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Ground-state properties of few dipolar bosons in a quasi-one-dimensional harmonic trap
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We study the ground state of few bosons with repulsive dipole-dipole interaction in a quasi-one-dimensional
harmonic trap by means of the exact diagonalization method. Up to three interaction regimes are found, depending
on the strength of the dipolar interaction and the ratio of transverse to axial oscillator lengths: a regime where
the dipolar Bose gas resembles a system of weakly δ-interacting bosons, a second regime where the bosons are
fermionized, and a third regime where the bosons form a Wigner crystal. In the first two regimes, the dipole-dipole
potential can be replaced by a δ potential. In the crystalline state, the overlap between the localized wave packets is
strongly reduced and all the properties of the boson system equal those of its fermionic counterpart. The transition
from the Tonks-Girardeau gas to the solidlike state is accompanied by a rapid increase of the interaction energy
and a considerable change of the momentum distribution, which we trace back to the different short-range
correlations in the two interaction regimes.
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I. INTRODUCTION

Ultracold atoms and molecules with large permanent dipole
moments are currently attracting much interest, since they
allow realization of quantum gas systems with long-range
interactions. Major steps into this direction have already been
done. References [1,2] reported strong dipolar effects in a
Bose-Einstein condensate (BEC) of 52Cr, which possesses
a large permanent magnetic dipole moment of comparable
strength as the usual δ interaction. Even more promising are
ultracold molecules of two different atomic species, since they
have much larger permanent electric dipole moments [3]. They
have already been produced by means of radio-frequency
(rf) spectroscopy [4] and brought into the lowest internal
vibrational ground state by means of a stimulated Raman
adiabatic passage [5,6]. What remains is to cool these gases
down into the quantum degenerate regime.

Many new effects have been predicted for ultracold quan-
tum gases with dipole-dipole interactions (DDIs), which are
based on the long range and anisotropy of the DDI. Among
others, we mention the stabilization of a dipolar BEC in
a pancake-shape trap [7], the roton-maxon character of the
excitation spectrum [8], new exotic quantum phases in optical
lattices [9–11], and the transfer of spin into angular momentum
similar to the Einstein–de Haas effect in ferromagnets [12,13].
Apart from that, the shape and strength of the intermolecular
interactions may be controlled by means of static electric and
microwave fields [10], and even three-body interactions may
be realized in optical lattices [11]. Moreover, novel quantum
computation schemes are proposed with ultracold dipolar
molecules [14–16].

In this article, we discuss different interaction regimes of
a quasi-one-dimensional (1D) dipolar Bose gas, in which the
permanent dipole moments are aligned by an external field,
such that the effective 1D DDI is repulsive. Thus far, theoretical
studies of 1D dipolar bosons found correlations [17,18] beyond
those in a Tonks-Girardeau (TG) gas [19–21] and excitations
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[22–24], which can be described within the Luttinger liquid
framework [25]. We show that the 1/|x|3 potential used in
these references, which is valid in traps of zero transverse
width, gives rise to an infinitely strong δ peak at equal particle
positions, even for the infinitesimal strength of the DDI, due
to its singular behavior at x = 0. Hence, the 1D Bose system
forms a TG gas for very weak interactions [17,18,22]. We use
a 1D DDI potential that accounts for the finite width of the trap
and is hence finite at x = 0 [26]. We show that this potential
acts like a δ peak of finite strength, when the trap anisotropy is
large. This allows for a regime of weakly δ-interacting bosons
below the TG regime. In the different interaction regimes,
we analyze the contributions to the total energy, the particle
density, the momentum, and occupation number distribution
of the particles in the harmonic trap. Different features of the
momentum distribution and the associated kinetic energy are
related to the correlations between the particles.

II. MODEL HAMILTONIAN

We consider electric or magnetic dipoles, which are aligned
in the x-z plane by an external field (see Fig. 1). The DDI
between two point-like dipoles is modeled by

Vdd(�r) = d2

r3
(1 − 3 cos2 θrd ), (1)

where d2 is the strength of the DDI and cos θrd = �r · �d/(rd).
The coupling strength between two permanent electric dipole
moments is given by d2 = (D̃ debye)2/(4πε0), where D̃

is the dipole moment in debyes and ε0 is the electric constant.
In the case of permanent magnetic dipole moments, d2 =
µ0g

2
Lµ2

B/(4π ), where µ0 is the magnetic constant, gL is the
Landé factor, and µB is the Bohr magneton. In the following,
we neglect the short-range van der Waals interaction [26,27].

The dipoles are enclosed in a cigar-shaped harmonic trap,
which may be generated by a deep optical lattice [20]:

Vtrap(�r) = m

2
[ω2x2 + ω2

⊥(y2 + z2)].
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FIG. 1. (Color online) Dipoles �d , which are oriented within the
x-z plane and which enclose an angle θ with the x axis.

Here, ω and ω⊥ are the trap frequencies of the axial and
perpendicular directions, respectively, and ω � ω⊥. Under
the condition that the energy per particle of the axial di-
rection is much smaller than the transverse level spacing
h̄ω⊥, one can assume that the particles stay in the ground
state of the transverse harmonic oscillator, exp[−(y2 + z2)/
(2l2

⊥)]/(l⊥
√

π ) with l⊥ = √
h̄/(mω⊥). Integration over the

transverse directions yields the effective 1D DDI [26]

Vdd (x) = UddṼdd (|x|/l⊥), (2)

with

Udd = −d2[1 + 3 cos (2θ )]

8l3
⊥

(3)

and

Ṽdd (u) = −2u +
√

2π (1 + u2)eu2/2erfc (u/
√

2), (4)

where erfc is the complementary error function. An explicit
calculation of Eqs. (2)–(4) is done in Appendix. The dimen-
sionless DDI potential Ṽdd(|x|/l⊥) is plotted in Fig. 2. The
second-quantized many-particle Hamiltonian is then

H = h̄ω
∑

i

(
i + 1

2

)
a
†
i ai + 1

2
Udd

∑
ijkl

Ĩijkla
†
i a

†
j alak, (5)
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FIG. 2. (Color online) Dimensionless DDI potential Ṽdd(|x|/l⊥)
for l⊥ = 0.4 l (blue) and l⊥ = l (red). Ṽdd is finite at the origin and
becomes more peaked for smaller l⊥. At large distances, Ṽdd ∝ 1/|x|3.

where a
†
i (ai) are bosonic creation (annihilation) operators for

one particle in energy eigenstate φi(x) of the axial harmonic
oscillator and where

Ĩijkl =
∫ ∞

−∞
dxdx ′φi(x)φj (x ′)Ṽdd (|x − x ′|/l⊥)φk(x)φl(x

′)

are dimensionless interaction integrals. These integrals are in-
tegrated numerically for different l⊥. The Hamiltonian matrix
(5) is diagonalized in the subspace of the energetically lowest
eigenstates of the noninteracting many-particle problem.

III. DISCUSSION OF THE EFFECTIVE 1D DDI

We solve numerically the many-body Schrödinger equation
with the interaction of Eqs. (2)–(4), but to gain some intuitive
understanding let us first analyze the interaction potential. The
DDI strength Udd, as defined in (3), is negative for angles
between 0 � θ < θcrit. with θcrit. = arccos(1/

√
3) and positive

for θcrit. < θ � π/2. For θ = 0, the 1D DDI is maximally
attractive with Udd = −d2/(2l3

⊥), and for θ = π/2, it is
maximally repulsive with Udd = d2/(4l3

⊥). In the following,
we restrict the discussion to the repulsive case Udd > 0.

From a Taylor expansion of (4) around infinity, one finds
that Ṽdd (u) → 4/u3 for u → ∞. Thus, for large distances
|x| 	 l⊥, the effective 1D DDI is given by

Vdd (x) ≈ Ulr/|x/l|3,
with the long-range interaction strength Ulr = 4λ3Udd, where
λ = l⊥/l. On the other hand, Fig. 2 suggests that Vdd(x)
becomes a δ peak for small l⊥. Indeed, one finds∫ ∞

−∞
dx

1

4l⊥
Ṽdd (|x|/l⊥) = 1,

which leads us to the definition δl⊥ = Ṽdd(|x|/l⊥)/(4l⊥). We
define the width of the δl⊥ function according to

wl⊥ = 2
√

2πl⊥ ≈ 5l⊥,

which is justified by the observation that∫ √
2πl⊥

−√
2πl⊥

dx
1

4l⊥
Ṽdd (|x|/l⊥) ≈ 90%.

Hence, the series of δl⊥ functions converges toward a δ peak
when l⊥ approaches zero; that is, δl⊥ → δ for l⊥ → 0. We
conclude that at short distances |x| <∼ 2.5l⊥

Vdd (x) ≈ 4l⊥Udd δ(x) = Usr δ̃(x),

with Usr = 4λUdd and δ = δ̃/ l. It follows that the strengths of
the short- and long-range parts of the 1D DDI scale differently
with the trap anisotropy 1/λ,

Usr = Ulr/λ
2,

which means that the short-range part of the interaction is
strongly enhanced by a tight transverse confinement compared
to the long-range part. Particularly in the limit λ = 0, the
effective 1D DDI is not only given by Ulr/|x/l|3 at x �= 0,
but there is an additional infinitely strong δ peak at x = 0.
Consider, for example, the situation of a rather small Ulr =
0.1 h̄ω and a trap anisotropy of 1/λ = 10. Then, the strength
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of the δ peak is Usr = 10 h̄ω, which is already so large that
bosons form a TG gas.

This decomposition of the 1D DDI is valid as long as
the ground state is a slowly varying function along the axial
direction on the transverse length scale l⊥. In the following,
we fix the trap anisotropy according to 1/λ = 50 so that
this condition is always fulfilled. This corresponds to the
maximal trap anisotropy, which has been achieved in the
experiment of Kinoshita et al. [20], where ω = 2π 27.5 Hz
and max(ω⊥) = 2π 70.7 kHz, leading to max(1/λ) = 50.7.

In Sec. IV, we perform a sweep of Udd, which can be
done by changing the angle θ between arccos(1/

√
3) and

π/2. As mentioned before, we neglected the short-range van
der Waals interaction, since we are interested in a study of
the effect of the 1D DDI alone. These relations, which we
derived within the single-mode approximation, are true as
long as ldd >∼ l⊥ [26], where ldd = d2m/h̄2. By taking 40K87Rb
polar molecules with an electric dipole moment of 0.6 debye
and ω⊥ = 2π 70.7 kHz, the condition is fulfilled for θ >∼ 1.
However, weak dipole moments may largely influence the 1D
scattering in the regime l⊥ 	 ldd, which was shown in a theory
that accounts for the short-range van der Waals interaction and
goes beyond the single-mode approximation [26]. To study
the effect of the 1D DDI alone in that regime, one may tune
g1D to zero using a Feshbach resonance for fixed θ and ω⊥
and change ω. An increase of ω, for example, would decrease
Usr/(h̄ω) and increase Ulr/(h̄ω).

IV. RESULTS

Let us now turn to our results for four particles obtained
by means of a numerical diagonalization of (5). Figure 3
shows the contributions to the total energy as a function of Ulr

(lower scale) and Usr (upper scale), respectively, in a double
logarithmic plot for a trap anisotropy of 1/λ = 50. Both scales
are related to each other through Usr = Ulr/λ

2. Shown are
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FIG. 3. (Color online) Contributions to the total energy of four
particles as a function of Ulr (lower scale) and Usr (upper scale),
respectively, in a double logarithmic plot for a trap anisotropy of
1/λ = 50. Dipolar (solid) bosons are compared to δ-interacting
bosons (dash-dotted) and dipolar fermions (dotted). The shaded
background marks the TG regime, where the bosons fermionize.

the energies of bosons with DDI (solid) and δ interaction
(dash-dotted) and of fermions with DDI (dotted). One sees
that all energy contributions of bosons with DDI agree with
those of δ-interacting bosons for Ulr <∼ 0.1 h̄ω; that is, in this
region the bosons feel only the short-range δ part of the DDI.
Hence, it is more illuminative to use the upper scale here.
The transition behavior in this interaction regime has been
discussed in Ref. [28] (for other trap geometries, see [29,30]):
The system evolves from a weakly interacting quasi-BEC via
an intermediate regime to a TG gas. Already at Usr ≈ 10 h̄ω,
the bosons are fermionized, which is indicated by a saturation
of the total energy. In the yellow region, the system does not
react to a further increase of the interaction strength, which
shows that the bosons do not feel the long-range part of the
DDI, which is of the order of Ulr at distance l. However, when
the DDI is increased above the critical value Ulr >∼ 0.1 h̄ω, the
fermionized bosons are further pushed apart from each other
by the long-range 1/|x|3 tail of the DDI. An obvious signature
of these beyond-TG correlations is the rapid increase of the
interaction energy, indicating that the 1/|x|3 tail of the DDI
has significant overlap with the many-body wave function.
Clearly, since the bosons are fermionized, all the energy
contributions coincide with those of fermions with DDI in this
region.

Another interesting aspect concerns the kinetic energy,
which decreases in the 1/|x|3-tail-dominated regime, while all
the other energy contributions grow with increasing repulsion.
We attribute this behavior to the short-range correlations of the
wave function, which can be approximated by [24]

ψ(x1, . . . ,xN ) ∝
∏
i<j

|xi − xj |1/K
∏
k

e−x2
k /(2l). (6)

In the TG regime, the Luttinger exponent is K = 1, which
leads to a large gradient of the many-body wave function at
xi = xj . This gives rise to a rather large kinetic energy in these
regions of the configuration space. With increasing long-range
interactions, the Luttinger exponent decreases, K < 1 [18],
which diminishes the gradient and hence the kinetic energy
at xi = xj . For even stronger long-range interactions, the
many-body wave function can alternatively be approximated
by localized Gaussian-like wave packets [17,24]. As can be
seen in Fig. 4, the repulsion between the bosons mainly
increases the distance between the center points of the wave
packets, which has no influence on the kinetic energy. Hence,
we expect a saturation of the kinetic energy for very strong
repulsion, which eventually becomes negligible compared to
the other energy contributions; see Fig. 3.

The main message of Fig. 3 is the distinction of three
interaction regimes. In the left region, the bosons feel a δ

potential of finite strength; in the middle region, the bosons
feel an infinitely strong δ potential and thus fermionize; and
in the right region, the system is dominated by the long-range
1/|x|3 part of the DDI. The right boundary of the middle
region is independent of the trap anisotropy 1/λ, but the left
boundary moves to the left when 1/λ is increased, and in the
limit 1/λ = ∞, the left region is absent. On the other hand,
for very low trap anisotropies, the width of the middle region
shrinks to zero. In Fermi systems, the left interaction regime
is absent, since fermions do not feel the δ part of the DDI.
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FIG. 4. (Color online) Density of four particles for different
interaction strengths. With increasing repulsion, the particles localize
due to the long range of the interaction. For the shown values of Ulr,
the densities of fermions and bosons are equal, since the bosons are
fermionized.

Since the two δ-interaction-dominated regimes have al-
ready been discussed in Ref. [28], we concentrate in the
following on the 1/|x|3-tail-dominated regime. Figure 4
shows localization of the particles with increasing long-range
interaction. In the TG regime, the particles are rather close
together, and the minor oscillations visible in the top left
density of Fig. 4 disappear for large particle numbers N . With
increasing long-range interaction, the density resembles four
overlapping localized wave packets, which move apart from
each other. The equilibrium positions of the wave packets
minimize the potential and interaction energy (the kinetic
energy is negligible). Occurrence of this quasiordered state
was identified in the homogeneous system by means of the
correlation function [17] and the static structure factor [18].

Particularly interesting is the momentum distribution
(Fig. 5), which is different for bosons and fermions in the
TG regime (in contrast to the energies and densities). One sees
that both distributions become equal for strong long-range
repulsion. This reveals that the statistics of the particles
become unimportant if there is no significant overlap between
the wave packets of the individual particles.

In the TG regime (Fig. 5, top left), the bosonic momentum
distribution exhibits a high zero-momentum peak and long-
range high-momentum tails (this is more clearly visible in
Ref. [28]). The high-momentum tails originate from the
cusps in the TG wave function at xi = xj [31,32]. Note
that although the bosonic and fermionic distributions are
markedly different in the TG regime, their kinetic energy
Ekin. = ∫

dpp2ρ(p)/(2m) is equal. This shows that the high-
momentum tails (and hence the short-range correlations)
contribute significantly to the kinetic energy.

With increasing repulsion, the zero-momentum peak of
the bosonic distribution significantly decreases and the high-
momentum tails vanish, which indicates a redistribution from
low and high toward medium momenta. Finally, for very strong
repulsion (Fig. 5, bottom right), the bosonic and fermionic
distributions are only marginally different. The broad Gaussian
distribution of the crystalline state is essentially the Fourier
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FIG. 5. (Color online) Momentum distribution of four particles
for different strengths of Ulr. The top left figure shows the momentum
distribution of noninteracting fermions and fermionized bosons,
which are different. For very strong repulsion, the distributions of
fermions and bosons become equal. For Ulr = 32 h̄ω, the momentum
distributions are the Fourier transform of the localized wave packets
of the bottom right particle density of Fig. 4.

transform of the wave packets of Fig. 4, like in the Mott
insulator phase in an optical lattice [33].

We close our discussion with Fig. 6, which shows the
occupation number distribution of the 1D harmonic oscillator
states. As in the case of the momentum distribution, one sees
that the bosonic and fermionic distributions become equal for
strong long-range repulsion. For Ulr = 32 h̄ω, the distribution
exhibits two features: a sharp peak with a maximum population
of the first excited harmonic oscillator state and a broad
distribution over the states i = 3 − 14 with a maximum at
i = 7. The broad maximum shifts to larger i when Ulr is further
increased.
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FIG. 6. (Color online) Occupation number distribution of four
particles in the 1D harmonic oscillator states for different val-
ues of Ulr. The top left figure shows clear differences between
fermionized bosons and noninteracting fermions. With increas-
ing repulsion, the distributions of fermions and bosons become
equal.
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V. CONCLUSIONS

We analyzed several microscopic ground-state properties
of few dipolar bosons in a 1D harmonic trap. The interaction
between the bosons was modeled by a 1D potential, which
was obtained from the three-dimensional DDI potential by an
integration over the transverse directions within the single-
mode approximation. For large-trap anisotropies, the 1D DDI
acts on the ground state like the sum of a short-range δ

and a long-range 1/|x|3 potential. Depending on the relative
strength of both contributions, the system forms a weakly
interacting quasi-BEC, a TG gas, or a solidlike state of
particles, which are localized due to the strong long-range
repulsion.

The transition from the TG gas to the solidlike state was
clearly visible in the momentum distribution. With increasing
interaction, one observes a redistribution from low and high
toward medium momenta. The disappearance of the high-
momentum tails (and hence the short-range correlations) is
responsible for the decrease of the kinetic energy. For very
strong repulsion, the momentum distribution has a broad
Gaussian shape and is essentially the Fourier transform of
the localized wave packets. In contrast to the kinetic energy,
the interaction and the potential energy grow rapidly with
increasing repulsion in the solidlike state.

We remark that for weak dipolar interactions one has to
consider scattering effects beyond the single-mode approxi-
mation [26]; see the discussion at the end of Sec. III. Hence,
one may use Feshbach resonances in order to enter the regime
of weak interactions in a controlled way.
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APPENDIX: CALCULATION OF THE 1D DDI

It is assumed that the particles reside in the ground
state of the transverse directions. The effective 1D DDI is
given by

Vdd (x1 − x2)

=
∫

dy1dy2dz1dz2Vdd (�r1 − �r2)φ2
0(y1)φ2

0(y2)φ2
0(z1)φ2

0(z2),

with φ0(u) = exp[−u2/(2l2
⊥)]/

√
l⊥

√
π and Vdd (�r1 − �r2) given

by Eq. (1). We introduce relative and center-of-mass co-
ordinates �r1/2 = �R ± �r/2 and perform the integration over
Y and Z:

Vdd (x) = 1

2πl2
⊥

∫
dydzVdd (�r)e−(y2+z2)/(2l2

⊥).

In cylindrical coordinates �r = (x,y,z) = (x,ρ cos φ,ρ sin φ),
the integral becomes

Vdd (x) = 1

2πl2
⊥

∫
dφdρVdd (x,ρ,φ)ρe−ρ2/(2l2

⊥),

where Vdd (x,ρ,φ) is given by

Vdd(x,ρ,φ) = d2√
x2 + ρ2

3 (1 − 3 cos2 θrd ),

with

cos θrd = �r · �d
rd

= x cos θ + ρ sin φ sin θ√
x2 + ρ2

.

Here, we assumed that the dipoles lie in the x-z plane (see
Fig. 1), so that �d/d = (cos θ,0, sin θ ). Integration of cos2 θrd

over φ gives∫ 2π

0
dφ cos2 θrd = π

x2 + ρ2
(2x2 cos2 θ + ρ2 sin2 θ ).

Hence, we obtain

1

2πl2
⊥

∫ 2π

0
dφVdd(x,ρ,φ) = A1

ρ2 − 2x2√
x2 + ρ2

5
,

with A1 = d2[1 + 3 cos(2θ )]/(4l2
⊥). It remains to perform the

integration over ρ

Vdd (x) = A1

∫ ∞

0
dρρe−ρ2/(2l2

⊥) ρ2 − 2x2√
x2 + ρ2

5
.

We substitute u2 = x2 + ρ2 (→ udu = ρdρ) and obtain

Vdd (x) = A1e
x2/(2l2

⊥)
∫ ∞

|x|
due−u2/(2l2

⊥) u
2 − 3x2

u4
.

Next, we set v = u/(
√

2l⊥), which leads to

Vdd (x) = A2e
α2

∫ ∞

α

dve−v2 2l2
⊥v2 − 3x2

v4
,

with α = |x|/(
√

2l⊥) and A2 = d2[1 + 3 cos(2θ )]/(8
√

2l5
⊥).

From an integration by parts, we obtain the recurrence
relation

In =
∫ ∞

α

dv
e−v2

vn
= e−α2

(n − 1)αn−1
− 2

n − 1
In−2,

which is valid for n = 2,4,6, . . . . Since I0 = √
πerfc(α)/2,

the integrals I2 and I4 are given by

I2 = e−α2

α
− √

πerfc(α)

and

I4 = e−α2

3α3
+ 2

3

[
√

πerfc (α) − e−α2

α

]
.

This is inserted into

Vdd (x) = A2e
α2

(2l2
⊥I2 − 3x2I4),

063616-5
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which becomes

Vdd(x) = A2

(
2l2

⊥
α

− 2
√

πl2
⊥eα2

erfc (α) − x2

α3

− 2
√

πx2eα2
erfc (α) + 2x2

α

)
.

Using the definition of α, one sees that the first and the third
term cancel each other, and one obtains

Vdd(x) = A2

√
2[2l⊥|x| −

√
2π (l2

⊥ + x2)eα2
erfc(α)],

which equals (2)–(4).
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