PHYSICAL REVIEW A 82, 053608 (2010)

Parametric amplification of matter waves in dipolar spinor Bose-Einstein condensates
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Spin-changing collisions may lead under proper conditions to the parametric amplification of matter waves in
spinor Bose-Einstein condensates. Magnetic dipole-dipole interactions, although typically very weak in alkali-
metal atoms, are shown to play a very relevant role in the amplification process. We show that these interactions
may lead to a strong dependence of the amplification dynamics on the angle between the trap axis and the
magnetic-field orientation. We analyze as well the important role played by magnetic-field gradients, which
also modify strongly the amplification process. Magnetic-field gradients, hence, must be carefully controlled in
future experiments, in order to observe clearly the effects of the dipolar interactions in the amplification dynamics.
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I. INTRODUCTION

Spinor Bose-Einstein condensates (BECs), formed by
atoms with various available Zeeman states, have attracted
a large attention in recent years, mostly motivated by the
rich physics resulting from the interplay between internal and
external degrees of freedom. In addition to a wealth of possible
ground-state phases [1-4], the spinor dynamics has been at
the focus of major interest [5—7]. This dynamics results from
spin-changing collisions, which coherently re-distribute the
populations among the different Zeeman states. Interestingly,
spin-changing collisions are typically characterized by a very
low energy scale much lower than the chemical potential in
the condensate. As a result of that, the spinor dynamics in
alkali-metal gases may be extraordinarily sensitive to other
small energy scales.

Up until very recently, only short-range interactions have
played a role in typical experiments in ultracold gases. Recent
experiments have started to unveil the rich physics resulting
from the dipole-dipole interactions (DDI) [8,9]. This is partic-
ularly the case of chromium, which presents a relatively large
magnetic dipole moment, 4 = 6 5. Remarkable effects of the
magnetic DDI have been reported in recent experiments on
chromium BEC [10-13]. Alkali-metal atoms, on the contrary,
present a much lower magnetic dipole moment, u = ug/2,
and hence they are not usually expected to show any trace
of the DDI unless short-range interactions are switched off
by means of Feshbach resonances [14,15]. However, as
mentioned earlier, the spin-changing collisions in alkali-metal
spinor BECs (in particular F = 1 8’Rb) are remarkably low
energetic. As a result, spinor dynamics is very sensitive to
magnetic DDI, in spite of the very low magnetic dipole
moment. Recent experiments [16] have shown that the DDI
may induce magnetization patterns in F = 1 8’Rb BECs.

Spinor dynamics is particularly interesting for the case of
condensates initially prepared in the m = 0 Zeeman sublevel.
In that case, spin-changing collisions may lead to correlated
Einstein-Podolsky-Rosen (EPR) pairs inm = 41 [17,18],ina
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process which closely resembles parametric down-conversion
in nonlinear optics [19]. As a result, spinor condensates may
act as parametric amplifiers of matter waves [20-22], opening
interesting perspectives for the creation of nonclassical states
of matter based on spinor BECs. Recently we have shown that
the interplay between trapping potential, quadratic Zeeman
effect (QZE), and spin-changing collisions crucially deter-
mines the amplification gain [21] and its sensitivity with
respect to quantum spin fluctuations [22].

In this paper we show that the amplification dynamics
may be extremely sensitive to the DDI. As a result of that,
the amplification of EPR-like pairs is strongly modified by
the relative orientation between the applied magnetic field
and the trap axis. We analyze in detail this dependence, as well
as the effects of magnetic-field gradients. We show that these
gradients must be carefully controlled, since uncontrolled
gradients may obscure the expected DDI effects. We finally
comment on experimental requirements.

The structure of the paper is as follows. In Sec. II we present
the system considered and the corresponding Hamiltonian.
The linear regime is discussed in Sec. III. An intuitive
qualitative picture of the effects of the DDI in the amplification
dynamics is discussed in Sec. IV. In Sec. V we introduce
the main formalism to analyze the amplification dynamics in
the presence of DDI, whereas the corresponding numerical
results are presented in Sec. VI. The effects of the magnetic-
field gradient are analyzed in Sec. VII. Finally we discuss
experimental requirements and summarize our conclusions in
Sec. VIII.

II. HAMILTONIAN

In the following we consider a spin-1 Bose gas (e.g., F = 1
87Rb), with Zeeman components m = 0,41, confined in a
dipole trap in the presence of an external magnetic field
(which we assume as oriented along the z axis). The system
is described by the Hamiltonian H = Hy + H, + Hyy. In this
Hamiltonian, the single-particle physics is described by

. L [ RPA - .
H, =/d3}" Z Iﬂil(r) [_W + V() + EZ(m)] Wm(r), (D
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where v, annihilates bosons with spin projection m. The
trapping potential is of the form V() = %[wi(xz +y?) +
a)ﬁz/z], where M is the atomic mass, @ < w, are the trap
frequencies (cigar-shaped trap), and y’ = (cos ) y + sin ¢ z,
7/ = —(sin®¥) y + cos ¥ z, with ¥ the angle between the weak
trap axis (z’ axis) and the magnetic-field orientation. This angle
will play a crucial role in our discussion of the effects of the
DDI.
The Zeeman energy for the m component is of the form,

Ez(m)~ (p+ Vp-F)m + qgm>, 2)

where p = grupBy characterizes the linear Zeeman effect
(LZE) for ahomogeneous magnetic field By, with g, the Landé
factor (g, = —1/2 for F = 1 ¥Rb) and p 3 the Bohr magne-
ton. The quadratic Zeeman effect (QZE) is characterized by a
constant ¢, which in principle depends as ¢ = % B3 /(8Chgs)
on the hyperfine coupling strength Cps (R*h x 3.4 GHz for
87Rb), but may also be externally modified using optical
or microwave dressing [23,24]. Additjonally, we allow for
a magnetic-field gradient B = By + VB - ¥, leading to an
energy shift mV p - 7, which plays a relevant role below.
The short-range interactions are given by

L S
Ay= / Lr Y DLOT OV DI )

m'm

with U::,,;;r" = UO(sm,fﬁSm’,rh’ + Ul fmn‘z : ]Z;n’rﬁ’s where fmm’ =
fx o fo L fi )T, with fi, . the spin-1 matrices. Uy =
(g0 +2g2)/3 and U, = (g2 — go)/3 are, respectively, the
coupling constants for spin-independent and spin-dependent
interactions, where gp = dxh’ay /M, with ap the s-wave
scattering length for the channel with total spin F. Note that
the short-range interactions preserve the total spin projection,
but this may be done in two crucially different ways, either
by preserving the individual spin projections (spin-preserving
collisions) or by modifying the individual projections while
preserving the total one (spin-changing collisions).

Finally, the magnetic dipole-dipole interaction is given by

7 1 / T r2NGT =/
Hu =3 / d’r f d’r va,i,(rw;,(r ),

m,m

! i

WG = P Y P (). €5
with
Wil = 7)
d? - > 5 5
= m[fmm S, = 3 mm - w ) forw - ur)l,  (5)

where d? = j10g? % /(41), o is the vacuum permeability, and
u, = (t — ¥')/|F — ¥’|. Contrary to the short-range interactions
the DDI may violate, in principle, the conservation of the
total spin projection (they may induce the equivalent of the
Einstein-de Haas effect [25,26]). However, the associated
change in LZE is typically, even for very low magnetic fields,
orders of magnitude larger than any energy in the system and
hence these spin-violating processes can be safely considered
as suppressed.
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Since short-range interactions preserve spin projection, and
so do in practice DDI as well, the homogeneous LZE (pm)
is preserved and it may be gauged out, playing no role in
the dynamics discussed in the following. The same argument
cannot be, however, employed with the magnetic-field gradient
which may play a significant role in the spinor dynamics [27],
as discussed in Sec. VIL

III. LINEAR REGIME

In the following we are interested in the first stages (linear
regime) of the spinor dynamics of a spin-1 BEC initially
prepared in the m = 0 sublevel, after quenching ¢ into the
unstable regime. This dynamics, induced by spin-changing
collisions, is characterized by the correlated creation of atomic
pairs in m = =£1. In this section, and for the sake of simplicity,
we do not consider magnetic-field gradients, which will be
introduced in Sec. VII.

Before quenching ¢, the BEC is prepared in the m =0
component. The initial scalar wave function ¥, of the
BEC in m = 0 and the corresponding chemical potential u
may be obtained from the time-independent Gross-Pitaevskii
equation:

K2 . - - -
[—WA + V(@) + Uono(r):| Yo(r) = uio(r), 6)

with no(F) = [Yo(F)I*, and [ &r|yo(F)]* = N.
The first stages of the spinor dynamics may be described
by means of a Bogoliubov approximation:

W90, 90" = 10,900,007 + (891,890,891)" e,
(N
where we consider small fluctuations of the spinor field
operator {8y,,}, such that |o|> > >, (5¥mS¥n).

A. Hamiltonian without dipole-dipole interactions

We consider first the Hamiltonian without DDI. Inserting
(7) into the grand canonical potential Hy + Hy;, — uN [with
N = [d&ry, &L(?)&m(ﬂ the total particle number], and
keeping terms up to second order in § Yn, We obtain an effective
Hamiltonian for 11, of the form,

H = Z /d3"5‘ﬁ,1(1:1eff+6])31/}m

m==x1
+U1/d3r no(SU sy +89189_1).  (8)

Note that in the linear regime the fluctuations 81/}i| are
decoupled from the density and phase fluctuations 8V, of the
m = 0 BEC (which may be excited during the preparation
process). In the previous expression we have introduced
Hes = —h>AJ2M + Vege(7), where

Verr(F) = V(F) + (Uo + Unno(F) — p €))

may be understood as the effective trapping potential felt by
the +1 fluctuations on top of the m = 0 BEC. It contains
the mean-field potential (Uy + U;)ng, which originates from
spin-preserving collisions of =1 atoms withthe BECinm = 0.
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Note that in the Thomas-Fermi regime pu = V (7) + Ugng(¥).
In that regime, Veg(¥) = Ujng(¥) within the BEC region, and
Veir = V(¥) — u outside.

The second line in Eq. (8) originates from spin-changing
collisions, which convert m = 0 atoms into =£1-atom pairs
and vice versa. Interestingly, this process resembles parametric
down-conversion in optical parametric amplifiers [19]. Indeed,
if the m = 0 BEC is unstable after the quench of ¢, spin-
changing collisions lead to an exponential amplification of the
population in m = £1 [20-22].

B. Dipole-dipole interactions

As mentioned earlier, spin-changing collisions are typically
characterized by a very low-energy scale. As a result, the
spinor physics is highly sensitive to other very low energy
scales, including the rather weak magnetic DDI in alkali-metal
gases. This sensitivity has been recently demonstrated in
experiments on the formation of spatial magnetization patterns
in spinor Rb BECs [16]. As we show in the following sections,
the exponential amplification of the population in m = £1
following a quench in ¢ may also be very significantly modified
by the DDIL.

Althgugh }here is no DDI contribution in the GP Eq. (6),
since fpo = 0, there is, however, an important contribution
to the effective Hamiltonian for § lﬁil which we obtain after
inserting (7) in Hyq and linearizing:

mm=/ﬁ%/dVWGWWMmG—ﬂ
x BP9 () + 89 (F)sv_1 ()
48U @6V ) + 89 ST (7). (10)

with Vg(7) = %(322 — |#1%). In Eq. (10) we have neglected
terms related to scattering processes which do not preserve
the total spin projection since, as mentioned in Sec. II, the
associated change in LZE suppresses spin-violating processes
even for very low magnetic fields. Note that the third line of

H, 44 contains as well a parametric amplification term.

IV. QUALITATIVE PICTURE OF THE EFFECT OF THE
DIPOLE-DIPOLE INTERACTIONS ON THE
AMPLIFICATION DYNAMICS

The effects of the DDI on the amplification dynamics
may be qualitatively understood from a simplified model. In
homogeneous space (V = 0, constant ng, i = Upng) we may

introduce the Fourier transform #,, (k) = [ d3r 80, (F)e= %,
which allosz one to write H, in the simplified form [28]
H™ = [ hyd®k/(27)?, where

e =" (B +q — genl, ®nn®)
m==%1

— e [](OAL (—0) + MEA_ (=K1, (11)
with E;, = h2k2/2M and g.,, = —Ujny. Note that for F =1

8Rb U, < 0, and hence g., > 0 (we consider in the following
this case, although for the F' = 2 case the sign is the opposite).
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This Hamiltonian, which may be easily diagonalized for each
momentum k, possesses eigenenergies of the form,

KEE) = B+ 4 — 40 — 43 (12)

Note that if Im[ki(lz)] > 0 for some eigenenergy, then there
is an exponential growth of spin excitations, which leads to
a correlated pair creation in m = 1. This instabilitz is best
characterized by the instability rate A = max{Im[AL(k)]}. Itis
straightforward to show that the m = 0 BEC becomes unstable
for ¢ < 2q.,. The instability rate rises between g, < g <
2q., acquiring its maximal value A = ¢, at ¢ = q.-. For
q < qcr, A = q. in the homogeneous case (in the inhomoge-
neously trapped case the instability rate A presents significant
modulations which are responsible for the multiresonant
q dependence of the amplification dynamics recently observed
experimentally [21]).

In the following we apply a similar formalism to the DDI
term Fll,dd. We introduce the Fourier transformation of Vgq(¥)
to obtain Vdd(l_é) =Ug(l -3 0952 0), where Ugq = 2nd2/3
and 6 is the angle between k and the dipole orientation
(z axis). Using convolution theorem, and since we assume
ng as constant, we may then rewrite A 1.dd in the form,

A 4’k . o N N
h e At ~
m%—/emmmw4§ 1y (K ()

m==+1
+ﬂ&mqe£ﬂ+m@mqe%4. (13)

Note that adding H; 44 to H; results in a similar form as that
of H, but with an effective qfff @) =qer — nond(lz). Note
that, due to the anisotropy of the DDI, ¢ depends on the
angle 6. The effects of the trap geometry may be qualitatively
understood from this 6 dependence. For an axisymmetric trap
the dominant momenta are those along the tightest direction.
If the dipole orientation is perpendicular to the trap axis, then
the dominant k£ will then be those with & = 0, and hence
g™ ~ g, + 2noUgq. On the contrary, if the dipole orientation
is parallel to the trap axis, the dominant momenta will be
those with § = 7/2, and ¢° ~ g, — noUq4. Since A =~ ¢°ff,
we hence expect an enhancement of the instability for a
magnetic-field orientation perpendicular to the trap axis, and a
reduced instability for a parallel orientation. Although the DDI
in alkali-metal atoms is typically very weak, the spin-changing
collisions are very weak as well. In particular, in F = 1 8’Rb
the strength of the DDI is quite significant compared to the
strength of the spin-changing collisions, |Ugq/U;| = 0.2. As a
result, the DDI modification of the instability rate is expected
to lead to a marked orientation dependence of the amplification
dynamics. In the following sections we show that this is indeed

the case when considering realistic trapped cases.

V. AMPLIFICATION DYNAMICS IN TRAPPED
DIPOLAR CONDENSATES

Although the homogeneous model discussed before allows
for a simplified intuitive understanding of the major effects of
the DDI in the amplification process, a quantitative analysis
of realistic experimental situations may be just achieved by
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properly considering the inhomogeneous trapping, and the
corresponding inhomogeneous density ny(r) of the m =0
BEC. In this section we introduce the basic formalism which
we follow for the analysis of the amplification dynamics
characterizing the spinor physics in the linear regime.

The analysis of the spinor dynamics is significantly sim-
plified by considering the eigenfunctions and eigenenergies of
Hetr, Heiep(F) = €,6,(F), and expanding the field operators
in the basis of these eigenstates 81, (F) = > On(F)apm. We
may then rewrite

Hi+ Hyq = Z[(Gn + @)dnn + Bun'] Z &} i
nn’' m==1

+ Y (A + Bun) @)y + 1),
nn'

(14)

where A,y = U, f d>r no¢, ¢, characterizes the effects of the
short-range spin-changing collisions, whereas the effects of the
DDI are given by

By = / &r / & FyF)WVaalF = FVESF), (1)

where F,(r) = ¥o(F)¢, (7). The matrix elements B, are most
efficiently calculated in k space according to

B,, = dskﬁi&f/iﬁ/}' 16
_/W () Taa ) By (), (16)

where F (l_é) is the Fourier transform of F(r).
Equation (14) is solved by the multimode Bogoliubov
ansatz,

& = whan +vha)_)). (17)
n

where &F satisfy [, H) + H) gq] = AT&F, which leads to

the eigenvalue equation:

C & = & (18)
ar) v \ar )’

where i T = {uF,u%,, ...} (and similarly for 7) and
E+4914+B —A+B
= NE)
A+B —E-gq1-B

with E,, = €,8,y, 1 the identity matrix, and A (B) the
matrix with components A, (B, ). From the Heisenberg
equations of motion &(r) = @*(0)e /", Note that, as for
the homogeneous case, if Im(AF) > 0 for some eigenenergy,
then there is an exponential growth of correlated pairs in
m = %1. As for the homogeneous case, this instability is best
characterized by the instability rate A = max{Im(kf)}.
The time evolution of &, 4, is then easily obtained:

{Gn1()} {@,1(0)}
=U@) , (20)
[{al_mt)}} [{&i_lwn}
with U = M~ le=/A/"M, where M is the matrix of eigenvec-

tors obtained after solving Eq. (18) and A the corresponding
diagonal matrix of eigenvalues.
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As mentioned earlier, the atoms are initially prepared in
the m = 0 sublevel. However, a slightly imperfect preparation
may lead to a nonzero population of Ny m = =1 pairs in the
original BEC [22]. These spurious atoms (which from now on
are called classical seed) share the same wave function vy (¥)
asthem = 0atoms. Denoting x, = [ d*ro(F)¢,(F)/v/N, we
may then easily express the population P, = ), (&,Lm&,,,m) in
the form P, (t) = Pc(t) + Po(t), where

Pc(t) = Ny - (0'0 +010)5 e2))
denotes the population triggered by the classical seed, and
Py(t) = Tr(0'0) (22)

denotes the population induced by quantum fluctuations (i.e.,
when Ny = 0). In the previous expressions, the matrices O and
O are the upper left and upper right part of the time evolution
matrix U(t) and ¥ = (x1, x2,...)".

VI. DIPOLE-INDUCED ORIENTATION DEPENDENCE
OF THE AMPLIFICATION DYNAMICS

In this section we employ the formalism discussed in Sec. V
to study the effects of the DDI in the amplification dynamics.
We shall show that due to the DDI the amplification may be
markedly dependent on the relative orientation between the
trap axis and the external magnetic field.

In our numerical calculations we have considered realistic
experimental conditions, with N = 10° F = 1 8’Rb atoms in
a cigar-shaped harmonic potential with w; = 27w x 200 Hz
and o) =27 x 40 Hz. As mentioned earlier, we consider
the atoms as initially prepared in m = 0 with possibly an
initial spurious classical seed (which we typically consider as
N, = 2, a typical value expected from previous experimental
results [22]). At + = 0 the QZE energy ¢ is set to a given
value within the instability regime. We monitor the subsequent
evolution of the populations P(¢) obtained from Egs. (21)
and (22) as a function of g and the relative angle 6 between
the trap axis and the external magnetic field.

Figure 1 shows the dependence of the instability rate A as
a function of g for 6 = 0, & = /2, and without DDI. Note
that for all cases, the instability rate experiences a maximum

instability rate/h (Hz)

q/h (Hz)

FIG. 1. (Color online) Instability rate A as a function of g for
N =10°, w, =27 x 200Hz, and o) = 2w x 40Hz, for the case
of no DDI (black, dashed), & = 7 /2 (blue, solid), and 6 = 0 (red,
dot-dashed).
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1 (%)

fraction of atoms in m

0 2 4 6 8 10 12
q/h (Hz)

FIG. 2. (Color online) Fraction of atoms transferred into |+1)
after 115 ms as a function of ¢ for Ny = 2 and the same parameters
as Fig. 1, and for the case of no DDI (black, dashed), & = 7 /2 (blue,
solid), and 6 = O (red, dot-dashed).

contrary to the homogeneous case. This maximum is induced
by the inhomogeneous harmonic trapping and leads to marked
resonances in the g dependence of the amplification dynamics,
as discussed in Ref. [21]. However, A clearly depends on
the trap orientation confirming indeed the intuitive qualitative
picture discussed in Sec. IV. When trap axis and magnetic
field are aligned A decreases compared to the nondipolar case,
whereas the opposite is true when the magnetic field is oriented
perpendicular to the trap axis. Note as well that, as expected
from the qualitative picture of Sec. IV, the instability region
is shifted toward lower ¢ values in the parallel configuration,
and toward larger g values in the perpendicular one.

This modified instability rate translates into a significantly
distorted pair-creation dynamics, due to the exponential nature
of the parametric amplification. Figure 2 shows the transferred
fraction Py(¢)/N after t = 115 ms as a function of ¢ for
different values of 6. As expected from the form of A we
observe the appearance of a maximum for all 6, which is
slightly shifted (by approximately 1 Hz) toward lower g
when 6 is shifted from 7 /2 to 0. However, this maximum
is approximately four times as large for 6 = m/2 than for
6 = 0. The dependence of the amplification on 6 is very clearly
observable in the 8 dependence of the maximum of P, (again
att = 115 ms) shown in Fig. 3. Note that the maximum grows
monotonically from6 =0to 6 = /2.

VII. EFFECTS OF MAGNETIC-FIELD GRADIENTS
ON THE AMPLIFICATION DYNAMICS

As mentioned in Sec. II the homogeneous LZE plays
typically no role in the spinor dynamics (only at very low
magnetic fields B < 1 mG the DDI could induce the equivalent
of the Einstein-de Haas effect [25,26], and in this case the
residual LZE could play a role). However, magnetic-field
gradients cannot be gauged out, and may play a relevant role in
the spinor physics [27]. In this section, we analyze the effects
that these gradients may have on the amplification dynamics.
We shall show that even relatively weak gradients may have a
significant effect on the amplification process.

Although magnetic-field gradients do not affect the GP
equation for the m = 0 BEC, there is indeed a contribution
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maximum fraction of atoms in m =1 (%)

0 10 20 30 40 50 60 70 80 90
angle (deg)

FIG. 3. (Color online) Maximal population transfer after 115 ms
as a function of 0 (same parameters as Fig. 2) for different magnetic-
field gradients VB = 0 (blue, solid), 5 mG/cm (black, dashed), and
10 mG/cm (red, dot-dashed).

to the effective Hamiltonian for SIﬁil in the linear regime:
ﬁyg==%p-/lﬁmsﬁja¢,—3$jj3$_o, (23)

which may be straightforwardly implemented into the matrix
C of the eigenvalue equation (18),

co E+gl1+B+D
B A+B

—A+B

, 24
—E—gql-B+D

with D,,,, = %p [ A Gl Py

The magnetic-field gradients have two main effects. On
one side, they modify the effective potential Veg(F) in a
different way for m = 1 than for m = —1. This reduces the
overlap of the m = +1 atom clouds with the m = 0 BEC
and hence the scattering mediated transfer. On the other side,
atoms placed at different locations experience different Larmor
precession frequencies. Although this does not affect the local
short-range interactions, it does modify the nonlocal DDI. For
large-enough gradients this may lead to a time-averaged DDI
[27]. For weak gradients, as those considered in the following,
the explicit time dependence induced by the gradients must be
considered.

Parametric amplification is handicapped by the presence
of gradients as a result of these two combined effects.
Figure 4 shows the combined effect of the DDI and the
magnetic-field gradient along the weak trap axis for 6 = 7 /2.
As expected, we obtain a reduction of the transfer maximum
with increasing gradient and a shift of its position to lower
q/h by approximately 1.5 Hz for a gradient of 10 mG/cm.
Hence the transfer maximum is shifted down and to lower g
with decreasing 6 and increasing gradient. As shown in Fig. 3,
in the presence of a magnetic-field gradient, the maximum of
P.(t) also shows a marked 6 dependence.

Hence, even rather weak gradients (<10 mG/cm) may
strongly modify the amplification dynamics, an effect which is
enhanced by the presence of the DDI. Although as mentioned
earlier, the 8 dependence should also reveal in the presence
of gradients the effects of the DDI, slight variations of the
magnetic-field gradients (of the order of a few mG/cm) when
changing the magnetic-field orientation with respect to the
trap axis must be very carefully controlled. This is indeed
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(=2] =1 0.9)

wt

fraction of atoms in m = 1 (%)

FIG. 4. (Color online) Fraction of atoms in &1 after a time 115 ms
(same parameters as Fig. 2) as a function of ¢ for 6 = 7/2, and
for gradients VB =0 (blue, solid), 5mG/cm (black, dashed), and
10 mG/cm (red, dot-dashed).

a crucial point, since otherwise, accidental 6 dependencies
of the magnetic-field gradients may obscure the physical
0 dependence characteristic of the DDI.

VIII. DISCUSSION

A. Experimental requirements

In the following we outline the general requirements
to perform an experiment with F =1 3'Rb to probe the
theoretical results discussed earlier. A m =0 BEC must
be prepared in a crossed dipole trap following the same
procedure detailed in Refs. [21,22]. The state preparation
requires particular attention, since the remaining atoms in
m # 0 may strongly alter the experimental result. Previous
experiments have shown that the number of atoms in m # 0
states can be suppressed to Ny & 2 by briefly applying a strong
magnetic-field gradient to purify the system [22]. Due to the
nature of the QZE in F = 1 8’Rb, magnetic fields can be used
to access positive values of ¢, as required previously.

As discussed in Sec. VII, the most significant requirement
compared to previous experiments is related to the suppression
of magnetic-field gradients which could obscure the dipolar
effects. Appropriate experiments should be carefully designed
to minimize all sources of field gradients from the vicinity of
the atomic sample (e.g., a magnetic u-metal shielding could
be placed around the sample). In state of the art precision
measurements, field gradients are commonly suppressed be-
low 1 mG/cm [29], which is sufficient to realize the mandatory
experimental conditions (see Sec. VII).

Figure 2 shows that the resonant spin transfer tothe m = +1
states depends strongly on the relative orientation of the weak
trap axis and the external magnetic field. Since it is difficult
to change the orientation of a dipole trap while maintaining

PHYSICAL REVIEW A 82, 053608 (2010)

its trapping potential, experiments must be designed to vary
the orientation of the external magnetic field. In this sense,
two sets of Helmholtz coils are necessary to provide a
homogeneous external magnetic field. One of them should be
placed along the weak axis of the trapping potential to realize
the & = 0 configuration and another one along one of the
strong axes to realize the & = /2 case. Both magnetic fields
have to be calibrated, preferentially using precision microwave
spectroscopy between the ground-state hyperfine manifolds of
87Rb. Such an experimental apparatus would also allow for a
rotation of the field, since the currents in the two Helmholtz
coils could be adjusted to obtain a relative angle 6. In this way,
it should be possible to perform a measurement analogous
to that discussed in Fig. 3. Finally, additional magnetic-field
gradients can be applied along both magnetic-field directions
to observe the suppression shown in Fig. 4.

B. Summary

We have shown that, in spite of the very small magnetic
moment, the magnetic DDI may lead to a strong modification
of the amplification dynamics in F =1 8Rb due to the
low-energy scale of the spin-changing collisions. These effects
must be carefully considered in all experiments dealing with
parametric amplification in F = 1 ¥Rb (e.g., future experi-
ments on number squeezing). In particular, we have shown that
the DDI induce a very marked dependence of the amplification
gain with respect to the relative orientation between magnetic-
field direction and trap axis. If both directions are perpendic-
ular to each other the amplification dynamics is much faster
than for the parallel configuration. Remarkably, the number of
transferred atoms into m = 41 may increase for F = 1 ’Rb
for a fixed holding time of around 100 ms by a factor over 400%
when turning from a parallel to a perpendicular configuration.
We have shown as well that magnetic-field gradients may
also significantly modify the amplification dynamics, both
due to their effects on the trapping and on the DDI. As a
result, in order to cleanly reveal DDI effects in the parametric
amplification in spinor condensates, magnetic-field gradients
must be carefully controlled, since uncontrolled changes in
the gradient when turning the magnetic-field orientation may
obscure the orientation dependence of the DDI effects on the
amplification. This demands specific requirements for future
experiments in F = 1 8’Rb.
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