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A B S T R A C T   

Assessing root sources of three uncertainties – parameterization of soil hydraulic characteristics, boundary 
conditions, and estimation of source/sink terms – is a significant challenge in soil water transport modeling. This 
study aims to evaluate the uncertainty of three each widely-used parameter estimation methods affecting plot- 
scale water dynamics. The study employs HYDRUS, a process-based hydrologic model, to incorporate these 
uncertainties and compare model predictions to measured values in a semiarid Inner Mongolia steppe, China. 
Soil hydraulic parameters are determined using two direct methods (laboratory-derived approach and evapo-
ration method) and one indirect method (neural network). While each hydraulic parameter method generally 
simulates soil moisture dynamics, the evaporation method performed better, especially under dry conditions. 
This suggests that measuring the intensity properties, such as unsaturated hydraulic conductivity, with the 
evaporation method is crucial for reasonable soil moisture simulation. The study also demonstrates the impact of 
different applied boundary conditions on simulated soil moisture, specifically the partitioning of reference FAO 
evapotranspiration via one direct method (soil fraction cover) and two indirect methods (leaf area index and crop 
height). The partitioning via soil fraction cover reflected a better simulation. Additionally, the study compares 
the uncertainties of root water uptake function with root growth parameters and constant root depth referenced 
to grass and pasture, and finds no significant difference among them. Comparing three sources of uncertainty in 
predicting soil moisture, the study concludes that the input soil hydraulic parameter is more sensitive than 
evapotranspiration partitioning or representation of root water uptake function. Our study highlights that 
measuring soil intensity properties can better reflect the effects of land use change, such as compaction, on field 
water transports.   

1. Introduction 

Soil water content is a crucial variable for many hydrological and 
agricultural studies. Numerous numerical models have been developed 
for predicting soil water dynamics; however, there are still several nu-
merical and conceptual difficulties, e.g., accurate modeling of the root- 
zone water dynamics (Feddes et al., 1988; Saito et al., 2006, Brimelow 
et al., 2010). Hydrological simulations require input variables such as 

soil characteristics, land cover, control structures, and management 
parameters. This makes the model highly parametrized and uncertain 
due to the unavailability of most input parameters (Joseph et al., 2018). 
As a result, modeling soil water transport is challenging when assessing 
uncertainties which are principally caused by estimating evapotranspi-
ration (Loos et al., 2007), soil properties (Alam et al., 2020), and 
modeling simplifications (Clark et al., 2016). Improving estimation ac-
curacy requires studying how uncertainty in predictions can be 
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apportioned to different error sources. 
Soil hydraulic properties, such as soil water retention, θ(h), and 

hydraulic conductivity, K(h), are crucial input parameters in process- 
based hydrologic models (Christiaens and Feyen, 2001; Peters and 
Durner, 2008). These soil hydraulic parameters can be obtained using 
various methods, either direct (e.g., field or laboratory tests) or indirect 
(e.g., inverse methods or pedotransfer functions) (Šimůnek et al., 1998; 
Islam et al., 2006). The most widely used direct methods are hydrostatic 
column experiments to derive θ(h) and the estimation of K(h) from θ(h) 
using capillary bundle models like Mualem’s integral (Peters et al., 
2015). However, these methods can be time-consuming and impractical 
for lower water contents. Therefore, the more suitable approach might 
be the transient flow method, such as multi-step outflow experiments 
(Durner et al., 1999) or evaporation experiments (Wind, 1968; Šimůnek 
et al., 1998). In the evaporation method, measurements of the evapo-
ration rate and pressure head at different depths in the soil sample can 
provide a simultaneous estimation of both θ(h) and K(h) parameters 
(Wendroth et al., 1993), either through direct measurements or inverse 
procedures (e.g., Šimůnek et al., 1998). One recent popular version of 
the evaporation method involves semi-automated direct measurements 
using the HYPROP system (Peters et al., 2015; Peters and Durner, 2008; 
Schindler and Müller, 2006), which is commercialized by the METER 
group (München, Germany). However, all of those methods assume that 
the soil remains rigid, which may not always be the case due to changes 
in volume, height, and diameter that can occur over time due to factors 
like drying. Thus, all modeling approaches are limited by the rigidity of 
soil i.e., the internal soil strength range (Horn et al., 2014). 

In contrast, various indirect methods have been developed to esti-
mate hydraulic input parameters such as pedotransfer functions (PTFs), 
especially on a large scale (Schaap et al., 2001). However, the reliability 
of these methods is still under discussion despite their widespread use. 
Vereecken et al. (1992) found that estimation errors in hydraulic 
properties can cause considerable deviations between measured and 
simulated results. One significant drawback of PTF application is the 
substantial spatial variability; the location from which parameters are 
derived may differ from the applied area. Accurate soil moisture 
modeling depends on the precise specification of site-specific soil hy-
draulic properties (Brimelow et al., 2010). Although indirect methods 
are less reliable due to the high uncertainty of parameter estimations, 
direct methods also have deficiencies due to differences in sample vol-
ume, sampling procedures, techniques, and inherent spatial variability, 
leading to dissimilarities in estimated parameters and modeling applied 
(Islam et al., 2006). 

Soil water transport strongly depends on water availability at the 
atmospheric boundary. Therefore, understanding the influence of soil 
hydraulic properties on water simulations must be studied in conjunc-
tion with estimating evapotranspiration (ET) and its partitioning (Loos 
et al., 2007; Ren et al., 2022). Partitioning ET into evaporation (E) and 
transpiration (T) subcomponents is important for understanding links 
between ecological and hydrological systems because biological water 
use is closely coupled with ecosystem productivity. It is widely recog-
nized that plant growth is tightly associated with soil water availability, 
which in turn influences precipitation water partitioning (Scott et al., 
2021). Potential ET can be calculated using various process-based or 
empirical formulas from meteorological variables, such as the FAO- 
recommended Penman–Montheith combination equation (Allen, 
1998). While ET estimation has been extensively tested and evaluated 
(Fisher et al., 2005), ET partitioning is relatively lacking and often 
ignored in modeling. ET partitioning might be a critical boundary con-
dition that significantly impacts water losses (Rana and Katerji, 2000; 
Eitzinger et al., 2004), especially for models that require the input of 
potential ET partitioning data, such as process-based hydraulic models 
like HYDRUS. Usually, potential ET is calculated using meteorological 
data and vegetation characteristics (Fisher et al., 2005; Loos et al., 2007) 
and then can be generally partitioned using an empirical beer’s law 
function. However, the sensitivity of different methods related to 

incorporated parameters lacks a concise evaluation. 
Moreover, the ET partitioning model is highly influenced by plant 

growth dynamics, where the parameterization of water transport can 
greatly affect the model’s accuracy. For instance, Loos et al. (2007) 
demonstrated that incorporating root water uptake functions into soil 
water transport models can significantly improve the accuracy of ET 
partitioning. Two major approaches are used in process-based hydraulic 
models for simulating root water uptake at the plot or field scale 
(Hopmans and Bristow, 2002; Fatichi et al., 2016). The microscopic/ 
mesoscopic approach considers a single root as an infinitely long cylinder 
with a uniform radius and water-absorbing properties (Feddes and 
Raats, 2004). On the other hand, the macroscopic approach lumps root 
water uptake processes into a single sink term in the governing mass 
balance equation (Šimůnek et al., 2008; Javaux et al., 2008). In most 
hydraulic models, the macroscopic approach is used, and various root 
water uptake reduction functions have been proposed, ranging from a 
simple two-parameter S-shaped function (e.g., van Genuchten, 1987) to 
more complex functions with up to 5 fitting parameters (e.g., Feddes 
et al., 1978). However, determining the root water uptake parameter 
remains challenging due to the difficulty in measuring the start or 
cessation of water absorption by roots. There is a need to assess which 
root extraction parameter is better suited for inclusion since most hy-
draulic models assume a relatively constant root distribution function, 
which is far from reality (Warren et al., 2015). 

In Zhao et al. (2010), the accuracy of soil moisture simulations with 
HYDRUS was validated against in-situ observations from four sites in 
Inner Mongolia grassland, which varied in grazing intensity. The studies 
demonstrated that HYDRUS could accurately simulate the dynamics of 
root-zone soil moisture content at each site during the three growing 
seasons. However, the study did not comprehensively compare the 
abovementioned uncertainty in simulating soil moisture. The present 
study evaluates the uncertainties resulting from soil hydraulic parame-
ters, ET partitioning, and estimation of plant water uptake. To this end, 
we adopt the functional criteria proposed by Wösten et al. (1986), which 
are directly related to applications rather than the direct comparison of 
parameters. Therefore, the accuracy of the functional criteria will serve 
as the basis for identifying differences between simulated and observed 
soil moisture dynamics. 

Our study aims to assess the uncertainty of various parameter esti-
mation methods commonly used for predicting soil moisture content 
using the process-based model HYDRUS (Simunek et al., 2008) and 
identifies potential sources of error. To achieve this, we have proposed a 
framework that integrates different types of uncertainties stepwise, 
compares their impacts on the simulation results, and identifies the 
cause of errors in existing model predictions. Although the parameter 
estimation methods have been well-tested individually, they have not 
been previously applied in an integrated manner for water resources or 
environmental modeling applications. 

2. Materials and methods 

2.1. The experimental site and measurement 

The research site for this study was located in the Inner Mongolia 
steppe at the Inner Mongolia Grassland Ecosystem Research Station 
(IMGERS; 43o37′50′′N, 116o42′18′′E). The selected experiment has been 
under moderate grazing intensity since 1999. The local climate is con-
tinental and semiarid, with a mean annual temperature of 0.7 ◦C and 
mean annual precipitation of 343 mm, with more than 85 % of precip-
itation occurring during the growing season from May to September. 
The soil is sandy loamy and classified as Calcic Chernozems, according 
to FAO (2006). According to identified soil horizons (a 20–30 cm thick 
Ah horizon, followed by an Ach-layer down to 100 cm), undisturbed soil 
samples (n = 7 for each layer) were generally taken at the four depths of 
4–8, 18–22, 30–34, and 40–44 cm. A 100-cm3 cylinder (inner diameter 
5.6 cm, length 4 cm) was used for water retention and conductivity 
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measurements. For the undisturbed soil sample to determine the hy-
draulic parameters based on the evaporation method, a large-sized 
cylinder (inner diameter 10 cm, length 6 cm) was used. 

Field soil moisture dynamics were monitored from 2004 to 2006 
using Theta-probes (Type ML2x, Delta-T Devices, Cambridge, UK) 
inserted horizontally at 5, 20, and 40 cm depths across three sites. The 
probes were calibrated for site-specific soil conditions using the gravi-
metric method and data was recorded at 30-minute intervals by a solar- 
powered automatic data logger. An on-site meteorological station 
collected weather data such as precipitation, net radiation, relative 
humidity, wind speed, and air temperature. Root distribution and root 
length were determined using the line intersection method in five soil 
layers: 0–10, 10–20, 20–50, 50–70, and 70–100 cm (Gao et al., 2008) 
and vegetation parameters such as vegetation and residue cover, leaf 
area index (LAI), and plant height were also recorded. Vegetation 
coverage was assessed non-destructively based on Braun-Blanquet 
(1964), while LAI was measured using a leaf-area meter LI-3050 (LI- 
COR, Nebraska, USA). 

Weighing lysimeter experiments were conducted in August 2006 
using a device with PVC tubes (20 cm long and 5.4 cm diameter) 
installed beside the field soil moisture monitoring site. Two treatments, 
one with grass and the other with bare ground, were applied with three 
replicates. The evaporation variables were determined using the water 
balance method with the help of an electronic sensor that weighed the 
samples hourly. 

2.2. Parameter estimation methods 

2.2.1. Water retention and hydraulic conductivity functions 
In this study, both measurements of retention and conductivity data 

are fitted by the following van Genuchten-Mualem (VGM) equations 
(van Genuchten, 1980): 

Se(h) =
θw(h) − θr

θs − θr
=

1
(1 + |αh|n)m (1)  

K(h) = KsSl
e

[
1 −

(
1 − S1/m

e

)m
]2

(2)  

where Se is the effective saturation, θs and θr are the saturated and re-
sidual water contents (L3/L− 3(− |-)), respectively; the symbols α (L− 1), n, 
and m = 1–1/n are empirical shape parameters, and the inverse of α is 
often referred to as the air entry value or bubbling pressure; Ks is the 
saturated hydraulic conductivity (L/T), and l is a pore connectivity 
parameter which usually is set to 0.5. The hydraulic soil parameters are 
summarized in Table 1. 

To test the estimation uncertainty of hydraulic parameters, we 
compared three methods widely used to estimate parameters of the VGM 
functions: i) laboratory-derived water retention properties (LDP), ii) 
neural network (NN) analysis, and iii) evaporation method (EM). The 
soil water retention characteristic for the LDP method is measured with 
a ceramic pressure plate assembly stepwise desaturating initially satu-
rated samples at equilibrium matric potentials of − 1, − 3, − 6, − 15, − 30, 
and − 1500 kPa. Seven samples were retrieved from each of the four 
depths to yield 28 soil cores. Ks was determined with the same-sized 
cores with a falling head permeameter (Zhao et al., 2010). To convert 
the former laboratory-measured data to the VGM parameter (Table 1), 
RETC software (RETention Curve) was employed by a nonlinear least- 
squares optimization approach to estimate the unknown model param-
eters from observed retention data (van Genuchten et al., 1991). The 
fitted VGM parameters were further used to predict the K(h) curves 
based on the VGM equation (Eq. (2)). In the NN method, VGM param-
eters were derived by pedotransfer functions (PTFs) via the neural 
network (NN) prediction tool ROSETTA (Schaap et al., 2001) based on 
data from soil texture and bulk density (Zhao et al., 2010). The EM 
method is based on the evaporation approach. In a transient flow 
experiment, the hydraulic conductivity vs. matric potential ratio was 

determined for undisturbed samples where two microtensiometers and 
two time-domain reflectometry (TDR) probes were horizontally inserted 
into the sample from the side through holes in the cylinder at a vertical 
distance of 3 cm. The sensors continuously recorded the matric potential 
and water content while the initially saturated sample progressively 
dried out from the sample surface. The hydraulic conductivity coeffi-
cient was calculated from average changes in mean matric potential and 
water content in short intervals, according to Becher (1970). For more 
detailed information, please refer to Peth (2004). We used both reten-
tion and conductivity data from the evaporation experiment to optimize 
VGM parameters for the EM method. The measured K(h) was compared 
with the simulated curves based on the fitted parameters of the VGM 
function using RETC software (van Genuchten et al., 1991). 

Note that the measured Ks were used in the simulation for the LDP 
and the NN methods. In addition, we did not estimate Ks in the EM 
method, considering that hydraulic conductivity only can be effectively 
calculated at a matric potential range of − 10 to − 90 kPa. 

2.2.2. Evapotranspiration partitioning models 
The potential evapotranspiration was estimated from the reference 

FAO Penman-Monteith equation (Allen et al., 1998). Usually, the po-
tential evaporation and transpiration are partitioned based on soil 
fraction cover (SFC) as follows: 

Ep = (1 − SFC) × ET  

Tp = SFC × ET (3)  

where Ep is evaporation, ET is evapotranspiration, and Tp is 
transpiration. 

Except for the direct measurement of SFC, we also calculate SFC via 
Leaf area index, LAI, using Beer’s law SFC = 1-exp(0.463xLAI), where 
exp is the exponential function and 0.463 is the constant for the radia-
tion extinction. LAI is determined by: i) directly measured method 
(abbreviated as LAI) and ii) indirectly calculated via the empirically FAO 
referenced method, i.e., LAI (cm2 cm− 2) = 0.24 × crop height (cm) 
(abbreviated as height). 

2.2.3. Root water uptake models 
The sink term, S, corresponds to the volume of water removed from a 

unit volume of soil per unit time due to the root water uptake (i.e., actual 
transpiration rate) and can be defined as (Feddes et al., 1978): 

Table 1 
Van Genuchten-Mualem Parameters for the investigated site.  

Approach Soil depth 
(cm) 

θr θs α n Ks  

(cm3 

cm− 3) 
(cm3 

cm− 3) 
(cm− 1) (-) (cm 

day− 1) 

LDP 4–8  0.052  0.568  0.020  1.681  46.4  
18–22  0.035  0.529  0.019  1.758  109.6  
30–34  0.045  0.531  0.016  1.710  77.1  
40–44  0.040  0.511  0.017  1.756  63.7  

NN 4–8  0.048  0.475  0.018  1.439  64.2  
18–22  0.043  0.451  0.022  1.442  58.9  
30–34  0.040  0.461  0.024  1.454  85.6  
40–44  0.043  0.453  0.025  1.462  72.5  

EM 4–8  0.038  0.474  0.005  1.691  46.4  
18–22  0.047  0.453  0.015  1.334  109.6  
30–34  0.050  0.463  0.007  1.942  77.1  
40–44  0.051  0.462  0.008  1.973  63.7 

Note: θr = residual water content, θs = saturated water content, α = reciprocal 
value of air entry pressure, n = the smoothness of pore size distribution and m =
1–1/n. Saturated hydraulic conductivity = Ks. LDP: laboratory-derived water 
retention parameters, NN: neural network analysis, and EM: Evaporation 
method. 
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Φ(h, z, t) = β(h, z, t)Φp(z, t) (4)  

where β(h,z,t) is a prescribed dimensionless response function of the soil 
water pressure head (0≤ α ≤1), accounting for the effects of water stress 
on root water uptake and Φp is the potential root water-uptake rate (L3 

L− 3 T− 1). With actual local uncompensated root water uptake, Φ(z, t) =
b(z, t)Tp(z, t) where b(z,t) is the normalized water uptake distribution 
(L− 1), and Tp(t) is the potential transpiration rate (L/T). Note that b(z,t) 
is a function of space and time, allowing to account for plant root 
growth. 

In this study, we initially examined the credibility of critical pressure 
heads in Feddes’ water stress response function were reasonable, which 
was adapted from grass and pasture (abbreviated as “grass” and 
“pasture”), respectively (Wesseling, 1991). Under this condition, the 
root depth and distribution are constant with time. Since we used the 
same root density distribution function for those two scenarios, the grass 
and pasture parameters only differed in how they represented the water 
stress. For the one-dimensional 100-cm soil profile, we set a 90-cm 
maximum root depth and a linearly decreasing root distribution with 
depth. The Feddes soil water stress response function was used for all 
soil depths with the same parameters: h1 = − 1 kPa, h2 = − 2,5 kPa, h3, 

high = − 20 kPa, h3,low = − 80 kPa, and h4 = − 800 kPa. The true h3 
parameter was obtained by interpolation between h3,high and h3,low, 
based on the potential evapotranspiration rate, as in the SWATRE code 
(e.g., Wesseling et al., 1991). Additionally, we compared a root growth 
method (abbreviated as “growth”) with the two root depth-constant 
methods described above. In this case, the rooting depth linearly 
increased from 0 cm at the beginning of the growth period to a 
maximum depth at the date of “full cover” or harvest, which was 
described by the Verhulst-Pearl model based on our dynamic root 
measurements (Gao et al., 2008). 

2.3. Uncertainty assessment in soil process models 

2.3.1. Model setup 
The simulations of soil water movement were conducted using 

HYDRUS-1D (Šimůnek et al., 1998), a finite element model designed for 
simulating the one-dimensional movement of water, heat, and various 
solutes in variably saturated media. The program numerically solves 
Richards’ (Richard et al., 2001) equation for saturated and unsaturated 
water flow. Water content values measured at 5, 20, and 40 cm depths 
were used as the initial condition across the 0–10, 10–30, and 30–100 
cm soil layers. At the soil surface, atmospheric boundary condition was 
imposed using daily precipitation, potential evaporation (Ep) and 
transpiration (Tp), and minimum allowed pressure head (cm). Note that 
fraction-based estimated Ep and Tp in conjunction with the water stress 
responses (Feddes et al., 1978) for grass and the root growth distribution 

were used to calculate actual E and T. A free drainage condition was 
used at the bottom of the domain, assuming that the water table is 
located far below the area of interest. The soil profile was considered to 
be 100 cm deep, with observation nodes situated at 5, 20, and 40 cm 
depths. The simulation period was designed from 1 May to 30 September 
in both 2005 and 2006, respectively, based on the phenological data 
from the IMGERS station (Chen and Wang, 2000) combined with our 
own measurements. 

2.3.2. Model implements 
The resulting uncertainty due to the different parameters and input 

data was examined through field-measured moisture data. As addressed 
before, the soil moisture simulations were subjected to three error 
sources, e.g., soil hydraulic parameters, ET partitioning, and estimation 
of plant water uptake. Here, we analyzed those sources in a stepwise 
manner (Table 2), where the HYDRUS model was employed with three 
estimation methods (i.e, uncertainties) at each step to compare their 
performances. 

During the first step, three soil hydraulic parameterization ap-
proaches (LDP, NN, and EM) were compared. Note that the SFC parti-
tioning boundary condition and “growth” root water function were 
referenced for this step. 

In the second step, three approaches for partitioning ET (SFC, LAI, 
and height) were compared. The EM method was referenced for the soil 
hydraulic parameter, and “growth” was referenced for root water 
function. 

In the third step, three approaches for the functions of root water 
uptake (“grass”, “pasture”, and “growth”) were compared. The EM 
method was used for the soil hydraulic parameter, and the SFC parti-
tioning boundary condition was referenced. 

Consequently, at each step, the dominant role of different un-
certainties in simulating soil water dynamics was investigated by 
quantifying the effects of one factor while fixing the other factor. 

2.3.3. Performance evaluation 
To assess model predictive performance as compared to observa-

tions, we used the following criteria (Brimelow et al., 2010):  

(i) the Mean bias error (MAE), measuring the average difference 
between measurements and model: 

MAE =
1
n
∑N

i=1
(Pi − Oi) (5)   

(ii) the Root mean square error (RMSE), measuring the scatter be-
tween measurements and model: 

Table 2 
Design of the multi-step modeling approaches with three kinds of uncertainties.  

step uncertainty soil hydraulic parameterization ET partition Root water uptake   

LDP NN EM SFC LAI height grass pasture growth 

1 1 Y   Y     Y 
1 2  Y  Y     Y 
1 3   Y Y     Y  

2 1   Y Y     Y 
2 2   Y  Y    Y 
2 3   Y   Y   Y  

3 1   Y Y   Y   
3 2   Y Y    Y  
3 3   Y Y     Y 

Note: LDP: laboratory-derived water retention properties, NN: neural network analysis, EM: evaporation method, SFC: soil fraction cover, LAI: Leaf area index, height: 
crop height. Y means Yes in the sense it was used. 
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Pi − Oi)

2

√
√
√
√ (6)    

(iii) the Index of agreement (IA), measuring agreement between 
model and observations: 

IA = 1.0 −

[ ∑N
i=1(Pi − Oi)

2

∑N
i=1[|(Pi − O)| + |(Oi − O)| ]

2

]

(7) 

In the above formula, N is the number of observations, Pi and Oi are 
the simulated and measured values (i is the data number), and Ō is the 
mean of the observed series. The IA statistic is considered superior to the 
correlation coefficient in evaluating the accuracy of simulated values 
(Zhao et al., 2010). IA ranges from 0 to 1, with a value of 1 indicating 
perfect model performance. 

3. Results and discussions 

3.1. Soil hydraulic parameters in the studied area 

In the area we studied, the topsoil had a higher sand content, bulk 
density, and a lower total carbon content than the subsoil (18 to 44 cm), 
indicating the presence of pedogenetic stratification. The textural 
changes in the soil profile influence the total porosity, water retention 
values, and hydraulic conductivity of the soil horizons. This is consistent 
with the VGM parameters of the soil horizons (Table 1). Moreover, the 
parameters α and n based on the EM were largely different from that 
based on the LDP or NN. Fig. 1 shows large differences in unsaturated 
hydraulic conductivity function, K(h), among three parameter estima-
tion methods, particularly at moderate dry conditions (the matric po-
tentials ranging between − 30 to − 90 kPa). This indicates a large 
discrepancy between the calculated and measured parameters of 
different estimation methods. One main reason for these differences is 
that the LDP approach is based on capacity properties, ignoring flow 
while the EM method considers the transport and thus reflects intensity 
properties (Horn et al., 2014). Mertens et al. (2004) also reported that 
using different measurement techniques at the same scale or sample size 

can yield different Ks estimates. 

3.2. Model uncertainty in water flow simulations 

3.2.1. Uncertainty of soil hydraulic parameters 
The quality of estimated hydraulic parameters was tested by pre-

dicting water contents for the two growing periods of 2005 and 2006. 
There is a general agreement between simulated and measured soil 
water content for both periods (Fig. 2). Irrespective of the parameter 
estimation method, an increase in water content in the topsoil after 
rainfall was well-reflected, indicating that all parameterized models are 
responsive to input rainfall. The subsoil also showed similar soil mois-
ture dynamics for the simulation period across all model approaches. 
However, the EM method performed much better in predicting 
measured soil water values than the other methods. The EM model could 
almost perfectly simulate water contents at 20 cm depth, while the other 
two approaches failed to represent field observations adequately. This 
discrepancy could be due to inaccurate calculated K(h) in this layer 
incorporated in the LDP and NN methods. We also observed large dif-
ferences in slopes of the K(h) for the different estimation approaches at 
greater matric potential (<− 100 kPa) for the 18–22 cm depth compared 
to the other depths (Fig. 1). Note that between days 130 and 153, the 
simulation underestimated the water content due to the occurrence of 
snow (starting on 7th September 2006). This was expected as the current 
HYDRUS model dose not account for simulating the snow hydrology and 
frozen soil processes (Zhao et al., 2010). 

Our study found that the LDP approach was less accurate in esti-
mating soil moisture profiles under drought conditions, likely due to its 
reliance on capacity properties. In contrast, the EM method was the most 
effective in predicting soil moisture profile, as indicated by the lowest 
RMSE and the highest IA (Table 3). This method could simulate the 
natural water flow process, such as soil evaporation physics, under 
relative drought conditions (Or et al., 2013). Peters et al. (2015) also 
found that the EM provided more realistic soil hydraulic properties data, 
especially in the medium to dry moisture range, by accurately ac-
counting for water adsorption flow in incompletely filled capillaries and 
isothermal vapor flow. However, the LDP approach showed large dis-
crepancies, particularly at the second soil depth, which might not 

Fig. 1. Comparison of the unsaturated hydraulic conductivity functions derived from three soil hydraulic parameter estimation methods. M: Measured values, LDP: 
laboratory-derived water retention parameters, NN: neural network analysis, and EM: Evaporation method (the fitting curve is based on the data of the evapora-
tion method). 
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account appropriately for the large pores measured in the laboratory and 
scale effects related to the sample size. This indicates that site-specific 
measurement of the water retention data (without the conductivity 
data) alone may not be sufficient for accurate simulations. The predic-
tion was weakest for the NN method, likely due to the spatial variation of 
soil properties and the limited accuracy of applied PTFs (Zhao et al., 
2010). PTFs introduce substantial spatial variability, and their accuracy 

outside the development dataset is unknown (Van Looy et al., 2017), 
leading to potential errors in soil water transport modeling. Our findings 
suggest that measured K(h) is crucial for more confident soil moisture 
predictions, especially in arid environments (Baroni et al., 2018). Model 
accuracy was also assessed using IA (Table 3), closer to 1 for the EM 
method, indicating the best goodness-of-fit, followed by LDP and NN 
(Table 3). This further suggests that the evaporation experiment 

Fig. 2. Comparison of measured and simulated soil moisture dynamics during the growing period between 2005 and 2006 resulting from different soil hydraulic 
parameter estimation methods: M: Measured, LDP: laboratory-derived water retention parameters, NN: neural network analysis, and EM: Evaporation method (fitting 
curve based on the data of evaporation method). 

Table 3 
Statistical values of three simulation approaches for soil moisture dynamics in three soil depths.  

Year Model MAE RMSE IA  

Appr- 5 20 40 5 20 40 5 20 40  

oach —— cm —— —— cm —— —— cm —— 

2005 LDP  − 0.028  0.086  0.018  0.032  0.086  0.019  0.828  0.161  0.432  
NN  − 0.047  0.052  − 0.003  0.049  0.053  0.007  0.688  0.236  0.672  
EM  − 0.009  0.007  0.013  0.018  0.010  0.015  0.907  0.738  0.419  

2006 LDP  − 0.030  0.064  0.014  0.041  0.070  0.026  0.826  0.473  0.756  
NN  − 0.044  0.033  0.013  0.050  0.040  0.030  0.776  0.725  0.599  
EM  − 0.003  − 0.004  0.012  0.023  0.023  0.027  0.935  0.872  0.685  

2005 SFC  − 0.009  0.007  0.013  0.018  0.010  0.015  0.907  0.738  0.419  
LAI  − 0.013  − 0.011  0.006  0.019  0.012  0.008  0.893  0.775  0.817  
Height  − 0.017  0.006  0.013  0.024  0.013  0.015  0.874  0.593  0.399  

2006 SFC  − 0.003  − 0.004  0.012  0.023  0.023  0.027  0.935  0.872  0.685  
LAI  − 0.004  − 0.016  0.009  0.024  0.030  0.025  0.925  0.795  0.710  
Height  − 0.003  − 0.001  0.013  0.023  0.023  0.028  0.938  0.876  0.631  

2005 Grass  − 0.009  0.007  0.013  0.018  0.010  0.015  0.907  0.738  0.419  
Pasture  − 0.016  − 0.009  0.010  0.023  0.012  0.012  0.857  0.604  0.462  
Growth  − 0.003  − 0.005  − 0.015  0.018  0.015  0.015  0.897  0.771  0.515  

2006 Grass  − 0.003  − 0.004  0.012  0.023  0.023  0.027  0.935  0.872  0.685  
Pasture  − 0.008  − 0.016  0.010  0.025  0.030  0.024  0.926  0.795  0.753  
Growth  0.003  − 0.001  0.010  0.025  0.023  0.027  0.926  0.876  0.669 

Note: MAE = Mean bias error, RMSE = Root mean square errors and IA = Index of agreement. LDP: laboratory-derived water retention parameters, NN: neural network 
analysis, and EM: Evaporation method, SFC: soil fraction cover, LAI: Leaf area index, height: crop height. 
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provides more accurate data than that from pressure plate-measured and 
using PTFs. 

3.2.2. Uncertainty of ET estimation 
Based on best-fitting by hydraulic parameters from the EM model 

approach, we further examined the uncertainty of ET partitioning on 
model outcomes. Estimating potential T is considered essential for a 
reliable calculation of soil water in the HYDRUS model. Our findings 
show that all ET partitioning approaches yield results that reasonably 
agree with the measured data (Table 3). We found relatively small 
variations in predicting soil moisture throughout the simulation period, 
although there are large differences in potential ET estimation from 
different partitioning methods (Fig. 3). The SFC fitted the measured 
water contents better than the other two (i.e., LAI and height), especially 
for the second soil depth. This suggests that reference FAO ET and its 
partitioning methods suit our study. It is widely accepted that vegetation 
surface coverage significantly influences the interaction between the 
vegetation surface and the atmosphere. LAI is usually considered a 
crucial parameter for global, regional, and even small-scale models of 
the biosphere or atmosphere. A set of exponential equations was fitted to 
experimental LAI data, which is initially zero or very small, increases 
exponentially during early vegetative growth, and remains at a plateau 
until maturity (Islam et al., 2006). However, our study indicated that 
LAI-based prediction is not as good as SFC-based predictions for ET 
partitioning. 

Evapotranspiration is the driving force in the water balance, and the 
current modeling approach intends to distinguish between different ET 
partitioning methods. Suppose the model strongly under/over- 
estimated potential T. In that case, discrepancies may arise between 
the simulated and measured flux terms due to the non-linear relation-
ship between soil water contents and K(h). Regardless of the upper 
boundary applied, the model was able to simulate the general trend of 
field water content observations, suggesting that the ET partitioning 
method may not be very sensitive in simulating soil moisture dynamics. 
However, these findings may only be effective in dry conditions where 
potential E is much higher than water availability from the soil, and thus 
the amount of potential E becomes insignificant. This also indicates the 
minimum allowed pressure head parameter used in the HYDRUS model 
has correctly distinguished between atmosphere-controlled and soil- 

limited ET. Note that our comparison did not include an assessment of 
ET estimation, as we generally consider the ET calculated following the 
Penman-Monteith equation to be accurate and reasonable (Mastrocicco 
et al., 2010), while the partitioning of ET remains uncertain and ques-
tionable. Soil moisture is crucial in calculating actual ET from potential 
ET. Both years showed the potential ET is similar to the actual one at the 
beginning of the summer when soil moisture was available. However, as 
soil moisture declined throughout the summer, potential ET over-
predicted the measured values (Fisher et al., 2005). 

3.2.3. Uncertainty of root extraction function 
In addition, we assessed the uncertainty associated with root water 

uptake, which is typically overlooked due to the lack of direct root 
measurements and challenges in determining the root water uptake 
function. Existing root water uptake models primarily consider rooting 
depth and vertical root distribution (Warren et al., 2015). Notably, while 
these features are treated as static in the grass and pasture approaches in 
HYDRUS, they are dynamic in the growth approach. Interestingly, we 
observed no significant differences in moisture predictions across 
different approaches, including when a root growth model with a highly 
contrasting water uptake function was considered (Fig. 4). Model effi-
ciency was similar across all approaches (Table 3), which could be 
attributed to the HYDRUS-1D model’s architecture. Specifically, tran-
spiration is determined by the potential T and root water uptake func-
tions. Thus, when the potential T greatly exceeds the necessary root 
water uptake, the specific type of water uptake function may not 
significantly impact model outputs. 

Our findings align with Hupet et al. (2002), which demonstrated that 
root parameters do not greatly affect soil water content. Musters et al. 
(2000) also illustrated that uncertainties in measured soil water contents 
were considerably higher than uncertainties in root water uptake pa-
rameters and that uncertainties in uptake parameters had minimal 
impact on soil water simulations. The water uptake model reported by 
Feddes and Raats (2004) indicates that water stress begins when the soil 
water potential falls below field capacity (e.g., − 30 kPa), gradually 
intensifying until the permanent wilting point is reached. This may 
explain the low sensitivity of root parameters in areas where water stress 
is present, as root zone water fluxes are typically low due to the very low 
unsaturated hydraulic conductivity. Thus, our results suggest that 

Fig. 3. Comparison of measured and simulated soil moisture dynamics during the growing period between 2005 and 2006 employing different estimation ap-
proaches for the evapotranspiration boundary condition. M: Measured, SFC: soil fraction cover, LAI: leaf area index, and Height: crop height. 
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differences in root water uptake estimation approaches may not be 
significant during extended droughts when transpiration fluxes are 
generally reduced. This is consistent with numerous other findings 
indicating that root water uptake is mainly governed by root distribution 
and water stress factors during wet periods, whereas the soil water po-
tential and related hydraulic conductivity are the primary drivers during 
dry periods (Carminati et al., 2016). Besides, a recent sensitivity analysis 
showed that parameters such as the maximum rooting depth had a 
minor impact on soil water dynamics and could be specified using 
literature values without significantly increasing prediction un-
certainties (Hartmann et al., 2018). Nevertheless, while our study used a 
root growth function to estimate root-zone water dynamics, further 
research is needed to validate root distribution and determine root 
parameters. 

3.2.4. Further model validation by measured ET data 
In addition to validating the model with measured soil water data, it 

is important to quantify the uncertainty using actual ET measurements. 
The uncertainty analysis of water transport models may show that flux- 
based data is better suited than content-based data (Ren et al., 2022). 
Similarly, the results showed that EM-based hydraulic parameters and 
SFC-based boundary condition are more accurate and suitable for esti-
mating the ET and T than other approaches (Fig. 5). However, all model 
approaches overestimated ET, which may be because the model and 
parametrization processes reflect the reinforced hydrological cycles 
under drought conditions, despite the reliability of our measurement. 
This requires further investigation. 

3.3. Implications for water transport simulation 

3.3.1. Importance of soil hydraulic parameters 
This study proposes a methodology to evaluate effective soil pa-

rameters for modeling the soil moisture content in the unsaturated zone. 
The EM method was found to best predict soil moisture regimes due to 
its ability to account for transient flow conditions, unlike the LDP 
method which is based on equilibrium conditions. This allowed for ac-
curate estimation of real field water flow. During the rainy season (May 
to July), soil moisture decreased with increasing soil depth, indicating 
limited water infiltration into deeper soil layers. In contrast, a reverse 

trend was observed during the dry season (August to September). In the 
intermediate-depth layers (10–20 cm), soil water contents were signif-
icantly greater, suggesting that more rainfall water was stored in this 
layer. Compared with the EM model, the LDP model was inferior in 
reflecting water flow in the field (e.g., soil water content at 10–20 cm 
layers), as it relies on the capacity properties like water retention 
characteristics. This confirms previous findings of Børgesen and Schaap 
(2005) that the measurement of K(h) is essential to improve soil hy-
draulic parameter predictions. The study also suggests that when 
process-based modeling techniques are used, measured input parame-
ters determined in transient flow experiments are essential and 
outperform parameter estimations based on static experiments in 
reflecting the field-scale water dynamics. Additionally, the NN method 
showed the weakest prediction, highlighting the need for suitable 
extrapolation and upscaling techniques to capture soil spatial variation 
(Van Looy et al., 2017). 

Various reasons may explain the differences between effective and 
measured parameters. The first is the ‘scaling problem’, which refers to 
the fact that the measured parameters may not be appropriate for the 
model scale, e.g., using small-scale laboratory-estimated θ(h) to describe 
large-scale field water content. To address this, it is recommended to 
estimate and apply soil hydraulic properties on the same scale (Abbasi 
et al., 2004). Another factor contributing to differences is the use of 
different methods to measure the θ(h) and K(h), which can result in 
water flowing in opposite directions (i.e., downwards for θ(h) measured 
using the LDP method and upwards for K(h) measured using the EM 
method). Additionally, porous media are evaluated not only through 
volume-based measurements and pore distribution, but also through 
their ability to transmit fluids. Conductivity and permeability are mea-
sures of this capability, with conductivity depending on the soil and fluid 
characteristics and permeability being a pure material property of the 
porous medium (e.g., pore geometry, ionic strength, and hydrophobic-
ity). Therefore, for our experiment, we found that the EM method pro-
vides a better approximation for predicting the wetting front arrival and 
the shape of the curves than the LDP method. The EM method, which 
accounts for intensity properties such as soil shrinkage and swelling, 
reflects the soil structure better for non-rigid soil than the LDP method, 
which relies on capacity properties (Horn et al., 2014). While other er-
rors in hydraulic parameters, such as high spatial variability of soil 

Fig. 4. Comparison of measured and simulated soil water content dynamics during the growing period between 2005 and 2006 employing different estimation 
methods of root water uptake. M: Measured, Grass: grass parameters, Pasture: pasture parameters, and Growth: root growth parameters. 
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structure, may exist when using pedo-transfer functions, we compared 
two widely-used parameterized methods from laboratory measurements 
in this study. We confirmed that more precise, site-specific soil hydraulic 
properties can be obtained by directly measuring these parameters. 

3.3.2. Combined effects from several uncertainties in the process-based 
model 

As demonstrated in this study, assessing uncertainties is crucial for 
field studies and modeling applications as model uncertainty compari-
sons are often overlooked. Such knowledge of uncertainties is essential 
to understand the impact of soil-weather-root interactions. Different 
approaches for soil hydraulic parameter estimation strongly influence 
the simulation of soil water dynamics. Our study revealed that the 
choice of the method for deriving the soil hydraulic parameters, rather 
than the estimation of the ET method and root water uptake functions, 
may be more critical when the root zone water content is considered. 
Understanding the components of ET is crucial for ecohydrological 
modeling. At higher LAI, transpiration demand increases root water 
extraction, whereas evaporation from the soil surface becomes negli-
gible. Consequently, partitioning potential ET into actual E and T is 
important when combining soil water transport models with plant 
growth functions. Furthermore, although our study found that the root 
water uptake function is not sensitive in predicting soil water dynamics, 

it does not imply that root parameters are insignificant. Our findings are 
based on the model architecture used (dos Santos et al., 2017). In 
HYDRUS, the conceptualization of the root distribution and water up-
take function may not accurately capture the real root-water relation, as 
it assumes that soil hydraulic properties mainly influence root devel-
opment under suboptimal conditions. Developing more realistic one- 
dimensional reduction functions that combine soil and root hydraulic 
properties, such as the R-SWMS model, seems promising, particularly 
with the latest advances in noninvasive techniques for root parameter-
ization (Javaux et al., 2008). Understanding roots and their functioning 
is critical for predicting climate change impacts on terrestrial ecological 
systems (Feddes and Raats, 2004) and driving new research in this area. 

More attention needs to be given to quantifying errors in input var-
iables, parameters, and model architecture. Model outputs should be 
accompanied by accuracy measures and realistic assessment of model 
uncertainties to ensure their reliability (Christiaens and Feyen, 2001). 
The uncertainty in ET partitioning has important implications for water 
and heat exchange predictions between the land surface and atmo-
sphere. As plants can extract water more efficiently from deeper soil 
levels than the evaporation process, the timescale over which T declines 
during a dry spell is much longer than that of the evaporation process 
(Vereecken et al., 2016). Therefore, the best prediction throughout the 
growing period is achieved by combining the hydraulic parameters from 

Fig. 5. Comparison of measured and simulated Evapotranspiration/Evaporation during the weighing lysimeter experiment in August 2006. LDP: laboratory-derived 
water retention parameters, NN: neural network analysis, and EM: Evaporation method (fitting curve based on the data of evaporation method); SFC: soil fraction 
cover, LAI: leaf area index, and Height: crop height; Grass: grass parameters, Pasture: pasture parameters, and Growth: root growth parameters. 
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the EM method, ET partitioning by SFC, and root growth function. While 
simple approaches like HYDRUS use root length density to approximate 
uptake capacity, more detailed analyses involve root hydraulic archi-
tectures to consider differences in root hydraulic properties between 
different root orders. However, implementing and parameterizing such 
detailed analyses in terrestrial system models remains challenging 
(Couvreur et al., 2012). While adjusting soil hydraulic properties sepa-
rately for each modeling scenario could lead to a better agreement be-
tween measured and simulated moisture dynamics (Zhao et al., 2010). 
However, it was not done here as we aimed to compare the effects of 
different hydraulic approaches to predict soil water dynamics. However, 
relaxing the assumptions and simplifications could strengthen the 
argument for measuring soil water characteristics. Additionally, it is 
important to note that hydrological model parameters usually have in-
teractions or correlations, leading to significant joint effects on the 
output variables (Song et al., 2015). Future studies may address these 
uncertainties by employing cross-validation or ensemble model 
approaches. 

3.3.3. Credibility of process-based model 
Our results show that when boundary conditions and root functions 

are properly chosen, the soil water retention curves can effectively 
capture the impacts of climate and landuse changes on plot-scale hy-
drological response. While our investigation of three sources of errors 
may account for a large portion of the model’s uncertainty, other 
sources, such as model architecture and representativeness error, could 
still be significant. Nevertheless, this highlights the relatively straight-
forward process of quantifying uncertainty in model inputs and pa-
rameters compared to assessing structural uncertainty in models. The 
HYDRUS-1D model, widely used for simulating soil water dynamics, 
requires few input parameters for calibration and has produced satis-
factory results in past studies. However, few studies have evaluated 
uncertainty in HYDRUS-1D simulations, particularly regarding ET par-
titioning. One survey by Sutanto et al. (2012) explored the potential of 
HYDRUS-1D to estimate ET partitioning using isotope measurements 
and the water balance equation. However, this study was only con-
ducted in a laboratory setting and did not produce conclusive parti-
tioning results, indicating the need for further validation using field 
data. 

Root water uptake is a critical process considered in numerical 
models that simulate soil water content and fluxes in the subsurface, as it 
controls water flow and recharge to the groundwater. However, most 
models still use a constant maximum soil-root conductance value for the 
entire soil-root system instead of coupling soil water transport models 
with plant root growth dynamics to quantify water balance components 
(Ryel et al., 2002). A root growth module was developed and imple-
mented into HYDRUS-1D to address this. The HYDRUS software now 
allows for deriving root growth and water stress functions from labo-
ratory or field experimental data, which can improve the predictions of 
root water uptake, affected by cardinal temperatures (Hartmann et al., 
2018). However, the current root water uptake function may not fully 
reflect the mechanisms by which the root absorbs soil water, such as 
characterizing soil water availability related to root distribution (Wu 
et al., 2021). The stem-root flow parameterization scheme may provide 
a better alternative (Javaux et al., 2008). The mechanisms driving root 
water transport dynamics are still widely unknown and technically 
challenging to capture in situ conditions (Carminati et al., 2016). To 
reduce uncertainty in the parameterization of root water uptake pro-
cesses, advances in experimental methods are required, and stable iso-
topes may provide an excellent tool for studying root permeability, plant 
adaptation to water availability, and genotype on the uptake and solute 
transport at small scales or short-term sub-daily timescales (Volkmann 
et al., 2016; Javaux et al., 2008). 

Reliable and accurate uncertainty analysis is crucial for under-
standing the causes and consequences of error sources, which can help 
identify alternative ways of managing soils. Our findings differ 

significantly from other investigations that found input hydraulic 
parameter uncertainty less than multi-climate ET estimation uncertainty 
(Joseph et al., 2018). A comprehensive sensitivity analysis for the sink 
term showed that the maximum root depth controls catchment-scale ET 
and streamflow (Hartmann et al., 2018). However, the comparison 
variables chosen may influence our uncertainty assessment, such as soil 
moisture data and ET data (Baroni et al., 2018). Nevertheless, all model 
approaches showed similar trends in predicting soil moisture or ET 
values. We caution that this may only apply to dry conditions and re-
quires further investigation in wet conditions. 

4. Conclusions 

This study has identified the factors that contribute to the uncer-
tainty in root-zone water simulations. The results indicate that the 
current modeling uncertainty analysis effectively distinguishes various 
hydraulic parameters, ET partitioning, and root water uptake parame-
ters. The study proves that incorporating intensity properties such as k 
(h) in model parameter estimations leads to more accurate predictions. 
Regarding ET partitioning, the SFC method outperforms the empirical 
LAI and height approaches, suggesting that direct surface coverage 
measurement should be used instead of the traditional LAI approach. 
Additionally, the uncertainty caused by choice of the “correct” ET par-
titioning appears larger than the differences between root water uptake 
functions. As a result, these findings could improve our understanding of 
the factors that regulate soil moisture, particularly regarding the im-
pacts of climate and land use change on field water balance. 
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