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Terrestrial laser scanning (TLS) technology is one of the most efficient and accurate tools for 3D measurement which can reveal
surface-based characteristics of objects with the aid of computer vision and programming.Thus, it plays an increasingly important
role in deformation monitoring and analysis. Automatic data extraction and high efficiency and accuracy modeling from scattered
point clouds are challenging issues during the TLS data processing. This paper presents a data extraction method considering
the partial and statistical distribution of the point clouds scanned, called the window-neighborhood method. Based on the point
clouds extracted, 3D modeling of the boundary of an arched structure was carried out. The ideal modeling strategy should be fast,
accurate, and less complex regarding its application to large amounts of data. The paper discusses the accuracy of fittings in four
cases between whole curve, segmentation, polynomial, and B-spline. A similar number of parameters was set for polynomial and
B-spline because the number of unknown parameters is essential for the accuracy of the fittings. The uncertainties of the scanned
raw point clouds and the modeling are discussed. This process is considered a prerequisite step for 3D deformation analysis with
TLS.

1. Introduction

Structural health monitoring is of significant importance for
the historical and architectural structures for safety reasons
[1–3]. An arched structure is one of the traditional forms in
western architectures, such as in churches. As the buildings
age, a safety risk will occur in the arched structures which
bear the load of the construction. TLS is a highly accurate,
fast, and efficient technology to acquire 3D point clouds of
structures [4]. An experiment was designed to simulate the
load and deformation process of an arched structure and TLS
was used to measure the surface-based 3D point clouds.

Morphology-oriented analysis with TLS is a new direc-
tion for deformation analysis [5]. One of the issues remaining
is to assure the accuracy during modeling for deformation
analysis with TLS technology. The influence factors and sig-
nificance of accuracy of free-form 3D modeling for the point
clouds are not reported in detail in the current literatures.

This paper presents efficient extraction and discusses
accurate modeling of the boundary of an arched structure,

which are prerequisite steps for deformation analysis. Data
extraction is carried out by the window-neighborhood
method, which is closely related to the partial and statistical
distribution of the scanned point clouds. In this paper,
the mathematical functions of polynomial and B-spline are
adopted to model the data. A polynomial has a deficiency in
describing local features, but its advantages are efficiency and
simplicity, while B-spline is exactly the opposite. Four cases
are discussed, including a localized segmentation, to find
an efficient and accurate modeling solution for the arched
structure measured. Since the number of parameters has an
influence on the fitting results, the numbers of parameters of
polynomial and B-spline models are proximate to emphasize
the model function.

1.1. Terrestrial Laser Scanning and Data Extraction. Terres-
trial laser scanning (TLS), which can capture up tomillions of
points per second andwith a linear accuracy in themillimeter
range, is one of the most efficient tools to measure 3D
objects and structures. Traditional methods for monitoring,
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for example, total station, inclinometer, accelerometer, and
leveling are generally point-based measurements. Some low-
cost sensors require preembedding or contact [6], which is
difficult to maintain in the long period. TLS is area-oriented
measurement which can obtain 3D coordinates information
of dense point clouds. Furthermore, the measurement of
TLS is contactless and not destructive. It is widely applied
in the monitoring of natural and artificial constructions, for
example, rock slopes, forests, coasts, and buildings [7–10].

One important task for the presteps of modeling is to
detect or recognize features from the 3D data. Reference [11]
extracted lithological boundaries from photographic images
of rock surfaces by means of an interactive segmentation
method. Reference [12] used a semiautomatic method of
extracting urban road networks frompoint clouds to improve
the detection of objects. However, automatic data extraction
from point clouds data is still challenging.

1.2. Curve Fitting withMathematical Functions. It is common
to fit the data collected with geometric forms or mathemat-
ical functions [13–16]. Because the point clouds from TLS
measurement contain gaps, leaps, cusps, and so on, it is
necessary to construct a fitting model to investigate the 3D
deformation of a structure. Complicated spatial structures
especially require fitting by free-form curves and surfaces
[17].

Curve fitting is the process of constructing a curve or
mathematical function with the best approximation to data
points [17]. Curve fit usually means trying to find the curve
that minimizes displacement of a point from the curve in
vertical, orthogonal, or both axes directions [18].

Polynomial and B-spline are commonly used forms to
fit a curve. Reference [19] adopted polynomial fitting with
the least square method to detect the wheel set size in
the railway transportation system. The polynomial surface
was also considered to approximate concrete structures with
gentle surfaces [20–23]. B-spline is a generalization of the
Bézier curve and can be further extended to a nonuniform
rational B-spline, which has the advantage of constructing
an exact model; therefore, it is suitable for adoption in the
high accuracy TLS measurement. Due to the properties of
B-spline curves, for example, flexibility and accuracy, they
are popular when estimating complex objects. Ordinary B-
spline approximation involves data parameterization, knot
adjustment, and control point determination. The first step
is to parameterize the points measured by means of equal
division, chord length, and centripetal [24]. The second step
aims at knot vector adjustment. A robust method for the
optimal selection of the knot vector is studied by Bureick et
al. [25]. The final step is the estimation of control points by
means of the Gauss-Markov model [26].

1.3. Work Flow. This paper focuses on the statistical analysis
of spatial multidimensional point clouds data, which is the
basis for the deformation analysis of an arched structure.
The work flow of this paper is presented in Figure 1. The
TLS raw data is scanned by TLS and, subsequently, the point
clouds are preprocessed to outline the arched structure and
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Figure 1: Work flow of data extraction and fitting analysis.

Table 1: Different methods of the fitting for whole curve and
segmentation.

Case 1 Case 2 Case 3 Case 4
Functions P B P B

Points scope Whole
curve

Whole
curve Segmentation Segmentation

eliminate the surroundings, which are not the main subject
of the deformation analysis.

The arch-shaped curve is then extracted to investigate the
deformation behavior where the window selection method
is adopted. The latter includes four steps: window definition,
distribution analysis, threshold determination, and boundary
extraction.

Using the resulting extracted data, point clouds fitting
is performed for four kinds of combinations, which are
explained later in Table 1. The fitting precision is then
analyzed and the four cases are compared. Last but not least,
the deformation model of the fitting parts will be generated
and optimized.

2. Experimental Setup

An experiment was carried out to investigate the deformation
behavior of an arched structure using TLS point clouds. The
main components are the arched structure specimen, Z + F
Imager 5006, load equipment, and two supports, which are
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Figure 2: Plot of experiment.

shown in Figure 2. The continuous load lasted for 20min,
under which deformation consequently formed, and then
stopped for 10min for measurements. The load is within a
safety rangewhere deformation of the arched structure is gen-
erated, but crush and failure have not begun.The lower image
in Figure 2 shows the experimental setup. A coordinated
system was defined to investigate the deformation behavior
of the arch based on highly accurate TLS, which is shown
in the upper image in Figure 2, where the 𝑦-axis direction
is perpendicular to plane XOZ.

In this paper, the arch-shaped part of the object is vital
for structural monitoring, because it bears the main load and
shows significant deformation. The side surface of the object
is taken into account for more precise deformation analysis.
However, the arch-shaped object is occluded with some other
objects, such as steel I-beams, and needs to be separated for
more accurate analysis.

3. Data Analysis

3.1. Data Extraction. The main concern of the deformation
analysis lies in the edge of the arched structure, with the
motivation that the arched edge defines the border of the
arched surfaces with significant deformation, and is well
connected to photogrammetry, since it can also be detected
from digital images. From this point of view, the edge of
the arched structure should be extracted and fitted with a
high accuracy taken into consideration. Point clouds are
preprocessed to pick up the side surface of the arched
structure, which is extracted, and the result is shown in
Figure 3, with the adoption of 3D point clouds software.

As the laser beam rotates and scans with a uniform
angular speed, footprints of laser beams have a theoretically
close-to-even distribution considering a general surface. Sup-
pose that each point of the surface carries a square selection
window with a predefined size, which gives a reference to
the neighboring points, there are mostly two cases. The first
one is in the middle part of the surface, where those main
points have almost the same number of neighbors, and such
main points occupy the most population of all the point
clouds. The second is in the boundary, with approximately
half of the number of neighbors compared to the first case.
A schematic diagram with a simple example is shown in
Figure 4, where all the points represent footprint centers,
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Figure 3: Point clouds of side surface of the arch.
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Figure 4: Diagrammatic sketch of the edge point picking.

which describe only the position, but not the real size of the
footprints. The red point is the main point, the black ones
are neighboring points, and the green and blue hollow circles
are drawn for the possible relative position of the main point.
The grey lines show the selection window and the red line is a
simplified boundary. When the boundary inclines as dashed
green and blue lines, that kind of position relationship can
also be depicted with green and blue solid lines and hollow
circles.

The neighboring numbers of the boundary points iden-
tified can only be within a certain range rather than an
exact value, due to the inclination of the boundary line and
the scattered distribution of points in the boundary area,
as shown in Figure 5. The quantity Δn marked means the
number of points which have escaped from the boundary,
which will influence the number of neighbors shown as black
points. The yellow points are virtual points, which, with the
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Figure 5: Different cases of boundary and neighboring points.

combination of black points, constitute a normal selection
window as in the center of the surface.

According to the schematic diagram in Figures 4 and
5, the number of neighbors for boundary points should
satisfy the function in (1), where 𝑛 is the actual number of
neighbors which varies for different points, N is the number
of neighbors with the maximum probability in defined-size
square windows, 𝑛 is average neighbor number of boundary
points, Δ𝑛 is statistical error, that is, the number of points
rejected as boundary neighbors by relative inclination of the
boundary line, and 𝑠 is the number of points on each side of
the square window.

|𝑛 − 𝑛| ≤ Δ𝑛;

𝑛 = 𝑁
2
;

Δ𝑛 = 𝑁 ∗ 𝑠 − 1
2 (𝑠2 − 1)

= 𝑁
2 (𝑠 + 1)

.

(1)

The size of the selection window has an influence on the
boundary extraction. If the size is too small, the noisy point
will be mistaken for a boundary point, and vice versa; if
the size is too large, some boundary points will be lost. The
thickness of the arched structure is 10 cm.

The threshold 𝑁𝑟 was defined as a value with which the
boundary will be filtered and represent reality. The value
of 𝑁𝑟 is determined by the actual distance of neighboring
points of the point clouds. On the one hand, it is influenced
by density of the point clouds depending on the scanning
distance and angle, and the inner parameters of the TLS
instrument used in the experiment; on the other hand,
the local point clouds shapes formed by actual geometric
shape of the boundary and occlusion of the point clouds
also affect the value of threshold 𝑁𝑟. Because the various
factors have undetermined influences on the point clouds
of the boundary, the threshold 𝑁𝑟 is analyzed explicitly by
means of the distribution of neighboring point number by
the MATLAB program. The actual number of neighboring
points 𝑛 is distributed as shown in Figure 6, where the
maximumprobability corresponds to 136 neighboring points.
The threshold 𝑁𝑟 theoretically locates at the point with the
maximum distribution of the neighboring numbers.

Because the value of𝑁𝑟 is vital to the result of extraction,
it should be carefully calculated before picking up the
boundaries; therefore, the distribution of adjacent points is

0 50 100 150 200−50
Number of neighboring points

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pe
rc

en
ta

ge

Figure 6: Distribution of neighboring points.

investigated and the maximum value is selected. If the 𝑁𝑟 is
too small, some valid boundaries will not be detected where
the point density is large; on the contrary, if the 𝑁𝑟 is too
large, the boundary points will contain more noise, which
will influence the accuracy of 3Dmodel badly. Since the laser
spots are almost uniformly distributed and most of the point
clouds are in a normal area other than boundaries, we chose
𝑁𝑟 with the maximum probability in Figure 6, which is 136.
After filtering all the point clouds with (1), the boundary of
the side arched surface will be extracted, as shown in Figure 7.
The red point clouds correspond to the𝑁𝑟 value 136 and the
green point clouds to 126. Blue arrows point out that when
the𝑁𝑟 is too small, some valid boundaries are neglected.The
value of the 𝑁𝑟 is not chosen to be larger, for example, 146,
because that would cause too much noise.

The extracted edges contain not only the arched-shape
curves, but also shadows of the occlusions. The boundary
point clouds are imported toCloudCompare� for the purpose
of separation of the arched-shape curves. The open-access
software CloudCompare is an independent open source
project and a free software for the processing of point clouds,
which provides a set of basic tools to process 3D point clouds
[27]. The step adopted here is polygonal segmentation. The
lower edge of the point clouds is extracted, which comprises
the point clouds extracted for 3D curve fitting.

3.2. Data Fitting. The extracted point clouds are approx-
imated by both polynomial curve and B-spline. The 3D
coordinates 𝑥, 𝑦, and 𝑧 can be, respectively, described as a
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Figure 7: Edges extracted fromMATLAB.

function of the common variable 𝑡 to fit a polynomial curve.
The estimation parameters for each coordinate are calculated
by (2), where 𝑜 represents coordinates 𝑥, 𝑦, or 𝑧, 𝑡 is the
common variable, V is the order of the polynomial, and𝐴𝑜(𝑖)
are the parameters to be estimated with index 𝑖 from 1 to V.
The number of unknown parameters is (V + 1) ∗ 3 for 𝑘th
order polynomial fitting.

𝑜 =
V

∑
𝑖=1

𝐴𝑜 (𝑖) ∗ 𝑡V+1−𝑖, 𝑜 = 𝑥, 𝑦 or 𝑧. (2)

The functional model in (3) is described by the degree 𝑝 and
the 𝑝th degree B-spline basis functions {𝑁𝑖,𝑝(𝑢)} are defined
on the nonperiodic knot vector 𝑈 in (4), with number 𝑚
to fit a 3D B-spline curve. The control points {𝑃𝑖} are the
unknowns.

𝐶 (𝑢) =
𝑛

∑
𝑖=0

𝑁𝑖,𝑝 (𝑢) 𝑃𝑖, 𝑢 ∈ [0, 1] , (3)

𝑈 = {0, . . . , 0, 𝑢𝑝+1, . . . , 𝑢𝑚−𝑝−1, 1, . . . , 1} ,

0 < 𝑢 < 1.
(4)

The relationship between degree 𝑝, the number of control
points 𝑛 + 1, and the knot points 𝑚 + 1 is 𝑚 = 𝑛 + 𝑝 + 1.
The control points are the unknowns to be estimated, which
can be obtained in a least squares sense by the minimizing of

𝑚−1

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑄𝑘 − 𝐶 (𝑢𝑘)
󵄨󵄨󵄨󵄨
2 ∼ min (5)

and the restriction that the B-spline passes through the first
and last points measured. 𝑄𝑘 are the measurements and {𝑈𝑘}
are parameters for each 𝑄𝑘, respectively, calculated by the
chord length method. Furthermore, the knot vector 𝑈 is
calculated with [23]

𝑢𝑝+𝑗 = (1 − 𝑎) 𝑢𝑖−1 + 𝑎𝑢𝑖,

with 𝑗 = 1, 2, . . . , 𝑛 − 𝑝, 𝑖 = int (𝑗𝑑) , 𝑎 = 𝑗𝑑 − 𝑖, 𝑑 = 𝑚 + 1
𝑛 − 𝑝 + 1

.
(6)

The parameters chosen for B-spline in this case are 𝑝 = 3 and
𝑛 = 21, where𝑝 is the degree and 𝑛+1 is the number of control
points. Because one direction of control points is estimated
during each step; there are 22 unknown parameters in each
estimation of the B-spline curve. The number of parameters
matches well to that of polynomial, which is 21 parameters
for 6th order approximation. This increases the reasonability
of comparison between the two models, since the number of
parameters has a significant influence on the accuracy of the
fitting.

4. Results

Thefitted curve of the polynomial andB-spline is presented in
Figure 8, where the blue curve corresponds to the polynomial
approximation and the red curve is B-spline fitting. The
comparison between the polynomial and B-spline curves
of epochs 3 and 9 corresponds to Figures 8(a) and 8(b),
respectively.

Due to the displacement of 𝑧-axis being essential, the
focus is on the 𝑥-𝑧 plane. The coordinate range is [−2.75,
−0.85]m in the 𝑥-axis direction and [−4.35, −3.85]m in
the 𝑧-axis direction to reduce the redundancy. According to
Figure 8, the B-spline and polynomial fitting are significantly
different in areas A, C, and B, corresponding to the concave
piece in Figure 8(a) and the convex piece in Figure 8(b),
which reveal that theB-spline has an advantage at themutated
sections. Although high order polynomial fitting can alleviate
this problem, it may, however, lead to Runge’s phenomenon,
which is a problem at the edges of an interval that occurs
when using polynomial interpolation with polynomials of a
high degree over a set of equispaced interpolation points.This
phenomenon was discovered by Carl David Tolmé Runge
while exploring the behavior of errorswhenusing polynomial
interpolation to approximate certain functions [15].

The statistical errors of the fittings are considered to
get a deeper insight into the fitting effects on the spatially
scattered points.The polynomial approximation of the whole
extracted line is defined as the original case/case 1 for the
later comparison; the other cases are listed in Table 1, where
P and B stand for polynomial and B-spline approximation,
respectively.

The uncertainties of the polynomial curve fitted for epoch
3 (E3) and 9 (E9) are presented inTable 2, including deviation,
standard deviation, and covariance, where C(x, y, z) means
covariance with x, y, and z coordinate values, diagonal
element is deviation, and SD stands for standard deviation.

The number of unknown parameters is considered to
compare the B-spline and polynomial for spatial point clouds
more impartially.The uncertainties of the B-spline for epochs
3 and 9 are presented in Table 2.

According to Table 2, the standard deviations for the
polynomial in the 𝑧-axis direction for epochs 3 and 9 are
17.51 and 12.98mm, respectively, which are not balanced with
the high accuracy of TLS measurement. Therefore, B-spline
curve fitting is adopted and analyzed. For this, the standard
deviations in the 𝑧-axis direction for epochs 3 and 9 are 1.45
and 1.40mm, respectively, where the accuracy is significantly
improved and the comparison is listed in Table 4.
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Figure 8: Comparison of polynomial and B-spline curves.

Table 2: Uncertainties of two forms of curves with unit mm.

X Y Z
P methods

E3
C(X) 1.41 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
C(Y) 0.62 0.28 ⋅ ⋅ ⋅
C(Z) −0.18 −8.13𝑒 − 02 0.31
SD 37.49 16.70 17.51

E9
C(X) 0.61 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
C(Y) 0.28 0.13 ⋅ ⋅ ⋅
C(Z) −4.26𝑒 − 03 6.67𝑒 − 03 0.17
SD 24.75 11.26 12.98

B methods
E3

C(X) 8.06𝑒 − 03 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
C(Y) 2.73𝑒 − 03 1.79𝑒 − 03 ⋅ ⋅ ⋅
C(Z) −1.83𝑒 − 04 −1.83𝑒 − 04 2.096𝑒 − 03
SD 2.84 1.34 1.45

E9
C(X) 6.76𝑒 − 03 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
C(Y) 1.76𝑒 − 03 1.49𝑒 − 03 ⋅ ⋅ ⋅
C(Z) −7.89𝑒 − 05 −2.00𝑒 − 04 1.856𝑒 − 03
SD 2.60 1.20 1.40

Occlusion of the laser beam in the experiment is unavoid-
able, because of the shelter of the loads equipment, which will
cause fragmentation of the point clouds and then increase
the uncertainties during the parametric estimation of the
approximation. A segmentation fitting is employed for this
perspective, which is presented in Figure 9, where epoch 9 is
depicted.

The segmentation approximations are described in Fig-
ure 9, where the blue curve corresponds to the polynomial
approximation, the green curve is an automatically plotted
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Figure 9: Segmentation fitting analysis of Epoch 9.

line, and the red curve is the B-spline fitting. The green
points are raw point clouds and the blue stars are control
points of the B-spline. According to the red ellipses in
Figure 9, it is discovered that the B-spline is greatly improved
rather than the polynomial fitting on the left side, which is
succeeded through the control points and knots. However,
the deviations of the twomodels arewellmatched on the right
side. It is hinted that the quality of the B-spline is determined
by control points and knots; thus, the optimization of the
B-spline model is much more complex and costly than the
polynomial. When the B-spline is used to fit a surface, the
phenomenon is more prominent.

The uncertainties of polynomial lines for each epoch are
listed in Table 4, where the 6th order polynomial function is
advantageous through parametric model training.

The standard deviations in the 𝑧-axis direction for epochs
3 and 9 are 2.0 and 1.8mm, respectively, according to Table 3,
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Table 3: Uncertainties during segmentation with unit mm.

X Y Z
P methods

E3
C(X) 1.53𝑒 − 02 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
C(Y) 8.21𝑒 − 03 5.29𝑒 − 03 ⋅ ⋅ ⋅
C(Z) 6.33𝑒 − 03 3.07𝑒 − 03 3.86𝑒 − 03
SD 3.92 2.31 2.00

E9
C(X) 1.32𝑒 − 02 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
C(Y) 7.02𝑒 − 03 4.82𝑒 − 03 ⋅ ⋅ ⋅
C(Z) 4.31𝑒 − 03 2.04𝑒 − 03 3.38𝑒 − 03
SD 3.61 2.23 1.80

B methods
E3

C(X) 8.00𝑒 − 04 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
C(Y) −1.15𝑒 − 05 4.37𝑒 − 04 ⋅ ⋅ ⋅
C(Z) 2.37𝑒 − 04 −2.36𝑒 − 04 4.56𝑒 − 04
SD 0.89 0.66 0.68

E9
C(X) 1.06𝑒 − 03 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
C(Y) −3.13𝑒 − 05 5.00𝑒 − 04 ⋅ ⋅ ⋅
C(Z) −3.88𝑒 − 04 −1.86𝑒 − 04 5.05𝑒 − 04
SD 1.00 0.71 0.71

Table 4: Improvement analysis.

Ratio (%) Epoch X Y Z
Improvement by B-spline approximation

Whole curve E3 92.42 91.98 91.72
E9 89.49 89.34 89.21

Segmentation E3 77.07 71.25 66.24
E9 72.22 67.87 60.52

Improvement by segmentation

P methods E3 89.60 86.23 88.58
E9 85.45 80.46 86.13

B methods E3 68.51 50.66 53.43
E9 61.54 41.10 49.24

and are obviously improved compared to the approximation
of the whole boundary curve.

Similarly, the segmentation curve is fitted by the B-
spline function. The uncertainties of the approximation are
shown in Table 3, where the standard deviation in the 𝑧-
axis direction for epochs 3 and 9 corresponds to 0.68 and
0.71mm, respectively. The fittings are improved based on the
segmentation approximation.

Based on the uncertainties analysis in Tables 2 and 3, the
standard deviation could be abstracted as in Table 4, which
describes the degree of optimization of the B-spline fitting
compared with the polynomial approximation.

Table 5: Technical parameters of employed TLS.

Measurement range 0.4–79m
Scan speed up to 1016727 points/sec
Range noise at 10m

Reflectivity 10% (black) 1.2mm rms
Reflectivity 20% (dark grey) 0.7mm rms
Reflectivity 100% (white) 0.4mm rms

Distance resolution 0.1mm
Linear error (50m) 1mm

According to the analysis, the optimization of segmenta-
tion is shown in Table 4, where both the polynomial and B-
spline have a better approximation precision after segmen-
tation. However, the segmentation improvement using the
polynomial curve is more significant, with the magnitude of
increase from 80.46 to 89.60% for the polynomial compared
to from 41.10 to 68.51% for the B-spline.

It is also revealed that curve fitting results have a close
relation with the accuracy and reliability of the scanned point
clouds. The TLS employed is Imager Z + F 5006, whose
scanning precision parameters are listed in Table 5. In this
experiment, the laser scanner stands about 5m away from
the arch, and the arch with shadow can be considered as grey,
whichmeans that the range noise is 0.7mm. It agrees with the
result of B method of segmentation.

5. Conclusion

This paper focuses on the comparative analysis of the B-
spline and polynomial approximation based on the extrac-
tion of multidimensional data which are collected by TLS
during deformation analysis. An innovativewindow selection
method is adopted to efficiently extract the edge data of the
arch structure, where the partial and statistical distribution
of the scanned point clouds are considered. An optimal
extraction is chosen from the aspect of noise and blank of the
extracted point clouds.

The B-spline and polynomial approximation are pre-
sented and analyzed with four cases, where conclusions can
be drawn as follows:

(a) For the experiment in this paper, the uncertainty
ranking of the four cases is segmentation with B
method (less than 1mm), whole curve with Bmethod
and segmentationwith Pmethod (1-2mm) andwhole
curve with P method (10–20mm).

(b) It is verified experimentally, through comparing the
standard deviations of the two fitting methods, that
the B-spline has a more satisfactory fitting precision,
where the standard deviation of the whole edge curve
of the B-spline fitting is about 90% better than the
polynomial approximation.

(c) However, in the case of segmented fitting, the accu-
racy improvement of the B-spline is not as much
as the polynomial approximation. It is revealed that
the B-spline has an advantage of better accuracy
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in complex situations, but it is also implied that
the polynomial approximation can greatly improve
the fitting accuracy by segmentation, simplifying the
complex case.

It is indicated that, in the approximation of curves during
deformation monitoring with TLS measurement, segmenta-
tion method can be adopted, where efficiency of polynomial
and B-spline could be combined to construct a fast and
accurate 3D model.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

Thepublication of this article was funded by the Open Access
Fund of the Leibniz Universität Hannover. The authors also
would like to acknowledge the support of Natural Science
Foundation of Jiangsu, China (no. BK20160558) and Six Tal-
ent Peaks Project in Jiangsu Province (no. 2015-JZ-009). The
authors wish to acknowledge the support of all the colleagues
in Geodetic Institute of Leibniz University Hanover for their
valid information and help.

References

[1] A. Coscetta, A. Minardo, L. Olivares et al., “Wind turbine blade
monitoring with brillouin-based fiber-optic sensors,” Journal of
Sensors, vol. 2017, Article ID 9175342, 5 pages, 2017.

[2] M. R. Kaloop, J. W. Hu, and M. A. Sayed, “Yonjung high-speed
railway bridge assessment using output-only structural health
monitoringmeasurements under train speed changing,” Journal
of Sensors, vol. 2016, Article ID 4869638, 15 pages, 2016.

[3] M. R. Kaloop and J. W. Hu, “Dynamic performance analysis
of the towers of a long-span bridge based on gps monitoring
technique,” Journal of Sensors, vol. 2016, Article ID 7494817, 14
pages, 2016.

[4] G. Vosselman and H. Maas, Airborne and Terrestrial Laser
Scanning, Whittles Publishing, Scotland, UK, 2010.

[5] W. Mukupa, G. W. Roberts, C. M. Hancock, and K. Al-Manasir,
“A review of the use of terrestrial laser scanning application for
change detection and deformation monitoring of structures,”
Survey Review, pp. 1–18, 2016.

[6] J. Zhao, T. Bao, and T. Kundu, “Wide range fiber displacement
sensor based on bending loss,” Journal of Sensors, vol. 2016,
Article ID 4201870, 5 pages, 2016.

[7] A. Abellán, T. Oppikofer, M. Jaboyedoff, N. J. Rosser, M.
Lim, and M. J. Lato, “Terrestrial laser scanning of rock slope
instabilities,” Earth Surface Processes and Landforms, vol. 39, no.
1, pp. 80–97, 2014.

[8] G. J. Newnham, J. D. Armston, K. Calders et al., “Terrestrial
laser scanning for plot-scale forest measurement,” Current
Forestry Reports, vol. 1, no. 4, pp. 239–251, 2015.

[9] A. Costanzo, M. Minasi, G. Casula, M. Musacchio, and M.
F. Buongiorno, “Combined use of terrestrial laser scanning
and IRThermography applied to a historical building,” Sensors
(Switzerland), vol. 15, no. 1, pp. 194–213, 2014.

[10] F. Serafino, J. Horstmann, J. C. Nieto Borge, C. Lugni, and M.
Brocchini, “Sensors for coastal monitoring,” Journal of Sensors,
vol. 2016, Article ID 1720563, 2 pages, 2016.

[11] Y. Vasuki, E. Holden, P. Kovesi, and S. Micklethwaite, “An inter-
active image segmentation method for lithological boundary
detection: a rapid mapping tool for geologists,” Computers &
Geosciences, vol. 100, pp. 27–40, 2017.

[12] F. Li, X. M. Cui, and X. Y. Liu, “A semi-automatic algorithm
of extracting urban road networks from airborne LiDAR point
clouds,” Science of Surveying and Mapping, vol. 40, pp. 88–92,
2015.

[13] A. Lamnii, M. Lamnii, and F. Oumellal, “Computation of
Hermite interpolation in terms of B-spline basis using polar
forms,”Mathematics and Computers in Simulation, vol. 134, pp.
17–27, 2017.

[14] C. C.Wang, X.W.Wang, and X. C. Xu, “Study on the cylindrical
surface fitting method,” Engineering of Surveying and Mapping,
vol. 3, p. 258, 2014.

[15] X. Zhao, C. Zhang, B. Yang, and P. Li, “Adaptive knot placement
using a GMM-based continuous optimization algorithm in B-
spline curve approximation,” CAD Computer Aided Design, vol.
43, no. 6, pp. 598–604, 2011.

[16] D. Brujic, I. Ainsworth, and M. Ristic, “Fast and accurate
NURBS fitting for reverse engineering,” International Journal of
Advanced Manufacturing Technology, vol. 54, no. 5-8, pp. 691–
700, 2011.

[17] N. Chernov and H. Ma, “Least squares fitting of quadratic
curves and surfaces,” in Computer Vision, S. R. Yoshida, Ed., pp.
285–302, Nova Science Publishers, 2011.

[18] Y. Liu and W. Wang, “A revisit to least squares orthogonal
distance fitting of parametric curves and surfaces, advances
in geometric modeling and processing,” in Lecture Notes in
Computer Science, pp. 384–397, 2008.

[19] X. Cheng, Y. Chen, Z. Xing, Y. Li, and Y. Qin, “A novel online
detection system for wheelset size in railway transportation,”
Journal of Sensors, vol. 2016, Article ID 9507213, 15 pages, 2016.

[20] H. Yang, X. Xu, and I. Neumann, “Optimal finite elementmodel
with response surface methodology for concrete structures
based on Terrestrial Laser Scanning technology,” Composite
Structures, 2016.

[21] H. Yang, X. Xu, and I. Neumann, “Laser scanning-based updat-
ing of a finite-element model for structural health monitoring,”
IEEE Sensors, vol. 16, no. 7, pp. 2100–2104, 2016.

[22] H. Yang, X. Xu, and I. Neumann, “The benefit of 3D laser
scanning technology in the generation and calibration of FEM
models for health assessment of concrete structures,” Sensors
(Switzerland), vol. 14, no. 11, pp. 21889–21904, 2014.

[23] H. Yang, M. Omidalizarandi, X. Xu, and I. Neumann, “Terres-
trial laser scanning technology for deformationmonitoring and
surface modeling of arch structures,” Composite Structures, vol.
169, pp. 173–179, 2017.

[24] L. Piegl and W. Tiller, The NURBS Book, Springer Science and
Business Media, 2012.

[25] J. Bureick, H. Alkhatib, and I. Neumann, “Robust spatial
approximation of laser scanner point clouds by means of free-
form curve approaches in deformation analysis,” Journal of
Applied Geodesy, vol. 10, no. 1, pp. 27–35, 2016.

[26] L. Piegl, W. Tiller, and K. R. Koch, “Fitting Free-Form
Surfaces to Laserscan Data by NURBS,” in Allgemeine
Vermessungs-Nachrichten: AVN, vol. 116, pp. 134–140,
Allgemeine Vermessungs-Nachrichten, AVN, 2009.

[27] https://en.wikipedia.org/wiki/CloudCompare.

https://en.wikipedia.org/wiki/CloudCompare


Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


