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ABSTRACT

A conjecture of Manin predicts the distribution of rational points on Fano varieties.
We provide a framework for proofs of Manin’s conjecture for del Pezzo surfaces over
imaginary quadratic fields, using universal torsors. Some of our tools are formulated over
arbitrary number fields. As an application, we prove Manin’s conjecture over imaginary
quadratic fields K for the quartic del Pezzo surface S of singularity type As with five
lines given in IP"}{ by the equations xgx; — xox3 = xor3 + 173 + 24 = 0.
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1. Introduction

Let S be a del Pezzo surface defined over a number field K with only ADE-singularities, let
H be a height function on S(K') given by an anticanonical embedding, and let U be the subset
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obtained by removing the lines in S. If S(K) is Zariski-dense in S, we are interested in the
counting function
Nyu(B) = [{x € U(K) | H(x) < B}|. (1.1)

In this setting, Manin’s conjecture [FMT89, BM90| (generalized in [BT98b] to include our
singular del Pezzo surfaces) predicts an asymptotic formula of the form

Ny (B) = cs.uB(log B)P (1 + o(1)), (1.2)

where p is the rank of the Picard group of a minimal desingularization of S. The positive constant
cs,m was made explicit by Peyre [Pey95, Pey03] and Batyrev—Tschinkel [BT98b].

Over Q, Manin’s conjecture is known for several del Pezzo surfaces and some other classes of
varieties. To the best of the authors’ knowledge, all currently known cases of Manin’s conjecture
over number fields beyond Q concern varieties with a suitable action of an algebraic group
and can be proved via harmonic analysis on adelic points (e.g. flag varieties [FMT89], toric
varieties [BT98a], and equivariant compactifications of additive groups [CLT02]; this includes
some del Pezzo surfaces, classified in [DL10]).

In this article, we provide a framework for proofs of the above formula over imaginary
quadratic fields for del Pezzo surfaces without such a special structure. Where no additional
efforts are required, our results are formulated for arbitrary number fields.

These methods are then applied to prove Manin’s conjecture for the del Pezzo surfaces over
arbitrary imaginary quadratic fields K of degree 4 and type Az with five lines, with respect to
their anticanonical embeddings in IP"}( given by the equations

Tox1 — Ta2T3 = xoT3 + X123 + Tox4 = 0. (1.3)

This is the first proof of Manin’s conjecture over number fields beyond Q for varieties where the
harmonic analysis approach cannot be applied.

Similar applications of our framework allow the treatment of at least the split quartic del
Pezzo surfaces of types Az + A1, Ay, Dy, D5 over imaginary quadratic fields [DF14a]. For a
cubic surface of type Eg, see [DF14b).

1.1 Background

Apart from the general results mentioned above for varieties with large group actions, Manin’s
conjecture is known for smooth complete intersections over the rationals! whose dimension is
large enough compared with their degree, via the Hardy—Littlewood circle method [Bir62, Pey95].

For low-dimensional varieties without such actions of algebraic groups, Manin’s conjecture is
known so far only in isolated cases over Q, for heights given by specific anticanonical embeddings.
In particular, the case of del Pezzo surfaces has been investigated from the beginning (see, e.g.,
[BM90, Proposition 5.4], [Pey95, §8-11] for some toric del Pezzo surfaces of degree d > 6 over
Q, and [FMT89, Appendix] and [PT01] for computational evidence in degree 3 over Q).

The most important technique is the use of universal torsors, which were invented by
Colliot-Théléne and Sansuc (see [CTS87], for example) and first applied to Manin’s conjecture
by Salberger (see [Pey98, Sal98]). The testing ground was a new proof in the case of split toric
varieties over Q (see [Sal98]).

! After submission of the present article, Loughran [Loul3] showed how to derive this over arbitrary number fields
from the work of Skinner [Ski97].
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The central milestones beyond toric varieties were the first examples of possibly singular del
Pezzo surfaces of degrees 5 (see [d1B02]), 4 (see [dIBB07D]), 3 (see [dIBBD07]), and 2 (see [BB13])
that are not covered by [BT98a] or [CLT02]. A long series of further examples followed, all of them
over Q, each dealing with difficulties not encountered before. Also all higher-dimensional results
involving universal torsors concern varieties over Q (specific cubic hypersurfaces of dimension 3
(see [dIBO7]) and 4 (see [BBS14])).

A relatively general strategy has emerged for split singular del Pezzo surfaces over Q
whose universal torsors are open subsets of affine hypersurfaces, as classified in [Der14]. This
is summarized in [Der09]. In that basic form, it turns out to be sufficient for quartic del Pezzo
surfaces over Q of types Ds (see [dIBBO0T7a]), Dy (see [DTO07]), Ay (see [BD0O9b]), As + A4
(see [Der09]) and A3z with five lines (see Theorem 9.11).

For the cubic surfaces of types Eg (see [dIBBDO07]), D5 (see [BD09a]) and As + A;
(see [BD13]) over Q, the strategy of [Der09] goes through when combined with significant further
analytic input. In other cases such as [LB13], larger deviations from [Der09] seem necessary.

Over number fields beyond Q, we have the classical result of Schanuel [Sch79] for projective
spaces (which are toric) that can be interpreted as a basic case of the universal torsor approach,
and a new proof of Manin’s conjecture via universal torsors for the toric singular cubic surface of
type 3Az (see [DJ13] over imaginary quadratic fields of class number 1 and [Frel3] over arbitrary
number fields).

Our goal is to generalize the universal torsor approach towards Manin’s conjecture to non-
toric varieties over number fields other than Q. The two main general challenges arise from the
unavailability of unique factorization (if the class number is greater than 1) and from difficulties
in regard to counting lattice points (if K has more than one Archimedean place, whence the unit
group of its ring of integers is infinite). Furthermore, the existing results over Q often combine
the universal torsor method with subtle applications of deep results from analytic number theory
that are only available over Q in their full strength. To mitigate these additional difficulties, it
seems natural to focus on singular quartic del Pezzo surfaces first.

1.2 Results
Our main results are the techniques presented in §§4-8, which are described in slightly more
detail below.

They allow a rather straightforward treatment of the split quartic del Pezzo surfaces of
types A3 with five lines (see Theorem 1.1), A3 + Ay, A4, Dy, D5 (see [DF14a]) and are an
important ingredient in the proof for the Eg cubic surface [DF14b] over imaginary quadratic
fields. They should also be enough for some del Pezzo surfaces of higher degree (e.g. in degree
5, that of type Ag treated over Q in [Der07b] and, in degree 6, those of type Ay in [Loul0]
and of type Aj with three lines in [Bro09]). We expect that an application to the other cubic
cases mentioned above or to other quartic del Pezzo surfaces (such as those of type Az with four
lines treated over Q in [LB12a], of types 3A; and Ay + A in [LB12b], of types 2A; with eight
lines in [dIBBP12, dIBB12, dIBT13, Des13, Loul2], and the smooth quartic del Pezzo surface
of [dIBB11]) would require additional work.

In §9 we demonstrate how to apply our techniques by proving the following case of Manin’s
conjecture.

Let K C C be an imaginary quadratic field with ring of integers Ok, discriminant A,
class number hg, and with wg = |OF| units. On P} (K), we use the (exponential) Weil height
given by

) max{roles o)

H :.-- N
(33‘0 4 m(wo(’)[{ + -+ 1‘4(’)[() ’

(1.4)
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where ||7;||s := |2;|? for the usual complex absolute value |- | and 9a denotes the absolute norm
of a fractional ideal a.

Let S C P} be the del Pezzo surface of degree 4 defined by (1.3). Up to isomorphism, it is
the unique split del Pezzo surface that contains a singularity of type Ag and five lines.

THEOREM 1.1. Let K be an imaginary quadratic field. Let U be the complement of the lines in
the del Pezzo surface S C P} defined over K by (1.3). For B > 3, we have

Ny (B) = cs,zB(log B)® + O(B(log B)*loglog B),

with . 6
1 (2m)5hS, 6 1
CS,H = 1—|—+>'w )
4320 Aj,‘( H( > < Np  Np? >
where p runs over all non-zero prime ideals of Ok and
12
Weo = — dzodz1 dzs.
T

max{||z023]|o0; 12123 ]l00 123 l|oc, 1|20 21 22 ]| 0os | 2021 (20+21) [0 } <1

Since S is split, its minimal desingularization Sisa blow-up of P% in five rational points in
almost general position, hence p = rk Pic(§ ) = 6, so our result agrees with Manin’s conjecture.
Our leading constant appears to be that predicted by Peyre. See Theorem 9.11 for the analogous
result over Q.

It would be interesting to see an explicit application of [Loul3, Theorem 1.1] giving Manin’s
conjecture for the family of fourfolds over @ obtained by Weil restriction of our surfaces over
varying imaginary quadratic fields K.

1.3 Techniques and plan of the paper

What follows is a short description of our main results and how they should be applied to prove
Manin’s conjecture for some split del Pezzo surfaces S over imaginary quadratic fields. How this
works in the specific case of S defined by (1.3) is shown in our proof of Theorem 1.1 in §9.

In §2, we investigate sums of two classes of arithmetic functions over general number fields.

In § 3, we consider the problem of asymptotically counting lattice points in certain bounded
subsets of C = R? given by inequalities of the form || £;(2)|/oo < ||gi(2)]lo0, With polynomials f;,
gi € C[X]. We use the notion of sets of class m introduced by Schmidt [Sch95] and reduce our
counting problems to a classical result of Davenport [Dav51]. Moreover, we prove a tameness
result for parametric integrals over semialgebraic functions, which can be applied to show that
certain volume functions arising in partial summations do not oscillate too much.

In §4, we describe a strategy to parameterize, up to a certain action of a power of the unit
group, K-rational points on U of bounded height by points (71, ...,7;) on a universal torsor T
over a minimal desingularization S of S with coordinates 7n; in certain fractional ideals O; of K
and satisfying certain coprimality and height conditions. If K is Q or imaginary quadratic, we
propose a parameterization (Claim 4.1) that is closely related to the geometry of S. We expect
this to work whenever 7T is an open subset of a hypersurface in affine space A% provided that
the anticanonical embedding S C P} is chosen favorably. In [Der14], all such del Pezzo surfaces
are classified and suitable models are given.

It is usually stralghtforward to prove Claim 4.1 in special cases by induction over a chain
of blow-ups of IP’ giving S. Using the structure of Plc(S), we show that certain steps in this
induction hold in general. To deal with the lack of unique factorization in O, we apply arguments
introduced by Dedekind and Weber.
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In § 5, we provide the tools to sum the result of our parameterization in § 4 over two variables
Mi—1, M, using our lattice point counting results from §2. Unavailability of unique factorization
leads to difficulties of a technical nature. The results of this and the next section are specific to
imaginary quadratic fields.

In §6, we provide a general tool to sum the main term in the result of §5 over a further
variable 7;_s. Depending on the form of the equation defining the universal torsor 7 in a specific
application, this result will be applied in two different ways.

In applications to specific del Pezzo surfaces, it still remains to estimate the error terms in
the first and second summations. This is straightforward for some singular del Pezzo surfaces
of degree 4 and higher, but much harder for del Pezzo surfaces of lower degree that are smooth
or have mild singularities. To handle additional cases, the most elementary trick is to choose
different orders of summations depending on the relative sizes of the variables. Our results are
compatible with this trick, and indeed it is heavily applied in the proof of Theorem 1.1 (with
four different orders of summations; fortunately, two of them can be handled by symmetry).

In §7, we prove a result handling the summations over all of the remaining variables
M, ...,Mt—3 at once, under certain assumptions on the main term after the second summation.
The results in this section are formulated in terms of ideals instead of elements, which appears
to be the natural way to generalize the respective versions over Q. It seems interesting to point
out that in our applications, we find an opportunity to pass from sums over elements to sums
over ideals right after the second summation (cf. Lemmas 9.4 and 9.7 in the As-case).

To prove the analog of Theorem 1.1 over arbitrary number fields K, one can also start with a
bijection between the rational points on U and orbits of integral points on universal torsors under
an action of (Ox)°, see Claim 4.2. If Oy is infinite, one must work with a fundamental domain
for this action. The main difficulties are, on the one hand, to construct such a fundamental
domain in a way that facilitates counting integral points in it, and, on the other hand, to find
techniques to conduct this counting with acceptable error terms.

1.4 Notation
The symbol K will always denote a fixed number field, which is in some sections arbitrary and
in some sections imaginary quadratic or Q. We denote the degree of K by d, and the number
of real (respectively complex) places of K by s; (respectively s2). By C, we denote a fixed system
of integral representatives for the ideal classes of K, i.e. C contains exactly one integral ideal
from each class.

When we use Vinogradov’s <-notation or Landau’s O-notation, the implied constants may
always depend on K. In cases where they may depend on other objects as well, we mention this,
for example by writing <o or O¢ if the constant may depend on C.

In addition to the notation introduced before Theorem 1.1, we use R to denote the regulator
of K and Zx to denote the monoid of non-zero ideals of Ok . The symbol a (respectively p) always
denotes an ideal (respectively non-zero prime ideal) of O, and vy(a) is the non-negative integer
such that p»@ | a and p*(@+!  a. We extend this in the usual way to fractional ideals (with
vp({0}) := 00), and for x € K, write vy(x) := vy(xOf) for the usual p-adic exponential valuation.

We say that o € K is defined modulo a (respectively invertible modulo a) if vy(xz) > 0
(respectively vp(z) = 0) for all p | a. If z is defined modulo a, then it has a well-defined residue
class modulo a, and we write x =, y if the residue classes of x, y coincide or, equivalently,
vp(x —y) = vy(a) for all p | a.
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Sums and products indexed by (prime) ideals always run over non-zero (prime) ideals. For

simplicity, we define
2%1(2m)*2 R

PK = ————.
ok VA

By Ti(a) (respectively wg (a)), we denote the number of distinct divisors (respectively distinct
prime divisors) of a € Zg, and pug is the Mobius function on Zx. Moreover, ¢ is Euler’s

¢-function for Zx, and ¢y (a) := ¢ (a)/Na =[], ,(1 — 1/9p).

2. Arithmetic functions

In this section, K can be any number field of degree d > 2 (for d = 1, see [Der09]). We will need
to deal with sums involving certain coprimality conditions, which are encoded by arithmetic
functions of the following type, analogous to [Der09, Definition 6.6].

DEFINITION 2.1. Let b € Zg and C, Cy, C3 > 1. Then O(b, Cy, Co, C3) is the set of all functions
¥ : I — Ry such that there exist functions Ay : Z>¢o — R satisfying

a) = H Ap(vp(a))
p

for all a € T, where:

(1) for all p and n > 1,
C4 if pn ’ b,
A —Ay(n—1
(2) for all a € Zg, we have [ ], Ap(0) < Cs.
We say that the functions Ay, correspond to ¥.
The following lemma describes some elementary properties of the functions defined above.
LEMMA 2.2. Let ¥ € ©(b, Cy, Cy, C3) with corresponding functions Ay. Then:
(1) for any a € Ik,
(9 * prc) (@ HAp ) [T(Ap(vp(a)) = Ap(vp(a) — 1));
pla
(2) for anyt >0,
D 10 x px)(@)] - Na <, 7 (0)(C1C2) <O Ot log(t +2) 7
Na<t

(3) if ¥ is not the zero function and q € Tk, then the infinite sum and the infinite product

P O 1((1- ) S 42 e

acly pta rlg
a+q=0x

converge to the same real number.

Proof. The proof of [Der(09, Proposition 6.8] holds almost verbatim in our case. O
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For ¢ € ©(b,C1,C>,C3) and q € Tk, we define

A((@),0,q) = 3 [CAIDRI0)

Na
acli
a+q=0k

and A(Y(a),a) := A(¥(a), a, O). Proposition 2.3 below shows that A(¥(a), a) can be seen as the
average value of ¥ with respect to the variable a, which we mention explicitly to avoid confusion
when dealing with multiple variables, see Corollary 2.7.

Lemma 2.2(3) provides an alternative form. In the simple case when ¢ has corresponding
functions A, satisfying Ap(n) = Ap(1) for all prime ideals p and all n > 1, we have

A0 =TT ( (1= g5 ) ) + 540 ) TT 4500 (2.1)

pla plq

PROPOSITION 2.3. Let ¢ be an ideal class of K. For 9 € ©(b,Cy,Ca,C3), we have

Z 9(a) = prAW(a), a)t + Oc, (Tx () (C1Co)“K ) Oyt =1/d)

actnZy
Na<t
fort >0
Proof. This follows immediately from Lemmas 2.2(1) and 2.5 below. O

LEMMA 2.4. Let C' >0, cy > 0, and let ¥ : Ty — R such that, for t > 0,

Z I(a) < egt(log(t + 2))°.

Na<'t

For any k € R and 1 < t; < tg, we have

() ts " (log(ta +2))¢ ifk <1,
> St <O o+ § log(ta + 2)C+1 if =1,
t1<Ma<ts t1 " (log(ty +2))¢ <cw 1 if k> 1.

Proof. We apply Abel’s summation formula to ¥'(n) = c;' Y., ¥(a); see also [Der09,
Lemma 3.4]. O

The next lemma completes the proof of Proposition 2.3.
LEMMA 2.5. Let ¢ be an ideal class of K, and let ¥ : Ty — R such that
Z |(9 % pre)(a)] - Na < eot(log(t + 2))°,
Na<t
for some C' > 0, ¢y > 0 and for all t > 0. Then

(0 *
Z 9(a) = px Z NK t_’_OC(Cﬁtl—l/d)_

actnZy acly
Na<t
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Proof. By Lemma 2.4, > .7 (¥ * pk)(a)/Ma <¢ ¢y, so the lemma holds for ¢ < 1. Now assume
that ¢ > 1. Since ¥ = (9 * ug) * 1, we have

Yoo = D D @rpx)®) =D (Wxpx)) D L

actnZy actnZx bla No<t a’elb]~enTy
Na<t Na<t Na’ <t/Nb

By the ideal theorem (see, e.g., [Lan94, VI, Theorem 3]), the inner sum is pxt/9b +
O((t/Mb)4=D/4) "0 our sum is equal to

(0 * MK |19*/~LK fd-1)/d (V% pic) (b)|
o 31 t+0< 3 vy 102 1O,

belx Nb>t RIS

By Lemma 2.4, the first part of the error term is <¢ cy(log(t + 2))¢ and the second part is
<o egti~ld, O

We introduce a class of multivariate arithmetic functions, similar to [Der09, Definition 7.8].
When fixing all variables but one, these functions are a special case of those discussed above.

DEFINITION 2.6. Let C' > 1, r € Z>o. Then ©(C) is the set of all functions 0 : Tj. — Rx¢ of
the following shape: with Jy(aq,...,a,) :={ie{1,...,r}:p | a;}, we have

0&1,..., ng Jpal,..., )),
for functions 6, : {J | J C {1,...,r}} — [0,1] with

1—CNp~2 if |J| =0,
0 >
»() {1—Cmp—1 if |.J] = 1.

Let # € ©,(C), fix a1,...,a,—1, and let ¥(a,) := 6(a1,...,a,-1,0,). Then the factors
Op(Jp(a1,...,ar—1,a,)) depend only on vp(a, ), and we immediately obtain ¥(ay) € O([ L, q...q, , P
1,C,1). The following result follows immediately from Proposition 2.3.

COROLLARY 2.7. Let 6 € ©/(C) and a4,...,a,_1 € Zg. For t > 0, we have
Z 9 Cll, Ce = pKhK.A( (al, e Clr), ar)t + OC((QC)WK(uyuarfl)tl_l/d).
Na, <t
By (2.1),

A@(ar,...,a0),a) = [T 6087 (o, ... ar-1)),
p
with .
0 (J) = (1 mp)apu) + 7 U D)

If » > 1, we conclude that A(0(ay,...,a,),a,) € ©)_;(2C). This allows us to define, for [ €
{1,...,r},

A@(ar,...,00), 0, ... 0p) = A(--- A(AO(ay, ... ap), 00 ), 0p—1) -+, 7).
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LEMMA 2.8. Let 6 € ©)(C). Then

Aot 0r) 0,y a) = [T 05 (Fo(ars o)),
p

where, for J C {1,...,1 —1},

(o) 1 \7"H=IE g N I
Oy () = ) <1—mp> <mp> 0p(JUL).

In particular, for l =1,
1 r—|L| 1 | L]
Ab(ar,...,a0),0a0,...,01) :H Z (1_‘ﬁp> (‘ﬂlﬂ) 0, (L). (2.2)
b Lc{l,..,r}
Proof. This follows easily by induction. O

For our error estimates, we frequently need the following lemma.

LEMMA 2.9. Let C > 0. For t > 0, we have

D (C+ 1)K <0 t(log(t +2))°.
Na<t

Proof. This is clear if t < 1, so assume t > 1. Write 9(a) := (C + 1)“5(®)_ For any p, we have

1 ifn=0,
(0 )" = C =1,
0 ifn>2.

Since ¥ = (¥ * g ) * 1,

> ) = Zz(ﬂ*ux)(b)<tZW<tH<1+%>,

Na<t Na<t bla Nb<t MNMp<t

where p runs over all non-zero prime ideals of O with norm bounded by t. By the prime ideal
theorem (e.g. [Nar90, Corollary 1 after Proposition 7.10]) and Abelian partial summation, we

obtain o o
C
H <1 + ‘)Tp) < exp(z ‘ﬁp) <c (log(t+2))~. O

Np<t Np<t

The following lemma allows us to replace certain sums with integrals. It is a crucial tool for
the results in §§6 and 7.

LEMMA 2.10. Let € be an ideal class of K and 9 : T — R be a function such that

m
> da) —ct <Y it log(t +2)M, (2.3)
aEEﬁIK i=1
Na<t

with m € Zso, ¢ > 0, ¢;, b; =2 0, k; € Z>p, holds for all t > 0.
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Let 1 < t1 <tg, and let g : [t1,t2] — R such that there exists a partition of [t1, ta] into at most
R(g) > 1 intervals on whose interior g is continuously differentiable and monotonic. Moreover,
we assume that there are a < 0, ¢, > 0 such that g(t) < c4t® for all t € [t1,t2]. Then

t2
S d(@)g(Ma) = / g(t) dt + E(t, 1), (2.4)
actnZy 1
t1 <Na<ta
where
. t5i log (ty + 2)Fi ifa=0,
+b; kiy 4
E(t1,t2) Kapk, R(9)Y | cqcs ms%lt1<pt2(ta log(t +2)%) ifatbi#0, (2.5)
=1 log(t + 2)kit1 ifa+b; = 0.

An analogous formula holds for 3 qcenz,, 9(a)g(MNa).

t1 <Na<ta

Proof. For any t € Z N [t1,t2], € € (0,1), we have

b= Y da)- > 19(a)<<c€+§:citbilog(t+2)ki.

aEéﬂIK QGEOIK GGEQZK =1
Na=t Na<t Na<t—e

Letting ¢ — 0, we see that the contribution of the ideals a with 9la = ¢ is dominated by the
error term.

Hence, it is enough to consider the case R(g) = 1 and to assume that g is continuously
differentiable and monotonic on [t1,t2]. We denote

E(t):= > d(a)—ct
actnZy
Na<t
and start with a similar strategy as in the proof of [Der09, Lemma 3.1]. Let S(t1,t2) be the
sum on the left-hand side of (2.4). With Abel’s summation formula and integration by parts, we
obtain
to to
S(tata) = c [ at)dt + Blta)glta) ~ Etg(e) — [ B0 0.
1 1
By linearity, we may assume that m = 1, so |E(t)| < 1t log(t + 2)*'. Clearly, the E(t;)g(t;)
satisfy (2.5). Then

1)

Et)d () dt < ¢; /t2 " log(t + 2)% ¢/ (1) dt‘. (2.6)

t1

t1
The bound for a = 0 follows by estimating the integrand by tgl log(ta + 2)*1¢/(t). Moreover, if
b1 = ki = 0, the term on the right-hand side of (2.6) is clearly < ¢1|[g(£)]i?| < cge1t$. Otherwise,
we use integration by parts to further estimate the integral by

to
o el og(e + 2011+ r| [0 o+ 20 9(0) dt'
t1

t2
< cger sup T log(t+2)M + ¢4 / 101" og (¢ 4 2)F1 dt.
t1

t1<t<t2

A simple computation shows that the last integral is < log(ts +2)*1+1 if a +b; = 0, and k;-fold
integration by parts shows that it is <o p, k, |97 log(t + 2)k1]§f| otherwise. O
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3. Lattice points and integrals

Whenever we talk about integrals or lattices, we identify C with R? via z — (Rz,$3z). For a
lattice A in R™ (by which we mean the Z-span of n linearly independent vectors in R™) and a
‘nice’ bounded subset S C R™, one usually approximates |ANS| by the quantity vol(.S)/det(A). To
make this precise, we need to define ‘nice’ sets in our context. We follow an approach developed
by Davenport [Dav51] and Schmidt [Sch95]. For a comparison with a different approach using
Lipschitz-parameterizability, see [Wid12].

DEFINITION 3.1 [Sch95, p. 347]. A compact subset S C R" is of class m if every line intersects
S in at most m single points and intervals and if the same holds for all projections of S on all
linear subspaces.

In particular, the sets of class 1 are the compact convex sets. In our applications, we consider
sets as in the following lemma.

LEMMA 3.2. Let I, D € Zwq. For j € {1,...,1}, let f;, g; € C[X] be polynomials of degree at
most D, and let <;€ {<,=}. Moreover, assume that the set

S:={z € C£i(2)lloc < ll9j(2)lloo for all 1 < j <1}
is bounded. Then S is of class m, for some effective constant m depending only on [ and D.

Proof. The set S is clearly closed, so it is compact. Write z = x + iy, with x, y € R. Then § is
defined by the polynomial (in)equalities hj(z,y) <; 0, for 1 < j <[, with

hi(X,Y) = fj(X +iY) fj(X —iY) — g;(X +iY)g;(X —iY),

where ~ denotes complex conjugation of the coefficients. Hence, h; € R[X,Y] and degh; < 2D.
We conclude that S has O; p(1) connected components (see, e.g., [Cos00, Proposition 4.13]).
Therefore, every projection of S to a linear subspace has O; p(1) connected components, that is

single points and intervals.
The intersection of S with a line is defined by the (in)equalities hj(x,y) <; 0 and a linear
equality, so once again it has O; p(1) connected components, that is single points and intervals.
O

Let K C C be an imaginary quadratic field, and let S C C be as in Lemma 3.2. We use the
following lemma, inspired by [Sch95, Lemma 1], to count the elements of a given fractional ideal
of K that lie in S.

LEMMA 3.3. Let a be a fractional ideal of an imaginary quadratic field K C C, let § € K, and
let S C C be a subset of class m that is contained in the union of k closed balls By, (R) of radius
R, centered at arbitrary points p; € C. Then

2vol(9) (
tans =) Lo
(6+ans) - 2200,

. 1>
VONa '
Proof. After translation by —f3, we may assume that 8 = 0. The ideal a is a lattice in C of
determinant det a = 271,/|A k|Na. Denote its successive minima (with respect to the unit ball)
by A1 < Ag. Then A\ > va (see, e.g., [MVO07, Lemma 5]). By [Cas97, Lemmas VIII.1 and V.8],
there is a basis {u1,u2} of a with |u;| = A;. Let ¢ : C — C be the linear automorphism given by
¥(u1) =1, ¥(uz) =i. Then ¥(a) = Z[i] and, with respect to the standard basis, 1 is represented
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by the matrix

1 Sug —Rug
deta \—Su1  Ruy )’
so its operator norm 1| is bounded by 2\y/ det a. By Minkowski’s second theorem and the facts
from the beginning of this proof, we obtain || < 1/va.

Clearly, |a N S| = |Z[i]] N (S)], and (S) is still of class m. In particular, it satisfies the
conditions I and II from [Dav51], so by [Dav51, Theorem)],

|Z[i] N (S)| = volp(S) + O(mVy + m?),

where Vj is the sum of the volumes of the projections of ¢/(S) to R and iR. Since det ) = 1/det a,
the main term is as claimed in the lemma. Since ¥(S) C |, ¥(Bp,(R)), the volume of the
projection of ¥(.S) to R or iR is bounded by

kR
di B,,(R))) < diam (B, (R .
3 dim(u(B, () < 37 4] dinn(B () < o

For meaningful applications of Lemma 3.3 to a set S as in Lemma 3.2, we need R to be
sufficiently small. The following two lemmas provide such values of R for certain sets S and list
some consequences analogous to [Der(09, Lemma 5.1, (4)—(6)] and [Der09, Lemma 5.1, (1)—(3)],
respectively. For positive z, y, we interpret the expression min{zx,y/0} as x.

LEMMA 3.4. Let a € C~{0}, b€ C, k > 1. With R := min{|a|~"/2,2[b|~'}, we have:
(1) {z € C|[laz® +bzlloo < 1} C Bo(R) U B_ya(R);
(2) vol{z € C | ||laz® + bz]oo < 1} < R2 < min{la]l’?, b=}
If, in addition, b # 0, we have:
(3) vol{(z,u) € C? | [laz® + bzuk|loo < 1} < [lafl* =W pl| "
(4) vol{(z,u) € C? | ||az2u + bzu?| oo < 1} < ||ab]loa’?;
(5) vol{(2,1) € C x R | [laz? + b2t/2 o < 1} < faf /W o) /%
(6) vol{(z,t) € C x R | [|az?t"/? + bzt| e < 1} < ||labl|so
Proof. For part (1), we note that |z||z + b/a| < |a|~! implies
z € Bo(la|™"?) U B_y/a(la]~1/?).
Suppose now that b # 0, |az? + bz| < 1, |b||z| > 2 and |b||az + b| > 2|a| hold. Then

O

1/3

bl|laz + b] > 2|a| > 2|al|z||az + b,
so |b| > 2|az| and thus |az+b| > |az|. This in turn implies that |az?| < 1, so |az?+bz| >2—1 > 1,

a contradiction. This proves parts (1) and (2). The volume in part (3) is

< [ minflal 22, o) du
ueC

< / lall 22 du + / bt 2L du
l[ullso <(llall &2 Ibll ) 1/ * l[ulloo>(Ilall 52 [Bll ) /%

< [lall D ER |

The proof of part (4) is another elementary computation similar to the proof of part (3), and
parts (5) and (6) are analogous to parts (3) and (4). O
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LEMMA 3.5. Let a € C~{0}, b€ C, k> 1. With R := min{|a|""/2, |ab|~'/2}, we have:
2 .

(1) {z€C|laz* ~blloo < 1} € B g7 (R)UB__ /7 (R);

(2) vol{z € C| [|laz? — b||os < 1} < R2 < min{|ja]|?, [|ablls’*}.

If, in addition, b # 0, we have:

(3) vol{(z,u) € C? | [|laz® — buF||so < 1} < ||allsc?(blls/® if k > 2;

(4) vol{(z,u) € C? | [|az?u — bu¥|| oo < 1} < ([lallo|l| £F)~1/2;

4) vol{(
(5) vol{(z,1) € C x Rsg | [laz® — bt*/2|| s < 1} < [lallo/?|Ibllse’* if k > 2;
(6) vol{(z,1

vol{(2,1) € C x Rug | [laz21/? — bt*/2 o < 1} < ([|afloo b} °)~1/2.
Proof. Using the substitution ¢t = z — \/b/a, part (1) is an immediate consequence of
Lemma 3.4(1). Moreover, part (2) follows from part (1), and parts (3)—(6) follow from part (2)
similarly to Lemma 3.4. O

The following lemma provides an easy way to prove uniform boundedness of quantities such as
R(Vy) in Lemma 2.10, for families V4, of certain volume functions. This is relevant for applications
of our methods from §§ 6 and 7. We use the language of semialgebraic geometry (see, e.g., [Cos00]).
The proof uses o-minimal structures, as presented in [vdD98].

LEMMA 3.6. Let k,n € Zq, let M C RF x R x R™ be a semialgebraic set, and let f : M — R be
a semialgebraic function. Assume that for all y = (y1,...,yr) € R¥, t € R, the function f(y,t,-)
is integrable on the fiber

My, :={x=(z1,....20) €R" | (y1,...,yp, t,21,...,2n) € M}.

Then there exists a constant C' € Zg, such that for all y € R¥ there is a partition of R into at
most C' intervals on whose interior the function Vy : R — R defined by

Vy(t) == /EM fdx

is continuously differentiable and monotonic.

Proof. The function V : RExR — R, (y,t) = V4 (¢) is definable in an o-minimal structure. Indeed,
by [LR98|, parametric integrals of global subanalytic functions are definable in the expansion
(Ran, exp) of the structure of global subanalytic sets Ry, by the global exponential function, which
is o-minimal. (In [Kail3|, a smaller structure is constructed which is sufficient for parametric
integrals of semialgebraic functions.)

Let D be a decomposition of R¥ x R into C'-cells such that the restriction of V to each cell
D of D is C! (see [vdD98, Theorem 7.3.2]).

For each cell D of D, there is a definable open set D € Up C R*¥ x R and a definable
C'-function Vp : Up — R such that Vp|p = V|p. Let £ be a decomposition of R*¥ x R into
C'-cells partitioning the definable sets

AL ={(y,t) € D|0Vp/ot >0} and Ap:={(y,t)€ D[dVp/dt <0} for DeD.

We note that |Jp (A5 U Ap) = RF x R, so each cell E of € is contained in some A} or A7,.

Let m : R¥ x R — R* be the projection on the first k& coordinates. Let y € R*. For cells
E of £ with y € w(E), the sets Ey := {t € R| (y,t) € E} are the cells of a decomposition &
of R (see [vdD98, Proposition 3.3.5]). On cells Ey that are open intervals, Vy(t) is defined and
coincides with OVp /0t(y,t) (if E C A} or E C Ap). Therefore, Vy is continuously differentiable
and monotonic on Ey. The observation that || < |€| completes our proof. O
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4. Passage to a universal torsor

In this section, we describe a strategy to parameterize rational points on a split singular del Pezzo
surface by integral points on a universal torsor. This generalizes [DT07, §4] from Q to imaginary
quadratic fields with arbitrary class number. In [DJ13, §4] and [Frel3], a similar strategy is used
in the easier case of a toric split singular cubic surface, where a universal torsor is an open subset
of affine space.

Let K be a number field. Let S be a non-toric split singular del Pezzo surface defined over K
whose minimal desingularization S has a universal torsor that is an open subset of a hypersurface
in affine space. Up to isomorphism, there are only finitely many del Pezzo surfaces satisfying
these properties. Together with an explicit description of all of their properties used below, their
classification can be found in [Derl4]. For del Pezzo surfaces with more complicated universal
torsors, we expect that a similar strategy can be used, but that several complications may appear.

We assume for simplicity that deg(S) € {3,...,6}; the adaptation to deg(S) € {1,2}
is straightforward. To count K-rational points on S, we use the Weil height given by an

anticanonical embedding S C P}jfg(s) satisfying the following assumptions.

(1) Let r := 9 — deg(S). By our assumption on a universal torsor of S, its Cox ring Cox(S)
has a minimal system of r +-4 generators 71, .. ., 7,14 that are homogeneous (with respect to the
natural Pic(S)-grading of Cox(S)), are defined over K (since S is split), correspond to curves
FEq,...,E.rq on S, and satisfy one homogeneous relation

R, ., irea) = 0, (4.1)

which we call the torsor equation. Possibly after replacing some 7; by scalar multiples, we may

assume that all coefficients in R are +1.

(2) The choice of a basis so,.. ., Sqeg(s) Of Ho(g, O(—Kg)) defines a map 7 : S — P;lfg(s)

whose image is an anticanonical embedding S C P;l(eg(s). Since HO(S, O(-K3)) C Cox(S), we

may choose each s; as a monic monomial

Wi, Trta) (4.2)

in the generators of Cox(S), for i =0,...,deg(S).

To describe our expected parameterization of K-rational points of bounded height on S in
Claims 4.1 and 4.2 below, we introduce the following notation.

(1) The split generalized del Pezzo surface S is a blow-up p: S — P2 in r points in almost
general position, i.e. a composition of r blow-ups

§:§T4pr—>§r,1—>-~~—>§14pl—>§0:[?2, (43)

where each p; : §, — §i_1 is the blow-up of a point p; not lying on a (—2)-curve on §i_1. Let £
be the class of p*((’)ﬂm% (1)) and ¢; the class of the total transform of the exceptional divisor of

pi, for i =1,...,r. Then g, ..., ¢, form a basis of Pic(S), so

[E)] = ajolo + - - + aj Ly € Pic(S) (4.4)
for some a;; € Z, for j =1,...,r + 4.
For any C = (Cy,...,C,) € C"t! (see §1.4), we use the integers a;; to define the fractional
ideals
O;:=Cy"°---CP, (4.5)
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and their subsets
Ojy = {(Oj);éov ([Ej]v [EJ]) <0,

O; otherwise.

(2) For n; € Oy, consider the ideals

I; = T]jOj_l.
Via the configuration of F1,..., E,14, we define coprimality conditions
le = Ok for all minimal J C {1,...,r + 4} with ﬂ E; =0. (4.6)
Jje€J JjE€J

We observe from the classification in [Der14] that these minimal J have the form J = {j, j'} for
non-intersecting E;, Ej: (encoded in the extended Dynkin diagram) or J = {7, j/, j”} for pairwise
intersecting K, Ejr, E;» that do not meet in a common point.

(3) Assume that K is an imaginary-quadratic field or K = Q. We consider K as a subset
of Ko € {R,C}, its completion at the infinite place, with || - | the usual real absolute value
respectively the square of the usual complex one.

Let R(B) be the set of all (11,...,n,14) € K'* satisfying the height conditions

1Wi(n1, - - et oo < B, (4.7)
for i = 0,...,deg(5), where ¥; is the monic monomial from (4.2).
For any C € C™*!, we define uc := M(CZC ! --- C;1), corresponding to the anticanonical

class [~Kg|] = 3lp — {1 — -+ — {. Let Mc(DB) be the set of all

(771’"‘7777‘+4) 601* X"'XOT.+4*

lying in the set R(ucB) defined by the height conditions and satisfying the torsor equation (4.1)
and the coprimality conditions (4.6).

CrAmMm 4.1. Let K be an imaginary quadratic field or K = Q. Let S C P}i(eg(s) be a split
singular del Pezzo surface of degree 3,...,6 over K whose universal torsors are open subsets

of hypersurfaces, with an anticanonical embedding satisfying the assumptions above. Let U be
the complement of its lines. Let Ny p(B) be defined as in (1.1), with the usual Weil height H

on ]P’}i?g(s)(K). With the notation introduced above, for B > 0, we have

1
Non(B) = —5=4esy Z |Mc(B)].
wK Ce(C10—deg(s)

Motivated by the geometry of S, we propose a strategy to prove Claim 4.1 by induction, via
the closely related Claim 4.2 below, for ¢ = 0,...,r. The starting point is a parameterization of
rational points via the birational map 7o p~! : }P’%{ --+ S. In each step ¢ = 1,...,r, the rational
points are parameterized by variables 7; corresponding to curves on 51'71; if p; is the blow-up
of the intersection point of some of these curves, we introduce a new variable essentially as the
greatest common divisor of the variables corresponding to those curves to obtain the next step
of the parameterization.

From here on, we work again over an arbitrary number field K. To set up the induction in
Claim 4.2, we need more notation. For ¢ =0,...,rand j=1,...,7+ 4, let

EY = (pir10--0 pr)(E))
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be the projection of E; on S;. If Ej(i) is a curve on §i, then Ej; is its strict transform on S. Possibly

after rearranging the generators of Cox(§ ), we may assume that E%O), Eéo), E?()O) are lines in IP’%(,

that Eio) is a curve of some degree D in P2, and that EZ-(_ZB4 is the exceptional divisor of p;, so

ap=az0=a30=1 a0=D, ajta0=" " =0i+4i-1 =0, aiys;=1, (4.8)

fori=1,...,r. By [Derl4, Lemma 12], we may assume (possibly by a linear change of coordinates
Y0, Y1, Y2 on P%) that

V={p=0}, EY={n=0}, E’={n=0 E={R(oy,p) =0}

in IP%(, where R’ is a homogeneous polynomial of degree D satisfying
Ys — R/ (Yo, Y1,Ys) = R(Y,...,Y3,1,...,1). (4.9)
Via the natural embeddings Pic(P%) C Pic(S1) C --- C Pic(S,—1) C Pic(S), we may view
lo, ..., l; as a basis of Pic(S;). Then

[E](l)] =ajolo + -+ ajil; € Pic(gi) (4.10)

with the integers a;; from (4.4), for any ¢ =0,...,rand j =1,...,i+4.
For i =0,...,r and any (Cp,...,C;) € C'T!, we define analogously to (4.5)

o) {(oy’))#ﬂ, ([E), () <0,

oW .= cgie ... ol .
O](-Z) otherwise,

j 0 i

and, for n; € (9(1)

forj=1,...,i+4.
We use the monomials W;(7,. .., 7y+4) from (4.7) to define the map

v Kr+4 - Kdeg(S)+17 (771’ v anr+4) — (\I}Z(Tllv s a777"+4))i:0,...,deg(5)'

CrAaM 4.2. Let K be a number field. Assume that U C S C Pdeg(s) are as in Claim 4.1.

Assume that 71, ..., Ty+4 are ordered in such a way that E( )4 is the exceptional divisor of p;, for
i=1,...,7. Foranyi € {0,...,r}, we have a map (771,...,7]1+4) = U(n1,. .., Nita, 1, ..., 1) from
the disjoint union
) O() O@ ‘R
(771)"'7771+4)€ - X itdk - (7717"'5772+45 e )
U ZI( = Ok for all minimal J C {1,...,i+ 4} with ﬂ ](
Co,...,C;€C jeJ jeJ

to U(K). This induces a bijection between the orbits under the natural free action of (O )" !
on the former set and U(K).

Here, the natural action of (Ao, ..., \;) € (Ox)"! on these subsets of K™ is explicitly given
via the Pic(S;)-degrees of iy, . . ., fiya (see (4.10)):

()\0, cey )\z) . (771, Ce 777i+4) = ()\81’0 s A?l’inl, ey )\gi+4,0 . )\a1+4 L777J+4)
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COUNTING IMAGINARY QUADRATIC POINTS VIA UNIVERSAL TORSORS

Freeness of this action follows immediately from (4.8), the assumption that F; is a negative
curve for all j € {5,...,7 +4}, and the fact that there are at least r + 1 negative curves on any
generalized del Pezzo surface of degree d < 7. Also, ¥ induces a well-defined map on the orbits
because all W;(71,...,7it4,1,...,1) have the same degree [—Kgl}

Assume that we have established Claim 4.2 for i = r. To deduce Claim 4.1 in specific cases
over number fields K with finite O, it remains to lift the height function via ¥. By the definition
of the Weil height as in (1.4), this depends essentially on the norm of

Wo(n1,- -3 Mr4a) Ok + -+ 4 Waeg(s) (M1, - -+ Mr1a) Ok

For (m1,...,nr+4) € O1x X -+ X Opjax, this is a multiple of uc = ‘ﬁ(Cg’C’fl - 71 since the

r

Wi (71, - - -, 7r+4) have degree [~Kg] = 309 — £1 — - - - — £,. We expect that it is indeed equal to uc
under (4.6). Then H(U(nq,...,n+4)) < B if and only if (n1,...,m44) € R(ucB), and Claim 4.1
follows.

The following two lemmas turn out to be sufficient to prove Claim 4.2 for the quartic surface
of type Ag with five lines defined by (1.3). For other surfaces, some induction steps must be
done by hand. In particular, it may be necessary to use the relation R to deduce the new set
of coprimality conditions. We note that the assumption on 1 in the first lemma holds for every
example in [Derl4].

LEMMA 4.3. The birational map o p~' : P2 --» S induces an isomorphism between an open
subset V' C IP’%( and U C S. The homogeneous cubic polynomials

%(Yo, }/17Y2) = \IIZ(YEL Yla }/27R,(Yv07 lea Y'Q)a 17 (RN 1)7 (411)
fori=0,...,deg(S), define a rational map

VPR - S, (Yo 1 y2) = (Wo(Yo, ¥ ¥2) -t Vaeg(s) (Mo, Y1, Y2))- (4.12)
If ¢ represents mo p~' on V, then Claim 4.2 holds for i = 0.

Proof. Let V C IP’%( be the complement of all EJ(.O) with j € {1,...,4} such that Ej; is a negative

curve on S. Let W be the complement of the negative curves on S. Then m(W) = U since ™ maps
the (—1)-curves to the lines and the (—2)-curves to the singularities on S (each lying on a line
for any singular del Pezzo surface except for the Hirzebruch surface F5, which is excluded since
it is toric), and p(W) = V since p contracts the negative curves Ej, ..., E,4 to points lying on
the negative curves among E{O), ey Eio) (since the extended Dynkin diagram of negative curves
on S is connected and there are at least r + 1 negative curves). Therefore, the birational map
7o p~! induces an isomorphism between V and U.

For i = 0,...,deg(S), we note that v; is a cubic polynomial, by considering coefficients
(@10, ar4a0) = (1,1,1,D,0,...,0) of ¢y from (4.8) and the degree of W;. Since V¥; are
monomials, 1 is defined at least on the complement of Eio), ey Eio). Its image lies in S since

for any equation F' € K[Xo, ..., Xqeg(s)| defining S C P?fg(s), we know that

F(\Ilo(ﬁb s 7777“+4)a SRR \Ildeg(S)(f/b B ﬁT+4))
is a multiple of R(71,...,7r+4), so that F(o(Yo,Y1,Y2), ..., VYdeg(s) (Yo, Y1, Y2)) is a multiple of
R(Yy,Y1,Y2, R(Yy,Y1,Ys),1,...,1), which is trivial by (4.9).
To prove Claim 4.2 for i = 0, we note that 7 o p~! induces a bijection between V(K) and
U(K) that is explicitly given by % by assumption.
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U. DERENTHAL AND C. FREI

Any element of P%(K) is represented uniquely up to multiplication by scalars from O} by
(Y0, y1,92) € O3~{0} with yoOx + y10k + y20k € C (and, in particular, yo,y1, y2 in the same
element of C, say Cj). Therefore, ¢ induces a bijection between the orbits of the action of O
by scalar multiplication on the disjoint union

YCo ' +11Cy " + 120y = Ok,
U (Yo, y1,y2) € C8 | y;1 # 0 if Ej; is a negative curve, for i = 1,2, 3,
Coec R'(yo,y1,y2) # 0 if Ey is a negative curve

and U(K).

We rename (yo, y1,y2) to (n1,12,n3) and introduce an additional variable ny := R/ (11, m2,13),
which is equivalent to R(n1,...,m4,1,...,1) =0 by (4.9). By (4.11), this substitution turns v into
Y(ni,...,m4,1,...,1). We note (O§O), e Oé(lo)) = (Cop, Cp, Co, CP) by (4.8) and that the action
of \g € O on (n1,n2,n3) by scalar multiplication leads to an action on 74 by multiplication by
AD.

It remains to show that the coprimality condition for 7i,79,73 is equivalent to the system
of coprimality conditions described in Claim 4.2. Since any two curves in IP’%{ meet and since
E;O), ESO), Eéo) do not meet in one point, we must show that adding, respectively removing, a
condition such as 9Cy* +172C5 "t +mCy P = Ok for Efo) N Eéo) N Eio) = () makes no difference.
The emptiness of this intersection is equivalent to R’(0,0,1) # 0, i.e. the term Y2D appears in
R’ with a non-zero coefficient. In fact, this coefficient is 1 since all coefficients in R are +1 by
assumption, and this could fail after the substitution in (4.9) only if two terms of R differed only
by powers of 7, . . ., 7y+4, which is impossible because of (4.8) and the homogeneity of R. If there
was a prime ideal p of O dividing 77100_1,7]200_1, 77400_D, then the relation ny = R'(n1,12,13)
would imply that p divides n3C, ! contradicting the coprimality of mCqy L 12Cy ! n3Cqy L O

LEMMA 4.4. Assume that Claim 4.2 holds for some i —1 € {0,...,r — 1}. If p; in (4.3) is

the blow-up of a point on §i_1 lying on precisely two of Eii_l), e ,Ei(i_?)l), if these two meet

transversally in that point and meet nowhere else, and if the strict transform on S of at least
one of these two is a negative curve, then Claim 4.2 holds for 1.

Remark 4.5. For most steps of the proof of Lemma 4.4, we consider the following more general

situation for p;. Let Jy be the set of all j € {1,...,i+ 3} such that EJ(.FU contains the blown-up

)

point p; € S;_1. Assume that p; has multiplicity 1 on each E](-F1 with j € Jp, that we have

ﬂje Jo E](z) — ¢ for their strict transforms on S;, and that the strict transform E; on Sis a
negative curve for some j € Jy.

The additional assumption |Jy| = 2 in Lemma 4.4 is used only for parts of one direction of
the coprimality conditions, see (4.13) below. Without this assumption, we expect that we must
use the torsor equation to derive the coprimality conditions for J C Jy U {i 4+ 4} of Claim 4.2
for 1.

Proof of Lemma 4.4. Except in the paragraph containing (4.13), we work in the situation of
Remark 4.5. ' ‘
We write E; = EJ(.I_I) for divisors on S;_; and E;-’ = E](-Z) for their strict transforms on S;.
The exceptional divisor of p; is E}, , := Ei(_?4.
Let M’, respectively M”, be the disjoint union in step 7 — 1, respectively step ¢, of Claim 4.2.
We construct a bijection between the (OF)™orbits in M’ and the (O} )" -orbits in M”. We use
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n; for coordinates of points in M’ and 7} for coordinates in M”, and similarly O := O(l 1)

OF = (’)](-z) and [} = ]( ), I} = ](-z) for their corresponding (fractional) ideals.

Givenn' = (1},...,mj3) € M', we have correspgnding Co, ..., Ci—1 € Cand O} with n); € O,
and I’ = 77](9' ! Since E; is a negative curve on S for some j € Jy, at least one of the nj with
Jj € Jo is non-zero. Therefore, there is a unique C; € C such that [E]e n Ll = [C’*l] giving
OF and I} for j = 1,...,i + 3. Choose nj,, € C; = O;/+4 such that I} , = E]EJ@ i
unique up to multlphcatlon by Oj;. Then we define 17 = 77] L/, for j € Jo and 773 = 77]- for all
je{l,...,i+3}Jo, giving n” (171, i) € OF, - X (91+4*, uniquely up to the action of
i€ OF by Mg = Ainlipq and mf = A7 ! n; forall j € Jo and 7} — 7 forall j € {1,...,i+3}\Jo.

We check that these n” satisfy the coprlmahty condltlons on M". For J C {1 oo+ 4}
with J ¢ Jo U {i + 4}, assume first that i + 4 ¢ J. Since blowing up p; only separates divisors
meeting in p; and since J ¢ Jo, we have (), ; E7 = @ only for () ; Ej = 0, hence deJ =0k
and hence Zje g1 ]’f = Ok, as desired, because each I ]’/ divides I7. ©. Assume next that 1 +4 € J.
Then only the case J = {k,i + 4} with k ¢ Jy is relevant because of the minimality assumption
on J, so B}/ N E , = @; by the assumptlon Njes, Ej = 0, we have (;c; E; = {pi}, hence
E. N (ﬂyeJo E’) = §; hence I} + 3 ;c; Ii = Ok and bmce I}, 4 divides all I Wlth J € Jo, we
Conclude '+ 1, =Ok.

It remains to check the coprimality conditions for

which is

J C JoU{i+4}. (4.13)

Here we use the additional assumption |Jy| = 2, say Jy = {a,b}. Then our other assumptions
imply ([Eg], [Ey]) = 1, hence ([E7], [E}]) = 0 and ([EF], [Ey4]) = ([E}], [EY}4]) = 1. Therefore,
the only remaining coprimahty Condltlon is I + I}/ = Ok, and this is clearly fulfilled using
I =1,/1 , and I} = I} /I, with I}, , = I}, + I;.

To check that the 1" constructed above satisfy the torsor equation on M”, we first discuss
how the polynomial R behaves under analogous substitutions. Let coly 4+ - - - + ¢,-£,- be the degree
of the homogeneous relation R of the Cox ring. Then R(T7,...,T}, 3,1,...,1) is homogeneous of
degree coly + - -+ + ¢;_14;_1 if we give each TJ’ the degree [E;] =ajolo+ -+ ajyi,l&,l for the
moment. Similarly, R(TY, ..., T} 4, 1, ..., 1) is homogeneous of degree coly + - - - + ¢;l; if we give
each T” the degree [E}] = a;olo + -+ - + a;il;. If we substitute T} in R(77, .. T1'+3, ,...,1) by
/T, for] € Jo and by T}’ for j € {1 .,i+3}\Jo, then we obtain an expression in 77, .. ., T} ,
that is homogeneous of the same degree coﬂo +- o +ci—14;—1. Indeed, T]{’ Ty, , has the same degree

as Tj for j € Jy since [Ef] = [E}] — ¢; and | Z+4] = {;, and similarly for j € {1,...,i 4+ 3}~ Jo.

Furthermore, the result of the substltutlon clearly agrees with R(TY,..., T}, 1,...,1) up to
powers of T}’ , in each term. But both are homogeneous of degrees dlﬁerlng by ¢;¢;, so the result
of the substitution is T" JR(TY .. l’jr4, 1, 1),

11

Since 7} = njn, 4 for je Jo and n; =mnj for j € {1,...,9+ 3}\Jo, this implies that

772+4€1R(77’1’,...,n§’+4,1,...,1) :R(ni,...,nngg,l,...,l).

Since R(ny, ..., M43, 1,...,1) = 0 and 0y, 4 75 0, this implies that n” satisfies the torsor equation
on M". In total, we have constructed for n' € M" an Of-orbit of " € M".
In the other direction, given ” € M"” with corresponding Cy,...,C; € C, we define
.1

77; = 77]771+4 for j € Jo and nj; := n; for j € {1,...,i + 3}\Jo, giving ' = (n},...,m 3) €

1* - X Oz+3*
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If n” € M"” satisfies the coprimality conditions, the same holds for ' that we just defined.
Indeed, if (¢ B’ =, then e EY = @ since blowing up only decreases intersection numbers,
SO ZjeJ I]’-’ Ok. Since ﬂjeJ E’ @ does not contain p;, there is at least one k € J with
k¢ Jo, so ([E], [E]4]) =0, hence I+ I, y = Ok In particular, the factors n/,, in 7} = 70 4
for all j € JN Jy do not contribute to the greatest common divisor, so we have ). jed I = 0Ok
Therefore, " satisfies the coprimality conditions on M’. Similarly as above, 1’ satisfies the torsor
equation. Clearly all n” in the same Oj-orbit give the same n’.

Obviously, ' — n” — n’ is the identity on M’ (for any choice of n” in the corresponding
Oj-orbit). The assumption ;¢ Jo EY = ¢ gives the coprimality condition 3, ; I = Ok on
M, and this ensures that " — 1’ — 7’ yields an element of the same O x-orbit as the original
n”. We have thus constructed a bijection between M’ and Ojs-orbits in M".

Moreover, it is clear that the O%-orbits in M” are contained in the (O )" -orbits from
Claim 4.2, and that n},m5 € M’ are in the same (O)%orbit if and only if 5} and 5} are in the
same (C’)IX()”l-orbit. Hence, our bijection induces the claimed bijection between orbits on M’
and M".

Using the coprimality condition )
if the union defining M"” is disjoint.

iedo I = Of, we see that the union defining M" is disjoint

To conclude our proof, it is enough to show that the map M" — Pdeg(s)( K) defined in
Claim 4.2, step 4, coincides with the composition M” — U(K) of the map M” — M’ constructed
above and the map M’ — U(K) from step i — 1. Using the same gradings and substitutions as in

the discussion of R, we note that U,;(T7,..., l-’+3, 1,...,1) is homogeneous of degree 3¢y — {1 —

- — £;_1. Our substitution turns this into a monic monomial of the same degree that coincides
up to powers of T}, with the monic monomial W;(T7,..., T 4,1,...,1), which is homogeneous
of degree 3fp — {1 — - - - — £;. Since T}’ ; has degree £;, the substltutlon gives T)" ,Wi(TY, ..., T},
1,...,1). Thus, both maps send n” € M" to K-rational points in projective space that dlffer by
a factor of 7}, ; # 0 in each coordinate, hence are the same. O
Remark 4.6. By our assumption, in the Cox ring relation R(71, . . ., fir4) =9 ey Akl Tl fff w

with exponents b, € Zxo, all coefficients Ay are £1. For j = 1,...,r + 4, write O; := (’)J(. ") for

Obr+4,k¢

simplicity. Then the fractional ideals )\kOlljl’k -+ O,7}" coincide for all k = 1,... 1. Indeed, since

R is homogeneous of some degree coly + -+ - + ¢l € Pic(g), each of them is C° - -- Cgr.

5. The first summation

Let K be an imaginary quadratic field, which we regard as a subfield of C. Given a
parameterization as in Claim 4.1 of rational points on a del Pezzo surface S, we must estimate
the cardinality of each Mc(B). As indicated in §1.3, we start by estimating the number of
1B, N, in the fractional ideals Op,, O¢,, say, satisfying the torsor equation, with the remaining
variables fixed. The details depend on the precise shape of the torsor equation and coprimality
conditions, via the configuration of curves on S encoded in an extended Dynkin diagram. In this
section, we assume that they are as in (5.1) and Figure 1. As discussed in [Der09, Remark 2.1],
this is true for the majority of singular del Pezzo surfaces described in [Der14], and the additional
assumptions for Proposition 5.3 are expected to follow from Claim 4.1.

We use the following notation, similar to [Der09, Section 2|. Let r, s, t € Z>¢, (ag,...,ar)
IS Z;‘Bl, (bo,...,bs) € Zi‘gl, (c1,...,¢1) € ZL. Let G = (V, E) be the graph given in Figure 1, and

let G’ = (V', E’) be the graph obtained from G by deleting the vertices By, Cy (see Figure 2).
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A07AT7A7‘—17“’7A1
AN
By—Bs—---—By—D
e
Co—Ci—Ciqg — -+ —C

FIGURE 1. Graph of G = (V, E).

Ag— Ay — o — Ay

AN
B, — B —D
C, R—eh

FIGURE 2. Graph of G' = (V' E').

For v € V, let O, be a non-zero fractional ideal of K such that

ao ar _ mbo bs _ c1 ct _.
OAOOAT—OBOOBS—OCOOCIOCt —.O,

see Remark 4.6. We define

Oy, or Of(? if v = Ay,
O := 1 O, if v € {By, Co},
o7° if v € V~{Ag, By, Co}.

For B > 0, let M(B) be the set of all (n,)vev € [[,cy Ovx with the following properties.

e The tuple (nv>veV\{D} satisfies the torsor equation

. b be -~
Mo 0 g, g, + neene, g, =0 (5.1)

e The tuple (1,)vevruip,) satisfies height conditions written as

((nv)vEV’v 7730) € R(B)7 (5'2)

for a subset R(B) ¢ CV' x C. Moreover, we assume that for all (1,),cy» and B, the set
R((y)vevr; B) of all z € C with ((ny)vevr,2) € R(B) is of class m (see Definition 3.1)
and contained in the union of k closed balls of radius R((n,),cv; B). Here, k, m are fixed
constants.
The ideals

I, := 171,(9;1,11 eV,

of O satisfy the coprimality conditions encoded by the graph G, in the following sense:
For any two non-adjacent vertices v and w in G, the corresponding ideals I, and I, are
relatively prime. We impose the additional coprimality condition

Each prime ideal p dividing Ip may divide at most one of I4,, Ip,, Ic,,

which is only relevant if at least two of r, s, ¢ are 0. Thus, (I4,,IB,,Ic,) is the only triplet
of ideals I, allowed to have a nontrivial common divisor.
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In this section, we count, for fixed (ny),ey7, the number of all (np,,nc,) such that (1,)yev
satisfies the above conditions. This is analogous to [Der09, §2|, except that non-uniqueness of
factorization in our case (if hx > 1) leads to technical difficulties. For ease of notation, we write

77/ = (n’U)UGV’7 II = (IU)’UGV’7

Na = (77A1»-~~,77AT), NB = (nBla"'v’r/Bs)v Nc = (ncl""’nct)’
La = (Iay,---,1a,), 1= (B, IB,), Ic:= (Ic,....Ic,).

Let
M(na) =05 0%, MTAa):=14 ---I7,

and

Ipla, -+ Isa , ifr>1
T (Ip,14) := ! r-l ’
(Ip,Ta) {OK ifr=0.

Analogously, we define II(ng), [I(Ig), II'(Ip,Ip) and II(neo), (1), '(Ip, Ic).
The following notation encoding coprimality conditions is similar to that in Definition 2.6.
For any prime ideal p of O, let

Jo(X):i={veV' :p| L} (5.3)

We define 6o(I') := ][, 00, (J5(I')), where

Bon(J) = 1 ifJ=¢,J={v} withveV' orJ={v,w}eF,
0F " 10 otherwise.

LEMMA 5.1. If (ny)yevqpy satisfy the torsor equation (5.1), then the coprimality conditions
encoded by G are equivalent to

IBO + H/(ID,IB)H<IA) =0k (54)
I, + ' (Ip,Ic) = Ok (5.5)
Oo(T') = 1. (5.6)

Proof. This is analogous to [Der09, Lemma 2.3]. Condition (5.6) is equivalent to the coprimality
conditions encoded by G for all I,, v € V. Conditions (5.4), (5.5) are clearly implied by the
coprimality conditions for Ip,, I, respectively. Using the torsor equation (5.1), one can easily
check that (5.4) and (5.6) imply Ip, + II'(Ip,I)II(I14)II(I¢) = Ok, and that (5.4), (5.5), (5.6)
imply Ic, + II'(Ip, Ic)I(I4)I(Ig) = Ok. 0

For given 7/, let 2 = A(n’) be a non-zero ideal of Ok that is relatively prime to II'(Ip,
Ic)II(I¢), such that we can write

UZ%H(WA) = HlH(z)O,

with Iy = Iy (') € AOp, and I} = 111 (1) € O(AOp, ).

Remark 5.2. For example, we can choose 2 := p to be a suitable prime ideal p not dividing IT'(Ip,
Ic)I(I¢), such that pOp, is a principal fractional ideal (¢), and let Il := ¢, I} := nZ%H(nA)/tbO.
However, in some applications it is desirable to use Hgo to collect bg-th powers of the variables
N4, appearing in 70 I1(n4).

1652

Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 14 Nov 2017 at 12:47:42, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/50010437X13007902


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X13007902
https://www.cambridge.org/core

COUNTING IMAGINARY QUADRATIC POINTS VIA UNIVERSAL TORSORS

ProrosiTION 5.3. With all the above definitions, we have

2
|M(B)| = N Z 01(n")Vi(n'; B)
K U’EHUE‘// Oy

n O< 3 2wK(H’(ID,IC))+wK(H’(ID,IB)H(IA))bS)K(IDH(IC))< R(n'; B) +1>),

NI (I)1/2

where the sum in the error term runs over all ' € HveV’ Oy« such that

R(n's B) # 0, (5.7)
and the implicit constant may depend on K, k, m, and Op,. In the main term,

1
Vi(n'; B) ;_/ A 4%,

2€R(n’;B) ‘ﬂ(H(IC)OBo)

and (&)
N HK\Ye) 5 oy
br(n') = > ALY > L.
&I (Ip,Ic) p mod & JII(Ic)
Ec“l‘]AOH(IA)H(IB):OK pOK+ECH(Ic)=OK
pbOEECH(IC)_Hl/H(nB)

Here,

¢5 (I'(Ip, 15)11(T4))
05 (I'(Ip,1p) + tIl(Ic))’
and I, /TI(ng) is invertible modulo ¢ I1(Ic) whenever 6y(1') # 0. In the inner sum, p runs through

a system of representatives for the invertible residue classes modulo ¢I1(I¢) whose by-th power
is the class of —11; /TI(ng).

If bp = 1, then the sum over p in the definition of #; is just 1 whenever 6y(I') # 0, so
61(n") = 61(I'), where

1(',¢) := (1)

e~
0 (1) := 3 Ma;(e C)Gl(I’,Ec). (5.8)
&I (Ip Ic) ‘
EC+IAOH(IA)H(IB)=OK

In our applications, the function ¢ (I’) plays an important role in the computation of the main
term in the second summation, regardless of whether by = 1 or not. Thus, let us investigate 6],
at least in the case where s, t > 1. Recall that the I,,, v € V'\{Ay}, are always non-zero ideals
of Ok. In the following, we will assume that I4, # {0} holds as well.

LEMMA 5.4. Let s, t > 1. Then we have
0, (1) = He (J(1')) (5.9)

where J,, is defined in (5.3), and for any J C V’,

(1 it J=0,{Bs},{C:},{Ao},
2
1-— ifJ={D
mp 1 { }7
o)=L .
Lp\s) - 1-— Mo if J ={v}, with v € V'\{Bs, C, Ay, D},
or J ={v,w} € F,
0 otherwise.
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In particular, ¢ € ©]_ ., 5(2) and, with p :=r + s+t + 1, we have

A0, (1), 1) = H<1 _ ;p)”(l + mip 4 m;) (5.10)

p

Moreover, let v € V'\{ A1, B1,Cy, D} and let b be the product of all prime ideals of O dividing
at least one I, with w € V'~{v} not adjacent to v. Then, considered as a function of I,, we
have 0/(I') € ©(b,1,1,1).

Proof. We write 0 (') as
o) LRI UD Ip)Me) 5 THCR (1 _ 1)?

(' (Ip,I
tet+-14,TI(TA)I(I5)=0K pl(Ic)

The first factor is defined as a product of local factors which depend only on the set J,(I'). It
is obvious how to write the second factor as such a product. Recall that we assumed s, t > 1.
Whenever 6y(I') # 0, we can write the third factor as

Np — 2 1
1-——).
I s IO (g
plIp Pl (Ip,Ic)+1(Ic))
ptla II(TA)II(IB)II(Ic) pay II(Ta)I(I5)

Now (5.9) can be proved by a straightforward inspection of the local factors. To prove (5.10),
we use (2.2) in Lemma 2.8. Then (5.9) and counting the vertices and edges in G’ show that the
local factor at each prime ideal p is indeed as in (5.10).

The last assertion in the lemma is again an immediate consequence of (5.9). O

An analogous version of the last assertion in Lemma 5.4 holds for 0;.

LEMMA 5.5. Let v € V' and let b be the product of all prime ideals of Ok dividing at least

one I, with w € V'~ {v} not adjacent to v. Then, considered as a function of I,, we have
61(T',¢) € ©(b,1,1,1).

Proof. This follows immediately from the definition of ;. O

5.1 Proof of Proposition 5.3
The proof is mostly analogous to [Der09, Proposition 2.4], but the lack of unique factorization
in Ok leads to some technical difficulties. We use two simple lemmas.

LEMMA 5.6. Let a be an ideal and f a non-zero fractional ideal of O . Let y1, y2 € § such that
(y1f~ ', a) = (yof 1, a) = Ok. Then yo/y; is invertible modulo a and, for x € O, we have
xy1 —y2 € af ifand only if = =4 y2/y1-

Proof. For every prime ideal p | a, we have vy (y1) = vy (f) = vp(y2), so y2/y1 is invertible modulo
a. Moreover, zy; — y2 € af holds if and only if vy(z — y2/y1) = vp(a) — vy(y1§!) for all prime
ideals p. Given our assumptions, this is equivalent to z =4 y2/y1. O

LEMMA 5.7. Let ay, ag be fractional ideals of Ok and let x, y € as such that x —y € ajas. Then,
for any positive integer n, we have 2" — y" € ajay.
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Proof. Clearly, 2" —y" = (z — y)(z" ' +a" Py + -+ ") € araz - ay . O

For fixed B > 0 and 0’ € [, cy» Ous subject to (5.6), let Ny = Ni(n; B) be the number of
all (ng,,nc,) € O, x O¢, such that the torsor equation (5.1), the coprimality conditions (5.4),
(5.5), and the height conditions (5.2) are satisfied. Then

M(B)= > Nin;B)

nIGHUGV’ O'U*
(5.6)

By Mébius inversion for (5.5), we obtain

Ni= S u) sy ney) € O, x 0, | (5.1), (5.2), (5.4)}].
|1 (Ip,Ic)

We note that, given np, € Op,, there is a (unique) n¢, € €.O¢, with (5.1) if and only if
M T n4) + 13 (0 ) € (ne)eOc, = NIe)kO. (5.11)

Similarly as in the proof of [Der09, Proposition 2.4], we see that (5.4) and (5.6) can only hold if
E + [AOH(IA)H(IB) = Ok, so

Ny = > () {nz, € OB, | (5.2),(5.4), (5.11)}/.
t|II'(Ip,Ic)
€c+IAOH(IA)H(IB):OK

Let us consider condition (5.11). Recall the definition of II; and IIy before Proposition 5.3. We
note that
I (O(AOE,) ™) - (Ia(AOp,) ™" =1 T(n )0~ = IPI(Ta),

so I (O(AOE,)~%0) 1 + £II(I¢) and My (AO, )~ + &II(I¢) are O.

LEMMA 5.8. For all ng, € Op, satisfying (5.11) there exists p in O, unique modulo ¢II(I¢),
such that
ng, — plla € ¢I1(Ic)Op,. (5.12)

This p satisfies
P =enae) —/T(np). (5.13)
Here, 11, /TI(n g) is invertible modulo ¢I1(1¢), so p is invertible modulo ¢I1(I¢) as well.
Conversely, if ng, € Op, satisfies (5.12) for some p with (5.13) then it satisfies (5.11).

Proof. We write (5.11) as
i (ng) + LY € eII(16)0. (5.14)

Since I II2° O~ = I'PTI(14) is coprime to &II(Ic), we see that 17%001_[(773)(’)_1 = I%OOH(IB) is
coprime to &II(I¢) as well.

Therefore, np, (’)E; = Ip, is relatively prime with £II(I¢). Moreover, IIs € Op, and, by our
choice of 2, we have Hg@l}; + ¢ II(Ic) = Ok. Therefore, we can apply Lemma 5.6 with x := p,
y1 =1, y2 :=np,, a .= &II(I¢), and § := Op, to see that there is a unique p modulo ¢II(I¢)
with (5.12).

By Lemma 5.7, this p satisfies

s — (pl2)™ € EII(Ic) 0% | (5.15)
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U. DERENTHAL AND C. FREI
Clearly, II(ng)Ok = II(Ig) 005" C OO, so (5.14) and (5.15) imply
PRI ()Y + ILTIY € £ T1(1e)O. (5.16)

Now II(ng) X O~L = TI(Ip) PO, so I(ng)Iy € O and ()P0~ +£II(Ic) = Ok. We
have already seen that I 115 € @ and IHITX O + ¢ II(I¢) = Of. By Lemma 5.6, I, /TI(ng)
is invertible modulo ¢II(I¢) and (5.13) holds.

Now assume that we are given ng, € Op, such that (5.12) and (5.13) hold for some p. By the
same argument as in the above paragraph, using the reverse implication in Lemma 5.6, (5.13)
implies (5.16). By Lemma 5.7, (5.12) implies that 77?3?0 — (pIly)bo € PCH(IC)O?O, which, together
with (5.16), yields (5.11). O

By the lemma,

Ny = > () > {nB, € Op, | (5.2),(5.4), (5.12)}].
&N (Ip,Ic) p mod ¢ II(Ic)
bt Ta, II(T4)I(I5) =0k p0K+E(E)rll(§)c~)=0K

After Mobius inversion for the coprimality condition (5.4), we have

Ny = 3 1u(te) > > Na(tc, &, p),

£ (Ip Ic) p mod EI(Ic)  &|IV(Ip,Ig)I(1a)
t+1a,TI(TA)I(IR)=0xK POK“‘E(CH(I)C):OK
5.13

where
Na(te, 8, p) :== {np, € 8O, | (5.2),(5.12)}].

Since pHQOE;; + ¢Il(Ic) = Ok, congruence (5.12) implies that 7730(9523 + ¢Il(Ic) = Ok.
Therefore, we can add the condition ¢, + ¢ II(Ic) = Ok to the sum over &,.

Let § € Og~{0} such that 6Op, is an integral ideal of Og. The conditions npg, € t,Op, and
(5.12) can be written as a system of congruences

57]30 =0 mod Eb((;OBO)
(57730 = 5pH2 mod ECH(IC)((S(’)BO)

Since £,00p, + ¢ I1(Ic)00p, = 00p, and dplly = 0 mod dOp,, we can apply the Chinese
remainder theorem. Thus, there is an element x € O such that these congruences are equivalent
to

np, = = mod &t I1(Ic)(003z,).

Hence,
Na(te, o, p) = |(2/0 + bt IL(Ic)Op,) N R(0'; B)|.

With our assumptions on R(n'; B), Lemma 3.3 yields

2 Vi(n';B)
No(t, by, p) = +0
( ‘ ) \/’AK| ‘ﬁ(?b?c)
Now a simple computation shows that the main term in the proposition is the correct one. For
the error term, we note that the number of p modulo £ I1(I¢) with (5.13) is < bBUK(IDH(IC)) by
Hensel’s lemma.

R(n'; B)
L+ 1)_
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6. The second summation

As in the previous section, K denotes an imaginary quadratic field. We provide tools to sum the
main term resulting from Proposition 5.3 over a further variable.

First, we fix some notation: let O be a non-zero fractional ideal of K, let q € Zx, and n € Z~g.
Let A € K such that vy,(AOQ) = 0 for all prime ideals p of Ok dividing g. In particular, Az is
defined modulo q for all z € O.

We consider a function ¢ : Zxg — R such that, with constants ¢y > 0 and C > 0,

D10 # px) (@) - Na < cyt(log(t + 2))¢ (6.1)

a€ly
Na<t

holds for all t > 0. We write

AW(a),0,q) == > W.
a3

(For ¥ € ©(b, C1, Ca, Cs), this is consistent with the definition given in §2.)

For 1 < t1 < to, let g : [t1,t2] — R be a function such that there exists a partition of [t1, t2]
into at most R(g) intervals on whose interior g is continuously differentiable and monotonic.
Moreover, with constants ¢, > 0 and a < 0, we assume that

[9(1)] < cgt® on [t1, t]. (6.2)

We find an asymptotic formula for the sum

S(ty,tg) = Yo 90T Y g(Mz0h).

2€0#0 p mod g
t1<N(z0~ <ty POk +9=0g
n=qAz

ProrosiTioN 6.1. With the above definitions, we have

2 2
S(t1,t2) = ——— 65 (1) A(V(a), a,q) / 9(t) dt + O(cocy(VNaEL + N42)),
Vv ] g
where
Supy, <, (t1?) ifa # —1/2,
((:1 <<a,C R(g) {log(tz + 2) ifa= _1/27 (63)
and
t§log(ty +2)°*! ifa <0,
) 4
52 < C R(g) {10g(t2 + 2)C+1 ifa=0. (6 )

Moreover, the same formula holds if, in the definition of S(t1,ts), the range t; < M(zO0~1) <ty
is replaced by t1 < M(zO0~1) < ta.

Remark 6.2. In particular, we can apply Proposition 6.1 with q = Og, n = A = 1 to handle
sums of the form

S(ty,t) = > 9(zO0™Hg(M(z0~Y)).

2070
t1 <N(z0~H)<ts

In this case, the error term is <,c R(g)cocy supt1<t<t2(t“+1/2) if a # —1/2 and <¢
R(g)cocglog(ta + 2) if a = —1/2. (Note that to > t; > 1.)
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Recall the notation of §5, in particular Proposition 5.3. In a typical application, we have r,
s, t =1, by € {1,2}, and 3
Vi(n's B) = Vi((Ny)vev'; B)
depends only on B and the absolute norms of the ideals I,,, and not on the 7,. Let us describe
how we apply Proposition 6.1 to sum the main term in the result of Proposition 5.3 over a further
variable, say, 1,,. We write V" := V'~ {w}, 0" := (1y)vey~ and assume that g(t) := V3 (N1, )pevr,
t; B) satisfies the hypotheses from the beginning of this section. We define

Vo((My)peyr; B) := 7r/ g(t)dt
t>1
and distinguish between two cases.
In the first case, let by = 1. As mentioned after Proposition 5.3, 01(n') = 0} (). Let ¥(I,,) :=
071 (I'), considered as a function of I,,. By the last assertion of Lemma 5.4 and Lemma 2.2(2), ¢
satisfies (6.1) with ¢g = 2¢(®) and C' = 0. Up to a possible contribution of 1, = 0 (if w = Ap),
we can use Remark 6.2 to estimate

2 Z Z 91O ) g(N(1,0,1)).

n//GHvEV” Oyx Nw € Owx

Ak

We obtain a main term

2
( ﬁm) S A, L)Va(RE ey B). (65)
n"€ll,evr Ovx

It remains to bound the sum over n” of the error term from Remark 6.2.

In the second case by = 2, the sum over p in the definition of 8, is not just 1. However, we note
that, if 7, s > 1, the condition €. + I4,II(I4)II(Ig) = Ok can be replaced by & + I4,Ip, = Ok,
since the remaining coprimality conditions follow from 6y(I') = 1. We additionally assume that

w e {Ao,Ag,...,A,«}

and that —II, /II(ng) has the form An,,, where A does not depend on 7,,. Then v,(AO,) =0
for all p | ¢ II(Ic). We apply Proposition 6.1 once for every summand in the sum over &, to sum
the expression

01(T' &) > Vi(n'; B)
p mod ¢II(Ic)
pOK-i-EcH(Ic):OK
PbOEecnuC)Anw
over Ny € Ouy. Let 9(I,) := 01 (T, £,), considered as a function of I,,. By Lemmas 5.5 and 2.2(2),
¥ satisfies (6.1) with ¢y = 295(®) and C' = 0. After applying Proposition 6.1 and summing the
result over €., we obtain a main term

92 2
(\/ 02(1")Va((NLy)vevr; B)
=)z B),
K T["EHUE‘/// Oux

where

t) .
b= “g;i ) e (TI(1E) A1), L £ TI(Tc)). (6.6)
eI (Ip.Ic) ‘
tc+1a, I, =0k

The following lemma shows that the main term is the same as in the case by = 0. It remains
to bound the sum over n” and & of the error term multiplied by px (&)/91E..
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LEMMA 6.3. Assume that r, s > 1, choose w € {Ao, A2, ..., Ay, Ba, ..., Bs}, and let 9(Iy) :=
01(Y', ¢.), considered as a function of I,. Then ¥(I,,) € ©(b, 1,1,1), where b is given in Lemma 5.5.
Define 65(1") as in (6.6) and 0} (') as in (5.8). Then we have

02(1") = A(61(T'), L).

Proof. 1t is enough to prove that ¢} (¢II(Ic))A(Y(Lw), Iw, tII(Ic)) = A(Y(1w), L) holds
whenever € satisfies the conditions under the sum. This is clearly true if ¥ is the zero function.
If not, write V(1) = [], Ap(vp(Lw)) with Ay(n) = Ap(1) for all prime ideals p and all n > 1. By
Lemma 2.2(3), ¢} ((I1(Ic)) A(Y(Lw), L, &II(Ic)) is given by

11 ((1 - ;p)Ap(O) + D;Ap(l)> 11 (1 - Sjr;J)AP(O),

p*EcH(IC)

and

By our choice of w, we have 9(I,) = 01 (I', &) = 0 whenever p | (I, + £II(I¢)). Since ¥ is not
identically zero, this implies A,(1) = 0 for all p | £II(I¢). O

6.1 Proof of Proposition 6.1
First, we prove a version of Lemma 2.5 that counts elements in a given residue class instead of
ideals.

LEMMA 6.4. Let a be an ideal of K and let € O such that a+q = Ok +q = Og. Moreover,
let ¥ : T — R satisfy (6.1). Then, for t > 0,

> Wzl = \/mizmxtw(b), b,q)t + Oc <C19 <\/mTq+ log(t + 2)C+1>).

zea~{0}
z=f mod q
m(za*1)<t

Proof. The case t < 1 can be handled as in Lemma 2.5, so let ¢t > 1. Using ¢ = (¢ * ug) * 1, we

see that
Yo daT) =D @rpx)e) D> 1= > @xux)) > 1L
z€a~{0} Nb<t z€ab~{0} Nb<t z€ab~{0}
2= mod q 2= mod q b+q=0x 2= mod q
N(za~ 1)<t N(za~ 1)<t 12| oo <tNa

For the second equality, note that the inner sum is 0 whenever b+ q # Ok. Now ab + q = Ok,
so the Chinese remainder theorem yields an x € Ok such that

Yooz = Y @Wxupx)d) > L

zea~{0} Nb<t 2eO70
z=8 rnlod q b+q=0x =z molc(l abq
N(za™ 1)<t [1Z]| oo <tMNa

We use Lemma 3.3 to estimate the inner sum and obtain

S = X @m0y 1))

zea~{0} Nb<E
2= mod q b+q=0xk
MN(za~ 1)<t
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which we expand to the main term in the lemma plus an error term

ZI??*MK [t ZW*MK +Z\19*MK

‘J’Ib t ‘.)’Ib<t Nb<t

By (6.1) and Lemma 2.4, the first part of the error term is <¢ cyMq~" log(t 4+ 2)¢, the second
part is < ¢ cg+/t/Mq, and the third part is < ¢ cg log(t + 2)¢+. O

LEMMA 6.5. Using the notation from the beginning of this section, we have

Y 9o Y 1= mqﬁx() (9(a), a,q)t (6.7)

2€070 p mod ¢
MN(zO~ 1)<t POk +9=0x
pr=qAz

+ O(cy(v/Nat + Nqlog(t +2)°H1)).

Proof. Denote the expression on the left-hand side of (6.7) by L. Since v,(AO) = 0 for all
p | g, we can, by weak approximation, find A; € O7!, Ay € Ok such that A = A;/As and
A0+ q= A0k + q = Og. Changing the order of summation, we obtain

L= ) Yo oo )= ) > 9(Az(40)7h),

p mod g 2€0#0 p mod q A1z€A; 070
pOK+q=0k A12=A2p™ mod q POk +9=0Ok Aj12z=A2p™ mod q
N(zO0~1)<t N(A12(A10)~ 1)<t
The lemma now follows from Lemma 6.4 and the trivial estimate ¢x(q) < q. o

Define 9 : Iy — R by

> oL

2070 p mod g
207 =a PO +9=0x
pr=qAz

The first sum is finite, since |Oj| < co. Then

S(t1,t2) = Z d(a)g(MNa),

ac [07 1}01‘[(
t1<Na<ts

and by Lemma 6.5 we have

Yo )= \/Z—K‘ﬁb}(Q)A(ﬁ(a), a, )t + O(cy(/MNat + Nq log(t + 2)°11)).
ac[O~ Nk

Na<t

With (6.2) and simple calculations, the proposition now follows from Lemma 2.10.

7. Further summations

Here, we show how to evaluate the main term of the second summation as in (6.5), once the sums
over C € C"*! from Claim 4.1 and over elements 5" € O1, X - - - x Op4 1, have been transformed
into a sum over ideals (aj,...,a,41) € Iy ' (see Lemma 9.4, for example).

In this section, K can be an arbitrary number field of degree d > 2. For K = Q, we refer
to [Der09]. Let r € Z~g, s € {0,1}. We consider functions V : RHS X R>3 — Ry similar to the
ones in [Der09, Propositions 3.9 and 3.10]. That is, we consider three cases.
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(a) We have s =0 and

V(ty,... tm;B) <
1oty

(b) We have s = 1 and there exist ko, ...,k € R, k1, kr41 € Ry, a € Ry with

B B @
V(ty,...,tr41; B) < . .
(la s br+15 ) tl_..tT+1 <tll€1"'tkT+l>

r+1

Moreover, V(t1,...,t,4+1; B) = 0 unless t]fl . -tffll < B.
(c) We have s =1 and there exist ka,...,k € R, k1, k11 € Ry, a, b € Ry with

B B —a B b
Vity,....tp41:B) < ————— mind [ ———— ) ([—————— ) \.
(h 13 B) b1ty {(t’fl-~tk”1> <tlf1~'tk’"“) }

r+1 r+1
In addition, we assume that V(t1,...,t,45) = 0 unless ¢1,...,t.4+s < B, and that there is a
constant R(V) such that for all fixed t1,...,t,45-1, B, there is a partition of [1, B] into at
most R(V') intervals on whose interior V(t1,...,t,4s; B), considered as a function of ¢, is

continuously differentiable and monotonic. We note that case (b) implies case (c) for any b > 0.

LEMMA 7.1. Let V(t1,...,t,4+s; B) be as above, t,1s > 1, B > 3. Then

B(log B)" !

> V(Ray, ..., Nap s 1,trs; B) <
tr-l—s

a1,y s—1€LK

Proof. In case (a) this follows immediately from Lemma 2.4 with C' = 0, k = 1 applied r times.
In case (b), we apply Lemma 2.4 with C' =0, k = 1 — ak; to the sum over a; and then proceed
as in case (a).

In case (c), we split the sum over a; into two sums: one over all a; with ‘ﬁalfl e ‘ﬁaffll <B
and one where the opposite inequality holds. For the first, we use

V(mala . Nay, trg1; B) < B/(mal T snartvdrl)(B/(gtall€1 T mafrtff:ll))_a
and proceed as in case (b). For the second sum, we use
V(May,...,Na,, t,41; B) < B/(MNay -- 'martr+1)(B/(‘ﬂalf1 .. ,mafrtfq:lil))b

and apply Lemma 2.4 with C' = 0, kK = 1 + bk;. The remaining summations over as, ..., a, are
again handled as in case (a). O

PROPOSITION 7.2. Let V' be as above and 6 € ©,., (C) for some C € Z~q. Then

Z O(ar,...,a045)V(MNay,...,Na,45; B)

A15eeslrds

= PKhK Z A(@(al, ceey ar-i—s)a ar+s) / V(mala s 7ma7”+s—1, tr+s; B) dtr+s
1

Al,-0r45—1

+ Oy.c(B(log B)" *loglog B).

Proof. This is mostly analogous to a special case of [Der09, Propositions 3.9 and 3.10], but we
could simplify the third step significantly.
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We define T := (log B)H2C=D(r+5=1)+5) and proceed in three steps:

(1) bound
Z O(ar,...,a045)V(Nay, ..., Na,4s; B);
A1,..,0r 45
Narqs<T
(2) bound the sum over ay,...,a,45-1 of
Z O(ar,...,a045)V(Nay, ..., Na,4s; B)
mur+s>T
- PKhKA(H(ﬂh cey ar—i—s)a ar+s) / V(mﬂl, oo Nap o1, brgs; B) dbyys;
T
(3) bound

T
Z ./4(9(61, S ar—i—s)a ar+s) / V(mala ey N 51, Lrss B) dtyys.
1

a1, 0r45—1

Using 0 < O(ay,...,a,45) < 1 and Lemma 7.1, we see that the expression in step (1) is indeed
bounded by

Y VO, MNagB) < >

A1 4eeeylpgs Nar4s<T
Nay4s<T

< B(log B)"!loglog B.

Analogously, since A(f(ay, ..., 0 1s),045) € O, 1(2C), the expression in step (3) is bounded
by

T T -1
B(log B)"
S V(Rar, .., My, b B) dtyrs < / (t)dtr+s
A1,e0,0pfs—1 1 1 r+s

< B(log B)" ! loglog B.
For step (2), we note that in all three cases (a), (b) and (c) we have
B
V(t17"'7t7‘+8;B) < :
- trss

By Corollary 2.7, we may apply Lemma 2.10 with m =1, ¢; = (QC)W(“l"“’“’“JrS—l), by =1-—1/d,
ki =0, cg = B/(MNay---Nay45-1), a = —1 for the sum over a,,,. We obtain an error term of
order

W(a1 ey Opgs—1)
<ve ) Gc) Bip-1/d B(log B)2O)+s-Dp-1/d

Nay---Napis—
a1 50r4s5—1 1 r+s—1

< B(logB)" 1. O
Let V,41 :=V be as in cases (b) and (c) at the start of this section. For all [ € {0,...,r}, we
define
Vity, ..., t;; B) 3:/ V(ty, ..., trp1; B)dtypq - - - dtyyy.
tl+17"'7t7‘+121

For [ > 1, and fixed t1,...,t,_1, B, we additionally require that there is a partition of [1, B] into
at most R(V') intervals on which Vj(¢1,...,¢; B), as a function of ¢;, is continuously differentiable
and monotonic. For § € ©]_,(C), let

al(ala .. -7al) = A(@(al, .. .,ar+1)’ar+1’ . ‘7al+l) c 62(27‘—#&-10)‘
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The following proposition is analogous to [Der09, Proposition 4.3 and Remark 4.4].

PROPOSITION 7.3. Let V' be as above and 6 € O, ,(C). Then

> 0ar,...a0)V(Nay, ..., Napg; B)

A1ye0r41

= (prhi) " 00V0(B) + Ov,c(B(log B)" " loglog B).
Proof. By a similar argument as in Lemma 7.1, we see that, for [ € {1,...,7},

B(log B)"

W(tl,...,tl;B) <
ty---1

Since 6;(a1,...,a) € O)(2"7!F1C), we can apply Proposition 7.2 inductively to Vi1, Vi,
Vi_1/logB,...,Vi/(log B)"~1. O

Note that 6y can be computed by Lemma 2.8.

8. The factor o

Let K be an imaginary quadratic field. Let S be a split singular del Pezzo surface of degree
d =9—r over K, with minimal desingularization S. The final result of our summation process is
typically provided by Proposition 7.3. To derive Manin’s conjecture as in Theorem 1.1 from this,
it remains to compare the integral Vo(B) with a(S)7"lw., B(log B)". Here, a(S) is a constant
defined in [Pey95, Définition 2.4] and [BT95, Definition 2.4.6] that is expected to be a factor of
the leading constant c¢g g in Manin’s conjecture (1.2).

For a split singular del Pezzo surface S of degree d < 7, its value can be computed by [DJT08,
Theorem 1.3] as
& _ a(So)
a(S) W

where Sy is a split ordinary del Pezzo surface of the same degree and |W| is the order of the

(8.1)

Weyl group W associated to the singularities of S. For example, |W| = (n+1)!if S has precisely
one singularity whose type is A,,. The value of a(Sp) can be computed by [Der07a, Theorem 4],
with a(Sp) = 1/180 in degree 4.

To rewrite «(S) as an integral, it is most convenient to work with [DEJ14, Definition 1.1],
giving

a(S) == (r+1) -vol{z € Az (S) | (z,~K3) < 1},

since Pic(S) has rank r + 1, where Agﬂ(g) C (Pic(S) @z R)Y is the dual of the effective cone of S
(which is generated by the classes of the negative curves since d < 7), (-, ) is the natural pairing

between Pic(S) ®z R and its dual space, and the volume is normalized such that Pic(S)V has
covolume 1.

Suppose that the negative curves on S are Ey, ..., E 14, for some s > 0, where Ey, ..., Ery1
are a basis of Pic(S); for example, this holds in the ordering chosen in §4. Expressing —Kg and
FErio,..., E4144 in terms of this basis, we have

r—+1

[—Kgl = ch [E5]
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and, fori=1,...,s,

r+1

[Ert144] = Z bi,; [E]]

Jj=1
for some b; ;,c; € Z.
LEmMmA 8.1. With the above notation, assume that c,41 > 0. Define, for j = 1,...,r and
1=1,...,s,

aoj i=Cj, Qg = bipp1¢5 — bijerpr,  Aoi=1,  Aj = by

Then

~ 1 1
a@ogBy = [ e dn,
Cr+1T" JRy(B) 71+ 1l oo

with a domain of integration

HmHoo, o lnrllee = 1,

Ri(B) = 0 Oneme) €€\ T 1 < B2 for al i € {0 5}

Jj=1
Proof. Since [E1],...,[E,+1+s) generate the effective cone of S, the value of a(S) is
r+1 r+1
(r+1)-vol{(t'1,...,r+1 RTH’Z[)’JJ/ 1,...,3),cht;<1}.
j=1
We make a linear change of variables (t1,...,t,, t,41) = (t],...,t,, cith + -+ + crqat). ), with

Jacobian ¢,4 1. This transforms the polytope in the previous formula into a pyramid whose base
is Ry x {1} in the hyperplace {t,;1 = 1} in R""1 and whose apex is the origin, where

Ry ::{(tl,..., €R>O‘Za” < A, for all i € {0, . s}}

This pyramid has volume (r +1)~! vol Rq since its height is 1 and its dimension is r + 1. Writing
vol Ry as an integral, we get

~ 1
a(S) = / dt, --- dty,
Cr4+1 J(ty1,....tr)ERp

where the factor c,_ il appears because of our change of coordinates. Now the change of
coordinates 1, = B for i € {1,...,r} gives a real integral with the factor (log B)". The final
complex integral with the factor 7" is obtained via polar coordinates. O

9. The quartic del Pezzo surface of type A3z with five lines

Let S C P} be the anticanonically embedded del Pezzo surface defined by (1.3). In this section,
we apply our general techniques to prove Manin’s conjecture for S (Theorem 1.1).

Our surface S contains precisely one singularity (0:0:0:0: 1) (of type As) and the five
lines {xg = 1 = x2 = 0}, {xp = w2 = x3 = 0}, {zp = 23 = x4 = 0}, {1 = 22 = 23 = 0},
{1 = x3 = x4 = 0}. Let U be the complement of these lines in S.

By [DL10, DL13], S is not an equivariant compactification of an algebraic group, so that
Manin’s conjecture does not follow from [BT98a, CLT02, TT12].

1664

Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek, on 14 Nov 2017 at 12:47:42, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1112/50010437X13007902


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X13007902
https://www.cambridge.org/core

COUNTING IMAGINARY QUADRATIC POINTS VIA UNIVERSAL TORSORS

Ficure 3. Configuration of curves on S.

9.1 Passage to a universal torsor

To parameterize the rational points on U C S by integral points on an affine hypersurface, we
apply the strategy described in §4, based on the description of the Cox ring of its minimal
desingularization S in [Der14]. In particular, we will refer to the extended Dynkin diagram in
Figure 3 encoding the configuration of curves Ej, ..., Fy corresponding to generators of Cox(.S).
Here, a vertex marked by a circle (respectively a box) corresponds to a (—2)-curve (respectively
(—1)-curve), and there are ([Ej], [E)]) edges between the vertices corresponding to E; and Ej.

For any given C = (Cy,...,C5) € C%, we define uc := N(C3CT'---C5') and

O := 010471’ Oy := 000;10510517 O3 := CQCgla
Oy := Cy, 05 := (s, O := Cs, (9.1)
O7:=CoCr 'Oyt Ogi=CoCy'Cyt, 09 := CoCy .

Let 0
0, = (’)j , 26{1,...,8},
Oj J = 9.

For n; € O, we define
I; = T]jOj_l.

For B > 0, let R(B) be the set of all (11,...,13) € C® with 5 # 0 and

i nansninsnzllee < B, (9.2)
lmmsnnsgns e < B, (9.3)
lnn3msnansello < B, (9-4)
Imnansnanenzmsleo < B, (9.5)
2,2 2, 2
‘ Mg sl (9.6)
15 0
Moreover, let Mc(B) be the set of all
(M- 5m9) € Ory X -+ - x Oy,
that satisfy the height conditions
(nla e 7778) € R(UcB), (97)
the torsor equation
manT + nangns + smy = 0, (9.8)
and the coprimality conditions
I; + I, = Ok for all distinct non-adjacent vertices Ej, Ej in Figure 3. (9.9)
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LEMMA 9.1. Let K be a imaginary quadratic field. Then
1
Nun(B)=— > IMc(B)|.
YK Geco

Proof. We apply the strategy from §4. We work with the data in [Derl4]. For our surface S,
Claim 4.1 specializes precisely to the statement of our lemma (where (9.6) is ||77m819|lcc < B
with 79 eliminated using (9.8)).

We prove it via the induction process described in Claim 4.2. It is based on the construction
of the minimal desingularization 7 : S — S by the following sequence of blow-ups

p:plo...op5:§—>]P)%(-
Starting with the curves
EY ={y=0}, EY ={m=0} EY ={p=0} EY :={-y—un=0}

in IP’%(:

(1) blow up Eéo) N E$0)7 giving Eg);

(2) blow up Eél) N Eé1)7 giving E5;

3) blow up EY) N EyY, giving ELY;

2 9 5
(4) blow up EY 0 EP), giving E{Y;
(5) blow up E§4) N Eé4)7 giving E((iB)'

The inverse 7o p~1 : P4 --» S of the projection

p=pom 1:8--sP%  (zg:---:x4) > (x0: 21 T0)
is given by
(yo : y1 :y2) = (yo¥3 = v1%5 < ¥ yowry2 - —your (yo + y1))- (9.10)
In our case, the map ¥ appearing in Claim 4.2 sends (11,...,19) to

(M MBM3ma 5T, M3 TATSTE NS, LT TATE 6, TIN5 4TI N718 17879

Claim 4.2 holds for ¢ = 0 by Lemma 4.3 since the map 9 : IP’%( --» S obtained from ¥ by
the substitution (n1,...,m8) — (1,22,1,1,1,1, 90,91, —y0 — y1) as in (4.11), (4.12) agrees with
moptonPi~{(1:0:0),(0:1:0),(1:-1:0)}

Since the five blow-ups described above satisfy the assumptions of Lemma 4.4, Claim 4.2
follows by induction for i =1,...,5.

Hence V¥ induces a w%-to-1 map from the set of all (11,...,7m9) € Ucecs O1 x -+ x Oy,
satisfying (9.8), (9.9), H(¥(m,...,m9)) < B to the set of K-rational points on U of height
bounded by B. One easily sees that (9.9) implies that

minansninsnr Ok + -+ + nsneOx = CoCr - C5
As discussed after Claim 4.2, this completes the proof of Claim 4.1. O

9.2 Summations
In a direct application of Proposition 5.3 to Mc(B), our height conditions would not yield

sufficiently good estimates for the sum over the error terms, so we consider two cases: let ]\4(08 ) (B)
be the set of all (91,...,19) € Mc(B) with Mg > N7, and let Mg)(B) be the set of all
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(M,...,m9) € Mc(B) with I; > 9lg. Moreover, let
1 8
Ny(B) = — > [ME(B)],
“K Gecs

and define N7(B) analogously. Then clearly Ny g (B) = Ng(B) + N7(B).

9.2.1 The first summation over ng in Mg) (B) with dependent ng.
LEMMA 9.2. Write ' := (m,...,n7) and I := (I1,...,I7). For B > 0, C € C%, we have

p
MEB) = = Y ()N, N B) + Oc(B(log B)%),

v |AK| 7/ €014 XX Ory

where

1
‘/S(th s 7t77B) = g /(\\/57..'7\/5’7]8)672(3) d778

[In8]loo >t7

with a complex variable ng, and where

O3(T') := [ [ Osp(Jp(I))
P

with J,(I') :={j € {1,...,7} : p | I;} and

1 it J=9,{5},{6},{7},

1- ;;p if J= {1}, {3}, {4}, {1, 2}, {1, 4},{2,3},{2,5}.{3,6}, {4, 7},
12 irg={2),

Np
0 otherwise.

Ogp(J) :=

\

Moreover, the same asymptotic formula holds if we replace the condition tlg > NIy in the
definition of ME)(B) by NIy > M.

Proof. We express the condition 9tlg > l; as

VD7 lloo < 11/ NOF 18 -

Let ' € O14 X -+ x Or4. By Lemma 3.2, the subset R(n’; ucB) C C of all ng with (n1,...,7s)
€ R(ucB) and Mg > N7 is of class m, where m is an absolute constant. Moreover, by
Lemma 3.4(1), applied to (9.6) with ucB instead of B, we see that R(n’;ucB) is contained
in the union of two balls of radius

R(1';ucB) := (ucB||n3 'nsmg 217 Heo) /4 < (BN NN 20 HY4,

We may sum over all ng € Og instead of ng € Oss, since 0 ¢ R(n';ucB). We apply
Proposition 5.3 with (A4;, A2, Ao) := (1,4,7), (B1, B2, By) := (3,6,8), (C1,Cy) := (5,9), D := 2,
and ucB instead of B. We choose II; and Il as suggested by Remark 5.2. Then

1

VitnfsuoB) = g | s
N(I508) Jyserm'ucB)
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A straightforward computation shows that ng € R(n’; ucB) if and only if

(V... .,V N7,0(n8)) € R(B) and  ||p(ns)]|eo = N7,

where ¢ : C — C is given by z — eiarg(%"%/(m’ii"ﬂ)/vmog - z. Therefore, V1(n';ucB) =
Ve(NIy,...,MI7; B). Moreover, since by = 1, Lemma 5.4 shows that 61(n’) = 6{(I') = 6s(T),
so the main term is as desired.

The error term from Proposition 5.3 is

< Z 2w<12>+w(11121314)(R("'W?f) +1>.
n'(5.7) m(lx’)) /

Using (9.2), (9.3), the definitions of uc and O;, and our assumption 9y > II7, we see that
(5.7) (with ucB instead of B) implies

NIENENLRIFNINT,
NI NIENIZNINIENT,

B and (9.11)

<
<B (9.12)

Let a € Zx. Since there are at most |Of| < co elements n; € O; with I; = a, we can sum over
the ideals I; € Tk instead of the n; € O;. Moreover, we can replace (5. 7) by (9.11) and (9.12),
and estimate the error term by

Bl/4
<c 2w(12)+w(11121314) ( + 1)
IIZW mL/ ‘e o) P/t
(9.11),(9.12)

Z ( (12)+w(11]21314)B1/2 2w(12)+w(11[213[4)Bl/2 >
<K
L5\t P o mI}/QmIlegwgﬂw;/?
(9.11)
< Z( 2(.0(12)4%:.)([1]2[3]4)3 2(.0([2)4»0.)([1[2[3[4)3 >
NI AR PRI A RN fmf’/ SRIZNTL PRIMNI;

mggB
< B(log B)3.

For the last estimation, we used Lemmas 2.9 and 2.4.

Let ]\483 )/(B) be defined as Mgs ) (B), except that the condition 9lg > M7 is replaced by
MNIg = NI;. We apply Proposition 5.3 in an analogous way as above. Since then Vi (n';ucB) = 0,

we obtain \M(CB)I(B)\ < B(log B)3. This shows the last assertion of the lemma. O
87 (B)

For the second Summatlon we need another dichotomy: let Mg be the main term in
the expression for |MC (B)| given in Lemma 9.2 with the additional condition 9t/7 > Iy in the

sum, and let M (84)( B) be the same main term with the additional condition 911, > DI7 in the

sum, so that |M (B)| = (87 (B) + MSM‘)(B) + O(B(log B)?). Moreover, let
Ner(B Z M(87
Wi Cecs

and define Ng4(B) analogously. Then Ng(B) = Ng7(B) + Ng4(B) + O(B(log B)?3).
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9.2.2 The second summation over 1y in Mé:s?) (B).

LEMMA 9.3. Write " := (m1,...,716). For B >3, C € C®, we have

2
M8 (B) = <2> ST AW, In)Ver(N, .., Ng; B)

|AK| 77”601*><"'><(96*

+ Oc(B(log B)?).

FOTtl,...,t(gZ 1,

T
Ver(ti,... te; B) := Q)%x/ﬂ,--q\/ﬁ,ns)eR(B) dt dns,

ta<t7<||n8lco

with a real variable t; and a complex variable ng.

Proof. We use the strategy described in §6 in the case by = 1. For a € Zg, t > 1, let ¥(a) :=
98(117 “ee ,IG, Cl) and g(t) = ‘/é(mfl, ey ‘ﬁf@,t; B) Then

2
MEB) = —— 3 N 0(In)g(Ny). (9.13)
|AK| 1" €01 XX Ops M7E€O7x

N7 >Ny

By Lemmas 5.4 and 2.2, ¥ satisfies (6.1) with C' = 0 and ¢y = 2wk (1l2131515),
The first height condition (9.2) implies that g(t) = 0 whenever t > ty := B/(MIZNIZNI;3
MNIZNI5). Moreover, applying Lemma 3.4(2) to the fifth height condition (9.6), we see that

1 BMNI;5)1/? B/?
o(t) « . L 52) = 12,
N5 (MINIEHY2 i *mn)*mu,

We may assume that 9114 < to. By Lemma 3.6, g is piecewise continuously differentiable and
monotonic on [Ny, to], and the number of pieces can be bounded by an absolute constant. Using
the notation from §6 (with a = —1/2), we see that the sum over n7 in (9.13) is just S(Iy, t2),
and Proposition 6.1, applied as suggested by Remark 6.2, yields

SNy t) = — 20— A(D(a), 0, O) / oft) dt

VIAK] £
o <2w(l112131516)B1/2(10g B) > ‘
N *mrt o

(9.14)

Clearly, 7Tft>‘ﬁl4 g(t)dt = Vgz(MIy, ..., MNs; B), so we obtain the correct main term.
Let us consider the error term. Taking the product of (9.2) and (9.4) together with D7 > 94
(respectively ¢ > 9I4), we see that both the sum and the integral in (9.14) are zero unless

NIINIENIZRIINIENT < B2 (9.15)
Since |O| < oo, we may sum over the I"” := (I1,..., Is) satisfying (9.15) instead of the 0", so
the total error term is
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2w(11[213[516)B1/2 loc B
< Z /20y 71/2 {og 5)
I, Io€Txk NI "N " Ng

(9.15)
2w(12131516)B(10gB 2
< Z 5/4cy 15/4 5/4) 51 < B(log B)®.
IoydgeTre T NI NN N
NI, <B
In the summations, we used (9.15), Lemmas 2.9 and 2.4. O
LEMMA 9.4. If 1" runs over all six-tuples (11, ..., Is) of non-zero ideals of Ok, then we have
9 2
N87(B) = <\/m) Z A(QS(I”, 17), I7)Vé7(‘)’t[1, PN ,‘ﬂ[e;; B) + O(B(log B)g)
K 1

Proof. Tt follows directly from (9.1) that ([O7],...,[Og"]) runs through all six-tuples of ideal
classes whenever C runs through C%. If Oj_l runs through a set of representatives for the

ideal classes and 7; runs through all non-zero elements in Oj, then I; = nj(’)j_j runs through all
non-zero integral ideals of O, each one occurring |0 | = wx times. This proves the lemma. 0O
9.2.3 The remaining summations in Ng7(B).

LEMMA 9.5. We have

p) 8 i \©
Ng7(B :7r6<> <> 0o Vzro(B) + O(B(log B)*loglog B),
s7(B) N o o0 Vsro(B) (B(log B)"loglog B)
where
‘/870(B) ::/t t>1‘/87(t1a---7t6;B)dtl"'dtﬁ
1y--5l6=
and
1\°¢ 6 1
0y := 1—— ) (14— +—). 1
’ 1;1( ‘ﬁp> ( +‘ﬁp+‘ﬂp2> 919

Proof. We start from Lemma 9.4. Applying Lemma 3.4(6) to (9.6), we see that

B2/3t§/3 B < B >1/3

Vv87t17"‘7t6;B <L —- =
( ) ts ti/gté/gti/gt?g t1---tg t%t%t%mtgta

We apply Proposition 7.3 with » = 5 (the assumptions on V' = Vg7 are satisfied by Lemma 3.6).
By Lemma 5.4, 6y = A(65(I'),T’) has the desired form. O
9.2.4 The second summation over ny in MgM)(B).

LEMMA 9.6. Let T]” = (771,7]2, N3, N5, 77677]7) and O" = 01* X 02* X 03* X 05* X 06* X 07*. We
have

92 2
MEY(B) = <) > Abs(T), I4) Vas (N1, Nz, N3, N5, Ng, N7 B)

V ’AK‘ n'"co’

+ Oc(B(log B)?),
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For tla t2; t37 t57 tﬁ; t7 = ]-7

‘/84<tlut27t37t57t67t77B . dt4d7787

/\/717 7\/7’n8)€R( )

ta>t7,|ns oo >t7

with a real variable t4 and a complex variable ng.
Proof. This is similar to Lemma 9.3. Let

ﬁ(a) = 08(117[27137a715>16717) and g(t) = ‘/é(mllamI27mI37t7mI57mI67mI7;B)'
Then

&) g 3
M8 (B) E: S 9(I1)g(Na) + O(B(log B)®). (9.17)
\ 7@ 11€044
NIy >NI7

By Lemmas 5.4 and 2.2, ¥ satisfies (6.1) with C' = 0 and ¢y < 2¢U2[35516) By (9.2), g(t) = 0
whenever ¢t > ty := Bl/2/(m11m12m1§/2m1§/2m171/2). Moreover, applying Lemma 3.4(2) to (9.6),
we see that

1 (BMI5)!/? B'/?

t . = = .
9(t) < N5 (‘JU?,‘JIIgmh)I/? mlé/QmI;/Q;ﬁIﬁgﬂI?l/? “

Clearly, we may assume that 9177 < to. Using the notation from §6 (with a = 0), the sum
over 74 in (9.17) is just S(MI7,t2), and Proposition 6.1 yields

27
SNz, ty) = ——— A(9(a), a, O / t) dt
(N7, t2) A (¥(a),a,Ok) @mg()
< 2w(121315]6)B1/2 B1/4 )
+ .
0 U 19 A 10219 AT 1 YA (9 A 9 AT 1 A 10

Now 7 ft>‘ﬂI7 g(t) dt = Vgg (N1, Nia, N3, N5, Nig, NI7; B), so we obtain the correct main term.
Let us consider the error term. Height condition (9.4) and 9114 > 9MI7 imply that both the sum
and the integral are zero unless

RIENENIEZRIEZNINT; < B. (9.18)

Since |0 | < 0o, we may sum over the I” := (I3, I», I3, I, Is, I7) satisfying (9.18) instead of the
1", so the error term is

< >

1/20m 71/20n 73/4 e 73/4 3/4
1L12J3J5J6Jeezk-9711/ 91]2/ 91[3/ 91]5/ 91]69117/
8)

< >

5/4 5/4 5/4 5/4
11,02, 13,15, 16 €T nnng i mr g

MNI;<B
< B(log B). O

LEMMA 9.7. If1” runs over all six-tuples (I, I, I3, I5, I, I7) of non-zero ideals of O, then we
have

ouw(I2131516) g3/4

2w(1213I5IG)B

Ngy(B) = ( J\T> > A(Os(T), 14)Vaa (N1, Nz, N3, N5, N5, N7; B)
K I//
+ O(B(log B)?).
Proof. This is entirely analogous to the proof of Lemma 9.4. O
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9.2.5 The remaining summations in Ngi(B).

LEMMA 9.8. We have
2

M) =t

> <Z§> 00Vsa0(B) + O(B(log B)* loglog B),

where
Veao(B) := / Vea(t1,t2,t3,t5, 1, t7; B) dty dito dtz dts dte dty
t1,t2,t3,t5,t6,t7>1
and 0y is given in (9.16).
Proof. We start from Lemma 9.7. Using Lemma 3.4(5), applied to (9.6), we have

1 33/475?/4

‘/84(1;17 t?) t37 t57 t67 t77 B) LT Im i1 54
t5

titatststety \ t3t5etdt2t-! '

Moreover, using (9.2) to bound ¢4 and (9.3) to bound 7s, we have

Vol B) 1 B1/2 B
s4(t1,t2,t3,15,t6,17; B) < — - :
R ts tytpth/ 2eb/ 2L titdtitsty

B B 1/2
T titatatstety (t%t%t%t%t%tﬁ) '
We apply Proposition 7.3 with r = 5. Again, we evaluate 6y = A(fs(T'),T’) using Lemma 5.4. O

9.2.6 Combining the summations.

LEMMA 9.9. We have

= 2 hic 0 41oglo
N (B) = ( M> (%Y 0t43) + 0311 B) g o ).

where 0y is given in (9.16) and

1
Vo(B) ::/ dny -+ dns,

o T Hnslloo -
(7]17 »7]8)

with complex variables n;.

Proof. Similarly as in the proof of Lemma 9.2, we note that (ni,...,ns) € R(B) holds if and

only if (|nul,. .., |7, et@r8(sme)/(mnin)) o) e R(B). Using polar coordinates, we obtain
1
%70(3) + ‘/840(B> = 7['\/;17 ,t7>1 HnS"oo?t? t5 d 1 e dt7 d778
(\/Tv 7\/7»n8)€R( )
1 -
— =6 _ R =
-7 Amnm, sl Ll o >lirrloe Trpgllog O A8 = VB(B):
(M1,--m8)ER(B)
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Therefore,

8 6
Ng(B) = w6< 2 ) (hK) 00Vs(B) + O(B(log B)*loglog B).

Vinnl) \ex
For the computation of N7(B), we note that our height and coprimality conditions are symmetric
with respect to swapping the indices (1,4,7) with (3,6,8). This allows us to perform the first
summation over 77 analogously to Lemma 9.2, the second summation over 7ng (respectively 7g)
analogously to Lemma 9.3 (respectively Lemma 9.6), and the remaining summations analogously
to Lemma 9.5 (respectively Lemma 9.8). We obtain

N7(B):7r6< 2 >8<h[(>690‘~/7(3)+O(B(logB)4loglogB),

VIAK|/) \wk
where )
V7(B) := 7" ———dny - -+ dng.
Vi(B) = Annm, mslloo =Ll oo >lmslloe gl T
(m,-.-,m8) ER(B)
The lemma follows immediately. O

9.3 Proof of Theorem 1.1
To compare the result of Lemma 9.9 with Theorem 1.1, we introduce the conditions

lmin3nangnellco < B, (9.19)
Intn3naninellse < B, Ininy " 774775 7762Hoo < B, (9.20)
Imim3nanznsllee < B, |Imins 'nins "0 llee < B, IIny "many *n5 'nglle < B (9.21)

LEMMA 9.10. Let woo be as in Theorem 1.1, R(B) as in (9.2)-(9.6), and

1
VO/(B) ::/ (71,---m8)ER(B) del'“ dnsg.
711|505 173 |-+ |76 o =1 117151100
(9.21)

Then 3557 °ws B(log B)® = 4V{(B).

Proof. Note that substituting yo = mn3nz, y1 = n3ngns, y2 = mnenznansne, — (Yo + y1) = 0579
(which are obtained using the substitutions in §4) in (9.10) and cancelling out n1m3n3nsn2 gives
U (n1,...,m9) as in the proof of Lemma 9.1. This motivates the following substitutions in wee:
let m1, n3, N4, M5, N6 € C\{0} and B € Rsq. Let 192, 17, ns be complex variables. With [ :=
(Bllmmsninsnille)'/?, we apply the coordinate transformation yo = 1= Y3nn2 -0z, y1 = 17/3n3n3-
ng, Y2 = l_1/3n1173774775776 - 12 of Jacobi determinant

[mnsnansmello 1 (9.22)

and obtain

d?72 d777 dng. (9.23)

12 ||771773774775?76Hoo/
Wo =TT
™ (7717 7778)

€R(B) 175 ]|
An application of Lemma 8.1 with exchanged roles of 72 and ng gives

1 dni dnz - -+ dne

S)(log B
o($)(10g B)® = 55 sl sl s e
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since [—Kg] = [2Ey + 3FE2 + 2E3 + E4 + 2FE5 + Eg, [E7] = [Ey + E5 — E4 + E5 + Eg), and
[Eg] = [E1 + Ey + E4 + Es — Eg). By (8.1), we have «(S) = 1/4320.
The lemma follows by substituting this and (9.23) in 5 mSwee B(log B). O

To finish our proof, we compare V(B) from Lemma 9.9 with Vj(B) from Lemma 9.10. Let

Do(B) :=={(m,-..,ns8) € R(B) | |[mllos, - - - Inslloc =1},

Di(B) :=A{(m,---,n8) € R(B) | [mlloo; - - [Insllc = 1, (9.19)},

Dy(B) i= {(n1, ... ns) € R(B) | sy - - Imslloe > 1. (9:20)},
Dy(B) = {(m.-.,18) € R(B) | [mlocs - - Imslo > 1, (9.2},

Da(B) = {(11, ., 15) € R(B) | [mloos- - [6lows [1]lo0 > 1, (9:21)},
Ds(B) :={(m,-.-,m8) € R(B) | [mlloo,-- - [Inelloc =1, (9.21)},
De(B) == {(m,---,m8) € R(B) | [|mlloos [1m3]locs - - - [[M6]]cc =1, (9.21)}.

Moreover, let
Vi(B) 12/ #dm‘-- dns.
D;(B) l1751] 00

Then clearly Vy(B) is as in Lemma 9.9 and Vi(B) = Vj(B). We show that, for i = 1,...,6,
Vi(B) — V;_1(B) = O(B(log B)*). This is clear for i = 1, since, by (9.4) and t3 > 1, we have
D1 = Dy. Moreover, using Lemma 3.4(4) and (9.6) to bound the integral over n; and 7g, we have

B2/3
Va(B) = Vi(B) < [ fylloe, s 1 -+ dns < Bllog B)".
Im2ngnsnznsllse<B M M3MEM576 |00
In3n3 "ning "ng *llee>B

An entirely symmetric argument shows that V3(B) — Va(B) < B(log B)*. Using Lemma 3.4(2)
and (9.6) to bound the integral over 7g, we obtain

Bl/2
Vi(B) = Va(B) < [ izt — 75 dm +++ dir < B(log B)*.
llmrlleo <1 (9.21) Insnsm2nyz|o?
||771n2n5774775776uoo<3

Here, we first integrate over 17 and to. Again, an analogous argument shows that V5(B)—V(B) <
B(log B)*. Finally, using Lemma 3.4(4) and (9.6) to bound the integral over 7 and g, we have

B2/3
Vs(B) = V5(B) < Amuw 6l >1 g dm -+ dns < B(log B)".
0<tz<1, (9.19) lmmsm2nsne || 2L

Thus, Vo(B) = V{(B) + O(B(log B)*). Using Lemmas 9.9 and 9.10, this implies Theorem 1.1.
9.4 Over Q

The following result is the analog over Q of Theorem 1.1.

THEOREM 9.11. For the number of Q-rational points of bounded height on the subset U obtained
by removing the lines of S C P}, defined over Q by (1.3), and B > 3, we have

Nu,1(B) = ¢s,uB(log B)° + O(B(log B) loglog B),
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where

with
dyo dyy dyo.

Woo = =

QZ;HywﬂyWAyJWWwﬂywﬂm+mﬂ}1

Proof. This is similar to the case of imaginary quadratic K above, so we shall be very brief.

The parameterization of rational points by integral points on the universal torsor is as in
Lemma 9.1, here and everywhere below with wg = 2, hg = 1 so that C contains only the trivial
ideal class, with O; = Z for j = 1,...,9, O14, = -+ = Ogy = Zy and Oy, = Z, and with [ - ||s
replaced by the ordinary absolute value |- | on R in (9.7).

The proof of the asymptotic formula proceeds as in the imaginary quadratic case, but using
the original techniques over Q from [Der09]. In the statements of the intermediate results, we
must always replace 2/1/|Ak| by 1, complex by real integration, = by 2, and +/¢; by t;. The
computation of the main terms is always analogous, but less technical. The estimation of the
error terms is often analogous and sometimes easier.

The main changes are as follows. For the first summation, we apply [Der09, Proposition 2.4].
The error term 29(12)+@(mmnanmsna) can be estimated as the second summand of the error term in
Lemma 9.2.

For the second summation over 77, we can apply [Der09, Lemma 3.1, Corollary 6.9]. The
error term is

ow(nim2nansne) g1/2 log B

ow(Mn2m3nsm6) sup V8(771, o B) <
771;776 [n7]>n4] 711;% ‘773‘1/2|774|1/2\775\1/2|776|

ow(n2m3msne) B (log B)2 9
< < B(log B
2 T e < P08 D)

where (using |n4| < |n7])

B 1/4 B 1/4
e (2 V(e )
In3nsnins| In3n2nanzne

For the second summation over 74, the computation is very similar.
The remaining summations and the completion of the proof of Theorem 9.11 remain
essentially unchanged. O
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