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Abstract For a fat sub-Riemannian structure, we introduce three canonical Ricci curvatures in the

sense of Agrachev–Zelenko–Li. Under appropriate bounds we prove comparison theorems for conjugate
lengths, Bonnet–Myers type results and Laplacian comparison theorems for the intrinsic sub-Laplacian.

As an application, we consider the sub-Riemannian structure of 3-Sasakian manifolds, for which we

provide explicit curvature formulas. We prove that any complete 3-Sasakian structure of dimension
4d + 3, with d > 1, has sub-Riemannian diameter bounded by π . When d = 1, a similar statement holds

under additional Ricci bounds. These results are sharp for the natural sub-Riemannian structure on

S4d+3 of the quaternionic Hopf fibrations:

S3 ↪→ S4d+3
→ HPd ,

whose exact sub-Riemannian diameter is π , for all d > 1.
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1. Introduction and results

1.1. Sub-Riemannian geometry

A sub-Riemannian manifold is a triple (M,D, g), where M is a smooth, connected

manifold of dimension n > 3, D is a vector distribution of constant rank k 6 n and g
is a smooth metric on D. The distribution is bracket-generating, that is

span{[X i1 , [X i2 , [. . . , [X im−1 , X im ]]]] | m > 1}q = Tq M, ∀q ∈ M, (1)

for some (and then any) set X1, . . . , Xk ∈ 0(D) of local generators for D. If rank(D) = k
and dim M = n, we say that (M,D, g) is a sub-Riemannian structure of type (k, n).
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2 L. Rizzi and P. Silveira

A horizontal curve γ : [0, T ] → R is a Lipschitz continuous path such that γ̇ (t) ∈ Dγ (t)
for almost any t . Horizontal curves have a well defined length

`(γ ) =

∫ T

0

√
g(γ̇ (t), γ̇ (t)) dt. (2)

The sub-Riemannian distance is defined by:

d(x, y) = inf{`(γ ) | γ (0) = x, γ (T ) = y, γ horizontal}. (3)

By the Chow–Rashevskii theorem, under the bracket-generating condition, d is finite and

continuous. A sub-Riemannian manifold is complete if (M,d) is complete as a metric

space. Sub-Riemannian geometries include the Riemannian one, when D = T M .

In this paper we focus on fat structures, namely we assume that for any non-zero section

X of D, T M is (locally) generated by D and [X,D]. The fat condition is open in the C1

topology; however, it gives some restriction on the rank k of the distribution (for example

n 6 2k− 1, [47, Proposition 5.6.3]). This class includes many popular sub-Riemannian

structures, such as contact and quaternionic contact structures.

Example. The main example that motivated our study is the quaternionic Hopf fibration

S3 ↪→ S4d+3 π
−→ HPd , d > 1. (4)

Here D = (kerπ∗)⊥ is the orthogonal complement of the kernel of the differential of the

Hopf map π , and the sub-Riemannian metric is the restriction to D of the round one of

S4d+3. This is a fat structure of type (4d, 4d + 3). This example is one of the simplest

(non-Carnot) sub-Riemannian structures of corank greater than 1, and is included in the

more general class of 3-Sasakian structures that we study in § 5.

Sub-Riemannian geodesics are horizontal curves that locally minimize the length

between their endpoints. Define the sub-Riemannian Hamiltonian H : T ∗M → R as

H(λ) :=
1
2

k∑
i=1

〈λ, X i 〉
2, λ ∈ T ∗M, (5)

where X1, . . . , Xk is any local orthonormal frame for D and 〈λ, ·〉 denotes the action of

covectors on vectors. Let σ be the canonical symplectic 2-form on T ∗M . The Hamiltonian

vector field EH is defined by σ(·, EH) = d H . Then the Hamilton equations are

λ̇(t) = EH(λ(t)). (6)

Solutions of (6) are called extremals, and their projections γ (t) := π(λ(t)) on M are

geodesics. In the fat setting any (non-trivial) geodesic can be recovered uniquely in this

way. This, and many statements that follow, are not true in full generality, as the so-called

abnormal geodesics can appear. These are minimizing trajectories that might not follow

the Hamiltonian dynamic of (6), and are related with some challenging open problems

in sub-Riemannian geometry [3].

The sub-Riemannian exponential map expq : T
∗

q M → M , with base q ∈ M is

expq(λ) := π ◦ e EH (λ), λ ∈ T ∗q M, (7)
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Sub-Riemannian curvature and diameter bounds for 3-Sasakian manifolds 3

where et EH (λ) : T ∗M → T ∗M denotes the flow of EH .1 A geodesic then is determined by

its initial covector, and its speed ‖γ̇ (t)‖ = 2H(λ) is constant. The set of unit covectors is

U∗M = {λ ∈ T ∗M | H(λ) = 1/2}, (8)

a fiber bundle with fiber U∗q M = Sk−1
×Rn−k . To exclude trivial geodesics, we use the

symbol T ∗M \ H−1(0) to denote the set of covectors with H(λ) 6= 0.

For λ ∈ U∗q M , the curve γλ(t) = expq(tλ) is a length-parametrized geodesic with length

`(γ |[0,T ]) = T . We say that t∗ is a conjugate time along γλ if tλ is a critical point of expq .

In this case, γ (t∗) is a conjugate point. The first conjugate time is separated from zero,

and geodesics cease to be minimizing after the first conjugate time. Conjugate points

are also intertwined with the analytic properties of the underlying structure, for example

they affect the behavior of the heat kernel (see [16, 17] and references therein).

We gave here only the essential ingredients for our analysis; for more details see [15,

47, 50].

1.2. Canonical Ricci curvatures

For any fat sub-Riemannian manifold (we assume from now on k < n) we introduce three

canonical Ricci curvatures (see § 2)

Ricα : U∗M → R, α = a, b, c. (9)

For any initial covector λ, the canonical Ricci curvatures computed along the extremal

are Ricα(λ(t)). This is the sub-Riemannian generalization of the classical Ricci curvature

tensor Ric(γ̇ (t)) evaluated ‘along the geodesic’, where the tangent vector γ̇ (t) is replaced

by its cotangent counterpart λ(t). The main theorems we prove are:

• Bounds for conjugate points along a sub-Riemannian geodesic (Theorems 2, 3);

• Bonnet–Myers type results for the sub-Riemannian diameter (Theorems 4, 5);

• Laplacian comparison theorems for the canonical sub-Laplacian (Theorem 7);

• Formulas for the sub-Riemannian curvature of 3-Sasakian manifolds (Theorem 8);

• Sharp bounds for the sub-Riemannian diameter of 3-Sasakian manifolds (Corollary 9,

Proposition 11) and conjugate distance along a geodesic (Corollary 10).

1.3. Two relevant functions

We introduce two model functions related with the geodesic flow and their blow-up times.

Here
√
· is the principal value of the square root and, for values of the parameters where

a denominator is zero, the functions is understood in the limit.

1.3.1. The ‘Riemannian’ function. The first function we need is sκc : I → R, given

by

sκc (t) =
√
κc cot(

√
κct) =


√
κc cot(

√
κct) κc > 0,

1
t κc = 0,
√
|κc| coth(

√
|κc|t) κc < 0.

(10)

1If (M,d) is complete, EH is complete, then the domain of expq is the whole T ∗q M.
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4 L. Rizzi and P. Silveira

The function (10) is defined on a maximal connected interval I = (0, t̄(κc)), where

t̄(κc) = π/Re(
√
κc) (in particular t̄(κc) = +∞ if κc 6 0). This function is the solution

of a Cauchy problem of Riccati type with limit initial datum, that is

ṡ+ κc+ s2
= 0, lim

t→0+
s−1
= 0. (11)

1.3.2. The ‘sub-Riemannian’ function. The second function sκa ,κb : I → R does

not appear in Riemannian geometry and depends on two real parameters κa, κb:

sκa ,κb (t) :=
2
t

(
sinc(2θ−t)− sinc(2θ+t)
sinc(θ−t)2− sinc(θ+t)2

)
, θ± =

1
2
(
√

x + y±
√

x − y), (12)

where sinc(a) = sin(a)/a is an entire function, and we have set

x =
κb

2
, y =

√
4κa + κ

2
b

2
. (13)

Also (12) is related with the solution of a matrix Cauchy problem of Riccati type, with

limit initial datum (see §§ 3 and 4). In this case, the maximal interval of definition is

I = (0, t̄(κa, κb)), and the time t̄(κa, κb) is called the first blow-up time.

Proposition 1. The first blow-up time t̄(κa, κb) of (12) is bounded by

t̄(κa, κb) 6
2π

Re(
√

x + y−
√

x − y)
, x =

κb

2
, y =

√
κ2

b + 4κa

2
, (14)

where the r.h.s. of (14) is +∞ if the denominator is zero. The equality holds if and only

if κa = 0, in this case t̄(0, κb) = 2π/
√
κb. In particular t̄(κa, κb) is finite if and only ifκb > 0,

κ2
b + 4κa > 0,

or

κb < 0,

κa > 0.
(?)

1.4. Conjugate points

Our first results are bounds for the first conjugate point along a sub-Riemannian geodesic

(i.e. the first critical value of the exponential map).

Theorem 2 (First conjugate time I). Let (M,D, g) be a fat sub-Riemannian manifold of

type (k, n). Let γ (t) be a geodesic, with initial unit covector λ. Assume that

Rica(λ(t)) > (n− k)κa, Ricb(λ(t)) > (n− k)κb, (15)

for some κa, κb ∈ R such that (?) are satisfied. Then the first conjugate time t∗(γ ) along

the geodesic γ is finite and

t∗(γ ) 6 t̄(κa, κb). (16)
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Sub-Riemannian curvature and diameter bounds for 3-Sasakian manifolds 5

Theorem 3 (First conjugate time II). Let (M,D, g) be a fat sub-Riemannian manifold of

type (k, n), with 2k− n > 1. Let γ (t) a geodesic, with initial unit covector λ. Assume that

Ricc(λ(t)) > (2k− n− 1)κc, (17)

for some κc > 0. Then the first conjugate time t∗(γ ) along the geodesic γ is finite and

t∗(γ ) 6 t̄(κc) =
π
√
κc
. (18)

Theorem 3 does not apply to ‘maximally fat’ structures, namely when n = 2k− 1
(the maximal possible dimension for a given fat distribution of rank k). Globalizing

the hypotheses, we obtain two sub-Riemannian versions of the Bonnet–Myers theorem.

Theorem 4 (Bonnet–Myers I). Let (M,D, g) be a complete, fat sub-Riemannian manifold

of type (k, n). Assume that, for any unit covector λ

Rica(λ) > (n− k)κa, Ricb(λ) > (n− k)κb, (19)

for some κa, κb ∈ R satisfying (?). Then the sub-Riemannian diameter of M is bounded

by

diam(M) 6 t̄(κa, κb). (20)

Moreover, M is compact, and its fundamental group is finite.

Theorem 5 (Bonnet–Myers II). Let (M,D, g) be a complete, fat sub-Riemannian manifold

of type (k, n), with 2k− n > 1. Assume that, for any unit covector λ

Ricc(λ) > (2k− n− 1)κc, (21)

for some κc > 0. Then the sub-Riemannian diameter of M is bounded by

diam(M) 6 t̄(κc) =
π
√
κc
. (22)

Moreover, M is compact, and its fundamental group is finite.

1.5. Sub-Laplacian

For any function f ∈ C∞(M), the horizontal gradient grad( f ) ∈ 0(D) is, at each point,

the horizontal direction of steepest slope of f , that is

g(grad( f ), X) = d f (X), ∀X ∈ 0(D). (23)

Fix any smooth volume form ω ∈ 3n M (or a density, if M is not orientable). The

divergence of a smooth vector field is defined by the following identity

LXω = divω(X)ω, X ∈ 0(T M), (24)

where L denotes the Lie derivative. We define the sub-Laplacian 1ω f := divω(grad( f ))
for any f ∈ C∞(M). The sub-Laplacian is symmetric on the space C∞c (M) of smooth

functions with compact support with respect to the L2(M, ω) product:∫
M

f (−1ωh)ω =
∫

M
g(grad( f ), grad(h))ω, ∀ f, h ∈ C∞c (M). (25)
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6 L. Rizzi and P. Silveira

If (M,d) is complete, then 1ω is essentially self-adjoint on C∞c (M) and has a positive,

smooth heat kernel [52, 53].

The sub-Laplacian is intrinsic if the choice of volume is. A natural choice is Popp

volume [19, 47]. For the Hopf fibrations, it is proportional to the Riemannian volume of

the corresponding round spheres, and the associated sub-Laplacian coincides with the

one studied in [27, 29]. See also [7] for the case of unimodular 3D Lie groups.

1.6. Canonical volume derivative

A new object appears in relation with the volume. To introduce it, consider a Riemannian

manifold (M, g) equipped with a volume ω (not necessarily the Riemannian one). Then,

for all λ ∈ T ∗M \ H−1(0), we define

ρω(λ) :=
∇λ]ω

ω
, (26)

where ] is the canonical musical isomorphism and ∇ the Levi-Civita connection. Indeed

ρω is smooth and ρω = 0 if and only if ω is the Riemannian volume.

The sub-Riemannian generalization of ρω : T ∗M \ H−1(0)→ R plays an important role

in the next theorems and we call it the canonical volume derivative (see § 2). In any

contact Sasakian manifold equipped with Popp volume, as the ones considered in [9, 10,

43, 44], ρω = 0, similarly to the Riemannian case. We prove that this is true also in the

3-Sasakian setting. This is not true in general.

1.7. Sub-Riemannian distance

Assume from now on that (M,d) is complete. For any point q0 ∈ M , let rq0(·) := d(q0, ·)

be the sub-Riemannian distance from q0. By a by-now classical result [2, 50], rq0 is

smooth on an open dense set (on a general sub-Riemannian manifold). In addition, for

fat structures, d : M ×M → R is locally Lipschitz in charts outside the diagonal and rq0

is smooth almost everywhere [15, 50].

Theorem 6 (Sub-Laplacian comparison). Let (M,D, g) be a complete, fat sub-

Riemannian manifold of type (k, n), equipped with a smooth volume (or density) ω.

Assume that for any unit covector λ ∈ U∗q0
M

Rica(λ(t)) > (n− k)κa,

Ricb(λ(t)) > (n− k)κb,

Ricc(λ(t)) > (2k− n− 1)κc,

and ρω(λ(t)) 6 κω, (27)

for some κa, κb, κc, κω ∈ R. Then

1ωrq0(q) 6 (n− k)sκa ,κb (rq0(q))+ (2k− n− 1)sκc (rq0(q))+ κω, (28)

almost everywhere.

This theorem can be improved for bounds that depend on the initial covector. If rq0 is

smooth at q, then there exists a unique length-parametrized geodesic joining q0 with q,
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Sub-Riemannian curvature and diameter bounds for 3-Sasakian manifolds 7

and its initial covector is λ
q
q0 = e−rq0

EH (dqrq0) ∈ U∗q0
M , where dq denotes the differential

at q.

Theorem 7 (Sub-Laplacian comparison - weak statement). Let (M,D, g) be a complete,

fat sub-Riemannian manifold of type (k, n), equipped with a smooth volume (or density)

ω. Assume that for any unit covector λ ∈ U∗q0
M

Rica(λ(t)) > (n− k)κa(λ),

Ricb(λ(t)) > (n− k)κb(λ),

Ricc(λ(t)) > (2k− n− 1)κc(λ),

and ρω(λ(t)) 6 κω(λ), (29)

for some κa(λ), κb(λ), κc(λ), κω(λ) ∈ R, possibly depending on the initial covector. Then

1rq0(q) 6 (n− k)sκa(λ
q
q0 ),κb(λ

q
q0 )
(rq0(q))+ (2k− n− 1)sκc(λ

q
q0 )
(rq0(q))+ κω(λ

q
q0), (30)

almost everywhere.

1.8. 3-Sasakian structures

We pass now to applications. Following [30], a 3-Sasakian structure on a manifold M of

dimension 4d + 3, with d > 1, is a collection {φα, ηα, ξα, g}α, with α = I, J, K , of three

contact metric structures, where g is a Riemannian metric, ηα is a one-form, ξα is the

Reeb vector field and φα : 0(T M)→ 0(T M) is given by

2g(X, φαY ) = dη(X, Y ). (31)

The three structures are Sasakian, and φI , φJ , φK satisfy quaternionic-like compatibility

relations (see § 5 for details). A natural sub-Riemannian structure is given by the

restriction of the Riemannian metric g to the distribution

D =
⋂

α=I,J,K

ker ηα. (32)

The three Reeb vector fields ξα are an orthonormal triple, orthogonal to D. Finally, for

these structures, Popp volume is proportional to the Riemannian one (Proposition 34).

Remark 1. Here we are interested in the sub-Riemannian structure (M,D, g|D). The

Riemannian metric of the 3-Sasakian structure on the directions transverse to D is not

relevant.

Example 1 (Quaternionic Hopf fibration). The quaternionic unit sphere is the real

manifold of dimension 4d + 3

S4d+3
= {q = (q1, . . . , qd+1) ∈ Hd+1

| ‖q‖ = 1}, (33)

equipped with the standard round metric g. Let n be the inward unit normal vector

of S4d+3
⊂ Hd+1

' R4d+4. The multiplication by I, J, K induces the endomorphisms
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8 L. Rizzi and P. Silveira

8α : THd+1
→ THd+1, for α = I, J, K . The three vectors ξα := 8αn are tangent to S4d+3.

The endomorphisms φα are given by the restrictions of the complex structures 8α to

TS4d+3 and the one-forms ηα are the dual of the vectors ξα (w.r.t. the round metric). The

sub-Riemannian distribution D is given by the orthogonal complement of span{ξI , ξJ , ξK}

and the sub-Riemannian metric is the restriction to D of the Riemannian one.

Theorem 8 (Sub-Riemannian Ricci curvatures for 3-Sasakian manifolds). Let (M,D, g)
be the sub-Riemannian structure of a 3-Sasakian manifold of dimension 4d + 3. For any

unit covector λ ∈ U∗M

Rica(λ) = 3
( 3

4%
a(v)− 7

2‖v‖
2
−

15
8 ‖v‖

4), (34)

Ricb(λ) = 3(4+ 5‖v‖2), (35)

Ricc(λ) = (4d − 4)(1+‖v‖2), (36)

where ‖v‖2 := v2
I + v

2
J + v

2
K and vα = 〈λ, ξα〉 for α = I, J, K . Moreover, the canonical

volume derivative w.r.t. Popp volume vanishes, i.e. ρω = 0.

In the above theorem, %a(v) is a sectional-like curvature invariant, given by

%a(v) :=
∑

α=I,J,K

R∇(γ̇ , Zα, Zα, γ̇ ), (37)

where R∇ is the Riemannian curvature of the 3-Sasakian structure, γ̇ is the tangent vector

of the sub-Riemannian geodesic associated with λ, and the vectors Z I , Z J , Z K ∈ D are

Z I := (vJφK − vKφJ )γ̇ , Z J := (vKφI − vIφK )γ̇ , Z K := (vIφJ − vJφI )γ̇ .

Remark 2. Observe that Rica , the most complicated of the sub-Riemannian curvatures,

is not even a quadratic form as a function of the covector λ. The functions vα : T ∗M → R
are prime integrals of the sub-Riemannian geodesic flow (Lemma 33), hence Rica is the

only curvature that can depend on time, when evaluated along the extremal λ(t). This

is dramatically different w.r.t. the Sasakian case where Rica
= 0 (see [44]).

1.9. Sharp estimates for the sub-Riemannian diameter

Any complete 3-Sasakian structure is Einstein, with constant scalar curvature equal to

(4d + 2)(4d + 3) (see Theorem 30). In particular, by the classical Bonnet–Myers theorem,

it is compact with Riemannian diameter bounded by π . Nevertheless, this gives no

information on the sub-Riemannian diameter that, a priori, could be larger. When d > 1,

Theorem 5 yields the following.

Corollary 9. Let (M,D, g) be the sub-Riemannian structure of a 3-Sasakian manifold M,

of dimension 4d + 3, with d > 1. The sub-Riemannian diameter is not larger than π .

Moreover, Theorem 3, with κc(λ) = 1+‖v‖2, yields the following.

Corollary 10. Let (M,D, g) be the sub-Riemannian structure of a 3-Sasakian manifold

M, of dimension 4d + 3, with d > 1. Then any sub-Riemannian geodesic with initial
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Sub-Riemannian curvature and diameter bounds for 3-Sasakian manifolds 9

covector λ ∈ U∗M has a conjugate point at distance t∗(λ) 6 π√
1+‖v‖2

, where ‖v‖ is as in

Theorem 8.

Theorem 4 does not apply for d = 1, as a covector-independent lower bound is not

possible. However, Theorem 2 and careful estimates give the maximal conjugate distance.

Proposition 11. Let (M,D, g) be the sub-Riemannian structure of a 3-Sasakian manifold

M of dimension 4d + 3, with d > 1. Assume that, for all q ∈ M and any vector X ∈ Dq

Sec(X, Y ) > K > −1, ∀ Y ∈ span{φI X, φJ X, φK X}, (38)

where Sec is the Riemannian sectional curvature of the 3-Sasakian structure. Then the

sub-Riemannian diameter is not larger than π .

For any quaternionic Hopf fibration (QHF in the following), Proposition 11 applies with

K = 1, and we obtain diam(S4d+3) 6 π . For any d > 1, the sub-Riemannian distance of

the QHF has been computed in [29], using Ben Arous and Léandre formulas and heat

kernel expansions, and the sub-Riemannian diameter is equal to π . Thus our results are

sharp.

Open problem

The Riemannian diameter of any 3-Sasakian manifold of dimension 4d + 3 is bounded by

π . Corollary 9 extends this universal bound to the sub-Riemannian diameter, provided

that d > 1. For the case d = 1, Proposition 11 requires some curvature assumptions that,

a priori, might be violated. However, it would be surprising, for us, to find an example of

7-dimensional 3-Sasakian manifold with sub-Riemannian diameter larger than π . Thus,

we close with the following question:

Is it true that any 3-Sasakian manifold has sub-Riemannian diameter bounded

by π?

1.10. Comparison with recent literature

The curvature employed in this paper arises in a general setting, as a complete set

of invariants of the so-called Jacobi curves. It has been introduced by Agrachev and

Gamkrelidze in [8], Agrachev and Zelenko in [13, 14] and extended by Zelenko and Li

in [56]. A closely related approach to curvature, valid for a general class of variational

problems, is discussed in [5] and in [6] for contact structures.

This paper is not the first one to discuss comparison-type results on sub-Riemannian

manifolds, but it has been inspired by some recent works. The first results for the number

of conjugate points along a given geodesics under sectional-type curvature bounds are

in [45], for corank 1 structures with transverse symmetries. Comparison theorems based

on matrix Riccati techniques appear in [9] (with applications to the measure contraction

properties of 3D contact sub-Riemannian manifolds) and in the subsequent series of

papers [10, 43, 44] for Sasakian sub-Riemannian structures.

The canonical Ricci curvatures, as partial traces of the canonical curvature, have

been introduced in [21]. The comparison results obtained here for fat sub-Riemannian
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10 L. Rizzi and P. Silveira

structures are based on the same machinery. Nevertheless, some key technical results are

proved here in a more geometrical fashion. Moreover, the explicit form of the ‘bounding

functions’ sκa ,κb (t) is fundamental for proving quantitative results and it is obtained here

for the first time.

The canonical curvature does not arise in relation with some linear connection, but

with a non-linear Ehresmann one [20, 56]. Non-linear connections are not associated

with a classical covariant derivative and thus this approach lacks the power of standard

tensorial calculus.

Sometimes, a sub-Riemannian structure comes with a ‘natural’ Riemannian extension

and one might want to express the sub-Riemannian curvatures in terms of the Levi-Civita

connection of the extension. The actual computation is a daunting task, as in doing this

we are writing an intrinsically sub-Riemannian object (the canonical Ricci curvatures)

in terms of an extrinsic Riemannian structure. This task, however, is important, as

it provides models in which the curvature is explicit (just as the Riemannian space

forms). Results in this sense are interesting per se and have been obtained, so far, for

corank 1 structures with symmetries [56], contact Sasakian structures [43] and contact

structures [6]. Our results are the first explicit expressions for corank greater than 1.

An alternative approach to curvature in sub-Riemannian geometry is the one based on

the so-called generalized Curvature Dimension (CD) inequality, introduced by Baudoin

and Garofalo in [24]. These techniques can be applied to sub-Riemannian manifolds with

transverse symmetries. In [28], Baudoin and Wang generalize these results removing the

symmetries assumption for contact structures. In [26] the same techniques are further

generalized to Riemannian foliations with totally geodesic leaves. This class include the

QHF, and our study has been motivated also by these works. See [22, 23, 25] for other

comparison-type results following from the generalized CD condition.

The universal estimate diam(M) 6 π for the sub-Riemannian diameter of 3-Sasakian

structures of dimension 4d + 3, with d > 1, is perhaps the most surprising result of this

paper. As we already mentioned, the estimate is sharp for the QHF, whose explicit

diameter has been obtained in [29, Remark 2.15]. The same estimate holds for the

sub-Riemannian structure on the complex Hopf fibration of S2d+1, as proved in [27,

Remark 3.11], but clearly it does not hold for general Sasakian structures.

Very recently, in [18], Theorem 5 has been applied to quaternionic contact structures

of dimension 4d + 3, with d > 1, to yield Bonnet–Myers type results under suitable

assumptions on the curvature associated with the Biquard connection.

Finally, we mention that estimates for Riemannian diameter of Sasakian structures

have been obtained in [35, 49], under lower bounds on the transverse part of the Ricci

curvature. Furthermore, Bonnet–Myers type theorems for the Riemannian structure of

quaternionic contact structures appeared recently in [36].

Structure of the paper

In § 2 we present the theory of sub-Riemannian Jacobi fields and the curvature in the sense

of Agrachev–Li–Zelenko. In § 3 we discuss the matrix Riccati comparison theory that we

need in the rest of the paper. Section 4 is dedicated to the proofs of the results stated
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Sub-Riemannian curvature and diameter bounds for 3-Sasakian manifolds 11

in § 1. In §§ 5 and 6 we discuss the sub-Riemannian structure of 3-Sasakian manifolds

and we compute their sub-Riemannian curvature.

2. Sub-Riemannian Jacobi equations and curvature

2.1. Jacobi equation revisited

For any vector field V (t) along an extremal λ(t) of the sub-Riemannian Hamiltonian flow,
a dot denotes the Lie derivative in the direction of EH :

V̇ (t) :=
d
dε

∣∣∣∣
ε=0

e−ε EH∗ V (t + ε). (39)

A vector field J (t) along λ(t) is called a sub-Riemannian Jacobi field if it satisfies

J̇ = 0. (40)

The space of solutions of (40) is a 2n-dimensional vector space. The projections π∗J (t) are
vector fields on M corresponding to one-parameter variations of γ (t) = π(λ(t)) through
geodesics; in the Riemannian case, they coincide with the classical Jacobi fields.

We write (40) using the symplectic structure σ of T ∗M . First, observe that on T ∗M
there is a natural smooth sub-bundle of Lagrangian2 spaces:

Vλ := kerπ∗|λ = Tλ(T ∗π(λ)M) ⊂ Tλ(T ∗M). (41)

We call this the vertical subspace. Then, pick a Darboux frame {Ei (t), Fi (t)}ni=1 along
λ(t). It is natural to assume that E1, . . . , En belong to the vertical subspace. To fix the
ideas, one can think at the frame ∂pi |λ(t), ∂xi |λ(t) induced by coordinates (x1, . . . , xn) on

M . In terms of this frame, J (t) has components (p(t), x(t)) ∈ R2n :

J (t) =
n∑

i=1

pi (t)Ei (t)+ xi (t)Fi (t). (42)

The elements of the frame satisfy3

d
dt

(
E
F

)
=

(
A(t) −B(t)
R(t) −A(t)∗

)(
E
F

)
, (43)

for some smooth families of n× n matrices A(t), B(t), R(t), where B(t) = B(t)∗ and R(t) =
R(t)∗. The special structure of (43) follows from the fact that the frame is Darboux, that
is

σ(Ei , E j ) = σ(Fi , F j ) = σ(Ei , F j )− δi j = 0, i, j = 1, . . . , n. (44)

For any bi-linear form B : V × V → R and n-tuples v,w ∈ V let B(v,w) denote the matrix
B(vi , w j ). With this notation

B(t) = σ(Ė, E)|λ(t) = 2H(E, E)|λ(t) > 0, (45)

where we identified Vλ(t) ' T ∗γ (t)M and the Hamiltonian with a symmetric bi-linear form

on fibers. In the Riemannian case, B(t) > 0. Finally, the components (p(t), x(t)) of J (t)
satisfy

d
dt

(
p
x

)
=

(
−A(t)∗ −R(t)

B(t) A(t)

)(
p
x

)
. (46)

We want to choose a suitable frame to simplify (46) as much as possible.

2A subspace L ⊂ Σ of a symplectic vector space (Σ, σ) is Lagrangian if dim L = dimΣ/2 and σ |L = 0.
3The notation of (43) means that Ėi =

∑n
j=1 A(t)i j E j − B(t)i j F j , and similarly for Ḟi .
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12 L. Rizzi and P. Silveira

2.2. The Riemannian case

It is instructive to study first the Riemannian setting. Let f1, . . . , fn be a parallel

transported frame along the geodesic γ (t) = π(λ(t)). Let hi : T ∗M → R, defined by

hi (λ) := 〈λ, fi 〉. They define coordinates on each fiber and, in turn, the vectors ∂hi . We

define a moving frame along the extremal λ(t) as follows

Ei := ∂hi , Fi := −Ėi , i = 1, . . . , n. (47)

One recovers the original parallel transported frame by projection, namely π∗Fi (t) =
fi |γ (t). In the following, 1 and 0 denote the identity and zero matrices of the appropriate

dimension.

Proposition 12. The smooth moving frame {Ei (t), Fi (t)}ni=1 along λ(t) satisfies:

(i) span{E1(t), . . . , En(t)} = Vλ(t).
(ii) It is a Darboux basis, namely

σ(Ei , E j ) = σ(Fi , F j ) = σ(Ei , F j )− δi j = 0, i, j = 1, . . . , n.

(iii) The frame satisfies the structural equations

d
dt

(
E
F

)
=

(
0 −1

R(t) 0

)(
E
F

)
, (48)

for some smooth family of n× n symmetric matrices R(t).

If {Ẽi , F̃ j }
n
i=1 is another smooth moving frame along λ(t) satisfying (i)–(iii), for some

symmetric matrix R̃(t) then there exists a constant, orthogonal matrix O such that

Ẽ(t) = O E(t), F̃(t) = O F(t), R̃(t) = O R(t)O∗. (49)

As a consequence, the matrix R(t) gives a well defined operator Rλ(t) : Tγ (t)M → Tγ (t)M

Rλ(t)v :=

n∑
i, j=1

Ri j (t)v j fi |γ (t), v =

n∑
i=1

vi fi |γ (t). (50)

With a routine but long computation (for instance, see [21, Appendix C]) one checks

that

Rλ(t)v = R∇(v, γ̇ )γ̇ , v ∈ Tγ (t)M, (51)

where R∇(X, Y )Z = ∇X∇Y Z −∇Y∇X Z −∇[X,Y ]Z is the Riemannian curvature tensor

associated with the Levi-Civita connection ∇. Then, in the Jacobi equation (46), one

has A(t) = 0, B(t) = 1, and the only non-trivial block is the curvature R(t):

ẋ = p, ṗ = −R(t)x, (52)

that is the classical Riemannian Jacobi equation ẍ + R(t)x = 0.
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Sub-Riemannian curvature and diameter bounds for 3-Sasakian manifolds 13

2.3. The fat sub-Riemannian case

The normal form of the sub-Riemannian Jacobi equation has been first studied by

Agrachev–Zelenko in [13, 14] and subsequently completed by Zelenko–Li in [56], in

the general setting of curves in the Lagrange Grassmannian. A dramatic simplification,

analogue to the Riemannian one, cannot be achieved in general. Nevertheless, it is possible

to find a normal form of (46) where the matrices A(t) and B(t) are constant. The general

result, in the language of Proposition 12, can be found in [20]. Here we give an ad hoc

statement for fat sub-Riemannian structures.

Notation. It is convenient to split the set of indices 1, . . . , n in the following subsets:

1, . . . , n− k︸ ︷︷ ︸
a

, n− k+ 1, . . . , 2n− 2k︸ ︷︷ ︸
b

, 2n− 2k+ 1, . . . , n︸ ︷︷ ︸
c

. (53)

The cardinality of the sets of indices are |a| = |b| = n− k, |c| = 2k− n. Accordingly, we

write any n× n matrix L in block form, as follows

L =

Laa Lab Lac
Lba Lbb Lbc
Lca Lcb Lcc

 , (54)

where Lµν , for µ, ν = a, b, c is a matrix of dimension |µ| × |ν|. Analogously, we split

n-tuples Z = (Za, Zb, Zc). Accordingly, for any bi-linear form Q, the notation Q(Zµ, Zν),
with µ, ν = a, b, c denotes the associated |µ| × |ν| matrix.

Remark 3. This splitting is related to the fact that the Lie derivative in the direction of

a fixed X ∈ D induces a well defined, surjective linear map LX : Dq → Tq M/Dq . It has

a n− k-dimensional image (the ‘a’ space), a 2k− n-dimensional kernel (the ‘c’ space),

and the orthogonal complement of the latter in Dq is a n− k-dimensional space (the ‘b’

space).

Theorem 13. Let λ(t) be an extremal of a fat sub-Riemannian structure. There exists a

smooth moving frame along λ(t)

E(t) = (Ea(t), Eb(t), Ec(t))∗, F(t) = (Fa(t), Fb(t), Fc(t))∗, (55)

such that the following holds true for any t:

(i) span{Ea(t), Eb(t), Ec(t)} = Vλ(t).
(ii) It is a Darboux basis, namely

σ(Eµ, Eν) = σ(Fµ, Fν) = σ(Eµ, Fν)− δµν1 = 0, µ, ν = a, b, c. (56)

(iii) The frame satisfies the structural equations

d
dt

(
Ė
Ḟ

)
=

(
A −B

R(t) −A∗

)(
E
F

)
, (57)

where A, B are constant, n× n block matrices defined by

A :=

0 1 0
0 0 0
0 0 0

 , B :=

0 0 0
0 1 0
0 0 1

 . (58)
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14 L. Rizzi and P. Silveira

Finally R(t) is a n× n smooth family of symmetric matrices of the form

R(t) =

Raa(t) Rab(t) Rac(t)
Rba(t) Rbb(t) Rbc(t)
Rca(t) Rcb(t) Rcc(t)

 , (59)

with the additional condition

Rab(t) = −Rab(t)∗. (60)

If {Ẽ(t), F̃(t)} is another frame that satisfies (i)–(iii) for some matrix R̃(t), then there

exists a constant n× n orthogonal matrix O that preserves the structural equations (i.e.

O AO∗ = A, O BO∗ = B) and

Ẽ(t) = O E(t), F̃(t) = O F(t), R̃(t) = O R(t)O∗. (61)

2.4. Invariant subspaces and curvature

The projections fµ(t) := π∗Fµ(t), with µ = a, b, c, define a smooth frame along Tγ (t)M .

The uniqueness part of Theorem 13 implies that this frame is unique up to a constant

orthogonal transformation

O =

U1 0 0
0 U1 0
0 0 U2

 , U1 ∈ O(n− k), U2 ∈ O(2k− n). (62)

Thus, the following definitions are well posed.

Definition 14. The canonical splitting of Tγ (t)M is

Tγ (t)M = Sa
γ (t)⊕ Sb

γ (t)⊕ Sc
γ (t), (63)

where the invariant subspaces are defined by

Sa
γ (t) := span{ fa}, dim Sa

γ (t) = n− k, (64)

Sb
γ (t) := span{ fb}, dim Sb

γ (t) = n− k, (65)

Sc
γ (t) := span{ fc}, dim Sc

γ (t) = 2k− n. (66)

Definition 15. The canonical curvature along the extremal λ(t) is the operator Rλ(t) :

Tγ (t)M → Tγ (t)M that, in terms of the basis fa, fb, fc is represented by the matrix R(t).

For µ, ν = a, b, c, we denote by R
µν

λ(t) : Sµγ (t)→ Sνγ (t) the restrictions of the canonical

curvature to the appropriate invariant subspace.

Definition 16. The canonical Ricci curvatures along the extremal λ(t) are the partial

traces

Ricµ(λ(t)) := Tr(Rµµ

λ(t) : Sµγ (t)→ Sµγ (t)), µ = a, b, c. (67)
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Remark 4. If {E(t), F(t)} is a canonical frame along λ(t) with initial covector λ and

curvature matrix R(t), then {E(t + τ), F(t + τ)} is a canonical frame along λτ (t) = λ(t +
τ) with initial covector λτ = λ(τ) and curvature matrix R(t + τ). Therefore, Ricµ(λτ (t)) =
Ricµ(λ(t + τ)). For this reason, it makes sense to define Ricµ : U∗M → R, for any initial

unit covector λ ∈ U∗M , as Ricµ(λ) := Ricµ(λ(0)). In particular, the hypothesis Ricµ(λ) >
κ for all λ ∈ U∗M implies that for any extremal λ(t) = et EH (λ) one has Ricµ(λ(t)) > κ.

Remark 5. One can always choose a canonical frame in such a way that one of the fc(t)’s
(e.g., the last one) is the tangent vector of the associated geodesic γ̇ (t), and lies in the

kernel of the curvature operator. Thus, the (2k− n)× (2k− n) matrix Rcc(t) splits further

as

Rcc(t) =
(

R′cc(t) 0
0 0

)
, (68)

where R′cc(t) is a (2k− n− 1)× (2k− n− 1) block. Moreover, Ricc(λ(t)) = Tr(R′cc(t)).

Remark 6. Let λ ∈ T ∗M \ H−1(0) be a covector with corresponding extremal

λ(t) = et EH (λ). Let α > 0 and consider the rescaled covector αλ, with the corresponding

extremal λα(t) = et EH (αλ). Then the Ricci curvatures have the following homogeneity

properties

Rica(λα(t)) = α4Rica(λ(αt)), (69)

Ricb(λα(t)) = α2Rica(λ(αt)), (70)

Ricc(λα(t)) = α2Rica(λ(αt)). (71)

The proof follows from more general homogeneity properties of R (see [20, Theorem 4.7]).

Definition 17. Let ω ∈ 3n M be a smooth volume form (or density, if M is not orientable).

The canonical volume derivative ρω : T ∗M \ H−1(0)→ R is

ρω(λ) :=
d
dt

∣∣∣∣
t=0

log |ω( fa(t), fb(t), fc(t))|, λ ∈ T ∗M \ H−1(0), (72)

where fa(t), fb(t), fc(t) is a canonical frame associated with the extremal λ(t) = et EH (λ).

Remark 7. The same construction, in the Riemannian setting, gives ρω(λ) =
∇
λ]
ω

ω
, where

∇ is the Levi-Civita connection. From the homogeneity properties of the canonical frame

(see [20, Proposition 4.9]), it follows that ρω(αλ) = αρω(λ) for all α > 0.

In [4], the above definition has been generalized to any sub-Riemannian structure,

provided that the extremal λ(t) satisfies some regularity conditions which, in the fat

case, are verified. We notice that the definition of ρω in [4], which the authors call volume

geodesic derivative, does not require the canonical frame.

3. Matrix Riccati comparison theory

The next lemma is immediate and follows from the definition of conjugate time.
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16 L. Rizzi and P. Silveira

Lemma 18. Let γ (t) be a sub-Riemannian geodesic, associated with an extremal λ(t). A

time t∗ > 0 is conjugate if and only if there exists a Jacobi field J (t) along λ(t) such that

π∗J (0) = π∗J (t∗) = 0, (73)

or, equivalently, J (0) ∈ Vλ(0), and J (t∗) ∈ Vλ(t∗). If t∗ is the first conjugate time along

γ , any Jacobi field J (t) along λ(t) is transverse to Vλ(t) for all t ∈ (0, t∗).

Choose the canonical moving frame of Theorem 13 along λ(t), and consider the Jacobi

fields Ji (t) ' (pi (t), xi (t)), for i = 1, . . . , n, specified by the initial conditions

pi (0) = (0, . . . , 1, . . . , 0)∗, xi (0) = (0, . . . , 0)∗, (74)

where the 1 is in the ith position. We collect the column vectors Ji (t) in a 2n× n matrix:

J (t) := [J1(t), . . . ,Jn(t)] =
(

M(t)
N (t)

)
, (75)

where M(t) and N (t) are smooth families of n× n matrices. From (46), we obtain

d
dt

(
M(t)
N (t)

)
=

(
−A∗ −R(t)

B A

)(
M(t)
N (t)

)
, M(0) = 1, N (0) = 0. (76)

Observe that, in general, a Jacobi field
∑

pi (t)Ei (t)+ xi (t)Fi (t) ∈ Vλ(t) if and only if

x(t) = 0. Thus (the rows of) J (t) describe the n-dimensional subspace of Jacobi fields

J (t) with initial condition J (0) ∈ Vλ(0). Hence, the first conjugate time t∗ is precisely

the smallest positive time such that det N (t∗) = 0.

The n× n matrix V (t) := M(t)N (t)−1 is well defined and smooth for all t ∈ (0, t∗). One

can check that it is a solution of the following Cauchy problem with limit initial datum

V̇ + A∗V + V A+ R(t)+ V BV = 0, lim
t→0+

V−1
= 0, (77)

in the sense that V (t) is invertible for small t > 0 and limt→0+ V−1
= 0.

3.1. The matrix Riccati equation

The non-linear ODE (77) is called matrix Riccati equation. An extensive literature on

comparison theorems is available, see for example [1, 33, 51]. Comparison theorems for

solutions of (77) with limit initial datum are considered, to our best knowledge, only in

[21, Appendix A]. We take from there the results that we need.

Assumptions. In the following, A, B are any pair of n× n matrices satisfying4

span{B, AB, . . . , Am B} = Rn, (78)

with B > 0 and Q(t) = Q(t)∗ is any smooth family of n× n matrices defined for t ∈
[0,+∞).

Remark 8. The matrices A and B that appear in the Cauchy problem (77) for the case

of fat sub-Riemannian structures (defined in Theorem 13) verify (78) with m = 1.

4Condition (78) is called Kalman condition in geometric control theory [12, 32, 41].
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Lemma 19 (Well posedness). The Cauchy problem with limit initial condition

V̇ + A∗V + V A+ Q(t)+ V BV = 0, lim
t→0+

V−1
= 0, (79)

is well posed, in the sense that it admits a smooth solution, invertible for small t > 0,

such that limt→0+ V−1
= 0. The solution is unique on a maximal interval of definition

I = (0, t̄) and symmetric. In addition, V (t) > 0 for small t > 0.

The extrema of the interval of definition (0, t̄) are characterized by the blow-up of V (t).
To be precise, we say that a one-parameter family V (t) of n× n symmetric matrices blows

up at t̄ ∈ R∪ {±∞} if there exists a w ∈ R such that

lim
t→t̄
|w∗V (t)w| → +∞. (80)

If for all w such that (80) holds we have that limt→t̄ w
∗V (t)w = +∞ (resp. −∞), we say

that V (t) blows up to +∞ (resp. −∞). The problem (79) is related with a Hamiltonian

system, similar to Jacobi equation (76).

Lemma 20 (Relation with Jacobi). Let M(t), N (t) be the solution of the Jacobi equation

d
dt

(
M
N

)
=

(
−A∗ −Q(t)

B A

)(
M
N

)
, M(0) = 1, N (0) = 0. (81)

Then N (t) is invertible for small t > 0. Let t̄ the first positive time such that det N (t) = 0,

and let V (t) be the solution of

V̇ + A∗V + V A+ Q(t)+ V BV = 0, lim
t→0+

V−1
= 0, (82)

defined on its maximal interval I . Then V (t) = M(t)N (t)−1 and I = (0, t̄).

Proof. Let V (t) be the solution of (82) on I = (0, a). We first show that it must be of the

form M(t)N (t)−1 on (0, t̄) and then we prove that t̄ = a. By Lemma 19, W (t) := V (t)−1

is well defined on (0, ε) and limt→0+ W (t) = 0 =: W (0). Consider then the solution M̃(t)
of

˙̃M = −(A∗+ Q(t)W (t))M̃, M̃(0) = 1, (83)

well defined at least on [0, ε). Then set Ñ (t) := W (t)M̃(t). Again by Lemma 19, W (t) > 0
on (0, ε), hence Ñ (t) is invertible for t sufficiently small and V (t) = M̃(t)Ñ (t)−1 for small

t . One can check that M̃(t), Ñ (t) solve (81), with the correct initial condition, hence

M̃(t), Ñ (t) = M(t), N (t) on [0, ε). Then for all t ∈ (0, t̄), the matrix M(t)N (t)−1 is well

defined and coincides with the solution V (t) of (82) on the interval (0, t̄). In particular

a > t̄ .
By contradiction, assume a > t̄ . Consider the two n-dimensional families of subspaces

L1(t) and L2(t) of R2n generated by the columns of

L1(t) := span
(

M(t)
N (t)

)
, and L2(t) :=

(
V (t)

1

)
, (84)

respectively. These may be seen as two curves in the Grassmannian of n-planes of

R2n , both defined at least on I = (0, a). We show that L1(t) = L2(t) on (0, t̄): indeed
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18 L. Rizzi and P. Silveira

if z1, . . . , zn are the columns generating L1 and z′1, . . . , z′n are the columns generating

L2, then z′i =
∑

j N∗−1
i j (t)z j . By continuity, L1(t̄) = L2(t̄). This is absurd, since if x ∈

ker N (t̄) 6= {0}, then the vector (0, x)∗ is orthogonal to L1(t̄) but not to L2(t̄).

Corollary 21 (Relation with first conjugate time). Let V (t) be the solution of the Riccati

Cauchy problem (77) associated with the Jacobi equation along λ(t). Then the maximal

interval of definition is I = (0, t∗), where t∗ is the first conjugate time along the geodesic.

The next theorem is a special version of [21, Theorem 40] for our setting.

Theorem 22 (Riccati comparison theorem). Let A, B be two n× n matrices satisfying

the Kalman condition (78). Let Q1(t) and Q2(t) be smooth families of n× n symmetric

matrices. Let V1(t) and V2(t) be the solutions of the Riccati Cauchy problems with limit

initial data:

V̇i + A∗Vi + Vi A+ Qi (t)+ Vi BVi = 0, lim
t→0+

V−1
i = 0, (85)

for i = 1, 2, defined on a common interval I = (0, a). If Q1(t) > Q2(t) for all t ∈ I , then

V1(t) 6 V2(t) for all t ∈ I .

A crucial property for comparison is the following [21, Lemma 27].

Lemma 23. Let V (t) be a solution of the Cauchy problem (79). If 0 < t̄ < +∞ is a blow-up

time for V (t), then the latter blows up to −∞.

Corollary 24. Under the hypotheses of Theorem 22, let 0 < t̄i 6 +∞ be the blow-up time

of Vi , for i = 1, 2. Then t̄1 6 t̄2.

The typical scenario is a bound Q1(t) > Q2 with a constant symmetric matrix. To have

a meaningful estimate, it is desirable that t̄2 < +∞. We reformulate the results of [11] to

give necessary and sufficient conditions for finite blow-up time of Riccati equations with

constant coefficients.

Theorem 25 (Finiteness of blow-up times [11, Theorem A]). The solution of the Riccati

Cauchy problem

V̇ + A∗V + V A+ Q+ V BV = 0, lim
t→0+

V−1
= 0, (86)

has a finite blow-up time t̄(A, B, Q) if and only if the associated Hamiltonian matrix(
−A∗ −Q

B A

)
(87)

has at least one Jordan block of odd dimension, associated with a purely imaginary

eigenvalue.

If one is able to compute the sub-Riemannian curvature matrix R(t) of (76), and

bound it with a (possibly constant) symmetric matrix R̄, then one can apply the
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Sub-Riemannian curvature and diameter bounds for 3-Sasakian manifolds 19

comparison theory described so far to estimate the first conjugate time t∗(γ ) along the

sub-Riemannian geodesic with the first blow-up time t (R̄, A, B) of the Riccati equation

associated with the matrices A, B and Q(t) = R̄. Theorem 25 then provides conditions

on R̄ such that t (R̄, A, B) < +∞.

The advantage of this formulation (in terms of blow-up times for the Riccati

equation) is that the latter can be suitably ‘traced’, to obtain comparison theorems

with weaker assumptions on the average curvature (Ricci-type curvature) instead of the

full sectional-type curvature R(t). In the Riemannian case (i.e. when A = 0, B = 1), this

is well known. As we show, in the sub-Riemannian case the tracing procedure is much

more delicate.

4. Proof of the results

Let now V (t) be the solution of the Riccati Cauchy problem (77) associated with the

Jacobi equation (76) along a given extremal λ(t). For convenience, we recall that V (t)
solves

V̇ + A∗V + V A+ R(t)+ V BV = 0, lim
t→0+

V−1
= 0, (88)

A =

0 1 0
0 0 0
0 0 0

 , B =

0 0 0
0 1 0
0 0 1

 , R(t) =

Raa(t) Rab(t) Rac(t)
Rba(t) Rbb(t) Rbc(t)
Rca(t) Rcb(t) Rcc(t)

 , (89)

with R(t) symmetric and Rab(t) = −Rab(t)∗. In the notation of § 2.3, we decompose

V (t) =

Vaa(t) Vab(t) Vac(t)
Vba(t) Vbb(t) Vbc(t)
Vca(t) Vcb(t) Vcc(t)

 , (90)

where Vαβ is a |α| × |β| matrix, α, β = a, b, c. Notice the special structure of A and B:

A =
(

AI 0
0 AII

)
, B =

(
BI 0
0 BII

)
, (91)

where AI, BI are (2n− 2k)× (2n− 2k) blocks and AII, BII are (2k− n)× (2k− n) blocks:

AI :=

(
0 1
0 0

)
, BI :=

(
0 0
0 1

)
, AII := 0, BII := 1. (92)

Analogously, we consider the two symmetric matrices (recall that V (t) itself is symmetric)

VI(t) :=
(

Vaa(t) Vab(t)
Vba(t) Vbb(t)

)
, VII(t) := Vcc(t), (93)

which are (2n− 2k)× (2n− 2k) and (2k− n)× (2k− n) diagonal blocks of V (t),
respectively.

Lemma 26. The families VI(t) and VII(t) are invertible for small t > 0 and

lim
t→0+

(VI)
−1
= 0, lim

t→0+
(VII)

−1
= 0. (94)
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20 L. Rizzi and P. Silveira

Proof. We prove it for VI(t). Suppressing the explicit dependence on t , we have

V =
(

VI VIII

V ∗III VII

)
, with VIII =

(
Vac
Vbc

)
. (95)

We partition similarly the inverse matrix W := V−1. In particular, by block-wise

inversion, WI = (V−1)I = (VI− VIII(VII)
−1V ∗III)

−1. By Lemma 19, V > 0 for small t > 0,

in particular VII > 0 on the same interval. Moreover, also W > 0 and then WI > 0.

Then VI− (WI)
−1
= VIII(VII)

−1V ∗III > 0. Thus VI > (WI)
−1 > 0. Taking the inverse, by

positivity, 0 < (VI)
−1 6 WI for small t > 0. Since limt→0+ WI = limt→0+(V−1)I = 0, we

obtain the result. Similarly for VII.

4.1. Proof of Theorem 3

The first conjugate time t∗(γ ) is the first blow-up time of V (t), solution of (88). Using

also Lemma 26, we see that the (2k− n)× (2k− n) block VII solves

V̇II+ RII(t)+ V 2
II = 0, lim

t→0+
(VII)

−1
= 0, (96)

with RII(t) = Rcc(t)+ Vcb(Vcb)
∗ > Rcc(t). First, we ‘take out the direction of motion’ (this

procedure is the classical Riemannian one, see [55, Chapter 14]). According to Remark 5,

we can assume Rcc(t) has the following block structure

Rcc(t) =
(

R′cc(t) 0
0 0

)
, (97)

where Rcc(t) has dimension 2k− n− 1. Accordingly, the solution VII has the form

VII =

(
V ′II 0
0 v0

II

)
, (98)

where V ′II is a (2k− n− 1)× (2k− n− 1) matrix and v0
II is a 1× 1 matrix. They satisfy

V̇ ′II+ R′II(t)+ (V
′

II)
2
= 0, lim

t→0+
(V ′II)

−1
= 0, with R′II(t) > R′cc(t), (99)

v̇0
II+ r0

II(t)+ (v
0
II)

2
= 0, lim

t→0+
(v0

II)
−1
= 0, with r0

II(t) > 0. (100)

By Theorem 22, v0
II is controlled by the solution of (100) with r0

II(t) ≡ 0, that is v0
II(t) 6

1/t . This term gives no contribution to conjugate time (indeed 1/t has no finite blow-up

time for t > 0) but we use v0
II(t) 6 1/t in a subsequent proof hence it was worth pointing

it out. Now we turn to (99). Its normalized trace

v′II(t) :=
1

2k− n− 1
Tr(V ′II(t)) (101)

solves

v̇′II+ r ′II(t)+ (v
′

II)
2
= 0, lim

t→0+
(v′II)

−1
= 0, (102)

with (suppressing the explicit dependence on t)

r ′II =
Tr(R′II)

2k− n− 1
+
[(2k− n− 1)Tr((V ′II)

2)−Tr(V ′II)
2
]

(2k− n− 1)2
>

Ricc

2k− n− 1
> κc, (103)
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where we used that, for an m×m symmetric matrix M, Tr(M2) > 1
m Tr(M)2 and Tr(R′II) >

Tr(R′cc) = Ricc. Then, applying Theorem 22, v′II(t) 6 vκc (t), where vκc is the solution of

v̇κc + κc+ v
2
κc
= 0, lim

t→0+
v−1
κc
= 0. (104)

In particular, t∗(γ ) 6 t̄(κc), where t̄(κc) is the first blow-up time of vκc . In this case, we

can compute the explicit solution of (104), which is

vκc (t) =


√
κc cot(

√
κct) κc > 0,

1
t κc = 0,
√
|κc| coth(

√
|κc|t) κc < 0.

(105)

Thus, when κc > 0, we have t∗(γ ) 6 t̄(κc) = π/
√
κc.

Remark 9. For later use, we rename sκc (t) := vκc (t) and we observe that

sα2κc
(t) = αsκc (αt), ∀α > 0, (106)

for all t > 0 where it makes sense.

4.2. Proof of Theorem 2

The first conjugate time t∗(γ ) is the first blow-up time to V (t), solution of (88). The

(2n− 2k)× (2n− 2k) block VI solves

V̇I+ A∗I VI+ VI AI+ RI(t)+ VI BIVI = 0, lim
t→0+

V−1
I = 0, (107)

where

AI =

(
0 1
0 0

)
, BI =

(
0 0
0 1

)
, RI(t) =

(
Raa(t) Rab(t)
Rba(t) Rbb(t)

)
+

(
Vac
Vbc

) (
V ∗ac V ∗bc

)
.

Taking the normalized block-wise trace, that is

vI(t) :=
1

n− k

(
Tr(Vaa(t)) Tr(Vab(t))
Tr(Vba(t)) Tr(Vbb(t))

)
, (108)

we observe that vI solves the following 2× 2 Riccati Cauchy problem

v̇I+ a∗I vI+ vIaI+ rI(t)+ vIbIvI = 0, lim
t→0+

v−1
I = 0, (109)

with

aI :=

(
0 1
0 0

)
, bI :=

(
0 0
0 1

)
(110)

and, suppressing the explicit dependence on t ,
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rI(t) :=
1

n− k

(
Tr(Raa) Tr(Rab)

Tr(Rba) Tr(Rbb)

)
+

1
n− k

(
Tr(VacV ∗ac) Tr(VacV ∗bc)

Tr(VbcV ∗ac) Tr(VbcV ∗bc)

)
+

1
n− k

[(
Tr(VabV ∗ab) Tr(VabVbb)

Tr(VbbV ∗ab) Tr(VbbVbb)

)
−

1
n− k

(
Tr(Vab)Tr(V ∗ab) Tr(Vab)Tr(Vbb)

Tr(Vbb)Tr(V ∗ab) Tr(Vbb)Tr(Vbb)

)]
.

(111)

The second term is non-negative. In fact the minors Tr(VacV ∗ac), Tr(VbcV ∗bc) and

the determinant Tr(VacV ∗ac)Tr(VbcV ∗bc)−Tr(VacV ∗bc)
2 > 0 are non-negative, by the

Cauchy–Schwarz inequality. Also the last term is non-negative(
Tr(VabV ∗ab) Tr(VabVbb)

Tr(VbbV ∗ab) Tr(VbbVbb)

)
−

1
n− k

(
Tr(Vab)Tr(V ∗ab) Tr(Vab)Tr(Vbb)

Tr(Vbb)Tr(V ∗ab) Tr(Vbb)Tr(Vbb)

)
> 0. (112)

To prove (112) it is enough to show that the principal determinants are non-negative,

i.e.

Tr(VabV ∗ab)−
Tr(Vab)Tr(V ∗ab)

n− k
> 0, Tr(VbbV ∗bb)−

Tr(Vbb)Tr(V ∗bb)

n− k
> 0, (113)

(that follow from the Cauchy–Schwarz inequality) and the determinant is non-negative:

Tr(VabV ∗ab)Tr(VbbV ∗bb)−Tr(VabV ∗bb)
2
−

Tr(Vbb)
2 Tr(VabV ∗ab)

n− k
−

Tr(Vab)
2 Tr(VbbV ∗bb)

n− k

+
2 Tr(Vab)Tr(Vbb)Tr(VabV ∗bb)

n− k
> 0. (114)

Inequality (114) follows from the next lemma (with X = Vab, Y = Vbb and m = n− k).

Lemma 27. Let Mm(R) be the real vector space of real m×m matrices with scalar product

〈X, Y 〉 := Tr(XY ∗). Then the following inequality holds true for all X, Y ∈ Mm(R)

‖X‖2‖Y‖2−〈X, Y 〉2+
2
m

Tr(X)Tr(Y )〈X, Y 〉 >
1
m
(Tr(Y )2‖X‖2+Tr(X)2‖Y‖2). (115)

Proof. If ‖X‖ = 0 the statement is trivially true. Suppose ‖X‖ > 0 and write

Z = Y − 〈X,Y 〉
‖X‖2 X . One can check that (115) is equivalent to

‖X‖2‖Z‖2 >
1
m
(Tr(Z)2‖X‖2+Tr(X)2‖Z‖2). (116)

If Tr(X) = 0 then (116) follows from ‖X‖2 > 1
m Tr(X)2. Suppose Tr(X),Tr(Z) 6= 0, hence

(116) is equivalent to

‖X‖2‖Z‖2 >
1
m
(‖X‖2+‖Z‖2), (117)

where Tr(X) = Tr(Z) = 1 and 〈X, Z〉 = 0. Define the matrix

W :=
Z‖X‖2+ X‖Z‖2

‖X‖2+‖Z‖2
. (118)

By Cauchy–Schwarz inequality m‖W‖2 > Tr(W )2 = 1, and this corresponds to (117).
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Finally, by (60), Rab(t) is skew-symmetric, thus (suppressing explicit dependence on t)

rI(t) >
1

n− k

(
Tr(Raa) Tr(Rab)

Tr(Rba) Tr(Rcc)

)
=

1
n− k

(
Rica 0

0 Ricb

)
>

(
κa 0
0 κb

)
. (119)

By Theorem 22, vI(t) 6 vκa ,κb (t), where vκa ,κb (t) is the solution of (109) with rI(t) replaced

by the constant 2× 2 matrix qI = diag(κa, κb). The blow-up time of vκa ,κb (t) is t̄(κa, κb). A

blow-up of vI implies a blow-up of VI and V . Then, t∗(γ ) 6 t̄(κa, κb). The next proposition

characterizes t̄(κa, κb) and, in particular, it shows that under conditions (?), t̄(κa, κb) is

finite (this proves also Proposition 1).

Proposition 28. Consider the following Cauchy problem with a 2× 2 matrix Riccati

equation

v̇κa ,κb + a∗I vκa ,κb + vκa ,κb aI+ qI+ vκa ,κb bIvκa ,κb = 0, lim
t→0+

v−1
κa ,κb
= 0, (120)

with constant matrix coefficients

aI =

(
0 1
0 0

)
, bI =

(
0 0
0 1

)
, qI =

(
κa 0
0 κb

)
, κa, κb ∈ R. (121)

The first blow-up time t̄(κa, κb) of the solution of (120) is the first blow-up time of the

function sκa ,κb : (0, t̄(κa, κb))→ R, given by

sκa ,κb (t) :=
2
t

(
sinc(2θ+t)− sinc(2θ−t)
sinc(θ+t)2− sinc(θ−t)2

)
, θ± =

1
2
(
√

x + y±
√

x − y), (122)

where sinc(a) = sin(a)/a and we set x = κb
2 and y =

√
4κa+κ

2
b

2 . Moreover,

t̄(κa, κb) 6
π

Re(θ−)
=

2π
Re(
√

x + y−
√

x − y)
, (123)

where the r.h.s. of (123) is +∞ if the denominator is zero and
√
· is the principal value of

the square root. The equality holds if and only if κa = 0, in this case t̄(0, κb) = 2π/
√
κb.

In particular t̄(κa, κb) is finite if and only ifκb > 0,

κ2
b + 4κa > 0,

or

κb < 0,

κa > 0.
(124)

Proof. To compute t̄(κa, κb) we use Lemma 20. Then vκa ,κb (t) = m(t)n(t)−1 with(
m(t)
n(t)

)
= exp

(
t
(
−a∗I −qI

bI aI

))(
1
0

)
, (125)

where exp is the matrix exponential. Thus t̄(κa, κb) is the first positive zero of det n(t) or.

For reasons that will be clear later, it is more convenient to study, equivalently, the first

blow-up time of

sκa ,κb (t) :=
d
dt

log |det n(t)|, t ∈ (0, t̄(κa, κb)). (126)
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Remark 10. For later use, observe that

sκa ,κb (t) = Tr(ṅ(t)n(t)−1) = Tr(bI(t)vκa ,κb (t)), (127)

and the function sκa ,κb (t) has the following homogeneity property:

sα4κa ,α2κb
(t) = αsκa ,κb (αt), ∀α > 0, (128)

for all t > 0 where it makes sense.

We compute sκa ,κb (t). The characteristic polynomial of

(
−a∗I −qI

bI aI

)
=


0 0 −κa 0
−1 0 0 −κb
0 0 0 1
0 1 0 0

 (129)

is P(x) = x4
+ κbx2

− κa . Recall that (129) is a Hamiltonian matrix, hence if λ ∈ C is an

eigenvalue, then also ±λ and ±λ̄ are eigenvalues (the bar denotes complex conjugation).

Its Jordan form depends on the value of 1 := κ2
b + 4κa :

(i) If 1 = 0 there are two Jordan blocks (of size 2) associated with eigenvalues

±
√
−κb/2,

(ii) If 1 < 0 then (129) has 4 distinct simple eigenvalues ±λ,±λ̄ ∈ C,

(iii) If 1 > 0 then (129) has 2 pairs ±λ1 and ±λ2, with λ1 6= ±λ2 of simple eigenvalues.

In the cases (i) and (ii) t̄(κa, κb) = +∞ by Theorem 25. In the remaining case, set:

x =
κb

2
, y =

√
1

2
, θ± =

1
2
(
√

x + y±
√

x − y). (130)

In particular we recover κb = 2(θ2
++ θ

2
−) and κa = −(θ

2
+− θ

2
−)

2. The eigenvalues of (129)

are given then by the two distinct pairs

±λ1 := ±i(θ++ θ−), ±λ2 := ±i(θ+− θ−). (131)

This encompasses different cases (2 distinct imaginary pairs, 2 distinct real pairs, 1
imaginary and 1 real pair). The corresponding eigenvectors are

ξ±1 =


−(θ−− θ+)

2

±i(θ−+ θ+)
1

±i(θ−+θ+)
1

 , ξ±2 =


−(θ−+ θ+)

2

±i(θ+− θ−)
1

±i(θ+−θ−)
1

 . (132)

After some routine computations for the matrix exponential of (129) one obtains

sκa ,κb (t) =
2
t

(
sinc(2θ+t)− sinc(2θ−t)
sinc(θ+t)2− sinc(θ−t)2

)
, (133)

where, if θ+ = ±θ−, the result must be understood in the limit θ+→±θ−.
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Case 1. The two pairs of eigenvalues are pure imaginary, that is θ+ > θ− > 0 are reals.

Then the first blow-up time of sκa ,κb (t) is at the first positive root of

sinc(θ+t)2 = sinc(θ−t)2. (134)

In particular, since θ+ > θ− > 0, and the first zero of sinc(a) is at a = π , we have

π

θ+
< t̄(κa, κb) <

π

θ−
. (135)

Case 2. The two pairs of eigenvalues are both real, that is θ+, θ− are pure imaginary. We

already know from Theorem 25 that in this case t̄(κa, κb) = +∞. We prove it directly. If

|θ+| 6= |θ−|, the first blow-up time of sκa ,κb (t) is the first positive root of

sinh(|θ+|t)2

|θ+|2
=

sinh(|θ−|t)2

|θ−|2
, (136)

and since |θ+| 6= |θ−| the above equation has no positive solutions. If |θ+| = |θ−|,

then (133) must be considered in the limit θ+→±θ−. After taking the limit, we obtain

that the first blow-up time is the first positive root of tanh(|θ+|t) = |θ+|t , that has no

solution for t 6= 0.

Case 3. One pair is pure imaginary and the other is real. This means that θ+ = α+ iβ
and θ− = α− iβ, with α > 0 and β > 0. In this case (133) becomes

sκa ,κb (t) =
(α2
+β2)

2 cosh(βt)2
β sin(2αt) cosh(2βt)−α cos(2αt) sinh(2βt)

[β sin(αt)−α cos(αt) tanh(βt)][α sin(αt)+β cos(αt) tanh(βt)]
.

(137)

Assume first β > 0. In this case, if cos(αt) = 0, then sκa ,κb (t) is finite. Hence, assuming

cos(αt) 6= 0, the first blow-up of sκa ,κb (t) is given by the first positive root of

[β tan(αt)−α tanh(βt)][α tan(αt)+β tanh(βt)] = 0. (138)

A rapid inspection shows that the first positive root occurs thanks to the second factor,

and

t̄(κa, κb) <
π

α
=

π

Re(θ−)
. (139)

The case β = 0 corresponds to θ+ = θ− and (133) must be taken in the limit. We obtain

sκa ,κb (t) = α
(

αt
1−αt cot(αt)

+ cot(αt)
)
, (140)

whose first blow-up time is t̄(κa, κb) =
π
α
=

π
Re(θ−)

. This completes all the cases.

4.3. Proof of Theorems 4 and 5

By Theorem 2 (or 3), under conditions ?, any length-parametrized sub-Riemannian

geodesic γ has a conjugate time t∗(γ ) 6 t̄(κa, κb) (resp. 6t̄(κc)). In particular, no geodesic

can be optimal after such a length.
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26 L. Rizzi and P. Silveira

The sub-Riemannian structure is complete, hence for any pair q, p ∈ M there exists

a (possibly not unique) minimizing trajectory joining q and p (see [15, 47, 50]). This

trajectory is a geodesic γp,q (the structure is fat and there are no abnormal minimizers).

diam(M) = inf{d(p, q) | p, q ∈ M} = inf{`(γp,q) | p, q ∈ M} 6 t̄(κa, κb) (resp. t̄(κc)).

By completeness, closed balls are compact, hence M is compact. The argument for the

fundamental group is the classical one, considering the universal cover M̃ (see [48]).

4.4. Proof of Theorem 7

Fix q0 ∈ M . The function fq0 :=
1
2 d(q0, ·)

2 on a complete, fat sub-Riemannian structure

has the following properties (see [15, 50]):

• is smooth on a maximal open dense set Σq0 , whose complement has zero measure;

• for any point q ∈ Σq0 , there exists a unique minimizing geodesic γ : [0, 1] → M such

that γ (0) = q0 and γ (1) = q. The corresponding final covector is given by

λ(1) = dq fq0 ∈ T ∗q M. (141)

Notice that the initial covector λ = e− EH (dq fq0) is not unit; the associated geodesic is not

length-parametrized and has speed ‖γ̇ (t)‖2 = 2H(λ) = d(q0, q)2. In this proof, with no

risk of confusion, we use the symbol ∇h to denote the horizontal gradient grad(h) of

h ∈ C∞(M).
We drop q0 from the notation of fq0 , since it is fixed. For any p ∈ Σq0 , the two curves

eε∇f(p), and π ◦ eε EH (dpf), (142)

define the same tangent vector at p. Hence we can exchange them at first order in ε. Let

df : Σq0 → T ∗M be the smooth map p 7→ dpf. In particular, for any tensor η

d
dε

∣∣∣∣
ε=0
(eε∇f)∗η =

d
dε

∣∣∣∣
ε=0
(π ◦ e EH ◦ df)∗η. (143)

By definition of sub-Laplacian associated with a smooth volume ω we have

1ωh =
1
ω
L∇hω =

1
ω

d
dε

∣∣∣∣
ε=0
(eε∇h)∗ω, h ∈ C∞(M), (144)

where eτ X denotes the flow of the vector field X . For h = f, and using (143), we obtain

(1ωf)(q) =
1

ω(W1, . . . ,Wn)

d
dε

∣∣∣∣
ε=0
ω(π∗ ◦ eε EH∗ ◦ (df)∗(W1, . . . ,Wn)), (145)

for any set of vectors W1, . . . ,Wn ∈ Tq M . Consider a canonical frame {Ei (t), Fi (t)}ni=1
along the extremal λ(t) as in § 2, and the corresponding frame fi (t) = π∗Fi (t) along γ (t).
We soon set Wi = fi (1) in (145). For any q ∈ Σq0 , we have π ◦ e− EH (dq f) = q0, hence

π∗ ◦ e− EH∗ ◦ (df)∗ = 0. (146)
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In particular, since kerπ∗|λ = span{E1(0), . . . , En(0)}, for all i = 1, . . . , n we have

e− EH∗ ◦ (df)∗ fi (1) =
n∑

j=1

2 j i E j (0), ⇒ (df)∗ fi (1) =
n∑

j=1

2 j i e
EH
∗ E j (0), (147)

for some n× n matrix2. The vector field J j (t) = et EH
∗ E j (0) is a Jacobi field along λ(t) with

initial condition J j (0) = E j (0). In particular, its components J j (t) =
∑n
`=1 M`j (t)E`(t)+

N`j (t)F`(t) solve (76). Moreover, since π ◦ df = I on Σq0 , we have

fi (1) = π∗ ◦ (df)∗ fi (1) (148)

= π∗

n∑
`, j=1

2 j i (M`j (1)E`(1)+ N`j (1)F`(1)) =
n∑
`=1

[N (1)2]`i f`(1). (149)

In particular 2 = N (1)−1. Hence

π∗ ◦ eε EH∗ ◦ (df)∗ fi (1) =
n∑
`=1

[N (1+ ε)2]`i f`(1+ ε) =
n∑
`=1

[N (1+ ε)N (1)−1
]`i f`(1+ ε).

(150)

Plugging this back into (145), we obtain

(1ωf)(q) =
1

ω( f1(1), . . . , fn(1))
d
dε

∣∣∣∣
ε=0

det(N (1+ ε))
det N (1)

ω( f1(1+ ε), . . . , fn(1+ ε)) (151)

=
d
dt

∣∣∣∣
t=1

log(|det N (t)ω( f1(t), . . . , fn(t))|) (152)

= Tr(Ṅ (1)N (1)−1)+ ρω(dq f), (153)

where we used the definition of canonical volume derivative, and Remark 4. The matrix

N (t) solves (76), thus by the same splitting and notation of the previous proofs

(1ωf)(q) = Tr(BV (1)+ A)+ ρω(dq f) by (76)

= Tr(BIVI(1))+Tr(VII(1))+ ρω(dq f) by (91) (92) (93)

= Tr(BIVI(1))+Tr(V ′II(1))+ v
0
II(1)+ ρω(dq f) by (98)

= (n− k)Tr(bIvI(1))+ (2k− n− 1)v′II(1)+ v
0
II(1)+ ρω(dq f), by (108) (110) (101)

where V (t) is the solution of (77) with curvature matrix associated with the extremal

λ(t) = e(t−1) EH (dq f). We rescale λ(t). Set tq := d(q0, q) and denote with λ̄(t) := et EH (λ̄) the

extremal with unit initial covector λ̄ := λ/tq . By homogeneity of the Hamiltonian we

have

λ(t) = et EH (λ) = et EH (tq λ̄) = tq λ̄(tq t). (154)

By Remark 7, and the hypothesis on the canonical volume derivative, we have

ρω(dq f) = ρω(λ(1)) = ρω(tq λ̄(tq)) = tqρω(λ̄(tq)) 6 tqκω(λ̄). (155)
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By hypothesis Ricα(λ̄(t)) > κα(λ̄) for all unit covectors λ̄, and α = a, b, c. Then by

Remark 6

Rica(λ(t)) = t4
qRica(λ̄(tq t)) > t4

qκa(λ̄), (156)

Ricb(λ(t)) = t2
qRicb(λ̄(tq t)) > t2

qκb(λ̄), (157)

Ricc(λ(t)) = t2
qRicc(λ̄(tq t)) > t2

qκc(λ̄). (158)

By Riccati comparison, as in the previous sections (and taking in account rescaling) we

have

vI(t) 6 vt4
q κa(λ̄),t2

q κb(λ̄)
(t), v′II(t) 6 vt2

q κc(λ̄)
(t), v0

II(t) 6 1/t, (159)

for at least all t 6 1. From the definition of the functions sκa ,κb (t), sκc (t) and their

homogeneity properties (see Remarks 9 and 10) we obtain

(1ωf)(q) 6 (n− k)st4
q κa(λ̄),t2

q κb(λ̄)
(1)+ (2k− n− 1)st2

q κc(λ̄)
(1)+ 1+ tqκω(λ̄) (160)

6 (n− k)tqsκa(λ̄),κb(λ̄)
(tq)+ (2k− n− 1)tqsκc(λ̄)

(tq)+ 1+ tqκω(λ̄). (161)

To recover an analogous result for r = d(q0, ·) notice that ∇f = r∇r . Hence

1ωf = divω(∇f) = divω(r∇r) = rdivω(∇r)+ dr(∇r) = r1ωr + 1. (162)

In particular, observing that tq = r(q), we have

(1ωr)(q) =
(1ωf)(q)− 1

r(q)
6 (n− k)sκa(λ̄),κb(λ̄)

(r(q))+ (2k− n− 1)sκc(λ̄)
(r(q))+ κω(λ̄).

(163)

To obtain the exact statement of Theorem 7, observe that the covector

λ̄ = λ/tq = e− EH (dq f)/tq = e− EH (tqdqr)/tq = e−tq EH (dqr) = λq
q0 , (164)

is the initial covector of the unique length-parametrized geodesic joining q0 with q.

4.5. Proof of Proposition 11

We consider a sub-Riemannian length-parametrized geodesic γ (t) and apply Theorem 2.

Then we study the maximum of t̄(κa, κb) over all geodesics. We use the expressions for

the Ricci curvature of 3-Sasakian manifold of Theorem 8.
In particular, under the assumption (38), %a(v) >

∑
α K‖Zα‖2 = 2K‖v‖2. Then set

κb(v) := 4+ 5‖v‖2 = 1
3Ricb, (165)

κa(v) := ‖v‖
2( 3

2 K − 7
2 −

15
8 ‖v‖

2) 6 1
3Rica . (166)

Since κb(v) > 0, conditions (?) are equivalent to

35
2
‖v‖4+ (26+ 6K )‖v‖2+ 16 > 0, (167)

which is positive for all ‖v‖ > 0 if K > −1. From Theorem 2 we get t∗(γ ) 6 t̄(v) :=
t̄(κa(v), κb(v)). Observe that to larger values of K (and fixed v) correspond larger values
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of κa(v), hence smaller blow-up times (by Riccati comparison, see Corollary 24). Thus, it

is sufficient to prove the bound t̄(v) 6 π for fixed K = −1. From Proposition 28 we get

t̄(v) = t̄(κa(v), κb(v)) 6
π

θ−(v)
, θ±(v) :=

1
2
(
√

x + y±
√

x − y), (168)

where x = κb(v)
2 and y =

√
κ2

b (v)+4κa(v)

2 . If ‖v‖ = 0 then κa(v) = 0, κb(v) = 4 and t̄(0, 4) =
π . If ‖v‖ > 0, one can check that we are in the case 1 of the proof of Proposition 28. In

particular θ+ > θ− > 0 are reals. Thus, as in (134), t̄(v) is the first positive zero of

χv(t) := sinc(θ−(v)t)2− sinc(θ+(v)t)2. (169)

When θ−(v) > 1, that is ‖v‖ > ρ :=
√

8/7, then t̄(v) < π , by (168).

On the other hand, one can check that if 0 < ‖v‖ 6 ρ then χv(π) 6 0. Since χ ′v(0) = 0
and χ ′′v (0) =

2
3 (θ

2
+− θ

2
−) > 0, we conclude that also in this case t̄(v) 6 π .

5. Sub-Riemannian geometry of 3-Sasakian manifolds

5.1. Contact structures

We collect here some results from the monograph [30, Chapters 3,4,6,14] to which we

refer for further details. Let M be an odd-dimensional manifold, φ : 0(T M)→ 0(T M)
be a (1, 1) tensor, ξ ∈ 0(T M) be a vector field and η ∈ 31 M be a one-form. We say that

(φ, ξ, η) is an almost contact structure on M if

φ2
= −I+ η⊗ ξ, η(ξ) = 1. (170)

This implies φξ = 0 and η ◦φ = 0. We say that g is a compatible metric if

g(φX, φY ) = g(X, Y )− η(X)η(Y ). (171)

In this case, (φ, ξ, η, g) defines an almost contact metric structure on M . Moreover, a

compatible metric g is an associated metric if5

2g(X, φY ) = dη(X, Y ). (172)

In this case, (φ, ξ, η, g) is called a contact metric structure on M .

5.1.1. Sasakian structures. Let (φ, ξ, η, g) be a (almost) contact metric structure

on M, and consider the manifold M ×R. We denote vector fields on M ×R by (X, f ∂t ),

where X is tangent to M and t is the coordinate on R. Define the (1, 1) tensor

J(X, f ∂t ) = (φX − f ξ, η(X)∂t ). (173)

Indeed J2
= −I and it defines an almost complex structure on M ×R (this was not

possible on the odd-dimensional manifold M). We say that the (almost) contact metric

structure (φ, ξ, η, g) is Sasakian if the almost complex structure J is a complex one.

5The exterior differential is defined with the convention dη(X, Y ) = X (η(Y ))− Y (η(X))− η([X, Y ]) for any
one-form η. In [30], the author uses a different convention, i.e. 2dη(X, Y ) = X (η(Y ))− Y (η(X))− η([X, Y ]),
but there is no factor 2 in (172). For this reason, our definitions agree with the ones of [30].
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A celebrated theorem by Newlander and Nirenberg states that this is equivalent to the

vanishing of the Nijenhuis tensor of J. For a (1, 1) tensor T , the Nijenhuis (2, 1) tensor

[T, T ] is

[T, T ](X, Y ) := T 2
[X, Y ] + [T X, T Y ] − T [T X, Y ] − T [X, T Y ]. (174)

In terms of the original structure, the integrability condition [J, J] = 0 is equivalent to

[φ, φ](X, Y )+ dη(X, Y )ξ = 0. (175)

Any Sasakian structure is K -type, i.e. the Reeb vector field ξ is Killing: Lξ g = 0. The

converse, however, is not true (except for dim M = 3). Moreover, Sasakian structures are

automatically contact metric structures, i.e. Sasakian implies (172). In particular the

following is an equivalent characterization of Sasakian structures.

Theorem 29. An almost contact metric structure (φ, ξ, η, g) is Sasakian if and only if

(∇Xφ)Y = g(X, Y )ξ − η(Y )X (176)

for all vector fields X, Y ∈ 0(T M). This directly implies

∇Y ξ = −φY. (177)

5.2. Contact 3-structures

Let dim M = 4d + 3. An almost contact 3-structure on M is a collection of three distinct

almost contact structures (φα, ηα, ξα), where α = I, J, K , that satisfy the following

quaternionic-like compatibility relations

φK = φIφJ − ηJ ⊗ ξI = −φJφI + ηI ⊗ ξJ , (178)

ξK = φI ξJ = −φJ ξI , ηK = ηI ◦φJ = −ηJ ◦φI , (179)

for any even permutation of I, J, K . There always exists a metric g on M compatible with

each structure. In this case {φα, ηα, ξα, g}α is called an almost contact metric 3-structure

on M . In particular ξI , ξJ , ξK are an orthonormal triple and

[ξI , ξJ ] = 2ξK , (180)

and analogously for cyclic permutations.

Remark 11. Why 3-structures? Given two almost contact structures satisfying (partial)

quaternionic relations as (178)–(179), one can always define a third one to complete it

to a almost contact 3-structure. On the other hand an almost contact 3-structure cannot

be extended to include a fourth one (see [30, Chapter 14]).

5.3. 3-Sasakian manifolds

If each almost contact metric structure (φα, ηα, ξα, g) is actually a contact metric

structure (i.e. (172) holds), we say that {φα, ηα, ξα, g}α is a contact metric 3-structure.

By a result of Kashiwada [42], each (φα, ηα, ξα, g) is actually Sasakian. In this case, we

say that M with the structure {φα, ηα, ξα, g} is a 3-Sasakian manifold.
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5.3.1. Quaternionic indices notation. We can collect all the relations on a

3-Sasakian structure with the following notation. If α, β = I, J, K

φαβ = φαφβ − ηβ ⊗ ξα, (181)

ξαβ = φαξβ , ηαβ = ηα ◦φβ , (182)

where the product αβ denotes the quaternionic product and we use the conventions

φ±1 = ±I, η1 = 0, ξ1 = 0 and φ−α = −φα. Moreover, we recall the Sasakian properties

(∇Yφα)Z = g(Y, Z)ξα − ηα(Z)Y, and ∇Y ξα = −φαY. (183)

for all X, Y, Z ∈ 0(T M) and α = I, J, K .

The following result is proved in [31, Theorem A], to which we refer for details.

Theorem 30. Let {φα, ηα, ξα, g}α be a 3-Sasakian structure on a smooth manifold M of

dimension 4d + 3. Assume that the Killing vector fields ξα are complete for α = 1, 2, 3.

Then

(i) (M, g) is an Einstein manifold of positive scalar curvature equal to (4d + 2)(4d + 3);

(ii) The metric g is bundle-like with respect to the foliation F defined by {ξI , ξJ , ξK };

(iii) Each leaf of the foliation F is a 3-dimensional homogeneous spherical space form;

(iv) The space of leaves M/F is a quaternionic Kähler orbifold of dimension 4d with

positive scalar curvature equal to 16d(d + 2).

Hence, every complete 3-Sasakian manifold is compact with finite fundamental group and

Riemannian diameter less than or equal to π .

We stress that, even if the Riemannian diameter of a 3-Sasakian manifold is bounded

by the classical Bonnet–Myers theorem, nothing is known about the sub-Riemannian

one. In fact, a priori, sub-Riemannian distances are larger then Riemannian ones.

5.3.2. Some curvature properties of 3-Sasakian manifolds. We need the

following results about the Riemannian curvature of 3-Sasakian structures, proved in

[54, Proposition 3.2] and [31, Proposition 2.17], respectively. Here D is the orthogonal

complement to span{ξI , ξJ , ξK } w.r.t. the Riemannian metric g and Sec is the sectional

curvature of the Riemannian structure.

Proposition 31. For any X ∈ Dq , the sum of the φα-sectional curvatures is constant:

Sec(X, φI X)+Sec(X, φJ X)+Sec(X, φK X) = 3. (184)

Proposition 32. For any X ∈ Dq we have Sec(X, ξα) = 1 for all α = I, J, K .

5.4. Sub-Riemannian geometry of 3-Sasakian manifolds

Any 3-Sasakian structure {φα, ηα, ξα, g}α carries a natural sub-Riemannian structure.

The distribution D ⊂ T M is

D :=
⋂

α=I,J,K

ker ηα. (185)
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32 L. Rizzi and P. Silveira

Indeed D is a corank 3 sub-bundle, orthogonal to ξI , ξJ , ξK . One can check that D is a

fat distribution, thus the restriction of g to D is a fat sub-Riemannian structure on M .

Lemma 33. Let λ ∈ T ∗M be the initial covector of the extremal λ(t) = et EH (λ). Let vα(λ) :=

〈λ, ξα〉 smooth functions on T ∗M for α = I, J, K . Then vα is constant along λ(t).

Proof. Let X1, . . . , X4d be a local orthonormal frame for D around γ (t). The Hamiltonian

is H = 1
2
∑d

i=1 u2
i , where ui (λ) := 〈λ, X i 〉, for i = 1, . . . , 4d. Using Hamilton equations

v̇α = {H, vα} =
d∑

i=1

ui {ui , vα} =

d∑
i, j=1

ui u j g([X i , ξα], X j )+

d∑
i=1

∑
β

vβui g([X i , ξα], ξβ).

(186)

Observe that

ηβ([X i , ξα]) = −dηβ(X i , ξα) = −2g(X i , φβξα) = 0. (187)

Hence [X i , ξα] ∈ D and the second term in (186) vanishes. Moreover, each contact

structure (ηα, φα, ξα) is K-type, that is Lξαg = 0. This implies that the matrix

g([ξα, X i ], X j ) is skew-symmetric (for any fixed α). Then also first term of (186)

vanishes.

The next proposition can serve, alternatively, as the definition of Popp volume on

3-Sasakian structures. We refer the reader interested in the general definition to [19].

Proposition 34. Up to a constant factor, the Popp volume of the sub-Riemannian

structure of a 3-Sasakian manifold is proportional to the Riemannian one.

Proof. Let ω ∈ 3n(M) be the Popp volume. The explicit formula in [19] gives

ω(X1, . . . , X4d , ξI , ξJ , ξK ) =
1

√
det(B)

, (188)

for any local orthonormal frame X1, . . . , X4d of D, where B is the matrix with components

Bαβ :=
4d∑

i, j=1

ηα([X i , X j ])ηβ([X i , X j ]) = 4 Tr(φαφ∗β), α, β = I, J, K , (189)

where we used the properties of 3-Sasakian structures. In particular det(B) = 123.

Remark 12. Scaling a volume by a constant factor does not change the associated

divergence operator. Hence the sub-Laplacian associated with Popp volume coincides,

up to a sign, with the sub-Laplacian used in quaternionic contact geometry (see, for

example, [38, 40]).

Example 2 (The quaternionic Hopf fibration). The field of quaternions is

H = {q = x + I y+ J z+ Kw | (x, y, z, w) ∈ R4
}, (190)
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with norm ‖q‖2 = x2
+ y2
+ z2
+w2. The tangent spaces TqH ' H have a natural

structure of H-module. With this identification, the multiplication by I, J, K induces

the complex structures 8I ,8J ,8K : TH→ TH. In real coordinates

8I ∂x = +∂y, 8J ∂x = +∂z, 8K ∂x = +∂w, (191)

8I ∂y = −∂x , 8J ∂y = −∂w, 8K ∂y = +∂z, (192)

8I ∂z = +∂w, 8J ∂z = −∂x , 8K ∂z = −∂y, (193)

8I ∂w = −∂z, 8J ∂w = +∂y, 8K ∂w = −∂x . (194)

The quaternionic unit sphere is the real manifold of dimension 4d + 3

S4d+3
= {q = (q1, . . . , qd+1) ∈ Hd+1

| ‖q‖ = 1}, (195)

equipped with the standard round metric g. The inward unit normal vector is

n = −
d+1∑
i=1

xi∂xi + yi∂yi + zi∂zi +wi∂wi . (196)

The vectors ξα := 8αn are tangent to S4d+3 and are given by

ξI =

d+1∑
i=1

yi∂xi − xi∂yi +wi∂zi − zi∂wi , (197)

ξJ =

d+1∑
i=1

zi∂xi −wi∂yi − xi∂zi + yi∂wi , (198)

ξK =

d+1∑
i=1

wi∂xi + zi∂yi − yi∂zi − xi∂wi . (199)

Consider the three one-forms

ηI =

d+1∑
i=1

yi dxi − xi dyi +wi dzi − zi dwi , (200)

ηJ =

d+1∑
i=1

zi dxi −wi dyi − xi dzi + yi dwi , (201)

ηK =

d+1∑
i=1

wi dxi + zi dyi − yi dzi − xi dwi . (202)

The three almost complex structures on S4d+3 are defined as φα := pr ◦8α, for

α = I, J, K , where pr is the orthogonal projection on the sphere. One can check that

the restrictions of (φα, ηα, ξα, g) to S4d+3 define a 3-Sasakian structure on it.

The natural action of the unit quaternions {p ∈ H | ‖p‖ = 1} = S3
' SU(2) on S4d+3 is

p · (q1, . . . , qd+1) = (pq1, . . . , pqd+1). (203)
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34 L. Rizzi and P. Silveira

The projection π on the quotient HPd is the so-called quaternionic Hopf fibration:

S3 ↪→ S4d+3 π
−→ HPd . (204)

The vector fields ξα generated by the action of eε I , eεJ , eεK on S4d+3 are tangent to the

fibers.

6. Computation of curvature and canonical frame for 3-Sasakian manifolds

Fix a 3-Sasakian manifold M of dimension n = 4d + 3, and consider its sub-Riemannian

structure as in § 5.4, with k = rankD = 3. We compute the canonical frame along an

extremal λ(t) (for small t) with initial covector λ ∈ U∗M , and the Ricci curvatures

Ricµ(λ(t)). To do this, we exploit the auxiliary Riemannian structure g of the 3-Sasakian

manifold. Hence ∇ denotes the covariant derivative and R∇ the Riemann curvature tensor

w.r.t. the Levi-Civita connection. The formulas for the sub-Riemannian curvature will

only depend on the sub-Riemannian structure (M,D, g|D). In the notation of § 2, we split

E(t) = (Ea(t), Eb(t), Ec(t))∗, F(t) = (Fa(t), Fb(t), Fc(t))∗. (205)

where Eµ(t) is a |µ|-tuple, with µ = a, b, c, with |a| = |b| = 3 and |c| = 4d − 3. Moreover,

we express the structural equations (Proposition 13) in the following explicit form:

Ėa = Eb, Ėb = −Fb, Ėc = −Fc, (206)

Ḟa =
∑

µ=a,b,c

Raµ(t)Eµ, Ḟb =
∑

µ=a,b,c

Rbµ(t)Eµ− Fa Ḟc, =
∑

µ=a,b,c

Rcµ(t)Eµ. (207)

where the curvature matrix R(t) = R(t)∗ is

R(t) =

Raa(t) Rab(t) Rac(t)
Rba(t) Rbb(t) Rbc(t)
Rca(t) Rcb(t) Rcc(t)

 , (208)

and satisfies the additional condition Rab(t) = −Rab(t)∗. We stress that R(t) is a

matrix representation of the curvature operator in the basis given by the projections

fµ(t) = π∗Fµ(t) for µ = a, b, c, but the Ricci curvatures do not depend on such a

representation.

6.1. Auxiliary frame

We build a convenient local frame on M, associated with a given trajectory (the geodesic

γ (t) = π(λ(t)), in our case).

Lemma 35. There exists a horizontal frame X i , i ∈ {1, . . . , 4d}, in a neighborhood of γ (0),
such that for all α ∈ {I, J, K } and i, j ∈ {1, . . . , 4d},

• the frame is orthonormal,

• ∇X i X j |γ (t) =
1
2 [X i , X j ]

v
γ (t), where v denotes the orthogonal projection on D⊥,

• [ξα, X i ] = 0.

Proof. The transverse distribution generated by ξI , ξJ , ξK is involutive. Hence by

Frobenius theorem there exists a neighborhood O of γ (0) and a smooth submersion
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π : O ⊂ M → R4d such that the fibers are the integral manifolds of the transverse

distribution. We give Ō = π(O) the Riemannian metric such that π : O→ Ō is a

Riemannian submersion (w.r.t. the Riemannian structure of the 3-Sasakian manifold).

Let ∇̄ be the covariant derivative on Ō.

We consider on Ō, an orthonormal frame {X̄1, . . . , X̄4d}, such that ∇̄X̄ i
X̄ j |γ̄ (t) = 0 for

t small enough. The existence of this frame is proved in [37, Theorem 3.1], with a

construction inspired by Fermi normal coordinates [46]. Since π : O→ Ō is a Riemannian

submersion, we can lift the frame X̄ i to a horizontal orthonormal frame X i ∈ 0(D) on

O. Then by standard formulas [34, Chapter 3.D] relating the covariant derivatives of a

submersion, we obtain

∇X i X j = ¯̃∇X̄ i
X̄ j +

1
2 [X i , X j ]

v, (209)

where the tilde denotes the horizontal lift. Finally, notice that [ξα, X i ] ∈ 0(D) and also

π∗[ξα, X i ] = [π∗ξ, X̄ i ] = 0, so [ξα, X i ] = 0.

Remark 13. The frame of Lemma 35 is closely related with qc-normal frames. Qc-normal

frames are defined for the general class of quaternionic contact (qc) manifold, and satisfy

– at a single point q0 – a series of conditions formulated in terms of Biquard connection.

Their existence is proved in [38, Lemma 4.5]. Using the relation between Biquard and

Levi-Civita connection [39, equation (6.3)], one can show that, in the case of a 3-Sasakian

manifold, the conditions satisfied by the frame of Lemma 35 are equivalent to the

conditions defining a qc-frame at each point along the curve γ (t) in a neighborhood

of γ (0). For this reason, one might call the frame of Lemma 35 a qc-Fermi frame. We

also mention that the existence of a qc-Fermi frame (i.e. a qc-frame along a curve) has

been proved for a general qc manifold in the recent paper [18, Lemma 24].

Notation and conventions:

• Latin indices i, j, k, . . . belong to {1, . . . , 4d} and Greek ones α, β, τ . . . are quaternions

{I, J, K }. Repeated indices are summed over their maximal range;

•We use the same quaternionic indices notation of § 5.3.1;

• The dot denotes the Lie derivative in the direction of EH ;

• For n-tuples v,w of vector fields along λ(t), the symbol σ(v,w) denotes the matrix

σ(vi , w j ). Notice that σ(v,w)∗ = −σ(w, v) and that d
dt σ(v,w) = σ(v̇, w)+ σ(v, ẇ);

• For n-tuples of vectors v, and matrices L, the juxtaposition Lv denotes the n-tuple of

vectors obtained by matrix multiplication;

• For functions f, g ∈ C∞(T ∗M), the symbol { f, g} denotes the Poisson bracket. We

make systematic use of symplectic calculus (see [12] for reference).

6.2. Hamiltonian frame

Let us consider the momentum functions ui , vα : T ∗M → R

ui = 〈λ, X i 〉, i = 1, . . . , 4d, (210)

vα = 〈λ, ξα〉, α = I, J, K . (211)
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36 L. Rizzi and P. Silveira

The momentum functions define coordinates (u, v) on each fiber of T ∗M . In turn,

they define local vector fields ∂vα and ∂ui on T ∗M (with the property that π∗∂vα =

π∗∂ui = 0). Moreover, they define also the Hamiltonian vector fields Eui and Evα. The

Hamiltonian frame associated with {ξα, X i } is the local frame on T ∗M around λ(0) given

by {∂ui , ∂vα , Eui , Evα}.

The following 3× 3 skew-symmetric matrix contains the ‘vertical’ part of the covector:

Vαβ := vαβ , α, β = I, J, K . (212)

In the r.h.s. of (212), the notation αβ denotes the product of quaternions with the

convention vα2 = −v1 = 0. Thus, (212) is the standard identification R3
' so(3). The

sub-Riemannian Hamiltonian and the corresponding Hamiltonian vector field are

H =
1
2

ui ui , EH = ui Eui . (213)

Lemma 36. The momentum functions ui , vα have the following properties:

(1) {ui , vα} = 0,

(2) {vα, vβ} = 2vαβ ,

(3) {ui , u j } = 2vαg(φαX i , X j )+ uk g(Xk, [X i , X j ]).

Moreover, along the extremal λ(t), we have

(4) {ui , u j } = 2vαg(φαX i , X j ),

(5) ∂uk {ui , u j } = 0,

(6) ∂vα {ui , u j } = 2g(φαX i , X j ),

(7)
−−−−→
{ui , u j } = 2g(φαX i , X j )Evα + 2vαg((φατ −φτα)X i , X j )∂vτ − uk X`g(Xk, [X i , X j ])∂u` .

Proof. Properties (1) and (2) follow from the definition of Poisson bracket and the fact

that [ξα, X i ] = 0 and [ξα, ξβ ] = 2ξαβ . For (3) we compute

{ui , u j } = vαg(ξα, [X i , X j ])+ uk g(Xk, [X i , X j ])

= −vαdηα(X i , X j )+ uk g(Xk, [X i , X j ]) = 2vαg(φαX i , X j )+ uk g(Xk, [X i , X j ]).

Point (4) follows from (3) and Lemma 35. Points (4)–(5) follow from (3). For (7)

−−−−→
{ui , u j } = 2 Evαg(φαX i , X j )+ Euk(((

((((g(Xk, [X i , X j ])+ 2vα
−−−−−−−−→
g(φαX i , X j )+ uk

−−−−−−−−−−→
g(Xk, [X i , X j ])

= 2g(φαX i , X j ) Evα − 2vα((((
(((X`g(φαX i , X j )∂u` − 2vαξτ g(φαX i , X j )∂vτ

− uk X`g(Xk, [X i , X j ])∂u` − uk
hhhhhhhhξτ g(Xk, [X i , X j ])∂vτ ,

where the first barred term vanishes by Lemma 35, the second one by direct computation

and the last one by Jacobi identity and Lemma 35. To conclude, we observe that

ξτ g(φαX i , X j ) =((((
((((g((∇ξτφα)X i , X j )+ g(φα∇ξτ X i , X j )+ g(φαX i ,∇ξτ X j ) (214)

= −g(φαX j ,∇X i ξτ )+ g(φαX i ,∇X j ξτ ) (215)

= g(φαX j , φτ X i )− g(φαX i , φτ X j ) = g((φατ −φτα)X i , X j ), (216)

where the first barred term vanishes by Lemma 35.
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Lemma 37. Let vα(t) = 〈λ(t), ξα|γ (t)〉, for α = I, J, K . Then, along the geodesic, we have

∇γ̇ γ̇ = 2vαφα γ̇ , (217)

Proof. Indeed γ (t) = ui (t)X i |γ (t), with ui (t) = 〈λ(t), X i |γ (t)〉. Then, suppressing t

∇γ̇ γ̇ = u̇i X i + ui uk∇Xk X i = {H, ui }X i +���
���

�
ui uk

1
2 [X i , Xk]

v (218)

= uk{uk, ui }X i = 2ukvαg(φαXk, X i )X i = 2vαφα γ̇ , (219)

where the barred term vanishes by skew-symmetry.

Lemma 38 (Fundamental computations). Along the extremal, we have

∂̇v = 2A∂u, Ėu = 2C Eu− 2A∗Ev+ B∂u + 2D∂v, (220)

∂̇u = −Eu, Ėv = 0, (221)

where we defined the following matrices, computed along the extremal:

Aβi := −g(φβ γ̇ , X i ), 3× 4d matrix, (222)

Bi j := R∇(γ̇ , X i , X j , γ̇ )+ 3g(X i ,5φX j ), 4d × 4d symmetric matrix, (223)

Ci j := −vαg(φαX i , X j ), 4d × 4d skew-symmetric matrix, (224)

Diτ := vαg(X i , (φατ −φτα)γ̇ ), 4d × 3 matrix, (225)

and 5φ : 0(D)→ 0(D) is the orthogonal projection on span{φI γ̇ , φJ γ̇ , φK γ̇ }.

Proof. By direct computations (along the extremal) we get

∂̇vβ = [u j Eu j , ∂vβ ] = −∂vβ (u j )Eu j + u j [Eu j , ∂vβ ] = u j [Eu j , ∂vβ ](ui )∂ui + u j [Eu j , ∂vβ ](vα)∂vα

= −u j∂vβ {u j , ui }∂ui − u j∂vβ��
��{u j , vα}∂vα = −u j g(2φβX j , X i )∂ui = −2g(φβ γ̇ , X i )∂ui .

∂̇ui = [u j Eu j , ∂ui ] = −∂ui (u j )Eu j + u j [Eu j , ∂ui ] = −Eui − u j���
��∂ui {u j , u`}∂u` = −Eui .

Ėvβ = [u j Eu j , Evβ ] = −Evβ(u j )Eu j + u j [Eu j , Evβ ] = −{vβ , u j }Eu j + u j
−−−−→
{u j , vβ} = 0.

Ėui = [u j Eu j , Eui ] = −Eui (u j )Eu j + u j [Eu j , Eui ] = −{ui , u j }Eu j + u j
−−−−→
{u j , ui }

= −2vαg(φαX i , X j )Eu j + 2g(φα γ̇ , X i )Evα + 2vαg((φατ −φτα)γ̇ , X i )∂vτ

− u j uk X`g(Xk, [X j , X i ])∂u` .

To complete the proof, we show that u j uk X`g(Xk, [X i , X j ]) = R(γ̇ , X i , X`, γ̇ )+
3g(X i ,5φX`). From the definition of the Riemann curvature tensor, and Lemma 35,

we have,

R∇(γ̇ , X i , X`, γ̇ ) = uku j g(∇Xk∇X i X`−∇X i∇Xk X`−∇[Xk ,X i ]X`, X j )

= uku j Xk g(∇X i X`, X j )− uku j g(∇X i X`,∇Xk X j )− uku j X i g(∇Xk X`, X j )

+ uku j g(∇Xk X`,∇X i X j )− uku j g([Xk, X i ], ξτ )g(∇ξτ X`, X j ).

Notice that uk Xk g(∇X i X`, X i ) = 0 since it is the derivative in the direction of γ̇ (t) of

g(∇X i X`, X j )|γ (t) = 0. On the other hand, g(∇X i X`,∇Xk X j )|γ (t) is skew-symmetric w.r.t

k and j . Hence uku j g(∇X i X`,∇Xk X j ) = 0. Thus

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748017000226
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 05 Feb 2018 at 14:19:14, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748017000226
https://www.cambridge.org/core


38 L. Rizzi and P. Silveira

R∇(γ̇ , X i , X`, γ̇ ) = −uku j X i g(∇Xk X`, X j )+ uku j g(∇Xk X`,∇X i X j )

− uku j g([Xk, X i ], ξτ )g(∇ξτ X`, X j )

= −
1
2 uku j X i (g([Xk, X`], X j )+ g([X j , Xk], X`)+ g([X j , X`], Xk))

+
1
4 uku j g([Xk, X`], ξτ )g(ξτ , [X i , X j ])

− 2uku j g(Xk, φτ X i )g(φτ X`, X j )

= −uku j X i g([Xk, X`], X j )+ uku j g(Xk, φτ X`)g(X i , φτ X j )

− 2g(γ̇ , φτ X i )g(φτ X`, γ̇ )

= −uku j X i g([Xk, X`], X j )− 3g(γ̇ , φτ X i )g(φτ X`, γ̇ )

= −uku j X i g([Xk, X`], X j )− 3g(X i ,5φX`),

where we used Koszul formula, Lemma 35 and the properties of 3-Sasakian manifolds.

In the next two lemmas, for reference, we provide many identities that will be used

throughout this section. They follow from routine computations, that we omit.

Lemma 39. We have the following identities (along the extremal):

AA∗ = 1, A∗A = 5φ, Ȧ Ȧ∗ = 4‖v‖21, (226)

AȦ∗ = − ȦA∗ = 2V, Ä = −4‖v‖2 A, AC = 1
2 Ȧ− 2vγ̇ ∗, (227)

ȦC = (2‖v‖2+ 4V 2)A, AC A∗ = −V, C2
= −‖v‖21, (228)

AD = 2V, AḊ = 4V 2, ȦD = −4V 2, (229)

Ȧ = −2V A+ 2vγ̇ ∗, vv∗ = V 2
+‖v‖21, V 3

= −‖v‖2V, (230)

Bγ̇ = 0, Aγ̇ = 0, Aγ̈ = −2v, (231)

Ȧγ̇ = 2v, Ȧγ̈ = 0, 2C γ̇ = γ̈ , (232)

γ̈ = −2A∗v, γ̇ ∗D = 0, V v = 0, (233)

where here γ̇ , γ̈ and 5φ are the column vectors and the matrix that represent, respectively,

the horizontal vectors γ̇ , γ̈ = ∇γ̇ γ̇ and the orthogonal projection 5φ in the frame {X i }.

Lemma 40. Along the extremal, we have

∂̇v = 2A∂u, (234)

∂̈v = 2 Ȧ∂u − 2AEu, (235)
...
∂v = −8V ∂v − 2A(4‖v‖2+ B)∂u + 4Ev+ 4(3V A− vγ̇ ∗)Eu, (236)
....
∂v = 48V 2∂v − 2[8V A(1−‖v‖2− B)+ AḂ+ 8‖v‖2vγ̇ ∗]∂u (237)

− 24V Ev+ 2(4‖v‖2 A+ AB− 24V 2 A)Eu. (238)

Moreover, all the non-zero brackets between ∂ui , ∂vα , Eui , Evα are

σ(∂u, Eu) = 1, σ (∂v, Ev) = 1, σ (Eu, Eu) = −2C, σ (Ev, Ev) = 2V . (239)
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As a consequence we have

σ(∂v, ∂v) = σ(∂̇v, ∂v) = 0, σ (∂̇v, ∂̇v) = σ(∂̈v, ∂v) = 0, (240)

σ(∂̈v, ∂̇v) = 41, σ (∂̈v, ∂̈v) = 24V, (241)

σ(
...
∂v, ∂v) = −41, σ (

...
∂v, ∂̇v) = −24V, (242)

G := σ(
...
∂v, ∂̈v) = 4(AB A∗+ 4‖v‖21− 24V 2), (243)

P := σ(
...
∂v,
...
∂v) = 4(6(V AB A∗+ AB A∗V )− 8V + 120‖v‖2V ), (244)

σ(
....
∂v, ∂v) = 24V, (245)

σ(
....
∂v, ∂̇v) = −G, (246)

σ(
....
∂v, ∂̈v) = Ġ− P, (247)

S := σ(
....
∂v,
...
∂v) = 4(16‖v‖4+ 96V 2

− 480‖v‖2V 2
− 24V 2 AB A∗− 12AB A∗V 2 (248)

− 48V AB A∗V + 8‖v‖2 AB A∗+ AB2 A∗+ 6AḂ A∗V ). (249)

6.3. Canonical frame

Following the general construction developed in [56], we recover the elements of the

canonical frame in the following order:

Ea → Eb → Fb → Ec → Fc → Rbb, Rba → Rcc, Rbc → Fa → Raa, Rac. (250)

The triplet Ea is uniquely determined by the following conditions:

(i) π∗Ea = 0,

(ii) π∗ Ėa = 0,

(iii) σ(Ëa, Ėa) = 1,

(iv) σ(Ëa, Ëa) = 0.

Conditions (i) and (ii) imply that Ea
= M∂v for M ∈ GL(3). Condition (iii) implies that

M = 1
2 O with O ∈ O(3). Finally, (iv) implies that O satisfies

Ȯ = 1
16 Oσ(∂̈vα , ∂̈vβ ) =

3
2 OV . (251)

Its solution is unique up to an orthogonal transformation (the initial condition, that we

set O(0) = 1). Let us call V := 3
2 V . Then O(t) = etV and, using the structural equations

Ea =
1
2 etV∂v, (252)

Eb = Ėa =
1
2 etV(V∂v + ∂̇v), (253)

Fb = −Ėb = −
1
2 etV(V2∂v + 2V∂̇v + ∂̈v). (254)

Thus we can also compute

Ḟb = −
1
2 etV(V3∂v + 3V2∂̇v + 3V∂̈v +

...
∂v), (255)

F̈b = −
1
2 etV(V4∂v + 4V3∂̇v + 6V2∂̈v + 4V

...
∂v +

....
∂v). (256)
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The next step is to compute Ec. It is determined by the following conditions:

(i) π∗Ec = 0,

(ii) σ(Ec, Fc) = 1 and σ(Ec, Fb) = σ(Ec, Fa) = 0,

(iii) π∗ Ëc = 0.

For (i) we can write Ec = U∂u +W∂v, where U is a (4d − 3)× 4d matrix and W is a

(4d − 3)× 3 matrix. Notice that to compute σ(Ec, Fa) we only need to know π∗Fa =

−π∗ Ḟb. Moreover, Fc = −Ėc. Hence, from (ii) we get

UU∗ = 1, U A∗ = 0, W = U γ̇ v∗, (257)

where γ̇ represents, with no risk of confusion, the 4d dimensional column vector that

represents γ̇ in the frame {X i }. Finally, using (iii) we get that U must satisfy

U̇ = −U (γ̇ v∗A+C). (258)

Observe that U represents an orthogonal projection on D ∩ span{φI γ̇ , φJ γ̇ , φK γ̇ }
⊥. Then

U∗U = 1−5φ = 1− A∗A.

As a consequence, we have

Ec = U (∂u + γ̇ v
∗∂v), (259)

Fc = −Ėc = U [(C − γ̇ v∗A)∂u + Eu], (260)

Ḟc = U [B+‖v‖2(1− γ̇ γ̇ ∗)]∂u . (261)

6.4. Sub-Riemannian curvatures

Using the structural equations, we obtain the curvatures. We omit some very long

algebraic computations, that follow using the expressions of the canonical frame obtained

above.

Rbb = σ(Ḟb, Fb) = etV
[AB A∗+ 4‖v‖21− 3

2 V 2
]e−tV, (262)

Rcc = σ(Ḟc, Fc) = U [B+‖v‖2(1− γ̇ γ̇ ∗)]U∗, (263)

Rbc = σ(Ḟb, Fc) = etV ABU∗. (264)

Moreover, using the structural equations and the condition Rab = −(Rab)
∗, we get

Rab =
1
2σ(Ḟb, Ḟb) = etV[ 3

4 (V AB A∗+ AB A∗V )+ 3
2‖v‖

2V − 4V
]
e−tV. (265)

Observe that Rab is correctly skew-symmetric. The last element of the frame is

Fa = −Ḟb+ Rbb Eb+ Rba Ea + Rbc Ec. (266)

We check that σ(Ea, Fa) = 1 and σ(Fa, Eb) = σ(Fa, Fb) = σ(Fa, Fa) = σ(Fa, Fc) = 0.

Then

Rac = (Rca)
∗
= σ(Ḟc, Fa)

∗
= etVVABU∗. (267)

And finally

Raa = σ(Ḟa, Fa) = etV[ 3
4 (AḂ A∗V + V ∗AḂ A∗)+ 3

8 (AB A∗V 2
+ V 2 AB A∗) (268)

+ 3V AB A∗V ∗+ (12+ 45
16‖v‖

2)V 2]e−tV. (269)
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Proposition 41 (Canonical splitting for 3-Sasakian structures). The canonical splitting

along γ (t) is Tγ (t)M = Sa
γ (t)⊕ Sb

γ (t)⊕ Sc
γ (t), where

Sa
γ (t) = span{2ξα − 2vα γ̇ + 3

2 Zα}α=I,J,K , (270)

Sb
γ (t) = span{φI γ̇ , φJ γ̇ , φK γ̇ }, (271)

Sc
γ (t) = span{φI γ̇ , φJ γ̇ , φK γ̇ }

⊥
∩Dγ (t), (272)

where Zα = −
∑
β vαβφβ γ̇ ∈ Dγ (t) for α = I, J, K and everything is computed at γ (t).

Remark 14. By Lemma 37, Zα = 1
2φα∇γ̇ γ̇ + vα γ̇ , where ∇ is the Levi-Civita connection

of the 3-Sasakian structure. More explicitly

Z I := (vJφK − vKφJ )γ̇ , Z J := (vKφI − vIφK )γ̇ , Z K := (vIφJ − vJφI )γ̇ .

Proof. We project Fa, Fb and Fc on Tγ (t)M . From (266), (254) and (260) we get

fa = π∗Fa = etV( 3
2 V AX − 2vγ̇ + 2ξ), (273)

fb = π∗Fb = etV AX, (274)

fc = π∗Fc = U X, (275)

where we recall that X and ξ are the tuples {X i } and {ξα} respectively. Thus,

span{ fa} = span{2ξ − 2vγ̇ + 3
2 V AX} = span{2ξα − 2vα γ̇ + 3

2 Zα}α=I,J,K , (276)

span{ fb} = span{AX} = span{φI γ̇ , φJ γ̇ , φK γ̇ }, (277)

span{ fc} = span{U X} = span{φI γ̇ , φJ γ̇ , φK γ̇ }
⊥
∩Dγ (t). (278)

Here we used the definition of V, A and the fact that U is a projection on the subspace

of horizontal directions orthogonal to span{φI γ̇ , φJ γ̇ , φK γ̇ }.

Furthermore, we summarize below the expressions for the curvature.

Proposition 42. Let M be a 3-Sasakian manifold of dimension 4d + 3. In terms of the

base { fa(t), fb(t), fc(t)} along a geodesic γ (t), the canonical sub-Riemannian curvature

operators R
µν

λ(t) : Sµγ (t)→ Sνγ (t), for µ, ν = a, b, c, are represented by the matrices

Raa(t) = e
3
2 tV [ 3

4 (AḂ A∗V + V ∗AḂ A∗)+ 3
8 (AB A∗V 2

+ V 2 AB A∗) (279)

+ 3V AB A∗V ∗+
(
12+ 45

16‖v‖
2)V 2]e− 3

2 tV
, (280)

Rab(t) = e
3
2 tV [ 3

4 (V AB A∗+ AB A∗V )+ 3
2‖v‖

2V − 4V
]
e−

3
2 tV

, (281)

Rac(t) = 3
2 e

3
2 tV V ABU∗, (282)

Rbb(t) = e
3
2 tV
[AB A∗+ 4‖v‖21− 3

2 V 2
]e−

3
2 tV

, (283)

Rbc(t) = e
3
2 tV ABU∗, (284)

Rcc(t) = U [B+‖v‖2(1− γ̇ γ̇ ∗)]U∗. (285)
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6.5. Proof of Theorem 8

We only have to compute the traces of Raa , Rbb and Rcc above.

Rica(λ(t)) = Tr(Raa(t)) = 9
4 Tr(V AB A∗V ∗)− (12+ 45

16‖v‖
2)Tr(V V ∗) (286)

=
9
4

∑
α

R∇(γ̇ , vαβφβ γ̇ , vαβφβ γ̇ , γ̇ )+ 27
4 Tr(V V ∗)− (12+ 45

16‖v‖
2)Tr(V V ∗)

(287)

=
9
4

∑
α

R∇(γ̇ , Zα, Zα, γ̇ )− 21
2 ‖v‖

2
−

45
8 ‖v‖

4, (288)

where we used that Tr(V V ∗) = 2‖v‖2 and we set Zα = −vαβφβ γ̇ ∈ Dγ (t), for α = I, J, K .

Ricb(λ(t)) = Tr(Rbb(t)) = Tr(AB A∗)+ 12‖v‖2+ 3‖v‖2 (289)

=

∑
α

R∇(γ̇ , φα γ̇ , φα γ̇ , γ̇ )+ 9+ 15‖v‖2 = 3(4+ 5‖v‖2), (290)

where we used Proposition 31. Finally,

Ricc(λ(t)) = Tr(Rcc(t)) = Tr((B+‖v‖2(1− γ̇ γ̇ ∗))U∗U ) (291)

= Tr((B+‖v‖2(1− γ̇ γ̇ ∗))(1− A∗A)) (292)

= Tr(B)−Tr(AB A∗)+‖v‖2 Tr(1− γ̇ γ̇ ∗)−‖v‖2 Tr(A∗A) (293)

=

∑
i

R∇(γ̇ , X i , X i , γ̇ )+ 3
∑

i

g(X i ,5φX i )−
∑
α

R∇(γ̇ , φα γ̇ , φα γ̇ , γ̇ ) (294)

− 9+‖v‖2(4d − 1)− 3‖v‖2 (295)

= Ric∇(γ̇ )−
∑
α

Sec(γ̇ , ξα)−
∑
α

Sec(γ̇ , φα γ̇ )+ (4d − 4)‖v‖2 (296)

= 4d + 2− 3− 3+ (4d − 4)‖v‖2 = (4d − 4)(1+‖v‖2), (297)

where Ric∇(γ̇ ) = 4d + 2 by (i) of Theorem 30 and we used Propositions 31 and 32.
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