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Abstract An invertible polynomial in n variables is a quasi-homogeneous polynomial consisting of n

monomials so that the weights of the variables and the quasi-degree are well defined. In the framework
of the construction of mirror symmetric orbifold Landau–Ginzburg models, Berglund, Hübsch and Hen-
ningson considered a pair (f, G) consisting of an invertible polynomial f and an abelian group G of its
symmetries together with a dual pair (f̃ , G̃). Here we study the reduced orbifold zeta functions of dual
pairs (f, G) and (f̃ , G̃) and show that they either coincide or are inverse to each other depending on the
number n of variables.
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1. Introduction

Berglund and Hübsch [3] proposed a method to construct some mirror symmetric pairs
of manifolds. Their construction involves a polynomial f of a special form, a so-called
invertible one, and its Berglund–Hübsch transpose f̃ . In [3] these polynomials appeared
as potentials of Landau–Ginzburg models. This construction was generalized in [2] to
orbifold Landau–Ginzburg models described by pairs (f, G), where f is an invertible
polynomial and G is a (finite) abelian group of symmetries of f . For a pair (f, G) one
defines the dual pair (f̃ , G̃). Some symmetries between invariants of the pairs (f, G)
and (f̃ , G̃) corresponding to the orbifolds defined by the equations f = 0 and f̃ = 0 in
weighted projective spaces were described in [2,11]. Some duality (symmetry) properties
of the singularities defined by f and f̃ were observed in [5–7,14]. In particular, in [5,
Theorem 1] it was shown that the reduced orbifold Euler characteristics of the Milnor
fibres of f and f̃ with the actions of the groups G and G̃, respectively, coincide up to
sign.

Here we consider the (reduced) orbifold zeta function defined in [7, Definition 5.10].
One can say that it collects information about the eigenvalues of monodromy operators
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modified by so-called age (or fermion) shifts. We show that the (reduced) orbifold zeta
functions of Berglund–Hübsch–Henningson dual pairs (f, G) and (f̃ , G̃) either coincide
or are inverse to each other depending on the number n of variables. This is a refinement
of the above mentioned result of [5] that means that the degrees of these zeta functions
coincide up to sign.

2. Invertible polynomials

A quasi-homogeneous polynomial f in n variables is called invertible (see [13]) if it
contains n monomials, i.e. it is of the form

f(x1, . . . , xn) =
n∑

i=1

ai

n∏
j=1

x
Eij

j (2.1)

for ai ∈ C
∗ = C \ {0}, and the matrix E = (Eij) (with non-negative integer entries) is

non-degenerate: det E �= 0. Without loss of generality we may assume that ai = 1 for
i = 1, . . . , n and that detE > 0.

The Berglund–Hübsch transpose f̃ of the invertible polynomial (2.1) is

f̃(x1, . . . , xn) =
n∑

i=1

ai

n∏
j=1

x
Eji

j ,

i.e. it is defined by the transpose ET of the matrix E.
The (diagonal) symmetry group of the invertible polynomial f is the group Gf of

diagonal linear transformations of C
n preserving f :

Gf = {(λ1, . . . , λn) ∈ (C∗)n : f(λ1x1, . . . , λnxn) = f(x1, . . . , xn)}.

This group is finite and its order |Gf | is equal to d = det E (see [13, (10) and (18)]
and [6, Proposition 1]). The polynomial f is quasi-homogeneous with respect to the
rational weights q1, . . . , qn defined by the equation

E(q1, . . . , qn)T = (1, . . . , 1)T,

i.e.
f(exp(2πiq1τ)x1, . . . , exp(2πiqnτ)xn) = exp(2πiτ)f(x1, . . . , xn).

The Milnor fibre of the polynomial f is the manifold

Vf = {(x1, . . . , xn) ∈ C
n : f(x1, . . . , xn) = 1}.

(The Milnor fibre defined in this way coincides with (i.e. is diffeomorphic to) the one given
by the general definition below (see § 3) since the polynomial f is quasi-homogeneous.)
The monodromy transformation of the polynomial f (see below) is induced by the element

g0 = (exp(2πiq1), . . . , exp(2πiqn)) ∈ Gf .

(In [12] the element g0 is called the ‘exponential grading operator’.)
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For a finite abelian group G, let G∗ = Hom(G, C∗) be its group of characters. (The
groups G and G∗ are isomorphic, but not in a canonical way. The group (G∗)∗ is canon-
ically isomorphic to G.) One can show that the symmetry group Gf̃ of the Berglund–
Hübsch transpose f̃ of an invertible polynomial f is canonically isomorphic to G∗

f (see,
for example, [6]). The duality between Gf and Gf̃ is defined by the pairing

〈λ, μ〉E = exp(2πi(α, β)E),

where

λ = (exp(2πiα1), . . . , exp(2πiαn)) ∈ Gf̃ , μ = (exp(2πiβ1), . . . , exp(2πiβn)) ∈ Gf ,

α = (α1, . . . , αn), β = (β1, . . . , βn),

(α, β)E := (α1, . . . , αn)E(β1, . . . , βn)T

(see [6, Proposition 2]).

Definition 2.1 (Berglund and Henningson [2]). For a subgroup H ⊂ Gf , its dual
H̃ ⊂ Gf̃ = G∗

f is the kernel of the natural map i∗ : G∗
f → H∗ induced by the inclusion

i : H ↪→ Gf .

One can see that |H| |H̃| = |Gf | = |Gf̃ |. The following result was proved in [12, § 3.1].

Lemma 2.2. Let Gf,0 = 〈g0〉 be the subgroup of Gf generated by the monodromy
transformation. One has G̃f,0 = Gf̃ ∩ SL(n, C).

Proof. For λ = (λ1, . . . , λn) = (exp(2πiα1), . . . , exp(2πiαn)) ∈ Gf̃ , 〈λ, g0〉E = 1 if
and only if

(α1, . . . , αn)E(q1, . . . , qn)T ∈ Z.

One has E(q1, . . . , qn)T = (1, . . . , 1)T. Therefore, (α1, . . . , αn)(1, . . . , 1)T ∈ Z, i.e.
∑

i αi ∈
Z,

∏
i λi = 1. This means that λ ∈ SL(n, C). �

3. Orbifold zeta function

The zeta function ζh(t) of a (proper, continuous) transformation h : X → X of a topo-
logical space X is the rational function defined by

ζh(t) =
∏
q�0

(det(id−th∗|Hq
c (X;R)))

(−1)q

, (3.1)

where Hq
c (X; R) denotes the cohomology with compact support. The degree of the zeta

function ζh(t), i.e. the degree of the numerator minus the degree of the denominator,
is equal to the Euler characteristic χ(X) of the space X (defined via cohomology with
compact support).

Remark 3.1. If a transformation h : X → X defines on X a free action of the
cyclic group of order m (i.e. if hm(x) = x, hk(x) �= x for 0 < k < m, x ∈ X), then
ζh(t) = (1 − tm)χ(X)/m.



102 W. Ebeling and S. M. Gusein-Zade

Let f : (Cn, 0) → (C, 0) be a germ of a holomorphic function. The Milnor fibre Vf of
the germ f is the manifold {f = ε}∩B2n

δ , where B2n
δ is the ball of radius δ centred at the

origin in C
n, 0 < |ε| 	 δ, δ is small enough. The monodromy zeta function, i.e. the zeta

function of the monodromy transformation hf of the germ f (and also of its restriction to
a subspace), is of the form

∏
m�1(1 − tm)sm , where sm are integers such that only finitely

many of them are different from zero (see, for example, [1, Théorème 3]). In particular,
all roots and/or poles of the monodromy zeta function are roots of unity.

The orbifold (monodromy) zeta function was essentially defined in [7, Definition 5.10].
It is related to the Poincaré polynomial for the Ramond ground states of [9].

Let G be a finite group acting linearly on the space C
n and let the germ f : (Cn, 0) →

(C, 0) be G-invariant. One may assume that the monodromy transformation hf of the
germ f is G-invariant. For an element g ∈ G, its age [10, § 2.1] (or fermion shift number
[16, (3.17)]) is defined by age(g) :=

∑n
i=1 αi, where in a certain basis in C

n one has

g = diag(exp(2πiα1), . . . , exp(2πiαn))

with 0 � αi < 1.

Remark 3.2. The map exp(2πi age(·)) : G → C
∗ is a group homomorphism. It coin-

cides with the representation of G induced on the nth exterior power of the space C
n.

If f is an invertible polynomial and G is the group Gf of its symmetries, then it is an
element of G∗

f = Gf̃ .

For a rational function ϕ(t) of the form
∏

i(1 − αit)ri with only finitely many of the
exponents ri ∈ Z different from zero, its g-age shift is defined by

(ϕ(t))g =
∏

i

(1 − αi exp(−2πi age(g))t)ri ,

i.e. all its roots and/or poles are multiplied by exp(2πi age(g)) ∈ C
∗.

Let Conj G be the set of conjugacy classes of elements of G. For a class [g] ∈ ConjG,
let g ∈ G be a representative of it. Let CG(g) = {h ∈ G : h−1gh = g} be the centralizer
of the element g in G. Let (Cn)g be the fixed-point set of the element g, let V g

f =
Vf ∩ (Cn)g be the corresponding part of the Milnor fibre, and let V̂ g

f = V g
f /CG(g) be

the corresponding quotient space (the ‘twisted sector’ in terms of [4]). One may assume
that the monodromy transformation preserves V g

f for each g. Let ĥg
f : V̂ g

f → V̂ g
f be the

corresponding map (monodromy) on the quotient space. Its zeta function ζĥg
f
(t) depends

only on the conjugacy class of g.

Definition 3.3. The orbifold zeta function of the pair (f, G) is defined by

ζorb
f,G(t) =

∏
[g]∈Conj G

(ζĥg
f
(t))g. (3.2)

One can see that the degree of ζorb
f,G(t) is equal to the orbifold Euler characteristic of

(Vf , G) (see, for example, [5,8]).
For an abelian G, V̂ g

f = V g
f /G and the product in (3.2) runs over all elements g ∈ G.
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Definition 3.4. The reduced orbifold zeta function ζ̄orb
f,G(t) is defined by

ζ̄orb
f,G(t) = ζorb

f,G(t)/
∏

[g]∈Conj G

(1 − t)g

(cf. (3.2)).

Now let G be abelian. One can assume that the action of G on C
n is diagonal, and

therefore it respects the decomposition of C
n into the coordinate tori. For a subset

I ⊂ I0 = {1, 2, . . . , n}, let

(C∗)I := {(x1, . . . , xn) ∈ C
n : xi �= 0 for i ∈ I, xi = 0 for i /∈ I}

be the corresponding coordinate torus. Let V I
f = Vf ∩ (C∗)I . One has Vf =

∐
I⊂I0

V I
f .

Since the action of G is diagonal, G preserves this decomposition, and thus acts on
each subspace V I

f . Let GI ⊂ G be the isotropy subgroup of the action of G on the
torus (C∗)I . (All points x of the torus (C∗)I have one and the same isotropy subgroup
GI := Gx = {g ∈ G : gx = x}. One has GI = G ∩ GI

f .) The monodromy transformation
hf is assumed to be G-invariant and to respect the decomposition of the Milnor fibre Vf

into the parts V I
f . Let hI

f and ĥI
f be the corresponding (monodromy) transformations of

V I
f and V I

f /G, respectively. One can define in the same way as above the orbifold zeta
function corresponding to the part V I

f of the Milnor fibre:

ζorb,I
f,G (t) =

∏
g∈G

(ζĥI,g
f

(t))g. (3.3)

One has
ζorb
f,G(t) =

∏
I⊂I0

ζorb,I
f,G (t).

This follows from the multiplicativity of the (usual) zeta function with respect to a
partition of the space germ. (Here and below one may assume that I is not empty since
for I = ∅ the corresponding factor is trivial.) Since the isotropy subgroups of all points
of (C∗)I are the same (equal to GI), the equation (3.3) reduces to

ζorb,I
f,G (t) =

∏
g∈GI

(ζĥI
f
(t))g. (3.4)

The (monodromy) zeta function ζĥI
f
(t) has the form

∏
m�0(1 − tm)sm with only a finite

number of the exponents sm different from zero. Let us compute
∏

g∈GI (1 − tm)g.

Lemma 3.5. One has∏
g∈GI

(1 − tm)g = (1 − tlcm(m,k))m|GI |/lcm(m,k),

where k = |GI/GI ∩ SL(n, C)|, lcm(·, ·) denotes the least common multiple.
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Proof. The roots of the binomial (1 − tm) are all the mth roots of unity. The map
exp(2πi age(·)) : GI → C

∗ is a group homomorphism. Its kernel coincides with GI ∩
SL(n, C). Therefore, its image consists of all the kth roots of unity (each one corresponds
to |GI ∩SL(n, C)| elements of GI). Thus, the roots of

∏
g∈GI (1 − tm)g are all the roots of

unity of degree lcm(m, k) with equal multiplicities. This means that
∏

g∈GI (1 − tm)g =
(1 − tlcm(m,k))s. The exponent s is determined by the number of roots. �

4. Orbifold zeta functions for invertible polynomials

Let (f, G) be a pair consisting of an invertible polynomial f in n variables and a
group G ⊂ Gf of its (diagonal) symmetries and let (f̃ , G̃) be the Berglund–Hübsch–
Henningson dual pair (G̃ ⊂ Gf̃ ). (We do not assume that the invertible polynomials are
non-degenerate, i.e. that they have isolated critical points at the origin.)

Theorem 4.1. One has
ζ̄orb
f̃ ,G̃

(t) = (ζ̄orb
f,G(t))(−1)n

. (4.1)

Proof. We use the notation from § 3. One has

ζ̄orb
f,G(t) =

∏
I⊂I0

ζorb,I
f,G (t)/

∏
g∈G

(1 − t)g. (4.2)

Let Z
n be the lattice of monomials in the variables x1, . . . , xn (an n-tuple (k1, . . . , kn) ∈

Z
n corresponds to the monomial xk1

1 · · ·xkn
n ) and let Z

I := {(k1, . . . , kn) ∈ Z
n : ki =

0 for i /∈ I}. For a polynomial F in the variables x1, . . . , xn, let suppF ⊂ Z
n be the set

of monomials (with non-zero coefficients) in F .
The elements of the subgroup Gf,0 ∩ GI

f act on V I
f trivially. The monodromy trans-

formation defines a free action of the cyclic group Gf,0/(Gf,0 ∩ GI
f ) on V I

f . There-
fore, the monodromy transformation on V I

f /G defines an action of the cyclic group
Gf,0/(Gf,0 ∩ (G + GI

f )), which is also free. According to Remark 3.1, the zeta function
is given by

ζĥI
f
(t) = (1 − tmI )sI , (4.3)

where

mI = |Gf,0/(Gf,0 ∩ (G + GI
f ))| =

|G + GI
f + Gf,0|

|G + GI
f | ,

sI = χ(V I
f /G)/mI = χ(V I

f )/(mI |G/G ∩ GI
f |).

Let I be a proper subset of I0 = {1, . . . , n} (i.e. I �= ∅, I �= I0), and let Ī = I0 \ I. If
(supp f)∩Z

I consists of fewer than |I| points, i.e. if f has fewer than |I| monomials in the
variables xi with i ∈ I, then χ(V I

f ) = 0 (for example, due to the Varchenko formula [15])
and therefore ζĥI

f
(t) = 1, ζorb,I

f,G (t) = 1. In this case (supp f̃) ∩ Z
Ī consists of fewer than

|Ī| points and therefore we have ζorb,I

f̃ ,G̃
(t) = 1.

Let |(supp f) ∩ Z
I | = |I|. From (4.3) and Lemma 3.5 it follows that

ζorb,I
f,G (t) = (1 − tlcm(mI ,kI))s′

I , (4.4)
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where

kI =
|G ∩ GI

f |
|G ∩ GI

f ∩ SL(n, C)|

and s′
I is some integer. (Namely, s′

I = (χ(V I
f /G) · |GI |)/lcm(mI , kI). We shall not use

this equation explicitly.) Therefore,

ζorb,I
f,G (t) = (1 − t�I )s′

I , (4.5)

where

I = lcm
( |G + GI

f + Gf,0|
|G + GI

f | ,
|G ∩ GI

f |
|G ∩ GI

f ∩ SL(n, C)|

)
. (4.6)

In this case |(supp f̃) ∩ Z
Ī | = |Ī|, and therefore

ζorb,Ī

f̃ ,G̃
(t) = (1 − t�̃Ī )s̃′

Ī ,

where

̃Ī = lcm
( |G̃ + GĪ

f̃
+ Gf̃ ,0|

|G̃ + GĪ
f̃
|

,
|G̃ ∩ GĪ

f̃
|

|G̃ ∩ GĪ
f̃

∩ SL(n, C)|

)
(4.7)

and s̃′
Ī

is an integer. According to [6, Lemma 1], one has GĪ
f̃

= G̃I
f ; by Lemma 2.2,

one has G̃f̃ ,0 = Gf ∩ SL(n, C) and G̃f,0 = Gf̃ ∩ SL(n, C). This means that the subgroup
G + GI

f + Gf,0 ⊂ Gf is dual to G̃ ∩ GĪ
f̃

∩ SL(n, C) ⊂ Gf̃ and the subgroup G + GI
f ⊂ Gf

is dual to G̃ ∩ GĪ
f̃

⊂ Gf̃ . Therefore,

|G + GI
f + Gf,0|

|G + GI
f | =

|G̃ ∩ GĪ
f̃
|

|G̃ ∩ GĪ
f̃

∩ SL(n, C)|
.

In the same way
|G ∩ GI

f |
|G ∩ GI

f ∩ SL(n, C)| =
|G̃ + GĪ

f̃
+ Gf̃ ,0|

|G̃ + GĪ
f̃
|

,

and therefore I = ̃Ī . In [5] it was shown that Is
′
I = (−1)ñĪ s̃

′
Ī
. Thus, s′

I = (−1)ns̃′
Ī
.

Therefore, the factor ζorb,I
f,G (t) in (4.2) for ζ̄orb

f,G(t) is equal to the factor (ζorb,Ī

f̃ ,G̃
(t))(−1)n

in
the corresponding equation for (ζ̄orb

f̃ ,G̃
(t))(−1)n

.
Now let I = I0. One has GI0

f = {0} and therefore ζorb,I0
f,G (t) = ζ

ĥ
I0
f

(t) = (1 − tmI0 )sI0 ,
where mI0 = |Gf,0/G ∩ Gf,0| = |G + Gf,0|/|G|. On the other hand, by Lemma 3.5, one
has ∏

g∈G̃

(1 − t)g = (1 − tk̃)r̃,

where

k̃ =
|G̃|

|G̃ ∩ SL(n, C)|
and r̃ is some integer. Due to Lemma 2.2, the subgroup G̃ ∩ SL(n, C) ⊂ Gf̃ is dual to
the subgroup G + Gf,0 ⊂ Gf . Therefore, mI0 = k̃. In [5] it was shown that mI0sI0 =
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(−1)n−1k̃r̃. Therefore, sI0 = (−1)n−1r̃ and the factor ζorb,I0
f,G (t) in (4.2) for ζ̄orb

f,G(t) is equal
to the factor (

∏
g∈G̃(1 − t)g)(−1)n−1

in the corresponding equation for (ζ̄orb
f̃ ,G̃

(t))(−1)n

. �

Remark 4.2. Informally one can say that, in (4.6) for the exponent I , the first
argument of the least common multiple is connected with the monodromy action and
the second one with the age shift. (This means that in the computation of the orbifold
zeta function according to Definition 3.3 the first argument originates from the (usual)
monodromy zeta function ζĥg

f
(t), whereas the second one originates from the age shifts.)

The duality interchanges these numbers. The one for the pair (f, G) connected with the
monodromy action is equal to the one for the dual pair (f̃ , G̃) connected with the age
shift and vice versa (see (4.7)).
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