.1. The pointwise action of C(M) on L2(M, S) and the linear mapping tV : Eg→

B(L2(M, S)) given by a 7→
√

naV define a ∗-representation πV : OEg → B(L2(M, S)).

Proof. It is an immediate consequence of Proposition 9.3 that tV defines a Toeplitz
representation of Eg; that is, conditions (1)–(3) of [38, Theorem 3.12] are satisfied. It
remains to prove that the Cuntz–Pimsner covariance condition (4) of [38, Theorem 3.12]
is satisfied. Thus, we need to show the following: after writing the action of
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a ∈ C(M) on Eg as aξ =
∑m

j=1 η j 〈ξ j , ξ 〉C(M), for some η j , ξ j ∈ Eg , we require that
a =

∑m
j=1 tV (η j )tV (ξ j )

∗ as operators on L2(M, S).
As in the discussion preceding (5.5), consider a cover (U j )

m
j=1 ⊆ M of balls such that

g|U j is injective. Take a partition of unity (χ2
j )

m
j=1 subordinate to (U j )

m
j=1, so that χ j

is a frame for Eg; that is, for any ξ ∈ Eg = C(M), we have ξ =
∑m

j=1 χ j 〈χ j , ξ 〉C(M).
So, we can write aξ =

∑m
j=1 η j 〈ξ j , ξ 〉C(M), where η j = aχ j and ξ j = χ j . We fix this

decomposition for the remainder of the proof.
We now verify the Cuntz–Pimsner covariance condition. Consider an f ∈ C(M, S).

Using Proposition 9.3, we write[ m∑
j=1

tV (η j )tV (ξ j )
∗ f
]
(x)= n

[ m∑
j=1

η j V V ∗ξ j f
]
(x)

=

[ m∑
j=1

η j N d/4V0LS N d/4ξ j f
]
(x)

=

m∑
j=1

∑
g(x)=g(y)

a(x)χ j (x)N d/4(x)N d/4(y)χ j (y)gS,x g−1
S,y f (y)

=

m∑
j=1

a(x)χ2
j (x) f (x)= a(x) f (x),

where the second last identity used the fact that g|U j is injective, so that

{y ∈ supp(χ j ) : g(x)= g(y)} = {x}

for x ∈ supp(χ j ). �

Definition 9.7. Define the function signlog : R→ R by

signlog(x) :=

{
0, x = 0,

sign(x) log |x |, x 6= 0.

We set /Dlog := signlog( /D). For any ε > 0, there is a function lε ∈ C∞(R) such that lε =
signlog on R \ ((−ε, 0) ∪ (0, ε)). We remark that for any ε > 0 and m > 0, the function
lε is a Hörmander symbol of order m on R. In fact, for any k ∈ N>0, there is a Ck > 0
(possibly depending on ε > 0) such that |∂k

x lε(x)| ≤ Ck(1+ |x |)−k . We note that /Dlog −

lε( /D) ∈9−∞(M, S) for all ε > 0. For ε small enough, /Dlog = lε( /D) if lε(0)= 0.

PROPOSITION 9.8. Let M be a closed Riemannian manifold, S→ M a Clifford bundle
and /D a Dirac operator acting on S. Then /Dlog is a self-adjoint operator and the inclusion

H s(M, S)⊆ Dom( /Dlog) is compact for any s > 0, and e−t /D2
log is in the operator ideal

L(d/t,∞)(L2(M, S)) for any t > 0.

Proposition 9.8 follows from functional calculus for self-adjoint operators. To study
/Dlog further, we will make use of log-polyhomogeneous pseudo-differential operators.

Such operators are studied in detail in [29, §3]. In short, the log-polyhomogeneous pseudo-
differential operators form a bi-filtered algebra 9m,k(M, S)⊆

⋂
s>0 9

m+s(M, S), where
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m ∈ R and k ∈ N. A full symbol σ full
U (A) of an operator A ∈9m,k(M, S) in a local

coordinate chart U admits an asymptotic expansion

σ full
U (A)(x, ξ)∼

k∑
j=0

a j (x, ξ) log j
|ξ |,

where the elements a j are classical symbols of order m.

PROPOSITION 9.9. The operator /Dlog is a log-polyhomogeneous pseudo-differential
operator of order (0, 1) with leading order symbol cS(ξ)|ξ |

−1
h log |ξ |h , where cS denotes

the Clifford multiplication on S. In particular, for any s > 0 and a ∈ C∞(M), the
commutator [ /Dlog, a] is a pseudo-differential operator of order −1+ s.

Proof. By [29, Proposition 3.4(2)], the log-polyhomogeneous pseudo-differential
operators form a bi-filtered algebra. Since /D| /D|−1

∈90
cl(M, S)=90,0(M, S) has

principal symbol cS(ξ)|ξ |
−1
h , we have that /Dlog ∈9

0,1(M, S) provided log | /D| ∈
90,1(M, S) with leading order symbol log |ξ |h . It suffices to prove that log1 ∈
90,1(M, S) with leading order symbol log |ξ |2h for any Laplacian-type operator 1 on
S→ M . This fact follows from [21, equation (6), p. 121].

It follows from the composition formulas for log-polyhomogeneous pseudo-differential
operators (see [29, Proposition 3.4.(2)]) that the leading order term in the symbol of
[ /Dlog, a] is the Poisson bracket {cS(ξ)|ξ |

−1
h log |ξ |h, a}T ∗M , which is of order (−1, 1).

Thus, [ /Dlog, a] ∈9−1,1(M, S)⊆9−1+s(M, S) for all s > 0. �

COROLLARY 9.10. The spectral triple (C∞(M), L2(M, S), /Dlog) satisfies:
(1) the class [C∞(M), L2(M, S), /Dlog] coincides with [C∞(M), L2(M, S), /D] in

K∗(M);
(2) (C∞(M), L2(M, S), /Dlog) is θ -summable;
(3) for a ∈ C∞(M), [ /Dlog, a] ∈ Ld+s(L2(M, S)) for any s > 0, where d = dim(M).

Thus, [ /Dlog, a] is not only bounded but even Schatten class and in particular it is a
compact operator.

Example 9.11. We return to the circle, with an eye towards solenoids (cf. Example 9.4).
We let /D := (1/2π i)(d/dx) on L2(S1) (with periodic boundary conditions). Then /Dek =

kek , so

/Dlogek =

{
0, k = 0,

sign(k) log |k|ek, k 6= 0.

In particular, with z ∈ C∞(S1) denoting the complex coordinate function x 7→ exp(2π i x),

[ /Dlog, z]ek =

log(2)e0, k =−1,

sign(k) log
(

1+
2|k| + 1
k2 + 1

)
ek+1, k 6= −1.

Since log(1+ t)=−
∑
∞

k=1(−t)k/k for |t |< 1, [ /Dlog, z] ∈9−1(S1) (see [2]). This gives
us a proof of a refinement of the commutator property in Proposition 9.9(3) for S1. Any a ∈
C∞(S1) admits an expansion a =

∑
k∈Z ak zk for a rapidly decreasing sequence (ak)k∈Z,
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so [ /Dlog, a] ∈9−1(S1). We remark that if dim(M) > 1, the property [ /Dlog, a] ∈9−1(M)
for all a ∈ C∞(M) fails.

PROPOSITION 9.12. Let M be a d-dimensional manifold, g : M→ M an n-fold smooth
covering map acting conformally on a metric hM that lifts to a Clifford bundle S→ M and
V the isometry on L2(M, S) constructed as in Proposition 9.3. Assume that gS : g∗S→ S
is Clifford linear. If /D is a Dirac operator on S, the operator [ /Dlog, V ] admits a bounded
extension to L2(M, S).

Proof. By Proposition 9.9, [ /Dlog, V ] is bounded if and only if [ /Dlog, V0] is bounded. It
in fact suffices to prove that χ [ /Dlog, V0]χ

′ is bounded for any χ, χ ′ ∈ C∞(M) that are
supported in balls U,U ′ ⊆ M and such that g|U ′ is injective and g(U ′)⊆U . Since /Dlog

is a log-polyhomogeneous pseudo-differential operator by Proposition 9.9, the change of
coordinates formula for such (see [29, Proposition 3.5]) implies that χ [ /Dlog, V0]χ

′ is a
Fourier integral operator with log-polyhomogeneous symbol of order (0,−1). In fact, the
leading order term in the symbol of χ [ /Dlog, V0]χ

′ is of order (0, 0), since

cS(Dgtξ)|Dgtξ |−1
h log |Dgtξ |h − cS(ξ)|ξ |

−1
h log |ξ |h = 1

2 cS(ξ)|ξ |
−1
h log N .

In this identity, we use that cS(ξ)|ξ |
−1 is invariant under conformal changes of metric and

that |Dgtξ |h = N 1/2
|ξ |h . This computation shows that χ [ /Dlog, V0]χ

′ is a Fourier integral
operator of order 0 and hence is bounded. �

Example 9.13. We return to the example of solenoids on S1 from Examples 9.4 and 9.11.
In this case, we have

[ /Dlog, V ]ek =

{
0, k = 0,

sign(k) log |n|enk, k 6= 0.

So, ‖[ /Dlog, V ]‖B(L2(S1)) = log |n|.

THEOREM 9.14. Let M be a d-dimensional manifold, g : M→ M an n-fold smooth
covering map acting conformally on a metric hM that lifts to a Clifford bundle
S→ M, /D a Dirac operator on S and πV : OEg → B(L2(M, S)) the representation
from Proposition 9.6. Assume that gS : g∗S→ S is Clifford linear. We let A⊆ OEg

denote the dense pre-image of the ∗-algebra generated by C∞(M) and V under πV .
The data (A, L2(M, S), /Dlog) is a spectral triple for OEg such that, under the inclusion
ι : C(M)→ OEg ,

ι∗[A, L2(M, S), /Dlog] = [C∞(M), L2(M, S), /D] ∈ K∗(M).

The following corollary is immediate from Theorem 9.14 and Corollary 5.15.

COROLLARY 9.15. The class [A, L2(M, S), /Dlog] ∈ K ∗(OEg ) is in the image of the
Cuntz–Pimsner mapping K ∗+1(C(M))→ K ∗(OEg ) if and only if [S] = 0 in the K -theory
group of (graded) Clifford bundles.

Example 9.16. Let us consider the K -homological consequences of the constructions in
the solenoid example (see Examples 9.4, 9.11 and 9.13). We assume that n > 1 to ensure
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that g is oriented and lifts to the spinor bundle. By combining the K -theory computations
in [54, Proposition 4.3] with the duality results of Jerry Kaminker, Ian Putnam and
the fourth listed author [22] (see [54, p. 293]), one computes that K 0(OEg )= Z and
K 1(OEg )= Z⊕ Z/(n − 1)Z. Another approach relating these K -homology groups with
the K -homology of S1 is to use Corollary 5.11 giving rise to the six-term exact sequences

K 0(OEg )
ι∗

−−−−→ K 0(C(S1))
1−[Eg]
−−−−→ K 0(C(S1))

[L2(Rg)C(V ),D]⊗−
x y[L2(Rg)C(V ),D]⊗−

K 1(C(S1))
1−[Eg]
←−−−− K 1(C(S1))

ι∗

←−−−− K 1(OEg )

(9.1)

Some short computations show that the diagrams

K 0(C(S1))
1−[Eg]
−−−−→ K 0(C(S1))

∼=

y y∼=
Z 1−n

−−−−→ Z

and

K 1(C(S1))
1−[Eg]
−−−−→ K 1(C(S1))

∼=

y y∼=
Z 0

−−−−→ Z
commute. Using these diagrams, the diagram (9.1) collapses to

K 0(OEg )
0

−−−−→ Z 1−n
−−−−→ Z

[L2(Rg)C(V ),D]⊗−
x y[L2(Rg)C(V ),D]⊗−

Z 0
←−−−− Z ι∗

←−−−− K 1(OEg )

The generator of the upper right corner is a character evθ : C(S1)→ C for a θ ∈ R/Z. It
follows that K 1(OEg ) is generated by any pre-image x of the fundamental class [S1

] =

[L2(S1), /D] ∈ K 1(C(S1)) and the product [L2(Rg)C(V ), D] ⊗C(S1) [evθ ]. Clearly, such
an x is of infinite order and [L2(Rg)C(V ), D] ⊗C(S1) [evθ ] is of order n − 1. By
Theorem 9.14, x can be taken to be represented by the spectral triple (A, L2(S1), /Dlog)

for OEg . The (n − 1)-torsion class given by the product [L2(Rg)C(V ), D] ⊗C(S1) [evθ ] is
represented by the spectral triple (A, L2(Rg)⊗evθ C, D ⊗evθ 1). Note that L2(Rg)⊗evθ
C∼= `2(Vθ ), where the discrete set Vθ is given by

Vθ = {(x, j) ∈ S1
× Z : (x, j, θ) ∈Rg} ∼= Z

[
1
n

]/
Z.

For f ∈ cc(Vθ ), the operator D ⊗evθ 1 can be described by

(D ⊗evθ 1) f (x, j)= ψ(n, κ(x, j, θ)) f (x, j).

It is an interesting problem to compute the product [L2(Rg)C(S1), D] ⊗C(S1) [S
1
] in order

to find the generator of K 0(OEg ).

We now turn to describing a representative of the Kasparov product of the class in
Theorem 9.14 with the Morita equivalence in Theorem 6.6. Our geometric setup presents
us with a natural candidate for this product, for which we can check the sufficient
conditions in Kucerovsky’s theorem [25, Theorem 13].
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As above, we define X := X M and let P ⊆ X be a finite ϕ-invariant set of periodic
points. Since π0 : Xu(P)→ M is a local homeomorphism, we can equip Xu(P), Gs(P)
and Zu(P) with smooth structures compatible with the groupoid operations. Since g lifts
to a unitary action on S, we can integrate the action of the groupoid Gs(P) on Xu(P) to
an action of C∗(Gs(P))o Z on L2(Xu(P), π∗0 (S)), where Xu(P) is equipped with the
measure defined from the metric h̃ Xu(P) := π

∗

0 hM . The isomorphism

L2(Xu(P), π∗0 (S))∼= L2(Zu(P))C∗(Rg) ⊗C∗(Rg) L2(M, S)

induced from Proposition 6.12 is compatible with the left C∗(Gs(P))o Z-action. We
have that ϕ∗h̃ Xu(P) = π

∗

0 (N )h̃ Xu(P). Let /̃D denote the lift of /D to Xu(P); it is a Dirac
operator on π∗0 (S)→ Xu(P). Using the proof of Proposition 9.9 and the fact that Xu(P)
is a complete manifold of bounded geometry, we can deduce that /̃Dlog is a self-adjoint
log-polyhomogeneous pseudo-differential operator on Xu(P).

PROPOSITION 9.17. Let M, g, hM , S and /D be as in Theorem 9.14. Assume that
g : V → V is an irreducible open surjection satisfying Wieler’s axioms. The data
(C∞c (G

s(P))oalg Z, L2(Xu(P), π∗0 (S)), /̃Dlog) is a spectral triple for C∗(Gs(P))o Z
representing the product of the class in Theorem 9.14 with the Morita equivalence in
Theorem 6.6.
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