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We prove the global existence of non-negative weak solutions for a strongly coupled,
fourth-order degenerate parabolic system governing the motion of two thin fluid
layers in a porous medium when capillarity is the sole driving mechanism.

1. Introduction and the main result

In this paper we study the following one-dimensional degenerate system of equa-
tions:

∂tf = −∂x[f∂3
x(Af + Bg)],

∂tg = −∂x[g∂3
x(f + g)],

}
(t, x) ∈ (0,∞) × (0, L), (1.1)

which models the dynamics of two thin fluid threads in a porous medium in the
absence of gravity. One of the fluids is located in the region bounded from below by
the line y = 0 and from above by the graph y = f(t, x), while the region occupied
by the second fluid is located between the graphs y = f(t, x) and y = (f + g)(t, x),
f and g being non-negative functions. Furthermore, L is a positive real number and
the positive constants A and B have the following physical meaning:

A :=
µ+

µ−

γd + γw

γd
> B :=

µ+

µ−
.

We let µ− (µ+) denote the viscosity of the fluid located below (above), γw is the
surface tension coefficient at the interface y = f(t, x) between the wetting phases,
while γd is the surface tension coefficient at the interface y = (f + g)(t, x). The
system (2.1) is supplemented by initial conditions

f(0) = f0, g(0) = g0, x ∈ (0, L), (1.2)

whereby f0 and g0 are assumed to be known, and we impose no-flux boundary
conditions

∂xf = ∂xg = ∂3
xf = ∂3

xg = 0, x = 0, L. (1.3)

The system (1.1) was obtained in [7], by passing to the small layer thickness in
the Muskat problem studied in [8]. This is a widely used approach in the study
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1072 B.-V. Matioc

of thin fluid threads because it reduces complex moving boundary-value problems
to local problems defined by generally simpler equations. System (1.1) is strongly
related to the thin film equation because if, for instance, f is constantly equal to
zero, then g is a solution of the thin film equation

∂tg + ∂x(gn∂3
xg) = 0 (1.4)

when n = 1. We refer the reader to the survey papers [1,10], in which many aspects
concerning the thin film equation are discussed. It should be noted that similar
methods to those in [7] have been used in [9,11] to rigorously show that, in the limit
of thin fluid threads, the solutions of the moving boundary-value problems for Stokes
and Hele-Shaw flows converge towards the corresponding solutions (determined by
the initial data) of the thin film equation (1.4), with n = 3 for Stokes and n = 1 for
the Hele-Shaw flow. Compared with the thin film equation, system (1.1) is more
involved because it is strongly coupled, both equations of (1.1) containing highest-
order derivatives of f and g, and, furthermore, there are two sources of degeneracy,
because both f and g may equal zero. Since both equations in (1.1) have fourth
order, we cannot rely on maximum principles when studying problem (1.1).

Corresponding to (1.1), we define the following energy functionals:

E1(f, g) := 1
2

∫ L

0
|∂xf |2 +

B

A − B
|∂x(f + g)|2 dx

and

E2(f, g) :=
∫ L

0
Φ(f) + BΦ(g) dx,

whereby the function Φ is given by Φ(s) := s ln(s) − s + 1 for all s � 0. They will
play a key role when constructing the weak solutions for the problem (1.1)–(1.3).

Using these two functionals and Galerkin approximations, we prove that the
problem (1.1)–(1.3) possesses, for non-negative initial data, non-negative global
weak solutions. To this end, we first regularize system (1.1) and use the functional
E2 to establish convergence of certain Galerkin approximations towards global weak
solutions (of the regularized problem) which satisfy similar energy estimates to the
classical solutions of (1.1)–(1.3). In a second step, we show that weak solutions
of the regularized problem converge towards non-negative global weak solutions of
the original system (1.1). The uniqueness of our weak solutions is left as an open
problem (this is still an open problem also for the thin film equation; cf. [2,5]). We
note that it has only recently been shown in [14] (see also [3, 4]), in the context of
the thin film equation, that the non-negative weak solutions found in [2] converge
exponentially fast in H1 towards flat equilibria. In our case, this is a further open
question. The second-order version of (1.1), when the fluids are driven only by
gravity and surface tension is neglected, has been recently investigated in [6], where
the existence of non-negative global weak solutions which converge exponentially
fast in L2 to flat equilibria is established (see also [7]).

In order to state our main result, we now introduce the function spaces we work
with. For each m ∈ N, we let Hm := Hm((0, L)) be the L2-based Sobolev space and
we let Hm

∆ denote the closed subspace of Hm which has {φk : k ∈ N} as its basis.
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Global weak solutions for a fourth-order parabolic system 1073

Herein,

φ0 :=

√
1
L

and φk :=

√
2
L

cos
(

kπx

L

)
, k � 1,

are the normalized eigenvectors of the operator −∂2
x : H2 → L2 with zero Neumann

boundary conditions. To be more precise, f ∈ Hm
∆ if and only if the Fourier series

associated to f converges towards f in Hm. It is well known that H1
∆ = H1 and it

is not difficult to see that, for m � 4, the boundary conditions (1.3) are satisfied
by functions from this space.

Given T ∈ (0,∞], let QT := (0, T ) × (0, L). The main result of this paper is the
following theorem.

Theorem 1.1. Let f0, g0 ∈ H1 be two non-negative functions. There exists a global
weak solution (f, g) of (1.1) with (f(0), g(0)) = (f0, g0) which has the following
properties:

(i) f � 0 and g � 0 in (0, T ) × (0, L);

(ii) f, g ∈ L∞(0, T ; H1) ∩ L2(0, T ; H2
∆) ∩ C([0, T ], Cα([0, L])) for some arbitrary

α ∈ (0, 1
2 ) and

√
f∂3

x(Af + Bg),
√

g∂3
x(f + g) ∈ L2(Q+

T ), where

Q+
T := {(t, x) ∈ QT : (fg)(t, x) > 0};

(iii) ∫ L

0
f(T )ψ dx −

∫ L

0
f0ψ dx +

∫
QT

(A∂2
xf + B∂2

xg)(∂xf∂xψ + f∂2
xψ) dxdt = 0,

∫ L

0
f(T )ψ dx −

∫ L

0
f0ψ dx +

∫
QT

(∂2
xf + ∂2

xg)(∂xg∂xψ + g∂2
xψ) dxdt = 0

for all T > 0 and ψ ∈ H2
∆; furthermore, the weak solutions satisfy

(iv) ‖f(T )‖L1 = ‖f0‖L1 and ‖g(T )‖L1 = ‖g0‖L1 ,

(v) E2(f(T ), g(T )) +
∫

QT

(A − B)|∂2
xfε|2 + B|∂2

x(fε + gε)|2 dxdt � E2(f0, g0)

for all T ∈ (0,∞); and

(vi) E1(f(T ), g(T )) +
∫

Q+
T

f |∂3
x(Af + Bg)|2 + Bg|∂3

x(f + g)|2 dxdt � E1(f0, g0)

for almost all T ∈ (0,∞).

We note that since f(t) and g(t) belong to H2
∆ for almost all t > 0, they satisfy

the homogeneous Neumann boundary conditions at x = 0 and x = L for all such t.
The outline of the paper is as follows: in § 2 we introduce a regularized version

of (1.1) and use Galerkin approximations to find, in the limit, global weak solutions
of this regularized problem (see proposition 2.1). Introducing the regularized system
allows us on the one hand to use the energy functional E1 when dealing with the
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1074 B.-V. Matioc

Galerkin approximations, and, on the other hand, to control the solutions of the
regularized problem when they become negative. In § 3 we show, by combining
energy estimates for both functionals E1 and E2, that the weak solutions of the
regularized problem converge towards non-negative global weak solutions of our
original problem (1.1)–(1.3).

2. The regularized system

In order to prove theorem 1.1 we shall regularize system (1.1) and use Galerkin
approximations to build global weak solutions for this regularized problem. In § 3
these solutions are shown to converge towards weak solutions of (1.1). To this end,
given ε ∈ (0, 1], we define the Lipschitz continuous function aε : R → R by the
relation

aε(s) :=

{
s + ε, s � 0,

ε, s < 0.
(2.1)

Furthermore, we define the convex function Φε : R → R by

Φε(s) :=

⎧⎪⎨
⎪⎩

(s + ε) ln(s + ε) − (s + ε) + 1, s � 0,

s2

2ε
+ s ln(ε) + ε ln(ε) − ε + 1, s < 0.

(2.2)

Since we choose ε � 1, it is easy to see that Φε(s) � 0 for all s ∈ R and that
Φ′′

ε = 1/aε. With this notation, we introduce the following regularized version of
our original problem (1.1):

∂tfε = −∂x[aε(fε)∂3
x(Afε + Bgε)],

∂tgε = −∂x[aε(gε)∂3
x(fε + gε)],

}
(t, x) ∈ (0,∞) × (0, L). (2.3)

Of course, this system is coupled with the initial and boundary conditions (1.2)
and (1.3). Compared with (1.1), the only difference is that we have replaced f and
g in (1.1) by aε(f) and aε(g), respectively, and controlled in this way the functions
fε, gε when they take negative values (see the definition of aε). Furthermore, by
choosing the regularization in this way, we may still use the functional E1 to obtain
useful estimates for the solutions of (2.3). For the problem consisting of (2.3) and
(1.2), (1.3), we prove the following result.

Proposition 2.1. Let f0, g0 ∈ H1 be two non-negative functions and ε ∈ (0, 1].
There exist globally defined functions fε and gε with fε(0) = f0, gε(0) = g0, which
have the following properties.

(i) Given T > 0, the functions

fε, gε ∈ L∞([0, T ], H1) ∩ L2(0, T ; H3
∆) ∩ C([0, T ], Cα([0, L]))

for some arbitrary α ∈ (0, 1
2 ).
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Global weak solutions for a fourth-order parabolic system 1075

(ii) For all T > 0 and ψ ∈ H1 we have
∫ L

0
fε(T )ψ dx −

∫ L

0
f0ψ dx =

∫
QT

aε(fε)∂3
x(Afε + Bgε)∂xψ dxdt,

∫ L

0
gε(T )ψ dx −

∫ L

0
g0ψ dx =

∫
QT

aε(gε)∂3
x(fε + gε)∂xψ dxdt.

(iii) The following energy estimates are satisfied:

‖fε(T )‖L1 = ‖f0‖L1 and ‖gε(T )‖L1 = ‖g0‖L1 , (2.4 a)∫ L

0
Φε(fε(T )) + BΦε(gε(T )) dx

+
∫

QT

(A − B)|∂2
xfε|2 + B|∂2

x(fε + gε)|2 dxdt

�
∫ L

0
Φε(f0) + BΦε(g0) dx for all T ∈ [0,∞) (2.4 b)

and

E1(fε(T ), gε(T ))

+
1

A − B

∫
QT

aε(fε)|∂3
x(Afε + Bgε)|2 + Baε(gε)|∂3

x(fε + gε)|2 dxdt

� E1(f0, g0) for almost all T ∈ (0,∞). (2.4 c)

We shall construct the global solutions of (2.3) by using Galerkin’s method. In a
first step we shall find, by using the Picard–Lindelöf theorem, Galerkin approxima-
tions for the solutions of (2.3) which are defined on a positive time interval. Using
the energy functional E1, we show then that in fact the approximations are defined
globally. In a second step, we prove that the Galerkin approximation converges
towards global solutions of the regularized system which satisfy energy inequalities
for both energy functionals E1 and E2. Although f0 and g0 are non-negative, it is
not clear if fε and gε preserve this property in time. However, we shall show in § 3
that, for ε → 0, fε and gε converge uniformly to non-negative functions.

2.1. Global existence of the Galerkin approximations

Given f0, g0 ∈ H1, the initial conditions of (1.1), we consider their expansions

f0 =
∞∑

k=0

f0kφk, g0 =
∞∑

k=0

g0kφk in H1,

and, for each n ∈ N, the partial sums

fn
0 :=

n∑
k=0

f0kφk, gn
0 :=

n∑
k=0

g0kφk.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0308210511000680
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 16 Nov 2017 at 08:16:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0308210511000680
https://www.cambridge.org/core


1076 B.-V. Matioc

We first seek the continuously differentiable functions

fn
ε :=

n∑
k=0

F k
ε (t)φk, gn

ε :=
n∑

k=0

Gk
ε(t)φk

which solve (2.3) when testing with functions from the vector space 〈φ0, . . . , φn〉,
and additionally

fn
ε (0) = fn

0 , gn
ε (0) = gn

0 .

By construction, the functions (fn
ε , gn

ε ) satisfy the boundary conditions (1.3) and
if we test (2.3) with constant functions, it follows at once that necessarily F 0

ε and
G0

ε are constant functions

F 0
ε (t) = f00, G0

ε(t) = g00, t � 0. (2.5)

Moreover, the tuple (F n
ε ,Gn

ε ) := (F 1
ε , . . . , Fn

ε , G1
ε, . . . , G

n
ε ) is the solution of the

initial-value problem

(F n
ε ,Gn

ε )′ = Ψ(F n
ε ,Gn

ε ), (F n
ε ,Gn

ε )(0) = (f01, . . . , f0n, g01, . . . , g0n), (2.6)

where Ψ := (Ψ1, Ψ2) : R
2n → R

2n is given by

Ψ1,j(x, y) =
n∑

k=1

(Axk + Byk)
∫ L

0
aε

(
f00φ0 +

n∑
l=1

xlφl

)
∂3

xφk∂xφj dx,

Ψ2,j(x, y) =
n∑

k=1

(xk + yk)
∫ L

0
aε

(
g00φ0 +

n∑
l=1

ylφl

)
∂3

xφk∂xφj dx

for all x, y ∈ R
n. Since aε is Lipschitz continuous, we deduce that Ψ is locally

Lipschitz continuous on R
2n, and therefore problem (2.6) possesses a unique solution

(F n
ε ,Gn

ε ) defined on a maximal interval [0, Tn
ε ). In order to prove that the solution

is global, i.e. Tn
ε = ∞ for all ε ∈ (0, 1] and n ∈ N, we make use of the energy

functional E1. Indeed, since ∂2
xfn

ε , ∂2
xgn

ε ∈ 〈φ0, . . . , φn〉, we may use them as test
functions for (2.3). Integrating by parts, we then get the following relation:

d
dt

E1(fn
ε , gn

ε )

=
1

A − B

∫ L

0
A∂xfn

ε ∂t(∂xfn
ε ) + B∂xfn

ε ∂t(∂xgn
ε )

+ B∂xgn
ε ∂t(∂xfn

ε ) + B∂xgn
ε ∂t(∂xgn

ε ) dx

= − 1
A − B

∫ L

0
A∂2

xfn
ε ∂tf

n
ε + B[∂2

xfn
ε ∂tg

n
ε dx + ∂2

xgn
ε ∂tg

n
ε + ∂2

xgn
ε ∂tf

n
ε ] dx

= − 1
A − B

∫ L

0
[Aaε(fn

ε )∂3
xfn

ε ∂3
x(Afn

ε + Bgn
ε ) + Baε(gn

ε )∂3
xfn

ε ∂3
x(fn

ε + gn
ε )

+ Baε(fn
ε )∂3

xgn
ε ∂3

x(Afn
ε + Bgn

ε ) + Baε(gn
ε )∂3

xgn
ε ∂3

x(fn
ε + gn

ε )] dx,
(2.7)
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Global weak solutions for a fourth-order parabolic system 1077

and taking into account that E1(fn
0 , gn

0 ) � E1(f0, g0) for all n ∈ N, we find after
integrating with respect to time that

E1(fn
ε (T ), gn

ε (T )) +
1

A − B

∫
QT

aε(fn
ε )|∂3

x(Afn
ε + Bgn

ε )|2

+ Baε(gn
ε )|∂3

x(fn
ε + gn

ε )|2 dxdt � E1(f0, g0) (2.8)

for all T > 0. Hence, there exists a positive constant C, which is independent of
time, such that |(F n

ε (T ),Gn
ε (T ))| < C for all T < Tn

ε . Together with (2.5), we
conclude that for each n ∈ N and ε ∈ (0, 1], the Galerkin approximations (fn

ε , gn
ε )

are defined globally.

2.2. Convergence of the Galerkin approximations

Let T > 0 and ε ∈ (0, 1] be fixed. From the energy estimate (2.8) we deduce that

∂xfn
ε , ∂xgn

ε are bounded in L∞(0, T ; L2), (2.9)√
aε(fn

ε )∂3
x(Afn

ε + Bgn
ε ),

√
aε(gn

ε )∂3
x(fn

ε + gn
ε ) are bounded in L2(QT ), (2.10)

uniformly in n ∈ N and ε ∈ (0, 1]. In view of aε � ε and A > B, we obtain
from (2.10) that

∂3
xfn

ε , ∂3
xgn

ε are bounded in L2(QT ), (2.11)

uniformly in n ∈ N. Furthermore, by virtue of (2.5), we see that the mass of both
fluids is preserved by the Galerkin approximations∫ L

0
fn

ε (t) dx = ‖f0‖L1 and
∫ L

0
gn

ε (t) dx = ‖g0‖L1 for all t ∈ [0, T ]. (2.12)

Invoking now (2.9), (2.12), and the Poincaré–Wirtinger inequality we conclude
that in fact

fn
ε , gn

ε are bounded in L∞(0, T ; H1) uniformly in ε ∈ (0, 1] and n ∈ N, (2.13)

while, owing to (2.11) and (2.12), the same inequality implies

fn
ε , gn

ε are bounded in L2(0, T ; H3) uniformly in n. (2.14)

We consider now the partial derivatives with respect to time, and observe that the
first equation of (2.3) can be written in the more compact form ∂tf

n
ε = −∂xHn

ε

where, by (2.10), (2.13), and using the embedding H1 ↪→ L∞, the right-hand side
Hn

ε := a(fε
n)(A∂3

xfn
ε + B∂3

xgn
ε ) is bounded in L2(QT ) uniformly in ε and n. There-

fore, given ζ ∈ H1, we set

ζn :=
n∑

k=0

(ζ|φk)φk

and, using integration by parts, obtain

|(∂tf
n
ε (t)|ζ)| = |(∂tf

n
ε (t)|ζn)|

= |(Hn
ε (t)|∂xζn)|

� ‖Hn
ε (t)‖L2‖ζn‖H1

� ‖Hn
ε (t)‖L2‖ζ‖H1 .
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1078 B.-V. Matioc

This means that

∂tf
n
ε , ∂tg

n
ε are bounded in L2(0, T ; (H1)′) uniformly in ε and n. (2.15)

Gathering (2.13)–(2.15), we obtain from [13, corollary 4], and by making use of the
embeddings

H1 comp.
↪−−−→ Cα([0, L]) ↪→ (H1)′ and H3 comp.

↪−−−→ C2+α([0, L]) ↪→ (H1)′

for α ∈ [0, 1
2 ), that

fn
ε , gn

ε are relatively compact in C([0, T ], Cα([0, L])) ∩ L2(0, T ; C2+α([0, L])).

Hence, for each ε ∈ (0, 1], there exist functions

fε, gε ∈ C([0, T ], Cα([0, L])) ∩ L2(0, T ; C2+α([0, L]))

and subsequences of (fn
ε ) and (gn

ε ) (which we denote again by (fn
ε ) and (gn

ε )) such
that

fn
ε → fε and gn

ε → gε in C([0, T ], Cα([0, L])) ∩ L2(0, T ; C2+α([0, L])). (2.16)

Moreover, we deduce from (2.14) that

∂p
xfn

ε ⇀ ∂p
xfε and ∂p

xgn
ε ⇀ ∂p

xgε in L2(QT ) for p = 1, 2, 3, (2.17)

and therefore fε, gε ∈ L2([0, T ], H3). Additionally, since fn
ε (t), gn

ε (t) ∈ H3
∆, we

obtain, by virtue of (2.16), that ∂xfε = ∂xgε = 0 at x = 0, L for almost all t ∈ [0, T ],
which yields fε, gε ∈ L2([0, T ], H3

∆).

2.3. Proof of proposition 2.1

First of all, fn
ε (0) = fn

0 for all n ∈ N and since f0 ∈ H1 we conclude that
fε(0) = f0 for all ε ∈ (0, 1]. Similarly, we have gε(0) = g0 for all ε ∈ (0, 1].
Furthermore, it is clear from (2.12) and (2.16) that the weak solutions (fε, gε)
satisfy (2.4 a).

We pass now to the limit in the energy estimate (2.8). By virtue of (2.10), (2.16)
and (2.17) we have√

aε(fn
ε )∂3

x(Afn
ε + Bgn

ε ) ⇀
√

aε(fε)∂3
x(Afε + Bgε),√

aε(gn
ε )∂3

x(fn
ε + gn

ε ) ⇀
√

aε(gε)∂3
x(fε + gε)

}
in L2(QT ).

Furthermore, by (2.16) we know that fn
ε (t) → fε(t) in H1 for almost all t ∈ [0, T ],

so that, by passing to the limit n → ∞ in (2.8), we obtain the estimate (2.4 c).
Claim (i) of proposition 2.1 is now a simple consequence of the assertions (2.4 a)

and (2.4 c) in proposition 2.1(iii).
We now prove assertion (ii) of proposition 2.1. To this end, we pick an arbitrary

function ψ ∈ H1 and, testing (2.3) with ψn :=
∑n

k=0(ψ|φk)φk, we obtain the
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following relations:∫ L

0
fn

ε (T )ψn dx −
∫ L

0
f0nψn dx =

∫
QT

aε(fn
ε )∂3

x(Afn
ε + Bgn

ε )∂xψn dxdt,

∫ L

0
gn

ε (T )ψn dx −
∫ L

0
g0nψn dx =

∫
QT

aε(gn
ε )∂3

x(fn
ε + gn

ε )∂xψn dxdt.

Invoking (2.10) and (2.13), we see that aε(fn
ε )∂3

x(Afn
ε +Bgn

ε ) and aε(gn
ε )∂3

x(fn
ε +gn

ε )
are bounded in L2(QT ) uniformly in ε and n. Using (2.16) and (2.17), we may even
identify their weak limit

aε(fn
ε )∂3

x(Afn
ε + Bgn

ε ) ⇀ aε(fε)∂3
x(Afε + Bgε),

aε(gn
ε )∂3

x(fn
ε + gn

ε ) ⇀ aε(gε)∂3
x(fε + gε)

}
in L2(QT ), (2.18)

and assertion (ii) of proposition 2.1 follows from the previous identities when letting
n → ∞.

We end this paragraph with the proof of the estimate (2.4 b). Let us observe that
Φ′

ε(f
n
ε (t)) and Φ′

ε(fε(t)) both belong to H1 for almost all t ∈ [0, T ], meaning that

Φ′
ε(f

n
ε (t)) =

∞∑
k=0

(Φ′
ε(f

n
ε (t))|φk)φk, Φ′

ε(fε(t)) =
∞∑

k=0

(Φ′
ε(fε(t))|φk)φk in H1

(2.19)
for almost all t ∈ [0, T ]. Of course, (2.19) is also valid when replacing f by g. In
view of (2.19), we obtain the following relation:

d
dt

∫ L

0
Φε(fn

ε ) + BΦε(gn
ε ) dx =

∫ L

0
Φ′

ε(f
n
ε )∂tf

n
ε + BΦ′

ε(g
n
ε )∂tg

n
ε dx

=
∫ L

0
aε(fn

ε )∂3
x(Afn

ε + Bgn
ε )

n∑
k=0

(Φ′
ε(f

n
ε )|φk)∂xφk

+ Baε(gn
ε )∂3

x(fn
ε + gn

ε )
n∑

k=0

(Φ′
ε(g

n
ε )|φk)∂xφk dx,

(2.20)

and, integrating with respect to time, we arrive at∫ L

0
Φε(fn

ε (T )) + BΦε(gn
ε (T )) dx

=
∫

QT

[
aε(fn

ε )(A∂3
xfn

ε + B∂3
xgn

ε )
n∑

k=0

(Φ′
ε(f

n
ε )|φk)∂xφk

+ Baε(gn
ε )(∂3

xfn
ε + ∂3

xgn
ε )

n∑
k=0

(Φ′
ε(g

n
ε )|φk)∂xφk

]
dxdt

+
∫ L

0
Φε(fn

0 ) + BΦε(gn
0 ) dx. (2.21)
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In order to pass to the limit n → ∞ in relation (2.21) we must determine what
happens with the two integrals on the right-hand side of (2.21). Using (2.19), we
obtain ∥∥∥∥

n∑
k=0

(Φ′
ε(f

n
ε )|φk)∂xφk − Φ′′

ε (fε)∂xfε

∥∥∥∥
2

L2(QT )

� 2
∥∥∥∥

n∑
k=0

(Φ′
ε(f

n
ε ) − Φ′

ε(fε)|φk)∂xφk

∥∥∥∥
2

L2(QT )

+ 2
∥∥∥∥

n∑
k=0

(Φ′
ε(fε)|φk)∂xφk − Φ′′

ε (fε)∂xfε

∥∥∥∥
2

L2(QT )
.

Taking into account that the first sum on the right-hand side of the above inequality
is the truncation of the Fourier series of Φ′′

ε (fn
ε )∂xfn

ε − Φ′′
ε (fε)∂xfε (cf. (2.19)), its

norm may be estimated as follows:∥∥∥∥
n∑

k=0

(Φ′
ε(f

n
ε ) − Φ′

ε(fε)|φk)∂xφk

∥∥∥∥
2

L2(QT )

� ‖Φ′′
ε (fn

ε )∂xfn
ε − Φ′′

ε (fε)∂xfε‖2
L2(QT )

� 2‖Φ′′
ε (fn

ε ) − Φ′′
ε (fε)‖2

L∞(QT )‖∂xfε‖2
L2(QT )

+ 2‖Φ′′
ε (fn

ε )‖2
L∞(QT )‖∂xfn

ε − ∂xfε‖2
L2(QT )

� 2ε−4‖fn
ε − fε‖2

L∞(QT )‖∂xfε‖2
L2(QT )

+ 2ε−2‖∂xfn
ε − ∂xfε‖2

L2(QT ).

We note that the last inequality has been obtained by using the fact that Φ′′
ε is

Lipschitz continuous with Lipschitz constant ε−2 and 0 � Φ′′
ε � ε−1, properties

which readily follow from (2.1), (2.2), and the relation Φ′′
ε = 1/aε. Invoking (2.16),

we resume our calculation with∥∥∥∥
n∑

k=0

(Φ′
ε(f

n
ε ) − Φ′

ε(fε)|φk)∂xφk

∥∥∥∥
2

L2(QT )
−−−−→
n→∞

0. (2.22)

Concerning the second term, we obtain from (2.19) that∥∥∥∥
n∑

k=0

(Φ′
ε(fε)|φk)∂xφk − Φ′′

ε (fε)∂xfε

∥∥∥∥
L2

=
∥∥∥∥

∞∑
k=n+1

(Φ′
ε(fε)|φk)∂xφk

∥∥∥∥
L2

↘n→∞ 0

for almost all t ∈ [0, T ], and Lebesgue’s dominated convergence theorem yields∥∥∥∥
n∑

k=0

(Φ′
ε(f

n
ε )|φk)∂xφk − Φ′′

ε (fε)∂xfε

∥∥∥∥
L2(QT )

−−−−→
n→∞

0. (2.23)

Gathering (2.22) and (2.23), we conclude that
n∑

k=0

(Φ′
ε(f

n
ε )|φk)∂xφk −−−−→

n→∞
Φ′′

ε (fε)∂xfε in L2(QT ). (2.24)
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Clearly, (2.24) remains true if we replace f by g. We sum (2.18), (2.24), use (2.16)
and the fact that both f0 and g0 are non-negative to obtain from (2.21), when
letting n → ∞, the desired assertion (2.4 b).

3. The proof of theorem 1.1

We shall use the global weak solutions (fε, gε) of the regularized problem (2.3) to
find, in the limit ε → 0, global weak solutions of our original system (1.1). The key
role is now played by the second energy functional E2, which will be used to prove
that the weak solutions we obtain are non-negative and to identify in L2(0, T ; H2) a
weak limit of the global solutions of (2.3). Using integration by parts, we may then
eliminate from the right-hand side of proposition 2.1(ii) the third-order derivatives
of fε and gε, for which we do not have any kind of uniform bounds, and obtain
assertion (iii) of theorem 1.1 in the limit ε → 0.

To do so, we collect first some estimates for the family (fε, gε) which were estab-
lished in § 2. We must pay attention because some of the estimates proven before
are uniform only with respect to n and of no use in this final part. Invoking (2.10)
and (2.13), we deduce the following:

fε, gε are uniformly bounded in L∞(0, T ; H1), (3.1)√
aε(fε)∂3

x(Afε + Bgε),
√

aε(gε)∂3
x(fε + gε) are uniformly bounded in L2(QT ),

(3.2)

while, by virtue of (2.4 a) and (2.4 b), we have

∂2
xfε, ∂

2
xgε are uniformly bounded in L2(QT ), (3.3)∫ L

0
fε(T ) dx = ‖f0‖L1 ,

∫ L

0
gε(T ) dx = ‖g0‖L1 , (3.4)

for all T > 0. Lastly, we observe that the estimates (2.13) and (2.15) are both
uniform with respect to ε ∈ (0, 1] and n ∈ N. This implies that the families
{fn

ε : ε ∈ (0, 1], n ∈ N} and {gn
ε : ε ∈ (0, 1], n ∈ N} are both relatively compact in

C([0, T ], Cα([0, L])), if α ∈ [0, 1
2 ), and therefore

(fε), (gε) are relatively compact in C([0, T ], Cα([0, L])). (3.5)

Consequently, there exist subsequences (fεk
) and (gεk

) and functions f, g such that

fεk
→ f and gεk

→ g in C([0, T ], Cα([0, L])), (3.6)

while, owing to (3.1), (3.3), we conclude that fε, gε are bounded in L2(0, T ; H2),
which ensures, after possibly extracting further subsequences, weak convergence in
L2(QT ) of the spatial derivatives up to order 2:

∂p
xfεk

⇀ ∂p
xf and ∂p

xgεk
⇀ ∂p

xg in L2(QT ) for p = 1, 2. (3.7)

Recalling proposition 2.1(i) and (3.6), we deduce that f, g ∈ L2(0, T ; H2
∆) for all

T > 0. Moreover, the sequences (fεk
) and (gεk

) converge strongly towards f and g,
respectively, in a different norm than in (3.6).
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Lemma 3.1. Given T > 0, we have

fεk
→ f and gεk

→ g in L4(0, T ; H1). (3.8)

Proof. We prove only the assertion for f . Since f(t) and fεk
(t) belong to H2

∆ for
almost all t ∈ [0, T ], we conclude that their first-order derivatives at 0 and L must
vanish. Whence, using integration by parts, we get∫ T

0

( ∫ L

0
|∂x(fεk

− f)|2 dx

)2

dt =
∫ T

0

( ∫ L

0
∂2

x(fεk
− f)(fεk

− f) dx

)2

dt

�
∫ T

0
‖∂2

x(fεk
− f)‖2

L2
‖fεk

− f‖2
L2

dt

� L‖fεk
− f‖2

L∞(QT )‖∂2
x(fεk

− f)‖2
L2(QT ),

and, together with (3.3) and (3.6), we get the desired conclusion.

In particular, we obtain from (3.8) that fεk
(t) → f(t) and gεk

(t) → g(t) in H1

for almost all t ∈ [0, T ], and, together with the estimate (3.1), we conclude that
f, g ∈ L∞(0, T ; H1). Furthermore, fε(0) = f0 and gε(0) = g0 for all ε ∈ (0, 1], so
that (3.6) yields f(0) = f0 and g(0) = g0. The estimate of theorem 1.1(iv) follows
by combining (3.6) with assertion (2.4 a) and lemma 3.2, below.

We now use the energy estimate (2.4 b) to establish assertion (i) of our main
result, theorem 1.1.

Lemma 3.2. The functions f and g found above are non-negative.

Proof. Assume that there exists (T, x0) ∈ Q∞ such that f(T, x0) < 0. Since, by
(3.6), fεk

→ f in C(Q̄T ), we conclude that there exists a constant δ > 0 and k0 ∈ N

with the property that fεk
(T, x) < −δ for all x ∈ [0, L] with |x − x0| < δ and all

k � k0. We then infer from (2.2) that

Φεk
(fεk

(T, x)) =
f2

εk
(T, x)
2εk

+ fεk
(T, x) ln(εk) + εk ln(εk) − εk + 1 � δ2

2εk

for all x and k as above. This contradicts the assertion (2.4 b). Clearly, the argument
is true when replacing f by g, and this proves the claim.

In order to deduce the energy estimate theorem 1.1(v), we recall (2.2) and note
that, for all k ∈ N, we have Φεk

(fεk
) � Φ̃εk

(fεk
), where

Φ̃εk
(s) :=

{
(s + εk) ln(s + εk) − (s + εk) + 1, s � 0,

εk ln(εk) − εk + 1, s < 0.

Given t ∈ [0, T ], the sequence (Φ̃εk
(fεk

(t))) is bounded in C([0, L]) and

Φ̃εk
(fεk

(t)) → Φ(f(t))

pointwise on [0, L]. Lebesgue’s dominated convergence then implies

lim inf
k→∞

∫ L

0
Φεk

(fεk
(T )) dx � lim inf

k→∞

∫ L

0
Φ̃εk

(fεk
(T )) dx =

∫ L

0
Φ(f(T )) dx. (3.9)
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Global weak solutions for a fourth-order parabolic system 1083

Of course, the relation still remains true when replacing f by g. By virtue of (3.7),
we may pass to lim infk→∞ in relation (2.4 b), and obtain in this way the desired
energy estimate (v) of theorem 1.1.

To deal with the energy estimate (vi) of theorem 1.1, we observe first that, for
all k ∈ N,

|aεk
(fεk

) − f | � εk + |fεk
− f |,

meaning, by (3.6), that

aεk
(fεk

) → f and aεk
(gεk

) → g in C(Q̄T ). (3.10)

For every positive integer m, we now introduce the set

Qm
T := {(t, x) ∈ QT : f(t, x) > m−1 and g(t, x) > m−1},

where we may control, by virtue of the estimate (2.4 c) and (3.10), the third-order
derivatives of both fεk

and gεk
:

(∂3
xfεk

), (∂3
xgεk

) are uniformly bounded in L2(Qm
T ). (3.11)

Taking into account that Q+
T =

⋃
m Qm

T , we may assume, after possibly extracting
a further subsequence, that

∂3
xfεk

⇀ ∂3
xf, ∂3

xgεk
⇀ ∂3

xg in L2(Qm
T )

for all m ∈ N, which, together with (3.10), implies√
aεk

(fεk
)∂3

x(Afεk
+ Bgεk

) ⇀
√

f∂3
x(Af + Bg),√

aεk
(gεk

)∂3
x(fεk

+ gεk
) ⇀

√
g∂3

x(f + g)

}
in L1(Qm

T ). (3.12)

In fact, by virtue of (3.2), the weak convergence in (3.12) takes place in L2(Qm
T ).

Recalling (2.4 c) and lemma 3.1, for k → ∞, we obtain the desired estimates (ii)
and (vi) of theorem 1.1.

In order to complete the proof of theorem 1.1, we are left to prove the rela-
tions (iii). To this end, we pick ψ ∈ H2

∆. Since aεk
is Lipschitz continuous, we

obtain from proposition 2.1(i) that aεk
(fεk

(t)) ∈ H1 for almost all t ∈ (0, T ) and

∂x(aεk
(fεk

))(t, x) = χ(0,∞)(fεk
)∂xfεk

almost everywhere in QT ,

whereby χ(0,∞) denotes the characteristic function of the interval (0,∞). Integrating
by parts in the first relation of proposition 2.1(ii), we arrive at∫ L

0
fεk

(T )ψ dx −
∫ L

0
f0ψ dx =

∫ T

0

∫ L

0
aεk

(fεk
)∂3

x(Afεk
+ Bgεk

)∂xψ dxdt

= I1,k + I2,k, (3.13)

where

I1,k := −
∫

QT

∂x(aεk
(fεk

))∂2
x(Afεk

+ Bgεk
)∂xψ dxdt,

I2,k := −
∫

QT

aεk
(fεk

)∂2
x(Afεk

+ Bgεk
)∂2

xψ dxdt.
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We note the use of ψ ∈ H2
∆ to eliminate the boundary terms in (3.13) due to

∂xψ(0) = ∂xψ(L) = 0.
Combining (3.7) and (3.10), we obtain for k → ∞ that

I2,k → −
∫

QT

f(A∂2
xf + B∂2

xg)∂2
xψ dxdt. (3.14)

We consider now the integral I1,k, and note that in order to show the relation

I1,k → −
∫

QT

∂xf(A∂2
xf + B∂2

xg)∂xψ dxdt (3.15)

it suffices to prove that

∂x(aεk
(fεk

)) → ∂xf in L2(QT ). (3.16)

To this end, we write

∂x(aεk
(fεk

)) − ∂xf = (∂x(aεk
(fεk

)) − ∂xfεk
) + (∂xfεk

− ∂xf),

and conclude from lemma 3.1 that (∂xfεk
− ∂xf) → 0 in L2(QT ). Furthermore, the

first term may be written as

(∂x(aεk
(fεk

)) − ∂xfεk
) = (χ(0,∞)(fεk

) − 1)∂xfεk
,

and since ∂xfεk
→ ∂xf in L2(QT ), there exists a function F ∈ L2(QT ) such that,

after possibly extracting a further subsequence, |∂xfεk
| � F almost everywhere in

QT (see the proof of [12, Theorem 3.11]). We show now that

(χ(0,∞)(fεk
) − 1)∂xfεk

→ 0

almost everywhere in QT . Indeed, since ∂xfεk
→ ∂xf in L2(QT ), we deduce that

∂xfεk
→ 0 almost everywhere on the set [f = 0]. Furthermore, on the set [f > 0],

relation (3.6) implies pointwise convergence (χ(0,∞)(fεk
) − 1) → 0. Lebesgue’s dom-

inated convergence theorem now implies the desired relation (3.16), and, implicitly,
(3.15).

To conclude, we sum (3.6), (3.14) and (3.15) and let k → ∞ in relation (3.13) to
obtain the first identity of theorem 1.1(iii). The corresponding relation for g follows
similarly.
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