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Influence of the particle number on the spin dynamics of ultracold atoms
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We study the dependency of the quantum spin dynamics on the particle number in a system of ultracold
spin-1 atoms within the single-spatial-mode approximation. We find, for all strengths of the spin-dependent
interaction, convergence toward the mean-field dynamics in the thermodynamic limit. The convergence is,
however, particularly slow when the spin-changing collisional energy and the quadratic Zeeman energy are
equal; that is, deviations between quantum and mean-field spin dynamics may be extremely large under these
conditions. Our estimates show that quantum corrections to the mean-field dynamics may play a relevant role
in experiments with spinor Bose-Einstein condensates. This is especially the case in the regime of few atoms,
which may be accessible in optical lattices. Here, spin dynamics is modulated by a beat note at large magnetic
fields due to the significant influence of correlated many-body spin states.
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I. INTRODUCTION

The spin degree of freedom of spinor Bose-Einstein
condensates (BECs) allows one to explore the magnetism
of ultracold quantum fluids [1], which exhibit intriguing
phenomena, like the formation of coreless vortices [2] and
other spin textures [3–5] and spontaneous symmetry breaking
after a quench [6]. Beside the investigation of the ground-state
phases [7–10], the main focus of research is on the study of
spin dynamics [11–15]. So far most experiments confirmed the
mean-field (MF) description, including a nonlinear resonance
phenomenon near a critical magnetic field [16–19], which
is caused by the interplay of spin-changing collisions and
quadratic Zeeman shift. Interestingly, the Hamiltonian of
the spin-dependent interatomic interactions appears also in
nonlinear quantum optics [9]. As a result, spinor BECs
allow one to explore, for example, four-wave mixing [18,20]
and parametric down-conversion [21–23] with matter waves.
Moreover, spin-changing collisions are responsible for the
dynamical evolution of squeezed collective spin states and
entanglement from uncorrelated (product) states [24–28],
which provides a way to overcome the standard quantum
limit in precision measurements with matter waves. Those
beyond-MF correlations can be described by means of the
Bogoliubov approximation as long as the quantum fluctuations
of the spinor field operator are small [21–23,29].

Correlations limit the validity of the MF approximation.
Hence, knowledge of the boundaries of the Gross-Pitaevskii
equation (GPE) is of great interest. The validity of the GPE
has been proven for weakly interacting spinless bosons in the
limit N → ∞ with Na fixed [30,31], where N is the number
of particles and a is the scattering length. We show in this
article by means of a numerically exact diagonalization of the
effective spin Hamiltonian [9,10,29,32] that the quantum spin
dynamics in the single-mode approximation (SMA) converges
toward the MF dynamics in the thermodynamic limit (TDL).
This is, interestingly, the case for all strengths of the spin-
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dependent interaction (within the SMA). The convergence is,
however, particularly slow in a regime where the spin-changing
collisional energy and the quadratic Zeeman energy are equal.
We determine the validity time of the initial MF dynamics
under these conditions, which grows logarithmically with
the number of particles. From this we expect that quantum
corrections to the MF dynamics may play an important role
in experiments with spinor BECs. Additionally, we discuss
a beat-note phenomenon in the spin dynamics of few atoms
(N ∼ 10), which may be observed in deep optical lattices.

The article is organized as follows. In Sec. II we outline the
method of calculating the quantum spin dynamics. Afterward,
in Sec. III, we discuss few particles. First, in Sec. III A we
apply the formalism to two particles to make the method clear
and to discuss similarities with the MF dynamics. Then, we
discuss the spin dynamics of three particles in Sec. III B, which
is modulated by a beat note at large magnetic fields. A similar
beat-note phenomenon is recovered for few atoms, which is
shown in Sec. III C. In Sec. IV we turn to the comparison
of the N -particle quantum dynamics with the MF dynamics.
This is done for two typical initial states. First, in Sec. IV A,
we study the initial state, where all atoms are in the m = 0
Zeeman sublevel, and then, in Sec. IV B, we analyze the initial
dynamics of the transversely magnetized state. We finally
summarize our results in Sec. V.

II. METHODS

A. Effective spin Hamiltonian

The two-body interaction between ultracold spin-1 atoms
is modeled by a spin-dependent δ potential [7],

Vint.(�r1 − �r2) = δ(�r1 − �r2)(h̄c0 + h̄c2 �f1 · �f2),

with the interaction strengths c0 and c2 and the dimensionless
spin-1 matrices �fi of atom i = 1,2. Typically, c0 is one or two
orders of magnitude larger than c2. The atoms are confined by
a spin-independent trapping potential Vtrap(�r). Additionally, a
homogeneous magnetic field along the z direction generates
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the potential

VZ = −h̄pfz − h̄q
(
4 − f 2

z

)
,

where p ∝ B and q ∝ B2 are the coefficients of the linear
and quadratic Zeeman energy, respectively. The many-body
Hamiltonian is then

H ′′ =
∑

i

[
− h̄2

2m
�i + Vtrap(�ri)

]
+

∑
i<j

h̄c0δ(�ri − �rj )

−
∑

i

[
h̄pfz,i + h̄q

(
4 − f 2

z,i

)]
+

∑
i<j

h̄c2δ(�ri − �rj ) �fi · �fj .

The first line contains the spin-independent part of H ′′, which
acts only in position space, and the second line contains the
Zeeman Hamiltonian, which acts only in spin space. Only the
spin-dependent interaction in the third line couples the spin to
the motional degrees of freedom.

In the absence of the spin-dependent interaction (c2 = 0)
the states of the ground-state multiplet are of the form

ψ0(�r1, . . . ,�rN ) ⊗ |χs〉,
with ψ0 being the totally symmetric (nondegenerate) ground
state of the spinless problem and with |χs〉 being an arbitrary
totally symmetric N -particle spin function [33]. In many
experimental situations one can restrict the description to these
states [14,15,18,19,34,35], since |c2| 	 c0. As a consequence,
the motion of the atoms is frozen in the ground state ψ0 and
the system is essentially zero-dimensional.

Let us assume that we have found the spatial ground state
ψ0 and the corresponding energy E0. An integration over
the spatial degrees of freedom leads to the effective spin
Hamiltonian (the diagonal offset E0 − 4Nh̄q is neglected)

H ′ = −h̄p
∑

i

fz,i + h̄q
∑

i

f 2
z,i + h̄gs

∑
i<j

�fi · �fj ,

with

gs = c2

∫
d�rd�r3 · · · �rN |ψ0(�r,�r,�r3, . . . ,�rN )|2.

The integral is the averaged local pair correlation function g(2)

of the ground state ψ0. It can be viewed as the inverse volume
of the ground state g(2) ≡ 1/V .

Using the projection operators Nm = ∑
i |m〉i〈m|i , which

count the number of particles with polarization m = +,0, − ,

and the relation ∑
i<j

�fi · �fj = 1
2 ( �F 2 − 2N ),

where �F 2 = ( �f1 + · · · + �fN

)2
is the square of the total spin,

we obtain a more convenient form of the Hamiltonian:

H ′ = −h̄p(N+ − N−) + h̄q(N+ + N−) + h̄gs

2
( �F 2 − 2N ).

The z component of the total spin Fz = N+ − N− commutes
with the occupation number operators Nm and the Hamiltonian
H ′, which leads to a decomposition of the dynamics into

subspaces with different Fz = M = −N, . . . ,N ; that is,

〈Nm〉 =
∑
M

〈Nm〉M.

Therefore, the linear Zeeman energy, which is a constant
in each subspace, does not influence the dynamics. In the
following we neglect the linear Zeeman energy and set p = 0.
The remaining Hamiltonian,

H = h̄q(N+ + N−) + h̄gs

2
( �F 2 − 2N ), (1)

has a spin-flip symmetry,

HM = H−M,

since �F 2 is not changed by a rotation of 180◦ around the x axis
and since N+ + N− is unaffected if N+ ↔ N−.

B. Matrix representation

The matrix elements of the Hamiltonian (1) are most conve-
niently calculated within the second quantization formalism.
We express the totally symmetric N -particle spin functions
|χs〉 by linear combinations of occupation number basis states
|N+,N0,N−〉, which are eigenstates of the occupation number
operators Nm = a

†
mam. The bosonic creation and annihilation

operators a
†
m, am act on these states in the usual way and obey

the commutation relations [am,a
†
m′ ] = δmm′ and zero else.

Before we proceed, we change the labeling of the occu-
pation number basis states |N+,N0,N−〉 in order to simplify
the following formulas. We use the set of quantum numbers
(η,M,N ) instead of (N+,N0,N−). Both labels are related to
each other through η = N+ + N−, M = N+ − N− and N =
N+ + N0 + N−. We will not explicitly refer to the number of
particles N ; that is, |N+,N0,N−〉 = |η,M〉.

The first summand of (1), the quadratic Zeeman Hamil-
tonian Hq = h̄q(N+ + N−), is diagonal in the occupation
number basis and given by

〈η,M|Hq |η,M〉 = ηh̄q. (2)

The second summand, the spin-dependent interaction Hamil-
tonian Hs = h̄gs

2

( �F 2 − 2N
)
, is tridiagonal. In order to calculate

Hs we use the formula

�F 2 = F 2
z + 1

2 (F+F− + F−F+),

with the angular momentum creation and annihilation opera-
tors F± = Fx ± iFy , which are given by

F± =
√

2(a†
±a0 + a

†
0a∓)

in dimensionless units. The diagonal elements of Hs are

〈η,M|Hs |η,M〉 = h̄gs

2
[M2 − 2η2 + η(2N − 1)], (3)

and the secondary diagonal elements are

〈η + 2,M|Hs |η,M〉
= 〈η,M|Hs |η + 2,M〉
= h̄gs

2

√
(N − η − 1)(N − η)(η + M + 2)(η − M + 2).

(4)
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As discussed before, H decomposes into sub-blocks, which
can be diagonalized independently for each eigenvalue of the
total magnetization M , since H commutes with Fz. The basis
states of one sub-block are given by

||M|,M〉,||M| + 2,M〉, . . . ,|ηmax,M〉, (5)

with ηmax = N − 1 or N , leading to a total dimension of

dim(N,M) =
⌊

N − |M|
2

⌋
+ 1, (6)

with the common floor function.

C. Population dynamics

Once we have determined the eigenstates |ε〉 and eigenfre-
quencies ωε of H , we can calculate the time evolution of the
system if the initial state |ψi〉 has been specified. The initial
state |ψi〉 evolves according to

|ψ(t)〉 = exp
(−iHt/h̄

)|ψi〉,
where the spectral representation of the time evolution operator
is given by

exp(−iHt/h̄) =
∑

ε

|ε〉〈ε| exp(−iωεt). (7)

The time evolution of the relative population n0 = N0/N is
thus given by

n0(t) = 〈ψi |eiHt/h̄a
†
0a0e

−iHt/h̄|ψi〉/N. (8)

The population of the other spin components is completely
determined by the conservation of the total number of particles
N and of the total magnetization 〈Fz〉 via

n±(t) = 1
2 [1 ± 〈Fz〉/N − n0(t)].

For the initial states chosen here, 〈Fz〉 = 0. In the following
discussion we present only the time evolution of n0 and we
neglect any contributions, which are constant in time, since
they are determined by the initial state |ψi〉.

D. Initial states

We discuss the time evolution of the number state |θN 〉 =
|0,N,0〉, where all the atoms are in the m = 0 Zeeman state,
and the transversely magnetized state

|ζN 〉 = 1√
N !

(
1

2
a
†
+ + 1√

2
a
†
0 + 1

2
a
†
−

)N

|0,0,0〉,

where all the spins are pointing into the positive x direction.
This state is a superposition of number states from all
subspaces,

|ζN 〉 =
N∑

M=−N

ηmax∑
η=|M|,�η=2

χM
η |η,M〉,

with the coefficients

χM
η =

(
1

2

) η+N

2

√(
N

η

)(
η

η+M

2

)
. (9)

E. Dimensionless coupling parameter

The essential parameter, which characterizes the interplay
between the quadratic Zeeman energy and the spin-dependent
interaction energy, is given by

K = 2q

(2N − 1)gs

→ q

c2ρ
for large N,

where ρ = N/V is the particle density. K can be positive or
negative depending on the sign of q and c2.

III. FEW-ATOM DYNAMICS

A. Two atoms

We begin with two atoms to illustrate the method and since
typical features of the two-atom dynamics occur also for larger
particle numbers and in the MF limit. Two-atom spin dynamics
was experimentally investigated in Refs. [14,15] for a system
being initially in the number state.

Let us start with the calculation of the matrix elements
of the Hamiltonian (1). The matrix H decomposes into five
submatrices with total magnetization M = 2,1,0, −1, −2.
According to Eq. (6) the subspace with M = 0 has dimension 2
and the others have dimension 1. If one writes Eq. (8) for an
arbitrary initial state, one sees that only energy differences
within the same subspace lead to a sinusoidal oscillation with
frequency ωij = |ωi − ωj |. Thus, only the M = 0 subspace
contributes to the time evolution with exactly one frequency
ω and the others lead to constant offset amplitudes, which we
will neglect in the following. According to Eq. (5) the two
basis states of the M = 0 subspace are |0,0〉 and |2,0〉. Using
Eqs. (2)–(4) we obtain the 2 × 2 matrix

H 0 = h̄

(
0

√
2gs√

2gs 2q − gs

)
. (10)

Let us consider an arbitrary initial state, which is given by

|ψi〉 = α|0,0〉 + β|2,0〉 + other terms. (11)

(The other terms are the components of the irrelevant sub-
spaces, like γ |1,1〉 + δ|2,2〉 + · · · and so on. Thus, in general
|α|2 + |β|2 � 1.) From the diagonalization of the matrix (10)
we obtain the spectral representation of the time evolution
operator (7), which we insert into Eq. (8) together with the
initial state (11). The result is an ordinary cosine oscillation,

n′
0(t) = A cos(ωt), (12)

with the amplitude

A = 2

ω2

{
2
√

2Re(αβ∗)qgs + g2
s [2(|α|2 − |β|2)

−
√

2Re(αβ∗)]
}
, (13)

where Re(γ ) denotes the real part of γ and γ ∗ is its complex
conjugate, and the frequency

ω =
√

(2q − gs)2 + 8g2
s . (14)

Time-independent terms have been neglected in Eq. (12); that
is, n′

0(t) = n0(t) − n0,const..
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FIG. 1. (Color online) Two-atom amplitude as a function of |K|
for the initially prepared number state: K < 0 (dashed red line) and
K > 0 (solid blue line).

Let us first discuss the initial state |θ2〉 = |0,2,0〉 = |0,0〉,
that is, (α = 1,β = 0). In that case, the system undergoes Rabi
oscillations [14,15] and the amplitude (13) becomes

A = 4g2
s

(2q − gs)2 + 8g2
s

= 4

9 − 6K + 9K2
. (15)

Figure 1 shows the amplitude A as a function of the coupling
parameter |K| for the two cases K < 0 (dashed red line) and
K > 0 (solid blue line). For small |K|, the Hamiltonian is
dominated by the spin-dependent interaction Hs = h̄gs

2 ( �F 2 −
2N ), and since the number state is not an eigenstate of
Hs , the system undergoes large oscillations. In the opposite
limit of large |K|, the Hamiltonian is approximately equal to
the quadratic Zeeman energy Hq = h̄q(N+ + N−). Here the
oscillation amplitude converges to zero on the one hand, since
the number state is an eigenstate of Hq , and on the other
hand, since the occupation number operator n0(t) = a

†
0a0/N

commutes with Hq , and thus becomes a constant of motion.
For the transversely magnetized state |ζ2〉 we calculate

the coefficients (α = 1/2,β = √
2/4) using Eq. (9). The

amplitude (13) takes the form

A = qgs

(2q − gs)2 + 8g2
s

= K

6 − 4K + 6K2
.

A is negative for K < 0, which corresponds to a phase shift of
π in the cosine function of Eq. (12) and is not in contradiction
to the requirement n0(t) > 0, since n0,const. > |A|.

Figure 2 shows |A| as a function of |K| for K < 0
(dashed red line) and K > 0 (solid blue line). The transversely
magnetized state is an eigenstate of the spin-dependent
interaction Hs and thus the oscillation amplitude is small for
small |K|. Again, the amplitude drops down in the opposite
limit of large |K|, since the occupation number operator
n0(t) = a

†
0a0/N commutes with Hq and becomes a constant

of motion. Between these limiting cases the amplitude has a
maximum, which is located at |K| = 1. The MF amplitude
(Appendix A) has a maximum at the same position and shows
the same limiting behavior, which is clear, since the preceding
arguments were independent of the number of particles (inset
of Fig. 2).
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FIG. 2. (Color online) Absolute value of the two-atom amplitude
|A| as a function of |K| for the transversely magnetized state: K < 0
(dashed red line) and K > 0 (solid blue line). (Inset) Comparison
with the MF limit.

B. Three atoms

In the case of three atoms, there are three subspaces of
dimension 2 (those with M = 0, ±1), which contribute to the
dynamics. However, since H is symmetric under polarization
reflection M ↔ −M , the M = ±1 subspaces yield the same
frequency. The corresponding Hamiltonians are given by

H 0 = h̄

(
0

√
6gs√

6gs 2q + gs

)
, H± = h̄

(
0 2gs

2gs 2q − 3gs

)
,

where in H± we have subtracted the offset h̄(q + 2gs) from the
diagonal. For the initially prepared number state, the dynamics
is restricted to the M = 0 subspace, which leads to results
similar to those in the previously discussed two-atom case.

By contrast, the transversely magnetized state |ζ3〉 is
distributed over all subspaces. Since all subspaces evolve
independently, they can be evaluated in the same way as
before and added thereafter. The time evolution of the m = 0
population is now given by a sum of two cosines,

n′
0(t) = A0 cos(ω0t) + A1 cos(ω1t),

(constant offsets are neglected) with different amplitudes,

A0(1) = qgs/ω
2
0(1),

and unequal frequencies,

ω0 =
√

(2q + gs)2 + 24g2
s , ω1 =

√
(2q − 3gs)2 + 16g2

s .

The amplitudes A0 and A1 as functions of K show the same
behavior as discussed for two atoms [see Fig. 3(a)]. The
frequencies ω0 and ω1 as functions of K are shown in Fig. 3(b).
At large K they differ by 4gs so that the oscillation dynamics
is modulated by a beat frequency of 2gs :

n′
0(t) ≈ 1

10K
{cos[(2q + gs)t] + cos[(2q − 3gs)t]}

≈ 1

5K
cos[(2q − gs)t] cos(2gst). (16)

Figure 3(c) shows the three-atom dynamics (solid red line)
compared to the MF dynamics (dashed blue line) at K = −5.
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FIG. 3. (Color online) Evolution of three atoms in the transversely
magnetized state. (a) A0(1) as a function of K . (b) ω0(1) as a function
of K . (c) Dynamics for K = −5 (solid red line) compared to the MF
evolution (dashed blue line). The oscillation of the m = 0 population
is modulated by a beat frequency of 2gs , which is absent in the MF
limit (Appendix A).

C. Dynamics of few atoms for large K

For intermediate values of K , the dynamics of few atoms
looks rather chaotic, since many frequencies contribute to the
evolution. For large K , the transversely magnetized initial
state shows a fast oscillation, which is modulated by a beat
frequency, as in the three-atom case. The limiting dynamics
is obtained from a perturbative calculation: For 1/K ≈ 0, the
quadratic Zeeman energy is the dominant part of the Hamilto-
nian and thus we choose the number states |N+,N0,N−〉 as a
basis. The interaction energy is a small perturbation. In a first
step we approximate the eigenstates and energies up to first
order in λ = N/(8K). This is separately done for subspaces of
H with different magnetization Fz = M , since their evolution
is decoupled. The result and the representation of the initial
state |ζN 〉 (9) is inserted into Eq. (8). After neglecting terms of
order λ2,λ3, . . . , one obtains the time evolution

n′
0(t) = N − 1

2K(2N − 1)
cos[(2q − gs)t][cos(2gst)]

N−2. (17)

The amplitude of the oscillation is proportional to 1/K , as in
the two-particle and MF limiting cases (Fig. 2). The frequency
of the fast oscillation, which is approximately given by ≈2q,
is determined by the level spacing of Hq , which coincides
again with the two-particle (14) and MF results (A3). However,
different from these two limiting cases, the fast oscillation is
modulated by a beat frequency of 2gs .

Figure 4 shows the time evolution of seven atoms at
K = −5. The beat note is a clear signature that correlated spin
states contribute to the dynamics of few atoms. We believe
that the beat frequency can be observed in deep optical lattices
with few atoms at each lattice site, similar to the measurements
of Refs. [14,15]. The observation is facilitated by the fact
that the beat frequency is independent of the number of
particles.
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FIG. 4. (Color online) Evolution of seven atoms in the trans-
versely magnetized state for K = −5. The exact numerical calcu-
lation (dashed blue line) is compared to the first-order perturbative
evolution (17) (solid red line). The envelope function of (17) is drawn
as a dotted line.

Equation (17) is valid for rather large particle numbers. We
found excellent agreement with the initial evolution of <∼300
particles for K = −5 from a comparison with the numerical
results, although λ � 1 for these parameters.

IV. N-PARTICLE QUANTUM DYNAMICS VS
MEAN-FIELD DYNAMICS

One can show by means of the large-N method [36]
that the MF description of the spin system considered here
becomes exact in the TDL [37]. That means that the time
evolution of a coherent initial state is described by the MF
equations of motion in the TDL. Further, one of the ground
states of the system becomes a coherent state and its energy
can be calculated by minimizing the expectation value of
H on the MF phase space. Product states (A1) become
identical with coherent states in the limit N → ∞ and thus the
N -particle quantum dynamics of the initial states considered
here converges toward the MF solution in the TDL. In the
following we study the influence of the finite particle number
N on the quantum corrections to the MF dynamics.

A. Number state

The number state is a steady state of the MF equations of
motion for all values of the coupling strength K (Appendix A).
That makes it particularly useful to study corrections, which
go beyond the conventional MF dynamics, since quantum
spin fluctuations are strongly amplified in this initial
state [22,23,29].

1. Time evolution for zero K

At K = 0, the Hamiltonian consists only of the interaction
Hs , which has the total-spin states |F,M〉 as eigenstates. To
calculate the N -particle quantum dynamics, one needs the
representation of the occupation number operator n0 and
the initial state |θN 〉 in the total-spin basis {|F,M〉}. The
calculation is done in Appendix B . The evolution is given by

n0(t) =
∑
F

CF cos[gs(2F + 3)t], (18)
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FIG. 5. (Color online) (Top) Evolution of the number state with
N = 10, 50, 200 bosons at K = 0. The time scale is 2π/|gs |. (Bottom)
Evolution for N = 250, 500, 1000, 2000 bosons at K = 0. The
time scale is now TTDL = 2π/(|gs |N ) = 2π/(|c2|ρ). In the MF limit,
the number state is a steady state, and n0(t) = 1. With increasing
particle number N the population n0(t) decreases more slowly on the
time scale TTDL until it stays constant in the TDL.

where the coefficients CF are approximated by

CF ≈ F

N
exp

(
−1

2

F 2

N

)
(19)

for large particle numbers N (see Appendix B ). The dynamics
is periodic with 2π/|gs |, since all the frequencies in (18) are
multiples of gs . Figure 5 (top) shows a rapid oscillation on the
time scale 2π/|gs |, which seems to be in contradiction with
the MF result, since the number state is a steady state of the
MF equations of motion for all K . The time scale 2π/|gs |,
however, becomes infinite in the TDL, since 2πV/|c2| → ∞
for V → ∞. Thus, we need a time scale, which stays constant
in the TDL. A proper choice is given by

TTDL = 2π/(|gs |N ) = 2π/(|c2|ρ),

which is inversely proportional to the spin-dependent
interaction energy. By plotting the initial N -particle quantum
dynamics as a function of TTDL [Fig. 5 (bottom)] one sees
convergence toward the MF limiting behavior with increasing
particle number N . The numerical result is confirmed by the
analytical formulas: The distribution (19) has a maximum
around F = √

N and a width proportional to
√

N . Thus, the
only cosine oscillation, which contributes to the dynamics
(18) has zero frequency in the TDL, since

2
√

Ngs = 2c2ρ/
√

N → 0 (for N → ∞).
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FIG. 6. (Color online) Relative population of m = ±1 Zeeman
states, n± = 1 − n0, after t = 0.5TTDL as a function of −K . Beyond-
MF corrections are largest around K = −1 and decrease with
increasing particle number.

2. Time evolution for large K

A perturbative calculation with the small parameter λ =
1/(2K) leads to the first-order result

n′
0(t) = 4(N − 1)

K2(2N − 1)2
cos

{
2qt

[
1 + 2N − 3

K(2N − 1)

]}
.

As in the case of two particles the amplitude drops down
proportional to 1/K2 [compare with Eq. (15)] and the
frequency of the oscillation converges to 2q. Moreover,
the amplitude is proportional to 1/N and thus becomes zero
in the TDL.

3. Beyond-mean-field corrections in dependence of K

We finally analyze the corrections to the MF dynamics in
dependence of the coupling parameter K . For that reason,
we have numerically calculated the fraction of atoms in the
m = ±1 Zeeman states, n±(t) = 1 − n0(t), after a fixed time
t = 0.5TTDL as a function of −K . Figure 6 shows a resonant
enhancement of the m = ±1 population around K = −1. For
N = 1000 the relative population of the m = ±1 Zeeman
states is largest and the resonance maximum is slightly below
|K| = 1. With increasing particle number N the resonance
maximum decreases and its position converges to K = −1.

Beyond-MF corrections were analyzed in a similar way
in a recent experiment [22,23] and explained within the
Bogoliubov theory. Different from here, two resonances have
been observed there, which is due to the restricted motion of
the atoms to the ground state in our approach. However, on
the first resonance, the corresponding Bogoliubov mode has a
shape similar to that of the MF ground state, so our method
is applicable there. Indeed, in a large trap, both approaches
lead to the same value for the position of the first resonance,
namely, |q/(c2ρ)| = 1.

B. Transversely magnetized state

1. Time evolution for three different values of K

The transversely magnetized state shows a rich dynamics
in the MF limit [18,34]. Figure 7 shows the initial evolution
of N = 2000 atoms for three different coupling strengths. We
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FIG. 7. (Color online) Evolution of the m = 0 population for
2000 particles in the transversely magnetized state for different
coupling strengths: K = −0.1 (solid red line), K = −1 (dotted green
line), and K = −2 (dash-dotted blue line). The corresponding MF
evolution is drawn as a thin dashed line.

compare the exact N -particle quantum dynamics (thick lines)
to the corresponding MF evolution (thin dashed lines).

At small |K| (solid red line) one sees no difference between
the two solutions within the time 5TTDL. The evolution is
an ordinary cosine oscillation with amplitude A = K/4 and
frequency ω = 2c2ρ (→ period TTDL/2), which is determined
by the spin-dependent interaction energy (Appendix A).

In the opposite limit of large |K|, the MF evolution
(thin dashed blue line) is given by a cosine oscillation with
amplitude A = 1/(4K) and frequency ω = 2q [→ period
TTDL/(2K)]. The exact N -particle quantum dynamics (thick
dash-dotted blue line) oscillates with the same fast frequency of
2q. Moreover, the fast oscillation is modulated by the envelope
function of Eq. (17). The beat note vanishes in the TDL, since

[cos(2gst)]
N−2 ≈ 1 − 2(c2ρt)2

N
.

Despite the beat note, both oscillations coincide quite well for
times, which are smaller than 2TTDL.

At K = −1, the relative population of the m = 0 Zeeman
state converges toward 1 in the MF limit (thin dashed green
line). The amplitude becomes maximal with A = 1/4 and the
oscillation period diverges. The period of the exact N -particle
quantum evolution (thick dotted green line) is enhanced, but
still finite. Moreover, the green solid curve does not converge
toward 1, but rather oscillates around 0.82. Note that the
evolution is coherent and exhibits a revival, although the initial
dynamics seems to be strongly damped and to converge
toward a constant value. At K = −1, one observes the largest
deviations from the MF dynamics. The initial evolutions
coincide only for times, which are smaller than TTDL/2. A
similar observation was made in the experiment [18,19].

2. Beyond-mean-field corrections in dependence of K

Figure 8 shows plots of the oscillation period against the
coupling strength −K for different particle numbers and the
MF limit. In the MF limit, the oscillation period was obtained
from the analytical solution (Appendix A), while in the other
cases, the period is 2 times the position of the first maximum
of the initial oscillation.
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FIG. 8. (Color online) Oscillation period of the initial evolution
in dependence of −K . For small and large |K|, the N -particle and
MF period are in good agreement. In the vicinity of K = −1, the
period is strongly enhanced in systems with large particle numbers.
The enhancement of the oscillation period is absent in small systems
with less than 20 particles.

One sees that the N -particle oscillation period coincides
quite well with the MF period in the limit of small and
large |K|, for all particle numbers. In the resonance region
around K = −1, the deviations are quite large for small
particle numbers; see the curves for N = 2, 20, and 50. With
increasing particle number, the N -particle period coincides
almost everywhere with the MF limit, except in a small region
around K = −1, which shrinks to zero in the TDL; see the
curves for N = 300 and 2000. However, exactly on resonance
at K = −1, the deviation from the MF limit is always infinitely
large for finite particle numbers N .

The enhancement of the oscillation period is a typical
feature of the spin systems with large particle numbers. One
clearly sees the first occurence of a weak maximum for
N = 20, which becomes rather pronounced for N = 2000.
For particle numbers smaller than ≈20, the maximum is
absent. One further sees that the position of the resonance
maximum rapidly approaches 1 from below with increasing
particle number N .

The enhancement of the oscillation period has been ex-
perimentally observed in an antiferromagnetic spin-2 87Rb
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FIG. 9. (Color online) Initial evolution of the relative population
of the m = 0 Zeeman state on resonance (K = −1) for different
particle numbers N compared to the MF limit.
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FIG. 10. (Color online) Position of the first oscillation maximum
against the number of particles N on resonance (|K| = 1).

BEC [18] and, for a similar initial state, in a spin-1 23Na
BEC [19]. The large differences between the exact N -particle
quantum dynamics and the MF evolution close to the critical
coupling strength at |K| = 1 due to finite-N corrections may
be relevant for studies of quantum chaos [38,39].

3. Limit for the validity of the mean-field dynamics

We conclude from the previous discussion that the conver-
gence to the MF limiting dynamics in systems with a finite
number of particles is slowest at |K| = 1 (see Figs. 6–8).
Hence, we study now how fast the oscillation period converges
toward infinity at the critical value of |K| = 1, since this
worst-case scenario provides us with the smallest upper bound
for the validity of the MF approximation.

Figure 9 shows the initial evolution of the relative popula-
tion of the m = 0 Zeeman state at K = −1 for N = 50−2000
particles. As expected, the initial evolution coincides with the
MF dynamics for longer times, when the particle number is
increased. One sees that the N -particle quantum dynamics is
close to the MF evolution for times, which are smaller than the
position of the first oscillation maximum.

Hence, we plot in Fig. 10 the position of the first
oscillation maximum against the number of particles on a
logarithmic scale. One finds a logarithmic dependency of the
validity time TK (N ) of the MF approximation on the number
of particles

TK=−1(N ) = TTDL[0.13 + 0.09 log10(N )],

TK=1(N ) = TTDL[0.18 + 0.09 log10(N )].

Thus, for a spin-1 BEC of 106 atoms and a negative coupling
parameter, K < 0, one finds the MF dynamics to be valid for
times, which are smaller than ≈0.67TTDL.

V. CONCLUSIONS AND OUTLOOK

We studied the quantum spin dynamics of ultracold spin-1
atoms within the SMA. This was done on the basis of an exact
diagonalization of the effective many-body spin Hamiltonian
[9]. The chosen method allowed us to discuss the crossover
from few atoms to small condensates within one framework.

Our numerical calculations showed convergence of the
quantum spin dynamics toward the MF dynamics in the TDL

for all strengths of the spin-dependent interaction. Moreover,
we showed that quantum corrections to the MF dynamics
are particularly large at the critical value of the coupling
parameter, where the spin-changing collisional energy equals
the quadratic Zeeman energy. For the state, where all the
atoms are in the m = 0 sublevel, we compared the initial
quantum spin dynamics to results obtained from a Bogoliubov
approximation [22,23,29]. For the transversely magnetized
state we estimated the validity time of the initial MF dynamics
at the critical value of the coupling parameter, which grows
logarithmically with the number of particles. From this
estimate we conclude that quantum corrections to the MF
dynamics may play an important role in experiments with
spinor BECs. It would be interesting to study systematically
the dependency of the spin dynamics on the particle number
in future experiments.

Quantum corrections to the MF spin dynamics are particu-
larly large in the regime of few atoms. Here, many-body spin
correlations lead to a beat-note phenomenon at large magnetic
fields. The regime of few atoms (N ∼ 10) should be accessible
in deep optical lattices.

Our results may be relevant for the study of quantum chaos.
It was shown [38] that the strong nonlinear behavior of the MF
equations at the critical value of the coupling parameter leads to
classical chaos in the spin dynamics of spin-2 atoms. However,
exactly at this point, the finite-N quantum dynamics largely
deviates from the classical limit. It would be interesting to
study this aspect systematically, similar to the work in Ref. [39]
on a periodically driven double-well system.
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APPENDIX A: MEAN-FIELD DYNAMICS

One assumes in the MF approach that the system is in a
product state of the form

(α+|+〉 + α0|0〉 + α−|−〉)⊗N (A1)

with αm being complex numbers, which are normalized
according to

∑
m |αm|2 = 1. For the states (A1) and the

Hamiltonian (1), one derives the MF equations of motion [34],

i∂tα+ = gsN (A∗α0 + 〈fz〉α+) + qα+,

i∂tα0 = gsN (Aα+ + A∗α−), (A2)

i∂tα− = gsN (Aα0 − 〈fz〉α−) + qα−,

where we have defined A = 〈f+〉/√2 = (α∗
+α0 + α∗

0α−) and
〈fz〉 = (|α+|2 − |α−|2).

The number state |0,N,0〉 = |0〉⊗N is a steady state of (A2),
since

α0(t) = 1, α±(t) = 0
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is a solution of the MF equations of motion (A2) for all values
of gs and q. Thus, this state shows no population dynamics in
the MF limit and n0(t) = |α0(t)|2 = 1.

The time evolution of the transversely magnetized state∣∣ζ y

N

〉 = (−1/2|+〉 − i/
√

2|0〉 + 1/2|−〉)⊗N

is calculated in Refs. [34,35]. In this state, all the spins are
pointing in the positive y direction. The solution of the MF
Eqs. (A2) is given in terms of Jacobi elliptic functions [40]

α±(t) = ∓ s

2

[
cnk

(
qt

2

)
dnk

(
qt

2

)
1 − ksn2

k

(
qt

2

) − i(1 + k)snk

(
qt

2

)
1 + ksn2

k

(
qt

2

)
]

,

α0(t) = s√
2

[
(1 − k)snk

(
qt

2

)
1 − ksn2

k

(
qt

2

) − icnk

(
qt

2

)
dnk

(
qt

2

)
1 + ksn2

k

(
qt

2

)
]

,

where s = exp[−i(gsN − q)t/2] and k = 1/K . For the spin
populations nm(t) = |αm(t)|2 the solution simplifies to

n0(t) = [
1 − ksn2

k(qt)
]/

2,
(A3)

n±(t) = [
1 + ksn2

k(qt)
]/

4.

These solutions are also valid for the initial state |ζN 〉, which
is used here, since the evolution of the relative populations nm

is unaffected by rotations around the z axis.
For small k = 1/K , one can approximate snk(x) ≈ sin(x)

and Eq. (A3) becomes

n0(t) ≈
(

1

2
− 1

4K

)
+ 1

4K
cos(2qt) (large K).

That means the evolution is a cosine oscillation with amplitude
A = 1/(4K) and frequency ω = 2q.

For large k = 1/K , we approximate snk(x) ≈ sin(kx)/k,
which leads to

n0(t) ≈
(

1

2
− K

4

)
+ K

4
cos(2c2ρt) (small K).

That means, in the interaction-dominated regime, the oscilla-
tion amplitude is A = K/4 and the frequency is ω = 2c2ρ.

At |K| = 1, the evolution becomes aperiodic and the
relative m = 0 population asymptotically approaches 1; that is,
n0(t) → 1 for t → ∞. Here the dynamics exhibits a maximum
of the amplitude and the oscillation period diverges.

APPENDIX B: QUANTUM DYNAMICS OF THE NUMBER
STATE AT ZERO K

In the following, we derive the population dynamics of
the number state at zero K . In this limiting regime, the
Hamiltonian consists only of the interaction Hs , which has
the eigenbasis {|F,M〉}. The occupation number operator N0

and the initial state |θN 〉 need to be expressed in this basis to
calculate the dynamics. The expansion of |θN 〉 is given by

|θN 〉 = |0,N,0〉 =
N∑

F=Fmin,�F=2

χF |F,0〉. (B1)

Since |θN 〉 has the Fz eigenvalue M = 0, it is a superposition
of the states |F,M = 0〉. Due to symmetry reasons, the
summation runs over F = Fmin,Fmin + 2, . . . ,N , with Fmin =
0 or 1 if N is even or odd, respectively [33]. The coefficients

χF are determined later. By inserting the expansion (B1) into
Eq. (8) the evolution becomes

n0(t) =
∑
F,F ′

χF χF ′ 〈F,0|N0|F ′,0〉 cos[(ωF − ωF ′ )t]/N, (B2)

with the frequencies ωF = gs

[
F (F + 1) − 2N

]
. The ma-

trix elements 〈F,0|N0|F ′,0〉 are calculated in the
following.

The occupation number operator N0 can be written in terms
of spherical tensor operators

N0 = 1

3
N −

√
2

3
T

(2)
0 ,

where T
(2)

0 is the zeroth component of the one-particle
spherical tensor operator T (2)

q of rank 2. Its five components
are

T
(2)
±2 = a

†
±a∓, (B3)

T
(2)
±1 = 1√

2
(a†

0a∓ − a
†
±a0),

(B4)

T
(2)

0 = 1√
6

(a†
+a+ − 2a

†
0a0 + a

†
−a−).

N is proportional to the identity matrix and thus its matrix
elements are

〈F,0|N |F ′,0〉 = NδFF ′ .

From the Wigner-Eckart theorem one finds that the matrix
elements 〈F ′,M ′|T (2)

0 |F,M〉 vanish for |F − F ′| > 2. The
nonzero matrix elements of T

(2)
0 are

〈F,0|T (2)
0 |F,0〉 and 〈F + 2,0|T (2)

0 |F,0〉.
The Wigner-Eckart theorem allows one to calculate the
matrix elements of T

(2)
0 from a special class of matrix

elements,

〈F + q,0|T (2)
0 |F,0〉 = 〈F,2; 0,0|F + q,0〉

〈F,2; −F, − q|F + q, − F − q〉
× 〈F + q, − F − q|T (2)

−q |F, − F 〉,
(B5)

for q = 0,2. The brackets 〈f1,f2; m1,m2|f ′,m′〉 are the
Clebsch-Gordan coefficients (CGCs). Equation (B5) simplifies
the calculation, since the states |F, − F 〉 have a rather simple
representation in the occupation number basis,

|F, − F 〉 = cF (a†
−)F [a†

+a
†
− − (a†

0)2/2]
N−F

2 |0,0,0〉, (B6)

with the normalization constant

1

c2
F

=
N−F

2∑
k=0

(N−F
2

k

)2
k!(k + F )!(N − F − 2k)!

2N−F−2k
. (B7)

After inserting Eqs. (B3), (B4), and (B6) and the required
CGCs into Eq. (B5), a lengthy calculation leads to the nonzero
matrix elements

〈F,0|T (2)
0 |F,0〉 = 1√

6

(
3F − 2N + 6

c2
F

d2
F

)
F + 1

2F − 1
(B8)
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and

〈F + 2,0|T (2)
0 |F,0〉

=
√

3

2

cF

cF+2

N − F

2

√
(F + 1)(F + 2)

(2F + 1)(2F + 3)
, (B9)

where

1

d2
F

=
N−F

2∑
k=0

k

(N−F
2

k

)2
k!(k + F )!(N − F − 2k)!

2N−F−2k
. (B10)

The coefficients χF of the expansion (B1) can be calculated
by means of Eq. (B6). Using

|F,0〉 = 1/
√

(2F )!(F+)F |F, − F 〉, (B11)

we obtain

χF = 〈F,0|0,N,0〉 = 〈F, −F |(F−
)F |0,N,0〉/

√
(2F )!

= cF

(
−1

2

) N−2F
2

√
N !

(
2F

F

)−1

. (B12)

The evolution is obtained by inserting Eqs. (B8)–(B12) into
Eq. (B2). Only terms with |F − F ′| = 2 lead to nonconstant
contributions to the evolution:

n0(t)′ =
N−2∑

F=Fmin,�F=2

CF cos[gs(2F + 3)t],

with frequencies gs(2F + 3) = ωF+2 − ωF and amplitudes

CF = (N − F )c2
F (N − 1)!

(
1

2

)N−2F

×
√(

2F

F

)−1(2F + 4

F + 2

)−1 (F + 1)(F + 2)

(2F + 1)(2F + 3)
. (B13)

The amplitudes (B13) can be approximated for large N . The
most involved part is the approximation of cF . The factorials
in (B7) can be written as binomial coefficients,

k!(k + F )!(N − F − 2k)! = N !

[(
N

ϑ

)(
ϑ

ϑ−F
2

)]−1

,

where ϑ = 2k + F . We obtain from (B7)

1

c2
F

=
N∑

ϑ=F,�ϑ=2

N !

2N−ϑ

(N−F
2

ϑ−F
2

)2 [(
N

ϑ

)(
ϑ

ϑ−F
2

)]−1

. (B14)

The terms with ϑ ≈ N dominate the sum in (B14). The
approximation

1

2n

(
n

k

)
≈ 1√

2π
√

n/4
exp

[
−1

2

(k − n/2)2

n/4

]
(B15)

holds for large n. Applying this to ( ϑ

(ϑ−F )/2 ) gives

1

c2
F

≈
N∑

ϑ=F

N !

2N

√
πϑ

2

(N−F
2

ϑ−F
2

)2(
N

ϑ

)−1

exp

(
F 2

2ϑ

)
. (B16)

Further, we approximate ϑ = N in the exponential and the
square root of (B16). The exponential dependence on F 2 shows
that cF is negligible for F ≈ N . Thus, we assume F 	 N

in the following. The binomials in (B16) are expanded into

factorials and approximated using (n − k)! ≈ n!/nk for n �
k: (N−F

2
ϑ−F

2

)2(
N

ϑ

)−1

≈
(

N − F

2N

)N−ϑ (
N − ϑ

N−ϑ
2

)
. (B17)

We apply (B15) to the right-hand side of (B17):

(1

2

)N−ϑ
(

N − ϑ
N−ϑ

2

)
≈

√
2

π (N − ϑ)
. (B18)

Further, for F 	 N , one gets to first order:(
N − F

N

)N−ϑ

≈ exp

(
−F (N − ϑ)

N

)
. (B19)

We insert the approximations (B17)–(B19) into (B16) and
approximate the sum by an integral,

1

c2
F

≈ e−F eF 2/(2N) N !

2N

1

2

∫ N

F

dϑ

√
N

N − ϑ
eF ϑ

N ,

where an additional factor 1/2 accounts for the step size of 2
in the sum. The integral has the value

∫ N

F

dϑ

√
N

N − ϑ
eF ϑ

N = −N

√
π

F
eF erf

(√
F (N − ϑ)

N

)
,

(B20)

with the error function erf(x). Inserting the upper limit N of
the integral into (B20) leads to erf(0) = 0. With F 	 N , the
lower limit F gives erf(

√
F ) ≈ 1 for F � 5 and thus

1

c2
F

≈ N !

2N

√
π

2

N√
F

exp

(
1

2

F 2

N

)
. (B21)

The maximum of (B21) is at F = √
N/2. The Gaussian

exp(−F 2/N ) has a width of
√

N/2, which is an upper bound
for the width of cF . Now we approximate the other terms in
(B13). Since F ≈ √

N for the dominant contributions,√(
2F

F

)(
2F + 4

F + 2

)
≈

(
2F

F

)
≈ 22F

√
1

πF
, (B22)
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FIG. 11. (Color online) Exact amplitudes CF [(B13) blue crosses]
of 2000 atoms compared to the approximation [(B24) red line].
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where we used (B15) in the last step. For 1 	 F 	 N , the
remaining factors become

N − F

N

√
(F + 1)(F + 2)

(2F + 1)(2F + 3)
≈ 1

2
. (B23)

Inserting (B21)–(B23) into (B13) leads to

CF ≈ F

N
exp

(
−1

2

F 2

N

)
. (B24)

The approximation (B24) and the exact amplitude (B13) are
compared for 2000 atoms in Fig. 11.
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