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Recent experiments show that periodic modulations of cold atoms in optical lattices may be used to
engineer and explore interesting models. We show that double modulation combining lattice shaking and
modulated interactions allows for the engineering of a much broader class of lattice with correlated
hopping, which we study for the particular case of one-dimensional systems. We show, in particular, that by
using this double modulation it is possible to study Hubbard models with asymmetric hopping, which,
contrary to the standard Hubbard model, present insulating phases with both parity and string order.
Moreover, double modulation allows for the simulation of lattice models in unconventional parameter
regimes, as we illustrate for the case of the spin-1=2 Fermi-Hubbard model with correlated hopping, a
relevant model for cuprate superconductors.
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Introduction.—Ultracold gases in optical lattices have
attracted a lot of attention as emulators of fundamental
models of quantum many-body systems. Their unprec-
edented levels of controllability, tunability, and cleanness
have permitted the realization of Hubbard models with cold
atoms [1–3], the creation of synthetic magnetic fields in
neutral lattice gases [4,5], first steps towards the emulation
of quantum magnetism [6–12], and more [13,14]. Recent
progress in measurement techniques has allowed for single-
site resolved detection [15,16], which has permitted a
deeper insight into the properties of Mott insulators (MI)
[16–18] and the dynamical properties of cold lattice
gases [19].
The possibility of tuning parameters in real time in cold

lattice gases has aroused particular interest. Fast periodic
modulations provide a new tool for the engineering of
relevant lattice models [4,5,20–29]. In particular, a fast-
enough modulation of the lattice position (lattice shaking)
results in the effective change of the tunneling rate [20]
allowing, for example, driving the superfluid (SF) to MI
transition [24], inducing photon-assisted hopping in tilted
lattices [22], simulating frustrated classical magnetism [25],
generating gauge potentials [28], and inducing effective
ferromagnetic domains [29]. Moreover, a fast modulation
of the interparticle interactions results in an effective hopping
that depends on the occupation differences at neighboring
sites [30–33] and may induce density-dependent gauge
fields [34].
In this Letter, we show that double modulation (DM),

i.e., the combination of lattice shaking and periodically
modulated interactions, permits the selective control of
different hopping processes, hence, allowing for the engi-
neering of a broad range of lattice models that cannot be
realized with either lattice shaking or modulated interaction

alone. DM permits, in particular, the generation of mirror-
asymmetric tunneling, which may result in insulators with
both parity and string order. Moreover, DM permits the
exploration of parameter regimes which cannot be reached
with a single modulation, as we illustrate for the relevant
case of spin-1=2 lattice fermions with correlated hopping.
Double modulation.—We consider a lattice gas with

periodic DM. Whereas lattice shaking results from the
displacement of the lattice [20], periodic interactions may
be induced by modulating an externally applied magnetic
field in the vicinity of a Feshbach resonance (see
Refs. [30,32,33] for details). We focus below on 1D
lattices, although the engineering possibilities of DM
may be extended to higher dimensions as well, and in
2D lattices, elliptic shaking [35] may be employed to
induce even richer lattice models. In the experimentally
relevant scenario in which only the lowest Bloch band is
relevant [36], Bose gases are described in the lattice
reference frame by the time-dependent Bose-Hubbard
model (BHM):

Ĥ¼−J
X
hi;ji

b̂†i b̂jþ
UðtÞ
2

X
j

n̂jðn̂j−1ÞþFðtÞ
X
j

jn̂j; ð1Þ

where b̂i ðb̂†i Þ annihilates (creates) a boson at site i, n̂i ¼
b̂†i b̂i, J is the tunneling parameter, UðtÞ is the time-
dependent interaction strength, and FðtÞ is a time-
dependent tilting amplitude resulting from the lattice
shaking. Both the interaction and the tilting term
are periodically modulated, UðtÞ¼U0þU1fUðtÞ¼U0þ
U1fUðtþTÞ and FðtÞ¼F1fFðtÞ¼F1fFðtþTÞ. Both
fU;FðtÞ are unbiased, i.e.,

R
tþT
t fU;FðτÞdτ¼0. If

ω¼2π=T≫U0=ℏ;J=ℏ, Floquet analysis may be employed
to integrate the modulations, obtaining an effective
time-independent Hamiltonian (see, e.g., Refs. [20,32] or
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Ref. [33] for an equivalent derivation for the Fermi-Hubbard
model):

Ĥeff ¼ −J
X
hi;ji

b̂†iF ði − j; n̂i − n̂jÞb̂j þ
U0

2

X
j

n̂jðn̂j − 1Þ;

ð2Þ

where F ¼ ð1=TÞ R T
0 ei=ℏ

R
t

0
½F1fFðτÞði−jÞþU1fUðτÞðn̂i−n̂jÞ�dτdt.

We illustrate below the engineering possibilities allowed
by DM for the particular case of fUðtÞ ¼ fFðtÞ ¼ cosðωtÞ.
Note, however, that different frequencies and=or functional
forms for the two modulations may allow for an even more
versatile engineering. The above-mentioned choice implies
F ¼ J 0(ðF1=ℏωÞði − jÞ þ ðU1=ℏωÞðn̂i − n̂jÞ) in Eq. (2),
where J n is the nth-order Bessel function [37].
Hopping channels.—We denote as Jðni;njÞ↔ðniþ1;nj−1Þ the

hopping rate from site j with nj particles before the hop to
site i with initially ni particles. In 1D lattices, a hop to the
left is characterized by the rate

Jðnj;njþ1Þ↔ðnjþ1;njþ1−1Þ
J

¼ J 0

�
U1

ℏω
ðnj − njþ1 þ 1Þ − F1

ℏω

�
;

whereas a hop to the right is given by

Jðnj;njþ1Þ↔ðnj−1;njþ1þ1Þ
J

¼ J 0

�
U1

ℏω
ðnjþ1 − nj þ 1Þ þ F1

ℏω

�
:

Note that for sole lattice shaking (U1 ¼ 0), hops are
mirror symmetric since J 0 is even. The same is true for
solely modulating interactions (F1 ¼ 0). DM allows
for breaking mirror symmetry. Especially relevant at
low fillings are Jð0;1Þ↔ð1;0Þ ¼ Jð1;2Þ↔ð2;1Þ ¼ JJ 0ðF1=ℏωÞ,
Jð1;1Þ↔ð2;0Þ ¼ JJ 0(ðU1 − F1Þ=ℏω), and Jð1;1Þ↔ð0;2Þ ¼
JJ 0(ðU1 þ F1Þ=ℏω). One may observe two important
features: (i) contrary to the standard BHM (F1 ¼U1 ¼ 0),
in general, Jð1;1Þ↔ð2;0Þ≠Jð1;1Þ↔ð0;2Þ, and (ii) Jð1;1Þ↔ð2;0Þ=
Jð0;1Þ↔ð1;0Þ and/or Jð1;1Þ↔ð0;2Þ=Jð0;1Þ↔ð1;0Þ may be larger than
1, an impossibility for U1 ¼ 0 and=or F1 ¼ 0. These
peculiar features have crucial consequences. As shown
below, (i) DM may result in insulators with both parity
and string order, whereas (ii) it also allows for the study of a
much richer phase diagram for lattice gases, compared to the
case of either shaking or interaction modulation.
Insulators with finite parity and string order.—In the

standard BHM, the MI with unit occupation is character-
ized by doublon-holon pairs in a sea of singly occupied
sites. The pairs result from the Jð1;1Þ↔ð2;0Þ ¼ Jð1;1Þ↔ð0;2Þ
hops. The 1D MI at unit filling presents nonlocal parity

order O2
P ≡ limji−jj→∞hð−1Þ

P
i<l<j

δn̂li > 0, with δn̂j ¼
1 − n̂j [38], due to the appearance of doublon and holon
defects in pairs, as recently revealed experimentally [18].

Another important nonlocal order in 1D is string order,

O2
S ≡ limji−jj→∞ − hδn̂ið−1Þ

P
i<l<j

δn̂lδn̂ji [39]. A nonvan-
ishingO2

S characterizes the Haldane insulator (HI) predicted
in polar lattice gases [39] and bosons in frustrated lattices
[40]. In the HI, the position of the defects and the separation
between them is not fixed, but starting with a doublon, the
next defect along the chain is a holon, the next a doublon, and
so on. This diluted “antiferromagnetic” order is characterized
by O2

S > 0. However, in a HI, defects are not paired, and,
hence, O2

P ¼ 0. Conversely, in the standard BHM the MI
presents O2

S ¼ 0 due to the equal probability of having 20
and 02 pairs.
DM allows for the selective reduction or cancellation of

Jð1;1Þ↔ð2;0Þ [or, alternatively, Jð1;1Þ↔ð0;2Þ]. As a result, inside
the MI, pairs may be produced dominantly, or even solely,
following a 02 (or 20) order. The system may then present
both O2

P > 0, due to the pairwise creation of defects, and
O2

S > 0, due to the dominantly antiferromagnetic order of
the defects. This is best understood from the case in which
all hoppings vanish except Jð1;1Þ↔ð0;2Þ [41]. For unit filling,
since the defect-free MI at J ¼ 0 just develops pairs 02 at
finite J, we map into an effective spin-1=2 system, with
j0; 2ij;jþ1 ≡ j↑ij and j1; 1ij;jþ1 ≡ j↓ij, obtaining an
effective spin model:

HS ¼
X
j

Jð1;1Þ↔ð0;2ÞðŜþj þ Ŝ−j Þ þ U0

�
1

2
þ Ŝzj

�

þ Δ
�
1

2
þ Ŝzj

��
1

2
þ Ŝzjþ1

�
; ð3Þ

where Ŝ�;z
j are spin-1=2 operators, and we add a spin-spin

interaction Δ → ∞ to project out neighboring up spins,
which have no physical meaning. Interestingly,
Hamiltonian (3) corresponds to an Ising model with
transverse and longitudinal magnetic fields in the vicinity
of its tricritical point between, ferro-, antiferro-, and para-
magnetic phases [42]. For a chain of length L and periodic
boundary conditions, the ground state of (3) is a linear
combination of states with m spin-ups, i.e., m defect pairs,
of the form

PL=2
m¼0 cmjmi, where jmi ∝ ðPSþÞmj0i with P

the projector excluding states with two neighboring up
spins, Sþ ¼ P

jS
þ
j , and j0i the state with all spins down

(i.e., a defect-free MI). String and parity order may then be
expressed as statistical moments of the number of defect
pairs: O2

P ≈ hð2m − 1Þ2i and O2
S ≈ h2m2ðm − 2Þi. Both

orders may, hence, coexist. Note that with an increasing
number of pairs, i.e., decreasing ratio U0=Jð1;1Þ↔ð0;2Þ, O2

S

increases whereas O2
P decreases, as observed in our

simulations of Eq. (2).
Figure 1 (top) illustrates the rich physics that results from

the selective control of the different hopping rates allowed
by DM. For a fixed U0=J ¼ 1.2 and U1=ℏω ¼ 3, we
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analyze, by means of density matrix renormalization group
(DMRG) [43] calculations, the different order parameters
for a varying F1=ℏω. The relevant tunneling rates are
depicted in Fig. 1 (bottom). One observes both that the
hopping is generally asymmetric, Jð1;1Þ↔ð2;0Þ ≠ Jð1;1Þ↔ð0;2Þ,
and the existence of parameter regimes at which
Jð0;1Þ↔ð1;0Þ < Jð1;1Þ↔ð2;0Þ and=or Jð1;1Þ↔ð0;2Þ. A first conse-
quence of the variation of the hopping rates with F1 is
clearly the appearance of SF to insulator transitions (at
F1=ℏω≃ 0.5 and 6.2). In the SF regime, the excitation gap
vanishes, the entanglement entropy SvN [44] shows a
logarithmic divergence with the system size (not shown
here), and correlations decay algebraically as expected for a
Luttinger liquid. Within the insulator regions, the entan-
glement entropy is finite and correlations decay exponen-
tially. As expected from the discussion above, insulator
phases with O2

P > 0 and O2
S > 0 occur due to the hopping

asymmetry. Note that O2
S increases when the hopping

asymmetry grows, disappearing at those F1 values at which
Jð1;1Þ↔ð2;0Þ ¼ Jð1;1Þ↔ð0;2Þ (at F1=ℏω≃ 1.2; 5.2, and 5.5).
When Jð1;1Þ↔ð0;2Þ; Jð1;0Þ↔ð0;1Þ ≪ Jð1;1Þ↔ð2;0Þ, we recover the
extreme case discussed above, and O2

P and O2
S are large

(e.g., at F1=ℏω ≈ 2.4). Interestingly, within the insulator
regions, when the hopping is asymmetric and Jð1;1Þ↔ð2;0Þ;
Jð1;1Þ↔ð0;2Þ ≪ Jð1;0Þ↔ð0;1Þ, we obtain O2

P ≪ O2
S. This

parameter region is characterized by, to a large extent,
broken defect pairs but still antiferromagnetic defect order;
i.e., in this region the insulator rather behaves as a HI. We
find, however, no gapless region that would mark a
transition between a HI (with low O2

P) and a MI (with
finite O2

S) [38].

Dynamics after switching the double modulation.—Up
to this point, we have analyzed the ground-state properties
of the time-independent model (2). It is, however, interest-
ing and experimentally relevant to investigate the dynamics
following the switching of DM. For simplicity, we consider
at times t < 0 a large U0=J at unit filling in absence of any
modulation, such that the system is in a defect-free MI
(O2

P ¼ 1, O2
S ¼ 0). At t ¼ 0, U0 is set to a final value, and

the sinusoidal DM is abruptly switched on (to values
U1=ℏω ¼ 3 and F1=ℏω ¼ 2.4 in Fig. 2), which results
in Jð0;1Þ↔ð1;0Þ; Jð1;1Þ↔ð0;2Þ ≪ Jð1;1Þ↔ð2;0Þ. We have per-
formed DMRG simulations of the dynamics employing
both the original time-dependent Hamiltonian (1) and the
effective one (2). As depicted in the inset of Fig. 2, both
models provide identical results, showing the validity of the
effective model for describing the dynamics. After the
quench, the creation of defects abruptly reduces O2

P and
increasesO2

S and then subsequently develops an oscillatory
dynamics. Figure 2 shows the time average of O2

P and O2
S

as a function of U0 (the shadowed regions indicate the
variance of the orders related to the oscillations character-
izing the real time dynamics). The average values present a
similar qualitative dependence as that expected from the
stationary state, with growing O2

P and decreasing O2
S for

larger U0=J (see Fig. 3 of Ref. [18] for an analysis of the
growth of O2

P for increasing U0=J without periodic
modulations). These results, hence, show that even an
abrupt start of the double modulation transforms an initial
defect-free MI into an insulator with nonvanishing time-
averaged O2

P and O2
S.

FIG. 1 (color online). (top) Infinite DMRG [43] results for the
effective model (2) (with four bosons per site, keeping up to
M ¼ 200 states) for O2

P (solid), 4O2
S (dashed), and SvN (dot

dashed) as a function of F1=ℏω for U0=J ¼ 1.2, unit filling, and
U1=ℏω ¼ 3. In the shaded SF regions, we find a logarithmic
divergence of SvN with the number of kept matrix states M.
(bottom) Relevant hopping rates.

FIG. 2 (color online). Dynamics of O2
P (solid) and O2

S (dashed)
after a sudden onset of DM with F1=ℏω ¼ 2.4, U1=ℏω ¼ 3 for a
system initially prepared as a deep Mott insulator. The inset
shows the dynamics for U0=J ¼ 1. The curves are obtained using
the effective model (2), whereas the crosses indicate the results
directly obtained from Eq. (1). In the main figure we depict the
time average of the orders for 2 < Jt=ℏ < 6 as a function of U0

for the same F1 andU1. The shaded regions indicate the variances
of the orders associated to the dynamics after the quench. In the
DMRG simulations of Eq. (1), we employ L ¼ 60 sites, N ¼ 60
particles, and ℏω ¼ 20πJ; the simulations of the effective model
(2) are performed in an infinite scheme [43]. In both cases we
keep up to M ¼ 400 matrix states.
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Exploring the complete phase diagram of fermions
with correlated hopping.—As mentioned above, double
modulation allows for Jð1;1Þ↔ð2;0Þ=Jð0;1Þ↔ð1;0Þ and=or
Jð1;1Þ↔ð0;2Þ=Jð0;1Þ↔ð1;0Þ to be larger than 1, and, hence,
for exploring novel quantum phases unreachable with
U1 ¼ 0 and=or F1 ¼ 0. This is best illustrated by the
spin-1=2 Fermi-Hubbard model with lattice shaking and
modulated interactions ½U0 þ U1 cos ðωtÞ�

P
jn̂j↑n̂j↓.

Considering for simplicity a spin-independent lattice and
mirror-symmetric hopping, J 0½ðF1þU1Þ=ℏω�¼J 0½ðF1−
U1Þ=ℏω�, we reach for sufficiently fast modulations the
effective Hamiltonian:

HF ¼ U0

X
j

n̂j↑n̂j↓ −
X

hi;ji;σ¼↑;↓

ðĉ†iσ̄ ĉjσ̄ þ H:c:ÞPðn̂iσ; n̂jσÞ;

ð4Þ

with σ̄ ¼ −σ, and Pðn̂iσ;n̂jσÞ≡tAAð1−n̂iσÞð1−n̂jσÞþ
tBBn̂iσn̂jσþtAB½n̂iσð1−n̂jσÞþn̂jσð1−n̂iσÞ�, where ĉjσ anni-
hilates a fermion of spin σ at site j, n̂jσ ¼ ĉ†jσ ĉjσ,
tAA ¼ tBB¼ JJ ðF1=ℏωÞ, and tAB ¼ JJ 0(ðU1 þ F1Þ=
ℏω). Hamiltonian (4) has been extensively studied as a
model for cuprate superconductors [45–49]. Figure 3 shows
the grand-canonical phase diagram for U0 ¼ 0 [50]. For
tAB < tAA, two spin-massless phases occur [48]: one with
dominant triplet superconducting (TS) [51] correlations
hQ†

0þQjþi, with Qj� ≡ cjþ1↓cj↑ � cjþ1↑c↓ and another
with dominant spin-density wave (SDW) correlations,
ð−1Þjhn̂0−n̂j−i, with n̂j� ≡ n̂j↑ � n̂j↓. At tAB ¼ 0, the
TS phase has vanishing Drude weight (Kohn metal

[45,46,52]), and the SDW at n̄≡ hn̂jþi > 1ð< 1Þ is a
metal without holons (doublons) [45].
Sole modulation of interactions only permits 0 ≤

tAB=tAA ≤ 1 [33]. DM allows for tAB=tAA > 1, for which
three spin-massive phases occur [48]: a gapped phase (both
in spin and density sectors) at n̄ ¼ 1 with bond-ordering
wave (BOW) order, hB†

0Bjiwith Bj≡P
σðĉ†jþ1σ ĉjσþH:c:Þ,

a gapless phase with dominant density wave correlations,
ð−1Þjhn̂0þn̂jþi, and a gapless phase with dominant singlet-
superconducting correlations, hQ†

0−Qj−i. Interestingly, the
gapped BOW phase occurs even for U0 ¼ 0 due to the
effective repulsion induced by the density-dependent
hopping.
Outlook.—DM of cold lattice gases allows for the precise

control of selected hopping processes. Such a control
permits the realization of quantum phases with unconven-
tional properties. In particular, mirror-asymmetric hopping
results in insulating 1D phases with both parity and string
orders, which may be revealed using in situ site resolved
imaging [54]. We have also shown that DM may be used to
simulate lattice models in otherwise unreachable regimes,
as shown for the relevant case of the spin-1=2 Fermi-
Hubbard model with correlated hopping.
We have considered, for simplicity, homogeneous sys-

tems. With an overall confinement VðjÞ that varies slowly
enough from site to site, the grand-canonical phase diagram
maps into a spatial distribution through the local chemical
potential μj ¼ μ − VðjÞ. In particular, the BOW phase
results in a density plateau that may be revealed using
single-site resolution [16,17]. Moreover, whereas for
U0 ¼ 0, the spin gap opens at tAB;cr ¼ tAA at any n̄, for
U0 > 0, tAB;cr depends on U0 and n̄ (for low U0=tAA,
tAB;cr ≃U0=½8ðn̄ − 1Þ cosðπn̄=2Þ − 16 sinðπn̄=2Þ=π� [48]).
As a result, for fixed tAB, tAA, and U0, the spin gap opens at
a critical μcr. For an overall confinement, there is, hence, a
spatial boundary between spin-gapped and spin-gapless
phases, which may be revealed by creating spin excitations
in the gapless region using a spin-dependent potential and
observing the reflection of the excitations at the boun-
dary [55].
In this Letter, we have focused on the simplest double

modulation possible in which both fields were oscillating in
phase. A natural and nontrivial extension of this work would
be in the analysis of the physics emerging when the two
modulations are different and time-reversal symmetry is
broken. Another important extension of this work would be
in the application of DM to 2D and 3D systems, where the
combination of elliptical lattice shaking [28] andperiodically
modulated interactions may lead to an even richer physics.

We acknowledge support by the cluster of excellence
Centre for Quantum Engineering and Space-Time
Research, the DFG Research Training Group 1729, and
the Singapore University of Technology and Design start-
up Grant No. SRG-EPD-2012-045. Part of the computer
simulations were carried out on the cluster system at the
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FIG. 3 (color online). Phase diagram for the Fermi-Hubbard
model as a function of μ=tAA and tAB=tAA for U0 ¼ 0 (see text).
The dashed line denotes values of μ for which the Luttinger-liquid
parameter Kρ ¼ 1 extracted from the long wavelength behavior
of the static charge structure factor [53] for tAA ≠ tAB. This is
consistent with the perturbative result from Ref. [48] for
tAA ¼ tAB. The size for the BOW phase corresponds to the
charge gap at unit filling. The shaded regions denote the vacuum
or the fully occupied state. All results are extrapolated to the
thermodynamic limit from open boundary DMRG calculations
with up to L ¼ 144 sites.
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Leibniz Universität Hannover. Computer simulations for
the inset of Fig. 2, run on the cluster Perseus at the
Department of Theoretical Physics of the University of
Geneva, employed the Algorithms and Libraries for
Physics Simulations libraries [56,57] and the code IVAN.
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