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Strongly interacting one-dimensional (1D) Bose—Fermi mixtures form a tunable X X Z spin chain. Within the
spin-chain model developed here, all properties of these systems can be calculated from states representing the
ordering of the bosons and fermions within the atom chain and from the ground-state wave function of spinless
noninteracting fermions. We validate the model by means of an exact diagonalization of the full few-body
Hamiltonian in the strongly interacting regime. Using the model, we explore the phase diagram of the atom chain
as a function of the boson-boson (BB) and boson-fermion (BF) interaction strengths and calculate the densities,
momentum distributions, and trap-level occupancies for up to 17 particles. In particular, we find antiferromagnetic
(AFM) and ferromagnetic (FM) order and a demixing of the bosons and fermions in certain interaction regimes.
We find, however, no demixing for equally strong BB and BF interactions, in agreement with earlier calculations

that combined the Bethe ansatz with a local-density approximation.
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I. INTRODUCTION

Ultracold atoms are ideally suited to study strongly corre-
lated one-dimensional (1D) systems due to their high degree
of control and tunability [1,2]. These advantageous features
have led to the observation of the Tonks—Girardeau gas [3,4],
the controlled preparation of a highly excited super-Tonks gas
[5,6], undamped dynamics in strongly interacting 1D Bose
gases [7], and the deterministic preparation of 1D few-fermion
systems with tunable interactions [§—12]. Moreover, it became
possible to realize a variety of artificial 1D systems consisting,
e.g., of atoms with a large spin [13] or Bose—Fermi mixtures
with mixed statistics [14].

These developments have renewed the interest in Gi-
rardeau’s Bose-Fermi mapping for 1D spinless bosons with
infinite & repulsion [15] leading to generalizations for Bose-
Fermi mixtures [16], spin-1 bosons [17], and spin-1/2
fermions [18]. Only recently it was found that these exact
solutions are also useful for the perturbative treatment of
strongly interacting 1D systems [19]. Different from one-
component systems, the ground state of multicomponent
systems with infinite § repulsion is highly degenerate [16—18].
This is due to the fact that strongly interacting 1D particles
localize and arrange themselves in a spin chain [17,20,21]. This
offers the exciting possibility to study quantum magnetism
without the need for an optical lattice [21-25].

Theoretical studies of Bose-Fermi mixtures in optical lat-
tices predicted composite fermions consisting of one fermion
and one ore more bosons, or, respectively, bosonic holes [26]
and polarons [27]. In addition, pairing, collapse, and demixing
can occur in homogeneous 1D systems of strongly interacting
bosons and fermions [28]. For equally strong boson-boson
(BB) and boson-fermion (BF) § interactions, the model can be
solved exactly via the Bethe ansatz [29,30]. Selected states of
the degenerate ground-state multiplet have been constructed
in the Tonks-Girardeau regime of infinite § repulsion [16] and
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classified using Young’s tableaux [31]. Recently, all states of
the multiplet have been constructed for few (up to 6) particles
[32-34] and strongly interacting mixtures with additional
weak p-wave interactions have been studied [35,36].

Here, we develop a spin-chain model for 1D Bose-Fermi
mixtures with nearly infinite § interactions [37]. We check
the validity of the model by diagonalizing the full few-body
Hamiltonian numerically in the strongly interacting regime.
Using the spin-chain model, we then calculate the ground-
state densities, momentum distributions, and occupancies of
the harmonic-trap levels for atom chains consisting of up to
17 particles. Moreover, we determine the ground-state phases
of these atom chains, finding antiferromagnetic (AFM) and
ferromagnetic (FM) order and a demixing of the bosons and
fermions for particular values of the BB and BF interaction
strengths. However, no demixing is found for equally strong
BB and BF interactions although the bosons are predominantly
in the trap center and the fermions are predominantly at the
edges of the trap [29].

II. SPIN-CHAIN MODEL

We consider a 1D mixture of Ng bosons and Ng fermions
(total particle number N = Np + Np). Both species are
assumed to have the same masses, Mp = Mp = M, and
experience the same trapping potential V(z). The bosons
interact with each other through a § potential of strength ggp
and with the fermions through a § potential of strength ggp.
The many-body Hamiltonian of the system is given by

2 Np—1 Np
H = V(zi 8(z; —
Z[ 2M82+ (z]+gBB;j;l (zi —zj)

Np N
tesr Yy Y. 8 —z)). (1)

i=1 j=Np+1

The interaction strengths gpp and gpp are freely tunable
through a magnetic Feshbach resonance [38] and through the
strong radial confinement [39].
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Here, we focus on the strongly interacting regime, where
the absolute value of both interaction strengths is large, i.e.,
lgp| ~ oo and |ggF| ~ co. Furthermore, we consider only
the highly excited super-Tonks states [5,6,9] if at least one
of the interaction strengths is attractive.! Under these con-
ditions, the atoms order in a row and form a spin chain
[17,20,21,40]. An arbitrary state of the spin chain is given by

O =D Gyl my), )
miy,....my
where each basis state |mq,...,my) with m; = B,F

corresponds to a particular ordering of the bosons (B) and
fermions (F) and can be constructed from the wave function
of N spinless noninteracting fermions [31] (see Appendix A).

Nearest-neighbor particles of the spin chain interact with
each other through the effective Hamiltonian [35]

N-1
Her = Ep1 =2 J°P|B)i|B)is1(Bli(Blis:
i=1

N—
ZJ‘”) |B)i|F)is1 + |F)i|B)is1)

X (<B|i<F|i+l + (F1;(Blit1), 3)

as shown in Appendix B. Here, E is the ground-state energy
of N spinless noninteracting fermions in the trapping potential
V(z) and J*® and J*") are the exchange coefficients of
nearest-neighbor bosons or bosons and fermions, respectively.
The exchange coefficients are given by Ji(BB) = C;/gpp and

JPP = C;/gpr with [19,21]
N 8t/fp
Ci= dzy---dznd(zi — z2i41)0(21, ..., s
JYE / 21 dznd(z = zie)0(2 )| oo oz,
“4)
where6(zy, ... ,zy) = 1ifz; < --- < zy,and zero otherwise,

and where v is the ground-state wave function of N spinless
noninteracting fermions in the trap V(z). The C; can be
efficiently calculated for large N [41-43].

By identifying bosons and fermions with pseudospin-up
and -down particles, respectively, Eq. (3) can be rewritten in
terms of the Pauli matrices o, a)(,i ), and oV:

N—
(BF) (i) (i+1) (i) 5 (i+1)
Z{f o+ ool ]

l\)l>~

+ [JBD — JBP 606+ 1 j BR[O +az(i+l)]}-
5)

Here, we neglected the diagonal matrix

N—1
{EF - % YL+ }ﬂ- (©6)

i=1

'Super-Tonks states may be prepared by ramping adiabatically
across a confinement-induced resonance [5,9,40].
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Equation (5) is the Hamiltonian of an XXZ spin chain in
an inhomogeneous magnetic field along the z axis. Similar
effective Hamiltonians have been derived for strongly inter-
acting Bose-Bose mixtures [22,24,25] and strongly interacting
mixtures with weak p-wave interactions [35,36].

The densities of the bosons (m = B) and fermions (m = F)
are given by [17]

pm(2) = Z P2, (7)

with the probability to find the ith particle at position z,
P = N1 [ dar - dzdc = )0 il

®)
and the probability that the ith particle is a boson (m = B) or
fermion (m = F),
> i

mip,...,my

@) —

P = N XS - 9)

The one-body density matrix of the bosons (m = B) and
fermions (m = F) is given by

pn(z,7) = Z PP 2hp ), (10)
i,j=1
with [23,41]
p"(z,2)
=N [ dzpdzie - day
X [Q(Z], - ,ZN)|wF(Z]7 e aZN)HZ,':Z
x [0(zp, (1) 2 IV FEL s Zn =
(11)
and
Py = ()i (m; P2 x), (12)
as shown in Appendix C. Here, we defined ﬁl(BF; =
(=N P, .,j with the loop permutation operatorP .j» which

moves a partlcle from position j to position i (see Appendix A
for details). Ny is the number of transpositions of neighboring
fermions when ISi ,,,,,, jactson |my, ... ,my). The momentum
distributions and occupancies of the trap levels are related to
the one-body density matrices by

1
pn(k) = 5— f dzdz e p,(2,7)), (13)

and

pm(n) = / dzdz () (2) pm(z,2), (14)

with the eigenfunctions ¢, (z) of the trap V(z).

We have tested the validity of the spin-chain model by
comparing its results to those of an exact diagonalization of
the full few-body Hamiltonian (1) for up to four particles in
a harmonic trap. Both approaches should lead to the same
results in the Tonks-Girardeau regime, ggp = gpr > 10hAwl
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FIG. 1. Comparison of the ground-state densities (left) and
momentum distributions (right) of a mixture of two bosons and two
fermions (2B2F mixture) in a harmonic trap calculated by means of
an exact diagonalization (ED) of the full few-body Hamiltonian (solid
lines) and from the spin-chain (SC) model (dashed lines) for equal
BB and BF interaction strengths (ggs = gpr = 15Awl). w, and [ are
the frequency and length scale of the harmonic oscillator.

[21,44] [w is the frequency and [ = /ii/(mw) is the length
scale of the harmonic oscillator]. Indeed, the comparison
showed excellent agreement for the spectrum, the densities,
and the momentum distributions for mixtures consisting of
one boson and three fermions (1B3F mixture), two bosons
and two fermions (2B2F mixture), and three bosons and one
fermion (3B1F mixture). As an example, we show in Fig. 1
the result of such a comparison for the ground-state densities
and momentum distributions of a 2B2F mixture for equally
strong BB and BF interactions, ggp = ggr = 15Awl. These
ground-state densities agree with Refs. [32,33].

III. PHASES AND DENSITIES

The ground-state phases of the effective Hamiltonian (3)
or, respectively, (5) are determined by the interplay of the
BB and BF interactions. In particular, we distinguish five
different phases, as shown in the phase diagram in Fig. 2,
which follow from the phases of the homogeneous X X Z chain

p
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dBF E -
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FIG. 2. Phase diagram of the Bose-Fermi chain as a function of

n = |gsrl/gnp for ggr > O (upper part) and ggr < O (lower part).
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FIG. 3. Ground-state densities of a harmonically trapped Bose-
Fermi mixture consisting of nine bosons (solid) and eight fermions
(dashed) for ggr < 0 (left) and ggr > 0O (right). The different phases
are described in the text. / is the harmonic-oscillator length.

in the absence of an external magnetic field [45] .2 For dominant
BB exchange couplings, which corresponds to the parameter
regime |n| = |Jl.(BB)/Ji(BF)| >> 1, the spin chain is in the Ising
AFM (J*® < 0) or FM (J P > 0) state. For J*® ~ J (B
(gray shaded regions around n = =£1), the spin chain is in
the XY phase. These phases are characterized by strong FM
(Ji(BF) > 0) or AFM (J,.(BF) < 0) xy correlations. At the edges
of the XY phases (n = 0, & 2) the system is in the Heisenberg
AFM or FM phases. Note that we consider the highly
excited (metastable) super-Tonks states [5,6] in the regime of
attractive interactions and, therefore, do not obtain collapse and
pairing [28].

Ising FM and AFM order (In| >> 1). Let us first consider the
case J[-(BF) =0, Ji(BB) # 0, in which the effective Hamiltonian

(3) is diagonal. In that case, for Jl.(BB) > 0, the energy is
minimized if all bosons are next to each other and in the
trap center (largest C;). A typical ground state is therefore of
the form |F,F,B,B,B,B,F,F), i.e., the bosons are separated
from the fermions, the bosons are in the trap center, and the
fermions are at the edges of the trap. This separation of the
bosons from the fermions is clearly visible in the densities
of Fig. 3(f). In the opposite case of negative BB exchange
coefficients, J;BB) < 0, the energy is minimized if the bosons
are not next to each other and hence a typical ground state is of

2A homogeneous external magnetic field has no effect due to the
conserved total magnetization of the system in the z direction.
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the form |B,F,B,F,B,F,B), as in the ground state of an Ising
AFM chain. In that regime, the densities look, therefore, like
those of Fig. 3(a). The same or similar limiting phases have
been found in related mixtures [24,34-36].

Heisenberg AFM and FM order (n =0). Let us now
consider the case Ji(BB) =0, J;BF) # 0, for which the spin-
chain Hamiltonian (5) takes the form

[US)O',EHI) +O')(,i)0'§i+l) _ O’S)U;i+1)].

(15)
By performing the unitary transformation
) = (=),

o = (1Yo, o — o, (16)

we obtain

(BF)

N—
Z o

"(H—l)’ (17)

which is the Heisenberg Hamiltonian. Therefore, the ground
state is AFM for Ji(BF) > 0 and FM for J;BF) < 0. Typical
densities are shown in Figs. 3(b) and 3(e). The spin-spin
correlations a( )az(’ ) alternate in sign, o(—1)7/, and decay
with distance |i — j| in the AFM state, while staying constant
in the FM state. However, because of the transform (16), the
spin-spin correlations in the xy plane do not alternate in sign
in the AFM state, but instead, they alternate in the FM state.

XY phases (n = =£1). Let us finally discuss the cases
J(BB) J(BF) (g = gpr)- The repulsive case, gpp =
gpr > 0, is exactly solvable for any value of the interaction
strength if V(z) = 0 [29,30]. Combining the exact solution of
the homogeneous system with a local density approximation,
one finds that the bosons and fermions do not demix, but the
bosons are predominantly in the trap center and the fermions
are predominantly at the edges of the trap. We find the same
result and the density profiles are in excellent agreement
with Ref. [29]; see Fig. 3(d). For attractive interactions,
gsp = gpr < 0, the situation is reversed with the fermions
(bosons) sitting predominantly at the center (edges) of the
harmonic trap, see Fig. 3(c). We note that the bosonic
(fermionic) density of the n = 1 case would exactly equal the
fermionic (bosonic) density of the n = —1 case, if the particle
numbers would be equal, i.e., Ng = Np.

This symmetry can be understood as follows: For
Ji(BF) > 0, Eq. (5) takes the form of an X X Hamiltonian with
an inhomogeneous effective magnetic field pointing along the
~+z direction,

Ji(BB) _

J(BF)|

Ha = — zl‘
§

[006) 4 6O+

JUi

o +oltV], (18)
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FIG. 4. Momentum distributions of nine bosons (solid) and eight
fermions (dashed) in a harmonic trap for gz < 0 (left column) and
ggr > 0 (right column). See the text for a description of the different
phases. [ is the harmonic-oscillator length.

J(BB) J(BF)

while for < 0, after performing the transforma-
tion (16), the field points in the —z direction,

= z'

In the first case, the bosons (pseudospin-up) are moved to the
trap center, since the |Ji(BB) | are largest there, while in the latter
case, the fermions (pseudospin-down) are moved to the trap
center. Moreover, both Hamiltonians can be transformed into
each other by exchanging the bosons with the fermions, which
explains the symmetry of the density distributions.

(BF)
J; | e D) 1 o0+ D]

12

o + otV (19)

IV. MOMENTUM DISTRIBUTIONS AND OCCUPANCIES

The momentum distributions and the occupancies of the
harmonic-trap levels are important observables, which can be
measured in the experiment [12,13,46]. These distributions
depend strongly on the degree of exchange symmetry of the
spatial many-body wave function and can also be used as a
probe for the magnetic structure of the spin chain [12,41,47].
We therefore expect very different momentum distributions
and trap-level occupancies in the different phases of the Bose-
Fermi chain as will be shown in the following.

Momentum distributions of nine bosons (solid) and eight
fermions (dashed) are shown in Fig. 4. Both momentum
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FIG. 5. Occupancies of the harmonic-trap levels of nine bosons
(solid) and eight fermions (dashed) for gzr < 0 (left) and ggr > 0
(right). See the text for a description of the different phases.

distributions resemble Gaussian distributions in the Ising AFM
phase, Fig. 4(a), as expected for a Wigner crystal [48]. This
is a result of the comparatively large distance between the
particles of the same kind; see Fig. 3(a). In the Heisenberg
AFM phase, Fig. 4(b), the bosonic and fermionic distributions
look like those of the corresponding spin-1/2 particles [23,41].
By contrast, in the Heisenberg FM phase, Fig. 4(e), both distri-
butions are much broader, as expected for the highest excited
states of the corresponding spin-1/2 particles [41]. Indeed,
the FM ground state of the Heisenberg Hamiltonian (17) for
Jl.(BF) < 0 is the highest excited state for J[(BF) > 0. More-

over, the ground state of Eq. (5) for Ji(BB) = lOJi(BF) <0,
which has the momentum distribution shown in Fig. 4(a),
is the highest excited state for Ji(BB) = 10]i(BF) > 0 and the
ground state for J;BB) = Ji(BF) < 0, which has the momentum
distribution shown in Fig. 4(c), is the highest excited state
for Ji(BB) = J;BF) > (. This is the reason for the broader
momentum distributions in the left column of Fig. 4. Finally,
in the Ising FM phase, one has a Tonks-Girardeau gas in
the center and noninteracting fermions at the edges of the
trap, Fig. 3(f). Therefore, one expects that the momentum
distributions of that phase resemble those of a Tonks-Girardeau
gas and noninteracting fermions, Fig. 4(f). The distributions
are, however, broader than those of Fig. 4(b), since the particles
are located in a smaller trap volume.

The occupancies of the harmonic-trap levels of nine bosons
(solid) and eight fermions (dashed) are shown in Fig. 5. In
the Ising AFM phase, Fig. 5(a), both occupancies oscillate
out of phase around the same average broad distribution. The
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higher oscillator orbitals (n > 10) are preferably occupied by
the bosons, since the bosonic density is broader [Fig. 3(a)].
The separation of the bosons from the fermions in the Ising
FM phase is also manifest in the occupancies, Fig. 5(f).
The bosons preferably occupy the lower oscillator orbitals
(n < 4) and the fermions the higher ones (n > 4). In the
Heisenberg AFM phase, Fig. 5(b), the bosonic and fermionic
occupancies are almost equal. By contrast, in the Heisenberg
FM phase, Fig. 5(e), the fermions occupy the lowest 17
orbitals with 8/17 = 0.47 fermions, whereas the bosonic
distribution decreases roughly linearly. Finally, once again,
the occupancies in the XY phases, Figs. 5(c) and 5(d), re-
semble the behavior of the corresponding densities, Figs. 3(c)
and 3(d).

In closing this section, we note that the variance of the to-
tal momentum distribution, (k*) = [ dkk*[pr(k) + pp(k)] =
N?2/(21%), is independent of the pseudospin configuration of
the Bose-Fermi chain. Similarly, the total energy of the Bose-
Fermi chain, calculated from the total trap-level occupancies,
fo:o(n +1/2)[pp(n) + pg(n)] = N?/2, is independent of
the configuration of the bosons and fermions. This follows
from the fact that all pseudospin configurations have the same
total energy at ggg = gpr = o0 and from the virial theorem.

V. SUMMARY

We have presented a spin-chain model for Bose-Fermi
mixtures with nearly infinite BB and BF § interactions.
The model is based on a mapping to states of the form
|my, ... ,my) with m; = B,F and to the wave function of
spinless noninteracting fermions. We checked the model by
comparing with an exact diagonalization of the full few-body
Hamiltonian in the strongly interacting regime. Using the spin-
chain model, we determined the ground-state phases of the
Bose-Fermi mixture and calculated the densities, momentum
distributions, and occupancies of the harmonic-trap levels for
up to 17 particles. We found, in particular, AFM and FM order
and a demixing of the bosons and fermions. However, we
found no demixing for equally strong BB and BF interactions
in agreement with earlier calculations [29].
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APPENDIX A: SECTOR WAVE FUNCTIONS
AND PERMUTATIONS

1. Sector wave functions

In the regime of infinite BB and BF repulsion, ggp =
gpr = 00, the many-body wave function must vanish when-
ever two particle coordinates are equal, i.e., ¥ (z, ... ,zy) =0
if z; = z;. This condition is fulfilled by the wave function of N
spinless noninteracting fermions, ¥, but also by its absolute
value ||, which describes N spinless bosons with infinite §
repulsion [15]. Additionally, we may restrict || to a partic-

ular sector of the configuration space RY ,zp(y < -+ < zpw)»
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in order to describe spinless distinguishable particles with
infinite 6 repulsion and particle ordering zp(y) < - -+ < Zpn)-
Here, P denotes an arbitrary permutation of N = {1, ... ,N}.
The resulting wave function, denoted by | P), is given by [17]

V' N!'O(zpay, - -

zpvy) = Lif zpay < -+

(z1,...,2nIP) = 2NV E- (AD)

Here, G(Zp(l), .
otherwise.

The sector wave functions (A1) are by definition orthonor-
mal, i.e., (P|P’) =3p p, and they have further favorable
properties. For example, the action of a permutation operator
P on a sector wave function | P’) is given by [41]

P|Py=|Po P)).

< zZp(n) and zero

(A2)

The permutation operator P of a permutation P acts on a
many-body state |«y, ... ,ay) in the following way:

Play); - lay)n = la1) pa) - - - lan) pov)- (A3)

That is, P permutes the particle indices of a many-body state
according to the prescription 1 — P(1),... ,N — P(N).
To describe a Bose-Fermi mixture with infinite BB and
BF repulsion, gpp = gpr = 00, one has to symmetrize the
sector wave functions | P) with respect to the bosonic coordi-
nates, z1, ... ,Zn,, and to antisymmetrize with respect to the
fermionic ones, zy,+1, . .. ,Zn. We therefore define [31]

F)=+/Ng!Np'S,S_|P~!

Here, S. = (1/Ng!) )’ P P is a symmetrization operator,
where the sum runs over all permutations P’ of Np =
{1,...,Ng}, S_=1/Ne)¥ p(=DP"P” is an antisym-
metrization operator, where the sum runs over all permutations
P"of N — Np ={Ng+1,... ,N},and P! is the inverse of
the permutation P. Furthermore, we specify to use only those
initial sector wave functions | P~!), for which the bosonic and
fermionic coordinates are each in ascending order. This is nec-
essary, since otherwise two sector wave functions, which differ
only by the transposition of two fermionic coordinates, would
have a different sign. The requirement is fulfilled if we move
the B at position Np in the initial state |B, ... ,B,F, ... ,F)
to the new position iy, with Np < iy, < N, the B at position
Np — 1tothe new positioniy,_; with Ng — 1 < iy,—1 < in,,
and so forth.

P|B,... ,B,F,..., (A4)

2. Permutations

We use the cycle notation to specify a permutation. For ex-
ample, the permutation Py, g ,) permutes the numbers «, 8, y
according to the prescription « — 8 — y — «. Moreover,
we neglect the parentheses if a permutation consists of only
one cycle, i.e., Py g,,) = Pyp,. The corresponding unitary
operator that permutes the particle indices «, 8, y of a many-
body state according to the same rule is denoted by ﬁa, g.y- We
also note that a cyclic permutation of «, 8, y does not change
the cycle, i.e., Py gy, = Pyap = Ppy.a-

The cycle P, g, is the composition of two transpositions

P, g and P,g v» Pap,y = Pap o Pg . The corresponding cycle
operator Pa B,y 18 the product of two transposition operators

Py.p and Pﬁ vs Pup, = PypgPs,. The inverse of the cycle
operator Py, g,y 18 therefore given by Pa, By = = (P, B Pﬂ,y)
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P,sPsy =P, 4., ie., the particle indices appear in the
inverse cycle operator in the inverse order.

The identity permutation is denoted by “id” and the
corresponding operator by 1. A particular cycle is the loop
permutation, which is defined by

Piiyi,.. jjfori <j
Pl,,JZ ldfOI'IZJ (AS)
Pii_i,. jy1,j fori > j.

The loop permutation is therefore a composition of transposi-
tions of consecutive integers, P;, . ; = P; i1 0 Py 4200
Pi_5j_10Pj_y;(assuming i < ]) and the loop permutation
operator P,___ .j 1s a product of transpositions of neighboring
particles, p," = ﬁ[’hq pi+l,i+2 e pjfz,jfl Isjfl’j. The 100p
permutation operator 13, ;j therefore moves the particle at
position j to position i.

3. Basis of a two-boson two-fermion mixture

The goal of this section is to clarify definition (A4). A basis
of a mixture of two bosons and two fermions (2B2F mixture)
is given by

|BQB7F1F)1
|F.B,F,B),

|B’F7B7F>7
|F,F,B,B),

|B7F’F7B>7

|F,B,B,F). (A6)

The first basis state is, according to Eq. (A4), constructed by
means of the sector wave function |id) that corresponds to the
identity permutation,

|B,B,F,F) = 5(1 + Py 5)(1 — Ps 4)lid). (AT)

The second basis state is obtained from the first one by
transposing the second and third particle. Therefore, we obtain

|B,F,B,F) = P,3|B,B,F,F)
=11+ Pio)A — P51 Po3).

The third basis state is obtained from the first one by moving
the second B to the fourth position. This is achieved by
applying the loop permutation operator ﬁ4,3,2. The inverse
of this loop permutation operator is given by 134_3l 5 = 132,3,4.
We therefore obtain, using Eq. (A4), o

|B,F,F,B) = Py3,|B,B,F,F)
=11+ Pio)A = Pso)|Posa).  (A9)

Note that the bosonic (z1,z,) and fermionic coordinates (z3,24)
are each in ascending order in the initial sector wave function
| P2.3.4), since 7| < 23 < 24 < Z2, as required.

The fourth basis state is obtained from the first one by
moving the second B to the fourth position and then the first B

(A8)

to the sccond posmon i.e., by applying P1 2P4 32 = P1,2,4,3.
Using P1 243 = Pz421 = P2134weobtam
|F,B,F,B) = (14 P15)(1 — P34)|P>13.4). (A10)

The fifth basis state is obtained from the first one by moving
the second B to the fourth position and then the first B to the
third pOSitiOﬂ, i.e., by applylng P3q2y1 P4,3yz = P(l,3)(2,4)~ USng
-1 N .

P(1,3)(2,4) = P(1’3)(2’4) we obtain

|F,F,B,B) = (14 P15)(1 — P39)|Pu3s). (Al
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The sixth basis state is finally obtained from the first one by
moving the second B to the third position and then the first
B to the second position, i.e., by applying f’z,lf’3,2 = ﬁ1,2,3-
Using f’f_zlﬁ = 133,2 | we obtain

|F,B,B,F) = 5(1+ Pio)(1 — P54)|P321). (Al2)

APPENDIX B: EFFECTIVE HAMILTONIAN

Here, we perform a perturbative calculation of a strongly
interacting 2B1F mixture up to linear order in 1/gpp and
1/gpr. The matrix elements of the Hamiltonian in the
degenerate ground-state manifold are shown to agree with
Eq. (3). The basis states of the 2B 1F mixture are [see Eq. (A4)]

1 N

1) :==|B,B.F) = E(ﬂ + Pi2)lid), (BI)

1 o
[2) :==|B,F,B) = E(ﬂ + P12)IP23), (B2)

1 .
13) :=|F,B,B) = %(]1 + Pi2)|P3o). (B3)
The Hamiltonian of the 2B 1F mixture is given by [see Eq. (1)]

52
H = ——— + V(& 8(z1 —
Z[ TEER (z)} + gp58(z1 — 22)

+8prd(z1 — 23) + gpré(z2 — 23). (B4)

The matrix element (1|H|1) is therefore given by
(11H[1) = $(id|(1 + Po)H(1 + Pyo)lid).  (BS)

H is symmetric under the exchange of the first and second
particlAe. H therAefore commutes with (1 + P; ). Moreover,
I+ Pi2)A+ P12) =2(1 4 P ) and therefore

(L1H 1) = (id|H|id) + (id|H| Py 2). (B6)

Let us calculate an arbitrary matrix element (P|H|P’) in
the vicinity of (1/gpp,1/gpr) = (0,0). Performing a Tay-
lor expansion up to first order in 1/ggp and 1/gpr, we
obtain [21]

(PIH|P')

1
= EF(SP pr— hm
gBB 888~ T30

dH
<géB<P(gBB)|d |P/(g33))>
8BB

(g (P(gBF)| |P’(88F))) (B7)
dgpF

——— lim
gBF 8Br—>100

with 7 = 8(z) — ) and 17 = 8(z1 — 23) + 8(z2 — 23).
|P@) is the ground state of N spinless bosons with strong
8 repulsion restricted to the sector zp() < --- < zpv) [21].
Furthermore, using the boundary condition

< d 9 >1ﬂ < 9 9 )w
dz; 0z P dz; 0z

Zi=ij—
2Mg
===y (B8)
h P
i=<j
one finds
lim [¢2(P®)8(z; —z)IP ) =Cl". (B9
g—>+00 ’
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with
, N'h4 oy |
PP F
Ci,j JYE /dm ~dznd(zi — ;) 9%
X G(ZP(U, cen ,ZP(N))G(ZP’(l)v cee ’ZP/(N))' (B10)

As a result, we obtain

1 / 1 y y
(PIH|P') = Epép.p — —C[3" — —(C15" +C75").
gBB 8BF
(B11)
Applying this to the matrix element (1|H|1), we get
(1H|1) = Ep — 2P — J#5), (B12)
since Cidzld _ Cld JPio C],C;%id =C2, and C11d31d Cld Pro
C;‘;P‘ * = 0. In a similar way we obtain
(LH|2) = (id|H|P>3) + (d[H|P 2 3) = —J,"",  (B13)

ld Pz;

since only C, = C, is nonzero. For the next matrix

element, we get

(11H|3) = (id|H| Py 3) + (id|H| P35 2,1) =0, (B14)
since Clde” = C;djp”1 0 forall 1 <i < j < 3. The next
matrix element becomes

(21H|2) = (Py3|H|P23) + (P2 3| H| P 23)
= Ep —JBD — JFP, (B15)
since only Cqu Pra =C; and CP23 P = C, are nonzero.
Finally we obtaln
(21H|3) = (Py3|H|Pi3) + (Pos|H|Ps o) = — "7
(B16)
and
(BIH|3) = (P32,1|1H|P13) + (P321|H|P32,1)
= Ep —2J8% — JBP), (B17)
since only CP23 Prar CP”1 P2 — ¢, and CP321 Pus

Piot, P
C, 5" = C, are nonzero. The same matrix elements are

obtained using Hegr, given by Eq. (3).

APPENDIX C: ONE-BODY DENSITY MATRIX

Here, we calculate the matrix elements of the bosonic and
fermionic one-body density matrices of a 1B2F mixture. The
basis states of the 1B2F mixture are [see Eq. (A4)]

1 A

[1) :=|B,F,F) = ﬁ(ﬂ — P 3)[id), (CDH
1 A

[2) :=|F,B,F) = ﬁ(ﬂ — P23)|Pi2), (C2)

1 N
13) :== |F.F.B) = ﬁ(ﬂ — P3)|P123). (C3)

The bosonic and fermionic one-body density-matrix operators
read

pp(z.2) = 12)1(z'l (C4)

and

Pr(z,2) = |2)2(Z |2 + |2)3( |5 (C5)
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First, we calculate the matrix elements of the bosonic distri-
bution pp(z,z’). One finds

(Upp(z,2)I1) = (idlz)i ('l (id) — [P23)).  (C6)

Only those matrix elements of the form (id|z);(z’|;|P) are
nonzero for which P = P; ;. We define

p(z,2) = (id|2)i(li| P ) €7

Using this, we find
(11p8(z,2)1)
= p"V(z,2) = (B,F,F|p"""(z,2)|B)|(B|,|B,F,F).
(C8)

The next two matrix elements are given by

(11pp(z.2)12) = (id|z)1 (1|1 P12) — | P32.1))
= p"?(z,2)
= (B,F.,F|p"?(2,2)|B)1(B|, P\ 5| F,B.F)
(C9)
and
(11p5(z.2)13) = (id|2)1 (' 11(| P123) — | P13))
= p"(z,2)
= (B.F,F|p"?(z,2)|B)1(B|1 P123|F.F.B).
(C10)
|
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In the next case, we find

(21p8(z.2)12) = (P12l2)1(Z'1(|P1.2) = [P321)).  (C11)
It is easy to show that
(P|2)i(';|P") = (id|z) p-1y (2| p-1y| P~ 0 P'). (C12)

Using this, we find
(21pp(2.2)12) = (id|z)2(2|2(lid) — | P13)) = p*?(2,2)
= (F,B.F|p*?(z,2))|B)2(BL|F,B.F).
(C13)
In the next case, we obtain
(21p5(z.2)13) = (P12l 1 (| Pras) — | Pia))
= (id[z)2(z']2(| Po3) — | P32.1)) = p*P(2.2)
= (F,B,F|p®”(2,2)|B)2(Bl2Po3| F.F.B).
(C14)
The last matrix element is given by
(315(z.2)13) = (P123l2)1( [1(IP123) — | P13))
= (id|z)3(z'3(lid) — | P12)) = p®P(z.2)
= (F,F.B|p®(z,2)|B)3(B|3|F.F,B).
(C15)

One sees that the matrix elements of the bosonic one-body
density matrix agree with those of Eqgs. (10)—(12). Now, we
calculate the matrix elements of the fermionic distribution
0r(z,7"). The first two matrix elements read

(11pr(z, )1 = (id|(12)2(' |2 + 12)3(2'13)(lid) — | P2 3))
= p@9(z,7) — p@V(z,2) + p®V(z,7) — p%P(2,7)
= (B,F,F|[p*?(z,2)|F)2(Fly — p* (2, 2) | F)2(Fl2Ps3

and

(Upr(z,2)12) = (id|(12)2(z'[2 + 12)3 (13 Pr.2) — |P32,1))

= p*V(z.2) = pPP(z.2)

= (B,F,F|[p?"(z,2) | F)2(F 2Pt — p®V(2,2)|F)3(F|3P5 2,11 F, B, F).

The next matrix element is zero,

(1pr(z,2)13) = (id|(12)2( |2 + [2)3(13)(| P1,2.3) — | P1.3)) = 0.

Using Eq. (C12), we obtain for the last three matrix elements

21pr(z,2)12) = (Pi2l(12)2(2' ]2 + 12)3(Z [3)(| P12) — | P32,1))
= (id|(|z)1 ("1 + |2)3(Z"[3)(Jid) — | Py 3))

oIV, + p%¥(z,7)

= (F,B,F|[p"(z,2) F)1(Fli + p®¥(z,2)|F)3(F|31|F,B,F),
(21pr(z,2)13) = (P121(12)2('12 + 12)3('[3)(| P1.2.3) — | P1.3))
(

= p%2(z,7) — p®P(z,2)

id|(12)1(2'l1 + 12)3(Z 1) P23) = 1Ps2.1)

+ 0@ (2,2 F)3(Fl3 — p®?(2,2)|F)3(F|3P5 21| B, F, F) (C16)
(C17)
(C18)
(C19)
(C20)

= (F,B,F|[p®2(z,2)|F)3(F|3Ps 2 — p®V(2,2)|F)3(F|3P5 11| F, F,B),

043630-8



SPIN-CHAIN MODEL FOR STRONGLY INTERACTING ...

PHYSICAL REVIEW A 95, 043630 (2017)

(31pr(z,2)13) = (P12;31(12)2(2]2 + |2)3(Z 1) P12,3) — | P1.3)

(id(12)1 (2"l + 12)2(2"[2)(1id) — [ P12))

= p"V(z,2) = p1(z2,2) + p?P(z2,2) — p* V(2,2
= (F,F,B|[p" P, ) F)1(Fli — p" 2z, ) F) i (Fl1 Pr»

+ 0222, ) F)2(Fla — p*V(z2,2)|F)2{F|2 P> 11| F,F,B).

(C21)

Again, one sees that the matrix elements of the fermionic one-body density matrix agree with those of Eqgs. (10)—(12).
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