
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 916 (2017) 279–303

www.elsevier.com/locate/nuclphysb

Sasakian quiver gauge theory on the Aloff–Wallach 

space X1,1

Jakob C. Geipel

Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany

Received 10 August 2016; accepted 8 January 2017

Available online 11 January 2017

Editor: Professor Leonardo Rastelli

Abstract

We consider the SU(3)-equivariant dimensional reduction of gauge theories on spaces of the form Md ×
X1,1 with d-dimensional Riemannian manifold Md and the Aloff–Wallach space X1,1 = SU(3)/U(1) en-
dowed with its Sasaki–Einstein structure. The condition of SU(3)-equivariance of vector bundles, which has 
already occurred in the studies of Spin(7)-instantons on cones over Aloff–Wallach spaces, is interpreted in 
terms of quiver diagrams, and we construct the corresponding quiver bundles, using (parts of) the weight 
diagram of SU(3). We consider three examples thereof explicitly and then compare the results with the 
quiver gauge theory on Q3 = SU(3)/(U(1) × U(1)), the leaf space underlying the Sasaki–Einstein mani-
fold X1,1. Moreover, we study instanton solutions on the metric cone C

(
X1,1

)
by evaluating the Hermitian 

Yang–Mills equation. We briefly discuss some features of the moduli space thereof, following the main 
ideas of a treatment of Hermitian Yang–Mills instantons on cones over generic Sasaki–Einstein manifolds 
in the literature.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The emergence of extra dimensions in string theory and the typical ansatz for compactifica-
tions make a detailed understanding of higher-dimensional gauge theories desirable. Inspired by 
the seminal investigation of four-dimensional manifolds by self-dual connections [1], general-
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ized self-duality equations and instantons in higher dimensions have been studied [2–5]. Their 
significance in physics is evident in heterotic string theory where an instanton equation is part of 
the BPS equations [5,6].

Often the manifolds modeling the internal degrees of freedom are chosen as coset spaces 
G/H , and dimensional reduction of the gauge theory on Md ×G/H to a theory on Md is known 
as coset space dimensional reduction [7]. On those spaces one can demand G-equivariance of the 
vector bundles the gauge connection takes values in, and this equivariant dimensional reduction
yields systematic restrictions which can be depicted as quiver diagrams, i.e. directed graphs. 
A detailed mathematical treatment for Kähler manifolds can be found in [8,9] and short physical 
reviews are given e.g. in [10,11].

These quiver gauge theories have been studied for the Kähler cosets CP 1 [9,12–14], 
CP 1 ×CP 1 [15], and SU(3)/H [14,16]. The odd-dimensional counterparts of Kähler spaces are 
Sasaki manifolds [17], and among them Sasaki–Einstein manifolds [18] are of particular interest 
for compactifications in string theory because, by definition, their metric cones are Calabi–Yau 
[19,20]. In the literature, Sasakian quiver gauge theory has been studied on the orbifold S3/�

[22], on orbifolds S5/Zq+1 of the five-sphere [23] and on the space T 1,1 [24], the base space 
of the conifold. The five-dimensional Sasaki–Einstein coset spaces as well as the new examples 
[25,26] are of interest for versions of the AdS/CFT correspondence. In dimension seven, one can 
encounter the following typical examples: the seven-sphere S7, the Aloff–Wallach space X1,1

[27], and also a new class of spaces constructed in [26]. They could play a role for compactifica-
tions of 11-dimensional supergravity. In this article we will consider the Sasakian quiver gauge 
theory on the Aloff–Wallach space X1,1. The mathematical properties of the generic Aloff–
Wallach spaces Xk,l [27] – basically their G2 and Spin(7) structure and, for the special case 
of X1,1, being Sasaki–Einstein and even 3-Sasakian – are well known [28,29]. Moreover, in-
stanton solutions on these spaces have been constructed in [30,31]. Due to the special geometry, 
more precisely the existence of Killing spinors, they have been intensively studied in M-theory 
or supergravity [32].

This article is organized as follows: Section 2 reviews the geometry of the space X1,1, pro-
viding local coordinates, the structure equations, the Sasaki–Einstein properties as well as a 
comment on the closely related Kähler space Q3 := SU(3)/U(1) × U(1). The subsequent sec-
tion begins with a short review of equivariant vector bundles over homogeneous spaces and the 
arising quiver diagrams. Then we study the equivariant gauge theory on X1,1, placing the focus 
on the evaluation of the equivariance condition, already known from [30,31], in terms of quiver 
diagrams. We discuss the general construction for the quiver diagrams associated to X1,1 and 
clarify it by considering three examples with a small number of vertices. The resulting Yang–
Mills functional of the equivariant gauge theory is provided, and the reduction to the quiver 
gauge theory on Q3 is discussed in the last part of Section 3. Subsequently, we study instanton 
solutions of the quiver gauge theory by evaluating the Hermitian Yang–Mills equations on the 
metric cone C

(
X1,1

)
. We briefly sketch the techniques used by Donaldson [33] and Kronheimer 

[34] for the discussion of the Nahm equations and the application of those methods to Hermi-
tian Yang–Mills instantons on generic Calabi–Yau cones [35]. We discuss the modifications that 
appear in our setup, due to using a different instanton connection in the ansatz for the gauge con-
nection, in comparison with the general results of [35]. The appendix provides some technical 
details.
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2. Geometry of the Aloff–Wallach space X1,1

In this section we review the geometric properties of the Aloff–Wallach space X1,1 and its 
metric cone C

(
X1,1

)
which are necessary for the discussion in this article. Among the huge 

number of articles on the geometry of Aloff–Wallach spaces Xk,l[27], we follow the exposition 
given in the article [30], in which G2 and Spin(7)-instantons on the spaces have been considered. 
In particular, we employ their choice of SU(3) generators, structure constants and the ansatz for 
the gauge connections. Since we are aiming only at the Sasaki–Einstein structure of X1,1, we 
will not consider general spaces Xk,l . For details on theses structures we refer to [30] and the 
references therein.

2.1. Local coordinates and structure equations

The Aloff–Wallach spaces [27], denoted as Xk,l , for coprime integers k and l, are defined as 
quotients

Xk,l = G/H := SU (3) /U (1)k,l (2.1)

where the embedding of elements h ∈ U (1)k,l into SU(3) is given by

h = diag
(

e i (k+l)ϕ, e − i kϕ, e − i lϕ
)

. (2.2)

It is known that the homogeneous space X1,1 is not only Sasaki–Einstein but moreover admits a 
3-Sasakian structure.1 Due to [36] a homogeneous 3-Sasakian manifold different from a sphere 
is an SO(3) ∼= SU(2)/Z2 bundle over a quaternionic Kähler manifold; in the case of X1,1 the 
underlying space is CP 2. Using this result, we can construct local coordinates2 by starting from 
a local section of the fibration SU(3) → CP 2, as it can be found e.g. in [16,21]. Given a local 
patch U0 := {[w0 : w1 : w2] ∈ CP 2 | w0 �= 0

}
of CP 2, one can introduce coordinates

Y :=
(

y1
y2

)
∼

(
1,

w1

w0
,
w2

w0

)T

, (2.3)

and a local section of the bundle SU(3) → CP 2 is given by

CP 2 � Y �−→ V := 1

γ

(
1 Ȳ †

−Ȳ �

)
∈ SU(3) (2.4)

with

γ :=
√

1 + Ȳ †Ȳ , �Ȳ = Ȳ , Ȳ †� = Ȳ †, � := γ 12 − 1

γ + 1
Ȳ Ȳ †, �2 = γ 212 − Ȳ Ȳ †.

(2.5)

Furthermore, an arbitrary element g of SU(2) can be written as

g = 1

(1 + zz̄)1/2

(
1 −z̄

z 1

)(
e i ϕ 0
0 e − i ϕ

)
, (2.6)

1 This means that the (Riemannian) holonomy of the metric cone C
(
X1,1

)
can be reduced from SU(4) to Sp(2).

2 Since we will work entirely on Lie algebra level, a local description is sufficient for our purposes.
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where z and z̄ are stereographic coordinates on CP 1. Putting both expressions (2.4) and (2.6)
together, one gets a local section of the bundle SU(3) −→ X1,1 as

(y1, y2, z, ϕ) �−→ Ṽ

:= V · g = 1

γ

(
1 Ȳ †

−Ȳ �

)
1

(1 + zz̄)1/2

⎛
⎝1 0 0

0 1 −z̄

0 z 1

⎞
⎠

⎛
⎝1 0 0

0 e i ϕ 0
0 0 e − i ϕ

⎞
⎠ . (2.7)

Hence, the manifold can be locally described by the coordinates {y1, ȳ1, y2, ȳ2, z, z̄, ϕ}, and the 
Maurer–Cartan form provides SU(3) left-invariant 1-forms �α and ei , defined by

A0 := Ṽ −1dṼ =:

⎛
⎜⎜⎝

2 i√
3
e8

√
2�2 −√

2�1̄

−√
2�2̄ − i√

3
e8 − i e7 −�3̄

√
2�1 �3 − i√

3
e8 + i e7

⎞
⎟⎟⎠ . (2.8)

Here we have defined the forms such that the generators of SU(3) (see Appendix A.1) coincide 
with those from [30]. Due to the flatness of the connection, dA0 +A0 ∧A0 = 0, one obtains the 
structure equations

d�1 = − i e7 ∧ �1 + √
3 i e8 ∧ �1 − �2̄3,

d�2 = − i e7 ∧ �2 − √
3 i e8 ∧ �2 + �1̄3,

d�3 = −2 i e7 ∧ �3 − 2�12, (2.9)

de7 = − i
(
�11̄ + �22̄ + �33̄

)
,

de8 = √
3 i

(
�11̄ − �22̄

)
,

together with the complex conjugated equations for �ᾱ, α = 1, 2, 3. By construction, the group 
U(1)k,l in the definition (2.1) is generated by I8 in (A.1), and the remaining group U(1) inside 
X1,1 is associated to I7 and the local coordinate ϕ.

2.2. Sasaki–Einstein structure

Following [30], the Einstein metric is chosen to be

ds2
X1,1

= gμνe
μ ⊗ eν = �1 ⊗ �1̄ + �2 ⊗ �2̄ + �3 ⊗ �3̄ + e7 ⊗ e7, (2.10)

and the Sasaki structure is defined by declaring the forms �α to be holomorphic, J̃�α = i �α . 
Here J̃ denotes the complex structure of the leaf space orthogonal to the contact direction e7. 
Then the fundamental form ω associated to it satisfies the Sasaki condition

2ω = dη := de7 = − i
(
�11̄ + �22̄ + �33̄

)
, (2.11)

which implies that ω is the Kähler form of the leaf space. The metric cone C
(
X1,1

)
has by 

definition the metric

ds2
C

(
X1,1

) = r2ds2
X1,1

+ dr ⊗ dr = r2
(

ds2
X1,1

+ dr

r
⊗ dr

r

)
= r2

4∑
�α ⊗ �ᾱ, (2.12)
α=1
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where one has defined a fourth holomorphic form

�4 := dr

r
− i e7. (2.13)

Equation (2.12) establishes the correspondence between the metric cone and the conformally 
equivalent cylinder.3 The definition of �4 yields an integrable complex structure J on the metric 
cone whose fundamental form �(X,Y ) := g (JX,Y ) is then given by

� = − i

2
r2

4∑
α=1

�α ∧ �ᾱ = r2ω + rdr ∧ e7. (2.14)

Due to the Sasaki condition de7 = 2ω this form is closed and the cone C
(
X1,1

)
, thus, carries 

a Kähler structure. For the cone to be Calabi–Yau, the holonomy U(4) of the Kähler manifold 
must be reduced further to SU(4), which is ensured by the closure of the 4-form [30]

�4,0 := r4�1 ∧ �2 ∧ �3 ∧ �4. (2.15)

Consequently, the geometric structure is that of a Calabi–Yau 4-fold, which implies the Sasaki–
Einstein structure of X1,1. As a Sasakian manifold, X1,1 is a U(1)-bundle over an underlying 
Kähler manifold, namely the leaf space of the foliation along the Reeb vector field, with funda-
mental form ω. The Kähler manifold underlying X1,1 is denoted as Q3 or F3 [16,21],

X1,1 Q3 := SU(3)
U(1)×U(1)

U(1) (2.16)

From the (local) section in (2.7) one has locally Q3 ∼= CP 2 × CP 1, and this space is described 
by the coordinates {y1, ȳ1, y2, ȳ2, z}.

3. Quiver gauge theory on X1,1

Quiver diagrams are a powerful tool in representation theory, and this motivates their appear-
ance in gauge theories, where the field content can be described by these directed graphs. In this 
section we will demonstrate the basic features of quiver gauge theories by considering them on 
the spaces X1,1 and Q3. We start the survey with a brief review of how quiver diagrams arise in 
the context of gauge theories4 on reductive homogeneous spaces G/H .

3.1. Preliminaries of quiver gauge theory

The condition generating the quiver diagrams, which we will usually refer to as equivariance 
condition, can be understood from two points of views: On the one hand, one could consider 
equivariant vector bundles in a rigorous algebraic fashion as it is done in [8,9], purely based 
on the representation theory of the Lie algebras involved. On the other hand, the equivariance 

3 Considering the metric cone is tantamount to studying the conformally equivalent cylinder for the discussion in this 
article. One can obtain an orthonormal basis by rescaling the forms ẽμ := r e μ. We will mainly use the cylinder for the 
description here.

4 Note that for us the term quiver gauge theory always refers to the structures arising from the bundle equivariance. 
Thus our definition is not directly related to other forms of quiver gauge theories in the literature, e.g. [37], which are 
based on brane physics.
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condition occurs quite naturally in the context of instanton studies, e.g. [38–42], as invariance 
condition on gauge connections on reductive homogeneous spaces G/H .

Equivariant vector bundles We sketch the basics of equivariant vector bundles and their rela-
tion to quiver gauge theories, following roughly [8,10]. For the application of this approach we 
refer also to the examples in [16,23]. Let G/H be a Riemannian coset space modeling the inter-
nal degrees of freedom, Md a d-dimensional Riemannian manifold, and let π : E → Md ×G/H

be a Hermitian vector bundle5 of rank k, i.e. a vector bundle with structure group U(k). Suppose 
that the Lie group G acts trivially on Md and in the usual way on the coset space. Then the bundle 
is called G-equivariant if the action of G on the base space and on the total space, respectively, 
commutes with the projection map π and induces isomorphisms among the fibers Ex � C

k . By 
restriction and induction of bundles, E = G ×H E, G-equivariant bundles E → Md × G/H are 
in one-to-one correspondence with H -equivariant bundles E → Md [8].

Since the action of the closed subgroup H on the base space is trivial, the equivariance 
of the bundle implies that the fibers must carry representations of H . We assume that these 
H -representations stem from the restriction of an irreducible6 G-representation D which de-
composes under restriction to H as follows

D|H =
m⊕

i=0

ρi, (3.1)

where the ρi are irreducible H -representations. This yields an isotopical decomposition7 of the 
vector bundle E as a Whitney sum in the very same way

E =
⊕

i

Ei with (Ei)x
∼=C

ki carrying ρi (3.2)

and induces a breaking of the generic structure group U(k) of the bundle to

U (k) −→
m∏

i=0

U (ki) with
m∑

i=0

ki = k. (3.3)

The action of the entire group G on the decomposition (3.2) connects different representations ρi , 
i.e. it leads to homomorphisms from Hom

(
C

ki ,Ckj
)
. In this way, the fibres of the G-equivariant 

bundle are representations of a quiver8 (Q0,Q1), where Q0 denotes the set of vertices and 
Q1 the set of arrows. Each vertex vi ∈ Q0 carries a vector space isomorphic to Cki with an 
H -representation, and the arrows are represented by linear maps among these spaces. The entire 
G-equivariant bundle thus carries a representation of the quiver, and this construction is called 

5 One should keep in mind that the fundamental objects of a gauge theory are principal bundles (P, p, X; K) with 
total space P , base space X, projection map p, and gauge group K although we will work completely in terms of vector 
bundles in this article. They can be thought of as associated to the relevant principal bundle P .

6 This assumption is not mandatory for the approach, but the restriction to irreducible representations makes it clearer 
because reducible representations would lead to results involving those of smaller, irreducible representations.

7 In general, one can split the summands further into Ei = Ẽi ⊗ Vi , where Vi is an irreducible H -representation and 
the subgroup H acts trivially on Ẽi [15]. Since we consider an abelian subgroup H , the irreducible representations are 
1-dimensional, so that H acts as multiple of the identity on the entire space Ei . For an example of a non-abelian subgroup 
H , consider for instance [23].

8 For details on representations of quiver diagrams, see for example [43,44].
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a quiver bundle. Since the allowed arrows of the quiver diagram arise from the commutation 
relations of the generators with the elements of the subalgebra h, this approach is entirely based 
on the representation theory of h and g, and it can be realized using (parts of) the weight diagram 
of the Lie algebra g.

Invariant gauge connections The equivariance condition leading to the quiver diagrams also 
occurs naturally when studying instanton solutions of invariant gauge connections on reductive 
homogeneous spaces, e.g. in [30,41,42]. Let G/H be a reductive homogeneous space with the 
Ad(H)-invariant splitting

span〈Iμ〉 := g = h⊕m =: span〈Ij 〉 ⊕ span〈Ia〉, (3.4)

where the generators satisfy[
Ij , Ik

] = Cl
jkIl,

[
Ij , Ia

] = Cb
jaIb, and [Ia, Ib] = Cc

abIc + C
j
abIj ; (3.5)

the space m can be identified with the tangent space of G/H . Let eμ be the 1-forms dual to the 
generators Iμ, which obey the structure equation

deμ = −1

2
Cμ

ρσ eρσ = −�μ
ν ∧ eν + T μ, (3.6)

where �μ
ν are the connection 1-forms describing a (metric) connection � on the homogeneous 

space, and T μ is its torsion. Due to a known result from differential geometry [45] and follow-
ing the approach used for example in [41], we can express a G-invariant connection A on the 
homogeneous space as

A = Ij ⊗ ej + Xa ⊗ ea, (3.7)

where the skew-hermitian matrices Xa , the Higgs fields, describe the endomorphism part. The 
connection9 � := Ij ⊗ ej takes values entirely in the vertical component h and is obtained by 
declaring the torsion to be T (X, Y) := − [X,Y ]m for X, Y ∈ Te (G/H). The curvature F =
dA +A ∧A of (3.7) is then given by

F =F� +
([

Ij ,Xa

] − Cb
jaXb

)
ej ∧ ea + 1

2

(
[Xa,Xb] − Cc

abXc

)
eab + dXa ∧ ea. (3.8)

For the connection to be G-invariant, terms containing the mixed 2-forms e j ∧ ea must not 
occur, so that one obtains – assuming that the last term in (3.8) does not yield incompatible 
contributions10 – the equivariance condition [41,45][

Ij ,Xa

] = Cb
jaXb. (3.9)

Thus the equivariance forces the endomorphisms Xa to act (with respect to the adjoint action) on 
the fibres of the bundle as the generators Ia in (3.5) do.

Construction procedure Based on the outline above, we can construct an equivariant gauge 
connection and the corresponding quiver bundle for X1,1 = SU(3)/U(1)1,1 in the following way. 
Let

9 In principle one could also use different connections � as starting point in the ansatz (3.7). See the comments in 
Section 4.
10 This holds true e.g. for constant matrices or those with Xa = Xa (r), as we will consider on the metric cone C (G/H)

in Section 4.
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C
k =

(
C

k0,Ck1 , . . . ,Ckm

)T
(3.10)

be a decomposition of the representations on the fibres in (m + 1) terms, which yields the break-
ing of the structure group (3.3) and the isotopical decomposition as in (3.2). Since the irreducible 
representations ρi of the abelian subgroup H = U(1)1,1 are 1-dimensional, the group H acts as(

ζ0 1k0, ζ1 1k1, . . . , ζm 1km

)
(3.11)

on the vectors (3.10). The constants ζi can be obtained from an irreducible representation of the 
U(1)1,1-generator on an (m + 1)-dimensional vector space. This fact and the way how the quiver 
diagrams arise motivate to consider the gauge connection as a block matrix of size (m + 1)2, 
whose structure is determined by the (m + 1)-dimensional G-representation in which the en-
tries are (implicitly) replaced by homomorphisms. By construction and due to the equivariance 
condition (3.9), the quiver diagram is then based on (parts of) the underlying weight diagram of 
the chosen G-representation. If the subgroup H is a maximal torus, the quiver coincides with 
the weight diagram because all Cartan generators occur as operators Ij in (3.9). For smaller 
subgroups there might be degeneracies as double arrows in the diagram, while larger groups re-
quire a collapsing of vertices in the weight diagram along the action of the ladder operators of 
h as it is done, for instance, in [11,16]. We will clarify this procedure for the abelian subgroup 
H = U(1)1,1 in the following.

3.2. Equivariance condition and quiver diagrams of X1,1

The aforementioned approach is now applied to the space X1,1. Following the outline above 
and according to (3.7), we write an SU(3)-invariant connection A on Md × X1,1 as [30]

A= A + I8 ⊗ e8 +
7∑

a=1

Xa ⊗ ea =: A + I8 ⊗ e8 +
3∑

α=1

(
Yα ⊗ �α + Yᾱ ⊗ �ᾱ

)
+ X7 ⊗ e7,

(3.12)

where A is a connection on Md . Moreover, we have defined complex endomorphisms

Y1 := 1

2
(X1 + iX2) , Y2 := 1

2
(X3 + iX4) , Y3 := 1

2
(X5 + iX6) (3.13)

with Yᾱ := −Y †
α .

In terms of the structure constants (A.3) the field strength of the connection A is given by [30]

F = dA + A ∧ A + (dYα + [A,Yα]) ∧ �α

+ (dYᾱ + [A,Yᾱ]) ∧ �ᾱ + (dX7 + [A,X7]) ∧ e7

+ 1

2

([
Yα,Yβ

] − C
γ
αβYγ

)
�αβ

+
([

Yα,Yβ̄

]
− C

γ

αβ̄
Yγ − C

γ̄

αβ̄
Yγ̄ + iC7

αβ̄
X7 + iC8

αβ̄
I8

)
�αβ̄

+ 1

2

([
Yᾱ, Yβ̄

]
− C

γ̄

ᾱβ̄
Yγ̄

)
�ᾱβ̄ +

(
[X7, Yα] − iCβ

7αYβ

)
e7 ∧ �α

+
(

[X7, Yᾱ] − iCβ̄
7ᾱYβ̄

)
e7 ∧ �ᾱ +

(
[I8, Yα] − iCβ

8αYβ

)
e8 ∧ �α

+
(

[I8, Yᾱ] − iCβ̄
Yβ̄

)
e8 ∧ �ᾱ + [I8,X7] e87. (3.14)
8ᾱ
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Following some notation in the literature, e.g. in [16], we call

φ(α) := Yᾱ for α = 1,2,3, and X7 (3.15)

the Higgs fields and set11

Î8 := −√
3 i I8 = diag (2,−1,−1) and Î7 := − i I7 = diag (0,−1,1) . (3.16)

The equivariance condition (3.9), equivalent to the vanishing of the last three terms in (3.14), 
then reads

[
Î8, φ

(1)
]

= 3φ(1),
[
Î8, φ

(2)
]

= −3φ(2), and
[
Î8, φ

(3)
]

= 0 =
[
Î8,X7

]
. (3.17)

Consequently, the endomorphisms φ(1) and φ(2)† will have the same block form and the form of 
φ(3) coincides with that of X7, but their entries are still arbitrary and not related to each other. 
The commutation relations (3.17) provide the action of the Higgs fields on the quantum numbers 
(ν7, ν8) associated to the two Cartan generators Î7 and Î8 of SU(3)

φ(1) : (ν7, ν8) �−→ (∗, ν8 + 3),

φ(2) : (ν7, ν8) �−→ (∗, ν8 − 3), (3.18)

φ(3) : (ν7, ν8) �−→ (∗, ν8),

X7 : (ν7, ν8) �−→ (∗, ν8).

Since the quantum number ν7 does not enter the equivariance condition, it is reasonable12 to 
label the vertices in the quiver diagram only by the number ν8, so that one obtains effectively a 
modified version of the holomorphic chain [9]: a diagram consisting of double arrows between 
adjacent vertices and double loops at each vertex,

•
(p − 3m)

•
(p − 3m + 3)

. . . •
(p − 3)

•
(p)

(3.19)

where the black two headed arrows denote the contributions by φ(1) and φ(2)†, while the en-
domorphisms φ(3) and X7 are represented by the blue two headed loops.13 Here, the integer p
denotes the highest weight (with respect to ν8) of the representation D. The endomorphism part 
of the invariant connection associated to this modified holomorphic chain of length m + 1 is then 
given by

11 As mentioned above, we implicitly interpret the numbers in the Cartan generators as numbers times identity operators.
12 This corresponds to the isotopical decomposition (3.2): The representation D is restricted under the subgroup U(1)1,1
rather than under a maximal torus U(1) × U(1).
13 Using one arrow with two heads as symbol for two arrows improves the readability of the more complicated diagrams 
like Fig. 3 significantly.
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Xae
a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�p �p−3 0 . . . 0

−�
†
p−3 �p−3 �p−6 . . .

...

0 −�
†
p−6

. . .
. . . 0

...
...

. . . �p−3 �p−3m

0 . . . 0 −�
†
p−3m �p−3m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.20)

where we have defined the abbreviations

�p−3j := φ
(1)
p−3j ⊗ �1̄ − φ

(2) †
p−3j ⊗ �2 and �p−3j := φ

(3)
p−3j ⊗ �3̄ + (X7)p−3j ⊗ e7

(3.21)

for j = 0, 1, . . . , m, and the indices label the tail of the arrow. The remaining contribution to the 
invariant connection (3.12) is given by the diagonal parts

� + A = diag

(
1kl

⊗ 3l − p√
3

i e8 + Ap−3l

)
l=0,...,m

, (3.22)

where Ap−3l is a component – according to the isotopical decomposition (3.2) of the fibres – of 
a connection on the bundle E → Md . Equations (3.20) and (3.22) describe the general solution. 
For comparisons with gauge theories of similar geometric structures like Q3, it is advantageous 
to consider not only the decomposition under the subgroup H , i.e. labeling the vertices only by 
ν8 as we did, but to study the equivariance conditions in the entire weight diagram of G. Since 
the weight diagrams14 of the relevant Lie algebras are well-known, one can quickly construct 
the invariant connection by implementing the rules (3.18) and can then project to the relevant 
quantum numbers. In the following, we will consider the triangular/hexagonal weight diagram 
of SU(3), spanned by the roots

(−1,3)

(−1,−3)

(−2,0)

I1̄

I2̄

I3̄
(3.23)

and the conjugated operators Iα .

3.2.1. Examples
We consider three explicit examples of SU(3) representations and the quiver diagrams asso-

ciated to them.

14 For representation theory of su(3) see e.g. [46].
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Fig. 1. Quiver diagram of X1,1 for the fundamental representation 3 of SU(3): The left diagram stems from the im-
plementation of the equivariance condition in the weight diagram of SU(3) and the right one is the holomorphic chain 
with the loop modification and the double arrows, obtained from the projection by forgetting about the second quantum 
number ν7, i.e. identifying points along horizontal lines.

Fundamental representation Applying the prescription (3.18) to the single triangle of the 
weight diagram of the defining representation 3 provides the quiver diagram in Fig. 1. Of 
course, this diagram could be also obtained by direct evaluation of the commutator of Î8 =
diag(2, −1, −1) with an arbitrary 3 × 3-matrix (•)

[
Î8, (•)

]
=

⎛
⎝ 0• 3• 3•

−3• 0• 0•
−3• 0• 0•

⎞
⎠ . (3.24)

Then the equivariance condition requires the Higgs fields to be of the form

φ(1) =
⎛
⎝0 ∗ ∗

0 0 0
0 0 0

⎞
⎠ , φ(2) =

⎛
⎝0 0 0

∗ 0 0
∗ 0 0

⎞
⎠ , φ(3) =

⎛
⎝∗ 0 0

0 ∗ ∗
0 ∗ ∗

⎞
⎠ , X7 =

⎛
⎝∗ 0 0

0 ∗ ∗
0 ∗ ∗

⎞
⎠ ,

(3.25)

which again yields the quiver diagram Fig. 1. This translates into the invariant gauge connection

A3 =

⎛
⎜⎜⎝

2√
3

i e8 ⊗ 1 + �0,2;0,2 �−1,−1;0,2 �1,−1;0,2

−�
†
−1,−1;0,2 − 1√

3
i e8 ⊗ 1 + �−1,−1;−1,−1 +�1,−1;−1,−1

−�
†
1,−1;0,2 −�

†
1,−1;−1,−1 − 1√

3
i e8 ⊗ 1 + �1,−1;1,−1

⎞
⎟⎟⎠,

(3.26)

where we have defined

�i,j ;k,l := (φ(1))i,j ;k,l ⊗ �1̄ − (φ(2)†)i,j ;k,l ⊗ �2,

�i,j ;k,l := (φ(3))i,j ;k,l ⊗ �3̄ + (X7)i,j ;k,l ⊗ e7; (3.27)

the U(1) × U(1)-charges (i, j) denote the tail of the arrow, and (k, l) its head. Going back to the 
effective quiver diagram, i.e. the modified holomorphic chain, yields

A3 =
( 2√

3
i e8 ⊗ 1 + �2;2 �̃−1;2

−�̃
†
−1;2 − 1√

3
i e8 ⊗ 1 + �̃−1;−1

)
, (3.28)

which agrees with the general result (3.20). The anti-fundamental representation 3̄, of course, 
leads to an analogous diagram and connection.
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Fig. 2. Quiver diagram for the representation 6 with the same notation as before.

Representation 6 The six-dimensional representation 6 of SU(3) causes the more complicated 
quiver diagram depicted in Fig. 2, which could be also obtained by the direct evaluation of the 
commutation relation with the U(1)1,1-generator Î8 = diag (4,1,1,−2,−2,−2). The resulting 
fields are of the form

φ(1) and φ(2)† =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ∗ ∗ 0 0 0
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, φ(3) and X7 =

⎛
⎜⎜⎜⎜⎜⎜⎝

∗ 0 0 0 0 0
0 ∗ ∗ 0 0 0
0 ∗ ∗ 0 0 0
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 ∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(3.29)

We skip the explicit index structure of the invariant gauge connection which can be read from 
the quiver diagram, Fig. 2, and provide only the result for the modified holomorphic chain

A6 =

⎛
⎜⎜⎝

4√
3

i e8 ⊗ 1 + �4;4 �̃1;4 0

−�̃
†
1;4

1√
3

i e8 ⊗ 1̃ + �̃1;1 �̃−2;1
0 −�̃

†
−2;1 − 2√

3
i e8 ⊗ 1̃ + �̃−2;−2

⎞
⎟⎟⎠ . (3.30)

It is interesting to compare this block matrix of size 3 × 3 with that of the adjoint representation 
in the following example, which – on the level of the modified holomorphic chain – only differs 
in the occurring quantum numbers and, thus, the connection �.

Adjoint representation 8 The U(1)1,1-generator in the adjoint representation is given by Î8 =
diag (3,3,0,0,0,0,−3,−3) and the weight diagram is a hexagon with two degenerated points 
at the origin.15 The Higgs fields must thus have the shape

15 The representation of the other Cartan generator reads ad(− i I7) = diag (−1,1,−2,0,0,2,−1,1), which causes the 
degeneracy at (0, 0).
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Fig. 3. Quiver diagram for the adjoint representation 8 of SU(3). Note that due to the degeneracy of (0, 0) each arrow 
involving the origin must be counted twice (depicted as arrows consisting of two lines), i.e. there are, for instance, four
arrows between (0, 0) and (1, −3) etc.

φ(1) and φ(2)† =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ∗ ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ ∗ 0 0
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

φ(3) and X7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ ∗ 0 0
0 0 0 0 0 0 ∗ ∗
0 0 0 0 0 0 ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.31)

and the quiver diagram in Fig. 3 contains a large number of arrows. The identification leading to 
the modified holomorphic chain yields as connection

A6 =
⎛
⎜⎝

√
3 i e8 ⊗ 1 + �3;3 �̃0;3 0

−�̃
†
0;3 �̃0;0 �̃−3;0

0 −�̃
†
−3;0 −√

3 i e8 ⊗ 1̃ + �̃−3;−3

⎞
⎟⎠ . (3.32)

As mentioned before, this modified holomorphic chain of length 3 is different from that of the 
six-dimensional representation, (3.30), only due to the quantum numbers that appear.

The huge number of arrows in the last two examples have shown that it is advantageous to 
use only the relevant quantum number ν8 rather than the entire weight diagram of G, but for 
comparisons with Q3 the latter description is also useful. The occurrence of degeneracies in 
the entire weight diagram of SU(3) due to the weaker equivariance condition is similar [15,24]
to the case of the five-dimensional Sasaki–Einstein manifold T 1,1 := (SU(2) × SU(2)) /U(1) in 
comparison with its underlying manifold CP 1 ×CP 1.
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3.3. Dimensional reduction of the Yang–Mills action

In the previous section we have completely characterized the form of a G-invariant gauge 
connection by applying the rules (3.18) in the weight diagram and in terms of the results (3.20)
and (3.22). Given such a gauge connection A on Md × X1,1 with field strength F , we now 
determine its standard Yang–Mills action

SYM = −1

4

∫
Md×X1,1

tr F ∧ ∗F, (3.33)

yielding the usual Yang–Mills Lagrangian16

LYM = −1

4

√
ĝ tr Fμ̂ν̂F μ̂ν̂ , (3.34)

where we denote ĝ := det gX1,1det gMd . Using the Sasaki–Einstein metric (2.10),

(
gX1,1

)
αβ̄

= 1

2
δαβ and

(
gX1,1

)
77 = 1, (3.35)

and the field strength components from (3.14), one obtains as Lagrangian

LYM =
√

ĝ trk

{
1

4
Fμν

(
Fμν

)† + 2
3∑

α=1

∣∣∣Dμφ(α)
∣∣∣2 + 1

2

∣∣DμX7
∣∣2

+ 2
∣∣∣[φ(1), φ(1)†

]
− iX7 + √

3 i I8

∣∣∣2 + 2
∣∣∣[φ(2), φ(2)†

]
− iX7 − √

3 i I8

∣∣∣2

+ 2
∣∣∣[φ(3), φ(3)†

]
− iX7

∣∣∣2 + 4
∣∣∣[φ(1), φ(2)

]
− 2φ(3)

∣∣∣2 + 4
∣∣∣[φ(1), φ(3)

]∣∣∣2

+ 4
∣∣∣[φ(2), φ(3)

]∣∣∣2 + 4
∣∣∣[φ(1), φ(2)†

]∣∣∣2 + 4
∣∣∣[φ(1), φ(3)†

]
+ φ(2)†

∣∣∣2

+ 4
∣∣∣[φ(2), φ(3)†

]
− φ(1)†

∣∣∣2 + 2
∣∣∣[φ(1),X7

]
− iφ(1)

∣∣∣2 + 2
∣∣∣[φ(2),X7

]
− iφ(2)

∣∣∣2

+ 2
∣∣∣[φ(3),X7

]
− 2 iφ(3)

∣∣∣2
}

. (3.36)

Here, we have defined the covariant derivatives Dμφ(α) := (
dφ(α) + [

A,φ(α)
])

μ
for α = 1, 2, 3

and DμX7 := (dX7 + [A,X7])μ, the field strength Fμν := (dA + A ∧ A)μν and we write |X|2 :
= XX†. Since the fields φ(α) and X7 are assumed to be independent from internal coordinates 
of X1,1 (due to equivariance), the additional dimensions can be integrated out easily, which 
yields only a prefactor vol

(
X1,1

)
for the dimensional reduction of the Lagrangian. In this way, 

one obtains from a pure Yang–Mills theory on Md × X1,1 a Yang–Mills–Higgs action on Md , 
where the endomorphisms φ(a) and X7 constitute a non-trivial potential provided by the internal 
geometry of X1,1.

16 We use the set of indices 
{
μ̂

} = {μ,α, ᾱ,7} with μ referring to Md .
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3.4. Reduction to quiver gauge theory on Q3

The equivariance condition and the examples of the quiver diagrams in the previous sec-
tion have shown that the quiver gauge theory on X1,1 depends on only one of the two quantum 
numbers of SU(3). This yields effectively a modified holomorphic chain as quiver diagram or, 
considered in the original weight diagram of SU(3), a diagram with multiple arrows and degen-
eracies. As mentioned in the discussion of the Sasaki–Einstein structure on X1,1 in Section 2.2, 
the space is a U(1)-bundle over the (Kähler) space Q3, so that it is natural to consider the re-
duction from the gauge theory on X1,1 to that on Q3 by removing the contact direction as a 
degree of freedom. Since we then divide by a Cartan subalgebra, the quiver diagram is simply 
the weight diagram of SU(3) without the degeneracies which have been caused by the weaker 
conditions on X1,1. This reduction can be performed by setting the terms containing e7 ∧ �α

or e7 ∧ �ᾱ in the field strength (3.14) to zero. This provides the additional equivariance condi-
tions [

X7, φ
(1)

]
= − iφ(1),

[
X7, φ

(2)
]

= − iφ(2), and
[
X7, φ

(3)
]

= −2 iφ(3). (3.37)

For the reduction to Q3, the field X7 must be proportional to I7 and setting X7 = I7 fixes the 
action of the Higgs fields to be

φ(1) : (ν7, ν8) �−→ (ν7 − 1, ν8 + 3)

φ(2) : (ν7, ν8) �−→ (ν7 − 1, ν8 − 3) (3.38)

φ(3) : (ν7, ν8) �−→ (ν7 − 2, ν8).

This, indeed, requires the quiver diagrams in Fig. 4 to coincide with the weight diagrams of 
the chosen representations and yields the results17 from [16,21]. The endomorphism part of the 
gauge connection, e.g. for the fundamental representation, reads

A3 =

⎛
⎜⎜⎝

1 ⊗ 2√
3

i e8 −�
(2)†
0,2;−1,−1 �

(1)
1,−1;0,2

�
(2)
0,2;−1,−1 1 ⊗

(
− 1√

3
i e8 − i e7

)
�

(3)
1,−1;−1,−1

−�
(1)†
1,−1;0,2 −�

(3)†
1,−1;−1,−1 1 ⊗

(
− 1√

3
i e8 + i e7

)
⎞
⎟⎟⎠ (3.39)

with �(α) := φ(α) ⊗ �ᾱ . Since the quiver diagram is the weight diagram of SU(3), the Higgs 
fields have the block shape of the generators (A.1) and the central idea of quiver gauge theory 
becomes evident: One modifies the bundle (2.8) by inserting compatible endomorphisms φ(α) as 
entries in the block matrices describing the gauge connection.

The Lagrangian of the gauge theory on Md × Q3 is then given by that on Md × X1,1 without 
the terms containing commutators with X7,

LQ3 =
√

ĝ trk

{
1

4
Fμν

(
Fμν

)† + 2
3∑

α=1

∣∣∣Dμφ(α)
∣∣∣2 + 2

∣∣∣[φ(1), φ(1)†
]
− i I7 + √

3 i I8

∣∣∣2

+ 2
∣∣∣[φ(2), φ(2)†

]
− i I7 − √

3 i I8

∣∣∣2 + 2
∣∣∣[φ(3), φ(3)†

]
− i I7

∣∣∣2

17 Note that the orientation of the Higgs fields depends on the chosen convention of the holomorphic structure; we 
denote as Higgs fields φα the endomorphisms accompanying the anti-holomorphic forms �ᾱ .
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Fig. 4. Quiver diagrams of Q3 for a) fundamental representation 3, b) representation 6, and c) adjoint representation 8
(with the degenerated origin) of SU(3). The arrows denote the Higgs fields φ(1) (black), φ(2) (red), and φ(3) (blue), 
according to the condition (3.38). (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

+ 4
∣∣∣[φ(1), φ(2)

]
− 2φ(3)

∣∣∣2 + 4
∣∣∣[φ(1), φ(3)

]∣∣∣2 + 4
∣∣∣[φ(2), φ(3)

]∣∣∣2

+ 4
∣∣∣[φ(1), φ(2)†

]∣∣∣2 + 4
∣∣∣[φ(1), φ(3)†

]
+ φ(2)†

∣∣∣2 + 4
∣∣∣[φ(2), φ(3)†

]
− φ(1)†

∣∣∣2
}

,

(3.40)

because the vanishing of them is subject to the further equivariance conditions (3.37).

4. Instantons on the metric cone C
(
X1,1

)

The implementation of the equivariance condition (3.17) has determined the general form of 
the gauge connection, expressed in the associated quiver diagram, and the action functional, but 
has not restricted the entries of the endomorphisms. Further conditions and relations among the 
endomorphisms can be imposed by studying vacua of the gauge theory, i.e. by minimizing the 
action functional (3.33). To this end, we will evaluate the Hermitian Yang–Mills equations – 
a certain form of generalized self-duality equations – on the metric cone C(X1,1), as it has been 
done in similar setups, e.g. [23,24], and describe their moduli space, following [33–35].

4.1. Generalized self-duality equation

A very useful tool for obtaining minima of a Yang–Mills functional in gauge theory is to 
evaluate a first-order equation implying the second-order Yang–Mills equations [2–4]. Given a 
connection A on an n-dimensional manifold whose curvature F satisfies the generalized self-
duality equation

∗F = − ∗ Q ∧F (4.1)
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for a 4-form Q, one obtains by taking the differential [5]

∇A ∧ ∗F + (d ∗ Q) ∧F = 0 with ∇A ∧ ∗F := d ∗F +A∧ ∗F + (−1)n−1 ∗F ∧A,

(4.2)

which is the usual Yang–Mills equation with torsion term (d ∗ Q) ∧ F . Explicit formulae for 
the choice of the form Q, in dependence of the geometry of the manifold, such that the torsion 
term vanishes even if the form Q is not co-closed have been given in [5]. Their construction is 
based on the existence of (real) Killing spinors, and thus also applies to Sasaki–Einstein struc-
tures. A connection A whose curvature satisfies (4.1) for the form Q given by [5] is called a 
(generalized) instanton. For a Sasaki–Einstein manifold the form Q reads [5]

Q = 1

2
ω ∧ ω, (4.3)

such that we have

Q = −1

4

(
�11̄22̄ + �11̄33̄ + �22̄33̄

)
= e1234 + e1256 + e3456. (4.4)

The corresponding instanton equation (4.1) on X1,1 is satisfied for the connection � = I8 ⊗ e8, 
which we used for expressing the G-invariant connection in (3.12); see Appendix A.2. The form 
QZ occurring in the instanton equation on the cylinder, which is conformally equivalent to the 
metric cone, over a Sasaki–Einstein manifold reads [5]18

QZ = dτ ∧ P + Q with P = η ∧ ω (4.5)

and one thus obtains

QZ = 1

2
� ∧ �, (4.6)

where � is the Kähler form of the Calabi–Yau cone and the cylinder, respectively. Since the 
Calabi–Yau manifold is of complex dimension 4 and as we have chosen the standard form of 
the Kähler form, the 4-form QZ is self-dual, such that d ∗ QZ = dQZ = 0, and the Yang–Mills 
equation without torsion follows from the instanton equation (4.1). We evaluate the instanton 
equation (4.1) with the form QZ by imposing the – equivalent – Hermitian Yang–Mills equations
(HYM) [42,47,48]

F (2,0) = 0 =F (0,2) and ��F := ∗ (� ∧ ∗F) = 0, (4.7)

where F (2,0) refers to the (2, 0)-part with respect to the complex structure J . The first equation 
is a holomorphicity condition and the second one can (sometimes) be considered as a stability 
condition on vector bundles; they are also known as Donaldson–Uhlenbeck–Yau equations.

4.2. Hermitian Yang–Mills instantons on C
(
X1,1

)
We consider the same ansatz (3.7) [30], now including also the additional form eτ := dτ := dr

r

on the cylinder,

18 They provide the form for a whole family of compatible metrics and we consider one special value here.
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A= I8e
8 + Yα�α + Yᾱ�ᾱ + X7e

7 + Xτe
τ

= I8e
8 + Yα�α + Yᾱ�ᾱ + Y4�

4 + Y4̄�
4̄, (4.8)

where we set19

Y4 := 1

2
(Xτ + iX7) . (4.9)

Due to the equivariance, the endomorphisms are “spherically symmetric”, i.e. they can only 
depend on the radial coordinate, Xa = Xa (r). After the implementation of the same equivariance 
conditions as before,[

I8, Y1̄

] = −√
3 iY1̄,

[
I8, Y2̄

] = √
3 iY2̄, and

[
I8, Y3̄

] = 0 = [
I8, Y4̄

]
, (4.10)

the non-vanishing components of the field strength read (see [30])

Fαβ = [
Yα,Yβ

] − C
γ
αβYγ , Fᾱβ̄ =

[
Yᾱ, Yβ̄

]
− C

γ̄

ᾱβ̄
Yγ̄ ,

Fαβ̄ =
[
Yα,Yβ̄

]
− C

γ

αβ̄
Yγ − C

γ̄

αβ̄
Yγ̄ + C7

αβ̄
Y4 − C7

αβ̄
Y4̄ + iC8

αβ̄
I8,

Fα4 = [Yα,Y4] − 1

2
rẎα − 1

2
C

β
7αYβ, Fα4̄ = [

Yα,Y4̄

] − 1

2
rẎα + 1

2
C

β
7αYβ, (4.11)

Fᾱ4 = [Yᾱ, Y4] − 1

2
rẎᾱ − 1

2
C

β̄
7ᾱYβ̄ , Fᾱ4̄ = [

Yᾱ, Y4̄

] − 1

2
rẎᾱ + 1

2
C

β̄
7ᾱYβ̄ ,

F44̄ = [
Y4, Y4̄

] − 1

2
r
(
Ẏ4 − Ẏ4̄

)
.

Evaluating the condition Fᾱβ̄ = 0 leads to[
Y1̄, Y2̄

] = 2Y3̄,
[
Y1̄, Y3̄

] = 0 = [
Y2̄, Y3̄

]
(4.12)

(together with their complex conjugates from Fαβ = 0). Thus, this part of the holomorphicity 
condition imposes algebraic relations on the quiver. In contrast, from Fᾱ4̄ = 0 we obtain the 
following flow equations

rẎ1̄ = −Y1̄ + 2
[
Y1̄, Y4̄

]
, rẎ2̄ = −Y2̄ + 2

[
Y2̄, Y4̄

]
, rẎ3̄ = −2Y3̄ + 2

[
Y3̄, Y4̄

]
. (4.13)

The remaining equation ��F = 0 requires

r
(
Ẏ4 − Ẏ4̄

) = 2
[
Y1, Y1̄

] + 2
[
Y2, Y2̄

] + 2
[
Y3, Y3̄

] + 2
[
Y4, Y4̄

] − 6
(
Y4 − Y4̄

)
. (4.14)

Constant endomorphisms: For the special case of constant matrices Xa , the situation cor-
responds to that of the underlying Sasaki–Einstein manifold X1,1 with the parameter τ (or r , 
respectively) just as a label of the foliation along the preferred direction of the cone. Gauging 
the field Xτ to zero, one recovers then from (4.13) exactly the additional equivariance conditions 
(3.37), which appeared in the discussion of the gauge theory on Q3. Thus the equivariant gauge 
theory on Q3 can be considered as a special instanton solution20 of the more general setup on 
the metric cone C

(
X1,1

)
.

19 The field Xτ associated to the radial direction could be gauged to zero [30].
20 The vanishing of the contributions stemming from the form e7 is obvious from the Yang–Mills action (3.33) and the 
instanton condition (4.1). Due to ∗7Q ∝ e7 those terms do not contribute to the action for instanton solutions, and this is 
equivalent to the further equivariance conditions (3.37).
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4.3. Moduli space of SU(3)-equivariant instantons

For a description of the moduli space of the equations (4.12), (4.13) and (4.14) (under the 
equivariance conditions (4.10)), it is advantageous to re-write them in a form similar to the Nahm 
equations. Then one can employ the techniques used by Donaldson [33] and Kronheimer [34]
for the discussion thereof. We will briefly sketch the application of these methods to our system 
of flow equations, following [35], where the framed moduli space of solutions to the Hermitian 
Yang–Mills equations on metric cones over generic Sasaki–Einstein manifolds is discussed in 
this way. Note that the treatment [35] uses the canonical connection of [5] as starting point 
� for the gauge connection and that our connection � = I8 ⊗ e8 in (4.8) differs from it (see 
Appendix A.2). This is why some modifications, in comparison with [35], will appear in our 
discussion.21

Changing the argument in the flow equations to τ = ln(r) and setting22

Yᾱ =: e −τWα, for α = 1,2, Y3̄ =: e −2τW3, and Y4̄ =: e −6τZ (4.16)

eliminates the linear terms in (4.13) and (4.14). Defining s := − 1
6 e −6τ = − 1

6 r−6 ∈ (−∞, 0]
yields Nahm-type equations

dW1

ds
= 2 [W1,Z] ,

dW2

ds
= 2 [W2,Z] ,

dW3

ds
= 2 [W3,Z] , (4.17)

[W1,W2] = 2W3 and [W1,W3] = 0 = [W2,W3] (4.18)

(from F (2,0) = 0) and

μ(Wα,Z) := d

ds

(
Z + Z†

)
+ 2

3∑
α=1

λα (s)
[
Wα,W †

α

]
+ 2

[
Z,Z†

]
= 0 (4.19)

(from ��F = 0), with the non-negative functions

λ1 (s) = λ2 (s) := (−6s)−
5
3 and λ3 (s) := (−6s)−

4
3 . (4.20)

The equation (4.19) shall be referred to as the real equation and the equations (4.17) and (4.18) as 
complex equations. The discussion of the moduli space is based on the invariance of the complex 
equations under the complexified gauge transformation [33]

Wα �−→ Wg
α := gWαg−1, for α = 1,2,3 and Z �−→ Zg := gZg−1 − 1

2

(
dg

ds

)
g−1

(4.21)

with g ∈ C ((−∞,0],GL(C, k)). A local solution of (4.17) can be attained by applying the gauge

Zg = 0 ⇒ Z = 1

2
g−1 dg

ds
, (4.22)

21 Of course, using the canonical connection of [5] yields the results of [35] also for X1,1. However, for the discussion 
of the quiver diagrams in Section 3 the connection � = I8 ⊗ e8 was more suitable because it is valued in the subalgebra 
h and, thus, adapted to the setup of a homogeneous space. The canonical connection, in contrast, is adapted to the 
Sasaki–Einstein structure of X1,1; see Appendix A.2.
22 For the canonical connection (A.14) of a seven-dimensional Sasaki–Einstein manifold, the matrices scale as [35]

Yᾱ = e − 4
3 τ

Wα for α = 1,2,3 and Y4̄ = e −6τ Z. (4.15)
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so that – due to the complex equations (4.17) – the gauge transformed matrices Wg
α must be 

constant,

Wα = g−1Tαg. (4.23)

To obtain solutions, one has to choose these constant matrices such that they satisfy (4.18). One 
special choice, for instance, could be to set T3 = 0 and take for T1 and T2 elements of a Cartan 
subalgebra. Note that not only the scaling in (4.16) is different from that in [35], but also the 
conditions (4.18): There all three matrices have to commute with each other and, thus, also T3
can be chosen as arbitrary element of a Cartan subalgebra. Adapting Donaldson’s arguments 
[33,35], the real equation (4.19) can be – locally on an interval I ⊂ (−∞, 0] – considered as the 
equation of motion (i.e. δL ∝ μ) of the Lagrangian

L = 1

2

∫
I

ds
{

2|Z + Z†|2 + 2λ1(s)|W1|2 + 2λ2(s)|W2|2 + 2λ3(s)|W3|2
}

. (4.24)

Employing (4.22) and (4.23), one can re-write this Lagrangian as [33,35]

L(h) = 1

2

∫
I

ds

{
1

4
tr

(
h−1 dh

ds

)2

+ 2
3∑

α=1

λαtr
(
hTαh−1T †

α

)}
with h := g†g.

(4.25)

Since the potential term in this Lagrangian is non-negative, the existence of a solution to (4.19)
as equation of motion follows from a variational problem [33]. One still has to ensure some 
technical aspects: the uniqueness of the solutions, the existence of the gauge transformation and 
the Lagrangian on the entire interval (−∞, 0], as well as the boundedness of μ. In the reference 
[35] these properties are proven, given that for framed instantons, i.e. those with h = 1 at the 
boundary of the interval (−∞, 0], the following condition

∃g0 ∈ U(k) : lim
s→−∞Wα = Ad(g0)Tα (4.26)

is satisfied for constant matrices obeying the conditions (4.18). For their constraints, i.e. mutually 
commuting matrices Tα , it is shown that the moduli space can be expressed as diagonal orbit in 
a product of coadjoint orbits [35]. In our case, however, due to the different constraints (4.12), 
the situation might be more involved. But we can at least conclude that (4.23) provides local 
solutions of the Nahm-type equations (4.17)–(4.19).

Moreover, it was shown in the references (see again [35]) that the real equation (4.19) can be 
considered as a moment map μ :A1,1 → Lie (G0) from the space A1,1 of framed solutions to the 
complex equations into the Lie algebra of the framed gauge group G0. This result still holds here, 
despite the difference in the connections that are used. Hence the moduli space of equivariant 
Hermitian Yang–Mills instantons on metric cones over Sasaki–Einstein manifolds admits the 
description as Kähler quotient [35]

M = μ−1 (0) /G0. (4.27)

5. Summary and conclusions

In this article we studied the SU(3)-equivariant dimensional reduction of gauge theories over 
the Sasaki–Einstein manifold X1,1. We interpreted the condition of equivariance, which had al-
ready occurred in articles [30,31] on Spin(7)-instantons on cones over Aloff–Wallach spaces 
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Xk,l , in terms of quiver diagrams, and we discussed the general construction of the quiver bun-
dles. This yielded a new class of Sasakian quiver gauge theories. The associated quiver diagram 
of this gauge theory is a “doubled modified holomorphic chain”, consisting of two arrows be-
tween adjacent vertices and two loops at each vertex, and three explicit examples thereof were 
considered in the article. For the comparison with the gauge theory on the underlying Kähler 
manifold Q3 we studied the quivers also in the entire weight diagram of G = SU(3), which 
implied degeneracies of the arrows. This behavior is similar to the case [15,24] of the five-
dimensional Sasaki–Einstein manifold T 1,1 over CP 1 ×CP 1. The reduction to the gauge theory 
on Q3 led to the correct, expected result for the quiver diagram [16]: the weight diagram of 
SU(3).

For the investigation of the vacua described by this gauge theory we imposed the Hermi-
tian Yang–Mills equations on the metric cone C

(
X1,1

)
. The resulting flow equations have been 

re-written in a form similar to Nahm’s equations, which allowed a discussion based on Kron-
heimer’s [34] and Donaldson’s [33] work and its generalized application to equivariant HYM 
instantons on Calabi–Yau cones [35]. Since we formulated the quiver gauge theory by using an 
instanton connection different from that of [5] in the gauge connection, some modifications ap-
peared. While the real equation can be still interpreted as a moment map for framed instanton 
solutions, as in [35], and, thus, leads to a description of the moduli space as a Kähler quotient, the 
description based on coadjoint orbits is more involved: The HYM equations impose a non-trivial 
commutation relation on the gauge transformed matrices, in contrast to [35], where they have to 
commute with each other. Thus, the behavior is more complicated and further effort would be 
needed to study the consequences thereof in detail.
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Appendix A

A.1. SU(3) generators and structure constants

The generators defined by the choice of the 1-forms in (2.8) read

I−
1 := √

2

⎛
⎝0 0 0

0 0 0
1 0 0

⎞
⎠ , I−

2 := √
2

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ , I−

3 :=
⎛
⎝0 0 0

0 0 0
0 1 0

⎞
⎠ ,

I7 := i

⎛
⎝0 0 0

0 −1 0
0 0 1

⎞
⎠ , I+

1̄
:= √

2

⎛
⎝0 0 −1

0 0 0
0 0 0

⎞
⎠ , I+

2̄
:= √

2

⎛
⎝ 0 0 0

−1 0 0
0 0 0

⎞
⎠ ,

I+
3̄

:=
⎛
⎝0 0 0

0 0 −1
0 0 0

⎞
⎠ , I8 := i√

3

⎛
⎝2 0 0

0 −1 0
0 0 −1

⎞
⎠ , (A.1)

and we define the structure constants via the commutation relations
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[− i Ij , I
−
α

] = C
β
jαI−

β ,
[− i Ij , I

+
ᾱ

] = C
β̄
jᾱI+

β̄
,

[
I−
α , I−

β

]
= C

γ
αβI−

γ ,[
I+
ᾱ , I+

β̄

]
= C

γ̄

ᾱβ̄
I+
γ̄ ,

[
I−
α , I+

β̄

]
= − iCj

αβ̄
Ij + C

γ

αβ̄
I−
γ + C

γ̄

αβ̄
I+
γ̄ . (A.2)

The non-vanishing structure constants are [30]

C1
32̄

= −C2
31̄

= −1 = −C 1̄
23̄

= C 2̄
13̄

, C3
12 = 2 = C 3̄

1̄2̄
,

C1
71 = C2

72 = 1 = −C 1̄
71̄

= −C 2̄
72̄

, C3
73 = 2 = −C 3̄

73̄
, (A.3)

C1
81 = −C2

82 = −√
3 = −C 1̄

81̄
= C 2̄

82̄
, C3

83 = 0 = C 3̄
83̄

,

C7
11̄

= C7
22̄

= C7
33̄

= −1, C8
11̄

= −C8
22̄

= √
3.

By the Maurer–Cartan equations,

d�α = − iCα
jβ − 1

2
Cα

βγ �βγ − Cα
βγ̄ �βγ̄ , dej = iCj

βγ̄ �βγ̄ , (A.4)

they yield again the structure equations (2.9). In terms of real forms

�1 =: e1 − i e2, �2 =: e3 − i e4, and �3 =: e5 − i e6, (A.5)

the structure equations read

de1 = √
3e82 − e72 − e35 − e46, de2 = −√

3e81 + e71 − e36 + e45,

de3 = −√
3e84 − e74 + e15 + e26, de4 = √

3e83 + e73 + e16 − e25,

de5 = −2e76 − 2e13 + 2e24, de6 = 2e75 − 2e14 − 2e23,

de7 = 2e12 + 2e34 + 2e56, de8 = −2
√

3e12 + 2
√

3e34. (A.6)

A.2. Connections and instanton equation

On the homogeneous space X1,1 = G/H = SU(3)/U(1)1,1 we consider the connection with 
torsion

T (X,Y ) := − [X,Y ]m (A.7)

for vector fields X, Y on G/H , where [·, ·]m denotes the projection of the commutator to the 
complement m; this yields the following torsion components

T μ
ρσ = −Cμ

ρσ for μ,ρ,σ = 1, . . . ,7. (A.8)

Using the structure equations and the Maurer–Cartan equation

deμ = −1

2
Cμ

ρσ eρσ = −C
μ
8ρe8 ∧ eρ + 1

2
T μ

ρσ eρσ (A.9)

=: −�μ
ρ ∧ eρ + T μ,

one obtains the connection 1-forms

�μ
ρ = C

μ
8ρe8 ⇒ � = I8 ⊗ e8, (A.10)

which is the U(1)-connection used in the ansatz for the gauge connection in (4.8). Its curvature

F� = d� + � ∧ � = −2
√

3I8 ⊗
(
e12 − e34

)
(A.11)
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satisfies the instanton equation

∗7F� = −
(
e12 + e34 + e56

)
∧ e7 ∧F� = − ∗7 Q ∧F�. (A.12)

for the 4-form Q = e1234 + e1256 + e3456 from (4.4). Because of

(d ∗7 Q) ∧F� ∝
(
e1234 + e1256 + e3456

)
∧

(
e12 − e34

)
= 0 (A.13)

the torsion term in (4.2) vanishes, so that the usual torsion-free Yang–Mills equation is ob-
tained. This is the intention of using special geometric structures. Note, however, that our 
U(1)-connection does not coincide with what is defined as canonical connection of a Sasaki–
Einstein manifold in [5]. Its torsion for a seven-dimensional Sasaki–Einstein manifold is defined 
via

T a = 2

3
Paμνe

μν for a = 1, . . . ,6 and T 7 = P7μνe
μν with P := η ∧ ω = e7 ∧ ω.

(A.14)

Since this definition does not require a homogeneous space, but only exploits the Sasaki–Einstein 
structure, it allows for general discussions of gauge theories on those spaces, as used for example 
in [35,38]. On X1,1 this canonical connection is expressed by the connection matrix

d

⎛
⎜⎜⎝

�1

�2

�3

e7

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
3 i e7 + √

3 i e8 0 −�2̄ 0

0 1
3 i e7 − √

3 i e8 �1̄ 0
�2 −�1 − 2

3 i e7 0
0 0 0 0

⎞
⎟⎟⎠ ∧

⎛
⎜⎜⎝

�1

�2

�3

e7

⎞
⎟⎟⎠ + �T . (A.15)

Thus, the canonical connection is adapted to the SU(3) structure of X1,1.
On the metric cone (with the rescaled forms ẽμ := reμ) or on the conformally equivalent 

cylinder, respectively, the connection � = I8 ⊗ e8 is still an instanton for the form

QZ = 1

2
� ∧ � = r4

(
e1234 + e1256 + e12τ7 + e3456 + e34τ7 + e56τ7

)
(A.16)

= ẽ1234 + ẽ1256 + ẽ12τ7 + ẽ3456 + ẽ34τ7 + ẽ56τ7 = ∗8QZ

because we have

∗8

(
ẽ12 − ẽ34

)
= −

(
ẽ12 − ẽ34

)
∧ ẽ56τ7 = −QZ ∧

(
ẽ12 − ẽ34

)
. (A.17)

A.3. Details of the moduli space description

This section provides some technical aspects of the description in Section 4.3. For details, the 
reader should consult the references, in particular [35]. To show that the real equation follows 
(over some range) as equation of motion of the Lagrangian (4.24), one considers [33] the varia-
tion of the matrices Wa with respect to g close to the identity. Writing g = 1 + δg, where δg is 
self-adjoint, one obtains from the gauge transformation (4.21)

δWα = (1 + δg)Wα (1 + δg)−1 − Wα = [
δg,Wα

]
for α = 1,2,3 (A.18)

and
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δZ = (1 + δg)Z (1 + δg)−1 − Z − 1

2

d

ds
(1 + δg) (1 + δg)−1 = [

δg,Z
] − 1

2

d

ds
δg.

(A.19)

Using the results (A.18) and (A.19), one derives the following variations

δ

∫
ds |Wα|2 := δ

∫
ds tr WαW †

α = 2Re
∫

ds tr δ (Wα)W †
α = 2Re

∫
ds tr

[
δg,Wα

]
W †

α

= 2Re
∫

ds tr δg
[
Wα,W †

α

]
for α = 1,2,3 (A.20)

and

δ

∫
ds |Z + Z†|2 = 2Re

∫
ds tr

([
δg,Z − Z†

]
− d

ds
δg

)(
Z + Z†

)

= 2Re
∫

ds trδg

(
d

ds

(
Z + Z†

)
+ 2

[
Z,Z†

])
. (A.21)

Putting the results from (A.20) and (A.21) together with the prefactors λα(s), (4.20) yields the 
Lagrangian (4.24) and shows that the real equation is the equation of motion thereof. That the 
Lagrangian can be defined for the entire range s ∈ (−∞, 0] and other technical issues can be 
found in [35]. The only quantitative difference is the concrete form of the factors λα(s) but this 
does not affect the general line of reasoning.
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