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Abstract

Herein, an analytical method using gas chromatography-tandem mass spectrometry (GC–

MS/MS) was devised to detect the presence of the troublesome pesticide dimethipin in vari-

ous animal-based food products, including chicken, pork, beef, eggs, and milk. The injection

port was primed with a matrix derived from pepper leaves that acts as an analyte protectant

(AP) to safeguard the target compound from thermal degradation during gas chromatogra-

phy. The presence of AP resulted in a remarkable limit of quantification of 0.005 mg/kg for

dimethipin in five matrices. Three different versions (original, EN, and AOAC) of the QuE-

ChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method were compared for

dimethipin extraction, with a double-layer solid-phase extraction (SPE) cartridge utilized for

matrix purification. A seven-point external calibration curve was established for dimethipin in

the five matrices, demonstrating excellent linearity with determination coefficients (R2)�

0.998. The developed quantitative method was validated by fortifying each matrix with three

different concentrations of standard dimethipin, and the average recovery fell within the

acceptable range outlined in the CODEX guidelines (ranging from 88.8% to 110.0%), with a

relative standard deviation (RSD) of� 11.97%. This method effectively addresses the chal-

lenge of analyzing dimethipin and can therefore be used as a routine monitoring tool for

dimethipin across various matrices.

Introduction

Dimethipin, also known as 2,3-dihydro-5,6-dimethyl-1,4-dithiin 1,1,4,4-tetraoxide, serves as

a plant growth regulator and defoliant used in the agricultural industry for oilseeds, potatoes,

and tomatoes [1]. Its primary purpose lies in aiding harvesting procedures by functioning as
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a desiccant. The mechanism of action involves inducing water loss through stress on the

plant’s stomatal system, resulting in leaf turgor reduction, desiccation, and leaf abscission.

Dimethipin has been officially registered in the United States since 1982 for diverse pur-

poses, encompassing cotton growth regulation, defoliation, and postemergent herbicide

applications. Over the years, the Americas have consistently ranked as the leading consumer

of pesticides globally, outpacing Asia, Europe, Africa, and Oceania since the mid-1990s.

Consequently, the majority of reports tend to focus on states within the Americas rather

than other regions [2]. It is classified as having moderate acute toxicity (Category II) when

ingested or inhaled [3]. Furthermore, it is considered a class C (possible) human carcinogen,

according to the United States Environmental Protection Agency [4]. Due to its relatively

high water solubility and low Koc > 1000, dimethipin has notable leaching and groundwater

contamination potential. It must be noted that the use of defoliants typically destroys the

plant canopy, thereby increasing the likelihood of surface runoff and leaching during subse-

quent precipitation events [1].

Dimethipin can potentially reach animal-based food products through various pathways.

One route is through direct application, where dimethipin is applied to crops that are subse-

quently used as animal feed. When animals consume these treated crops, residues of dimethi-

pin can be transferred to their tissues [4]. Another pathway is through residue transfer in

livestock farming. Suppose dimethipin is used as a pesticide spray or medication for animals.

In that case, it can be absorbed by the animals and accumulate in their tissues, including mus-

cles, fat, or organs, ultimately resulting in animal-based food products [2]. Environmental

exposure can also contribute to the presence of dimethipin in animal-based food products.

Dimethipin can enter the environment through agricultural runoff or the breakdown of

treated crops. Animals grazing on fields where dimethipin has been used or drinking water

contaminated with the chemical can take up dimethipin, leading to its presence in their bodies

and subsequent occurrence in animal-derived food products [5]. Furthermore, feed contami-

nation can be a potential pathway for dimethipin to reach animal-based food products. If ani-

mal feed is produced using crops treated with dimethipin, residues of the chemical can be

present in the feed itself. When animals consume this contaminated feed, dimethipin can be

transferred to their tissues and ultimately found in animal-based food products [6]. The pres-

ence of dimethipin residues in animal-based food products has raised concerns due to poten-

tial health risks associated with its consumption. On the other hand, determining dimethipin

residues in animal-based food products is challenging due to the low levels of residues, com-

plex sample matrices, chemical properties of dimethipin, matrix effects, and regulatory consid-

erations. Therefore, overcoming these challenges requires the development of a sensitive,

accurate, and reliable method, which is crucial for food safety, risk assessment, consumer con-

fidence, and quality control. This ensures that dimethipin residues are monitored and con-

trolled within acceptable limits, safeguarding public health and maintaining the integrity of

the food supply chain.

Numerous approaches exist in the literature for examining pesticide residues in plants [7,

8] and environmental samples [9, 10]. However, there is limited documentation regarding

methodologies designed explicitly for analyzing residue levels in animal-derived food. When

dealing with fatty matrices, such as animal-based food, it is essential to develop sample prep-

aration methods that focus on removing lipids and extractives [11, 12]. Consequently, ana-

lytical techniques for pesticides in animal-derived food usually incorporate a purification

step, such as liquid–liquid extraction (LLE) [13–16], gel permeation chromatography [17],

and/or solid-phase extraction (SPE) [18, 19]. However, most of these methods require sub-

stantial amounts of solvents and are intricate, labor intensive, and expensive [20]. Addition-

ally, prolonged sample preparation procedures may lead to the degradation of some
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pesticides. The streamlined and efficient "QuEChERS" method, known for its quick, easy,

cheap, effective, rugged, and safe characteristics, has been widely utilized for extracting pesti-

cides from fruits and vegetables [21]. This method has also been adapted and applied to

determine pesticide residues in complex fatty matrices, including fish and fish food [22, 23],

eggs and meat [23, 24], bovine milk [25], avocado [26], and peanut oil [27]. On the other

hand, continuous advancements are being made in the realm of analytical separation and

detection, focusing on the quest for faster methodologies that incorporate liquid chromatog-

raphy (LC) or gas chromatography (GC) coupled with mass spectrometry (MS) [28, 29].

Narrow-bore capillary columns are increasingly employed in GC and GC–MS, offering nota-

ble improvements in both laboratory efficiency and precision while maintaining chro-

matographic resolution comparable to that of conventional capillary GC [30, 31]. Gas

chromatography combined with tandem mass spectrometry (GC–MS/MS) has emerged as a

powerful technique for pesticide residue analysis, offering high sensitivity and selectivity.

Nonetheless, the accurate detection of dimethipin in complex matrices such as animal-based

food products remains challenging due to matrix interferences and analyte degradation dur-

ing sample preparation and analysis.

A subsequent endeavor by Anastassiades et al. aimed to refine earlier efforts in identifying

masking agents capable of shielding active sites within the GC system, thereby yielding sub-

stantial response enhancement for pesticides. These specific compounds were coined "analyte

protectants" (APs). The utilization of APs offers several key advantages, including simplified

preparation of calibration standards and improved accuracy in analysis. The concept of APs

has been successfully implemented in the development of the QuEChERS method [21] for the

analysis of pesticide residues using GC–MS [32], including direct sample introduction tech-

niques [33].

To the best of the authors’ knowledge, only two articles have examined dimethipin in con-

junction with other pesticides, utilizing techniques such as GC−NPD, GC−MS, and HPLC−-

diode array detection to analyze its presence in water [1]. Additionally, GC–MS/MS was

employed for residue determination in agricultural products [34]. However, no articles were

found that specifically investigated the residue levels of dimethipin in animal-based food prod-

ucts. Therefore, the objective of this study was to modify the QuEChERS method with priming

and APs for the analysis of dimethipin in five food products of animal origin, namely, chicken,

pork, beef, egg, and milk, utilizing GC–MS/MS. Adding an analyte protectant during sample

preparation protects against analyte degradation and enhances its stability throughout the ana-

lytical process. This protective effect helps to mitigate the loss or transformation of dimethipin

during sample extraction, derivatization, and GC–MS/MS analysis, resulting in improved

detection limits and reliable quantification.

Material and methods

Chemicals and reagents

The dimethipin standard with a purity of 99% was procured from Dr. Ehrenstorfer (Augs-

burg, Germany). High-performance liquid chromatography (HPLC)-grade acetonitrile was

obtained from Burdick and Jackson (SK Chemical, Ulsan, Republic of Korea). Formic acid

was sourced from Junsei Chemical Co., Ltd. (Tokyo, Japan). The QuEChERS European

(EN) kit, consisting of 4 g MgSO4, 1 g NaCl, 1 g Na3Cit.2H2O, and 0.5 g Na2Cit.5H2O, as

well as the Original kit (4 g MgSO4 and 1 g NaCl) and AOAC QuEChERS kit (6 g MgSO4

and 1.5 g NaOAc), were obtained from Agilent Technologies, Inc. (Santa Clara, CA, USA).

A double-layer carbon/PSA cartridge (500/500 mg) was purchased from Supelco (Bellefonte,

PA, USA).
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Preparation of stock and calibration solutions

A 100 ppm stock solution of dimethipin was prepared by dissolving 10.10 mg of the standard

in 100 mL of acetonitrile. Intermediate working standard solutions of 10 ppm were then pre-

pared by diluting the stock solution with the same solvent. To create a solvent calibration

curve, the working standard was further diluted in the following order: 0.005, 0.01, 0.015, 0.02,

0.03, 0.05, and 0.06 ppm. The standard stock solution was stored at -24˚C for one month,

while the working and calibration solutions were kept at 4˚C until analysis.

Sample preparation

A total of 5 g of freeze-dried (chicken, pork, and beef) or fresh (egg and milk) samples was

placed in a 50 mL Teflon centrifuge tube and spiked with 1 mL of 0.1 mg/kg (1 × limit of quan-

tification [LOQ] level), 0.2 mg/kg (2 × LOQ level), or 1.0 mg/kg (10 × LOQ level). For homog-

enization (excluding egg and milk), 10 mL of acetonitrile (ACN) was added, and the mixture

was homogenized using a tissue homogenizer for 1 min. The QuEChERS EN kit (consisting of

4 g MgSO4, 1 g NaCl, 1 g Na3Cit.2H2O, and 0.5 g Na2Cit.5H2O) was then added to the tube.

Manual shaking for 1 min and vortex mixing for 1 min were performed, followed by centrifu-

gation at 4,000 rpm for 5 min. From the resulting supernatant, 3.0 mL was loaded onto a dou-

ble-layer (carbon/PSA, 500/500 mg) cartridge that had been previously conditioned with 6 mL

of ACN: toluene (3:1, v:v). The target analyte was eluted with 6 mL of ACN:toluene (3:1, v:v).

The loaded and eluted solutions were combined and concentrated under reduced pressure in a

40˚C water bath. Subsequently, the concentrated solution was redissolved in 1 mL of acetoni-

trile containing analyte protectant (AP), resulting in a final concentration factor of 0.93 for the

sample. The concentration of AP was 30% (0.25 g/mL) for subsequent GC–MS/MS analysis.

The presence of the pepper leaf matrix serves to deactivate active sites within the GC sys-

tem, ensuring that dimethipin can travel from the injector to the detector through the capillary

column without any undesired interaction [35, 36]. Consequently, the pepper leaf matrix was

carefully optimized to enhance the response of dimethipin during GC-mass selective detection.

This optimization was carried out following the preparation of the leaf matrix using our previ-

ously established method [35].

GC–MS/MS analysis

For the instrumental analysis of dimethipin, an Agilent Intuvo 9000 GC system (Santa Clara,

CA, USA) coupled with an Agilent 7000 D GC/MS TQ detector was utilized. The compound

was separated using an HP-5 MS capillary column (30 m × 0.25 mm I.D. × 0.25 μm; Intuvo,

Santa Clara, CA, USA) in gradient mode. The column oven temperature was initially set at

80˚C for 2 min and then gradually increased to 200˚C at a rate of 20˚C/min, where it was held

for 1 min. Subsequently, the temperature was further raised to 300˚C at a rate of 25˚C/min

and maintained for 2 min. The liner that was used in the injector port was an Ultra inert liner,

splitless single taper liner with glass wool (900 μL, 4 mm id), whereas the septum was an Inlet

Septa: Agilent, Bleed/Temp optimized (BTO) nonstick 11 mm, 50/pk. Both the liner and sep-

tum are changed twice a month, while the column is replaced monthly (1st cutting). As a car-

rier gas, helium was employed at a flow rate of 1.5 mL/min. The injection port temperature

was set at 270˚C, and a volume of 1 μL was injected. The detector temperature was maintained

at 280˚C, operating in electron spray ionization mode. The multiresidue method (MRM) tran-

sition utilized two precursor ions, m/z 210 and 118. The collision energy for generating the

first product ion, 210!76, was set to 7, while the collision energy for the second product ion,

118!58, remained the same. Data acquisition was performed using Mass Hunter software.

Ensuring the quality of injections in GC–MS/MS in the absence of a deuterated compound
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involves implementing various strategies. First, well-defined, symmetrical peaks with good res-

olution are indicative of a high-quality injection. Additionally, a stable baseline is crucial, sug-

gesting proper injection and chromatographic conditions. Consistent retention times across

injections contribute to the overall reproducibility. Performing blank runs by injecting sol-

vent-only blanks helps identify any potential contamination or interference, with the baseline

remaining stable. Periodic injection of standard solutions verifies the instrument’s sensitivity

and linearity. Matrix effects are assessed by analyzing matrix-matched standards to understand

the sample matrix’s impact on the analytical signal. Regular injection of calibration standards

ensures that the instrument response aligns with the calibration curve. Last, peak identity is

confirmed by comparing mass spectra and retention times with reference standards or library

spectra.

Method validation

The validation and optimization of the method followed the guidelines outlined in EU docu-

ment no. SANTE/11945/2015 (SANTE Guidance Document on Analytical Quality Control

and Method Validation Procedures for Pesticide Residue Analysis in Food and Feed, 2015

[37]. The parameters assessed included linearity, matrix effects, limits of detection and quan-

tification, specificity, accuracy, and precision. Linearity was evaluated by calculating the

determination coefficient (R2) using a seven-point matrix-matched calibration curve (0.005,

0.01, 0.015, 0.02, 0.03, 0.05, and 0.06 mg/kg). The limit of detection (LOD) was determined

as the lowest detectable signal of the analyte that was three times higher than the background

noise, following the method described by Ribani et al. [38]. The limit of quantification

(LOQ) was defined as the minimum concentration of the analyte that could be accurately

and precisely quantified. The specificity of the method was assessed by injecting control sam-

ples and observing any interference. Specificity was considered satisfactory if there was either

no interference or interference at a level below 30% of the LOQ at the retention times of the

target compound. The accuracy determination involved assessing recovery, estimated by for-

tifying three blank samples with standard solutions at three distinct concentrations (1×, 2×,

and 10× LOQ). To measure recoveries, the peak areas of the spiked samples were compared

to those of external standards in the matrix. The precision (repeatability, RSD) was calculated

to evaluate variations in repeated analyses under the same experimental conditions. On the

other hand, the matrix effect (ME) was assessed by comparing the slope of the calibration

curve for standard solutions with that of matrix-matched standard solutions. Positive values

indicate matrix enhancement, while negative values suggest matrix suppression. Quality con-

trols (QCs) can be implemented through calibration standards, including blanks in each

batch to monitor and correct for any contamination or background signals, and matrix-

matched standards.

Results and discussion

Optimization of different elution volumes

In this study, we investigated the impact of different elution volumes (6 mL, 8 mL, 10 mL, and

12 mL) of ACN:toluene (3:1, v:v) on the recovery of dimethipin, both in a solvent and in a

matrix (egg) sample. The recovery percentages varied depending on the elution volume used.

For the dimethipin standard in the solvent, the recovery ranged from 99–100%, 99–103%, 97–

99%, and 97–98% for the respective elution volumes. In the case of dimethipin in the matrix

(egg), the recovery percentages ranged from 80–82%, 76–83%, and 78–84% and were unavail-

able for the different elution volumes. Based on the data obtained, an elution volume of 6 mL

yielded a satisfactory recovery for dimethipin in both the solvent and matrix (egg) samples.
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These findings highlight the importance of optimizing elution conditions to ensure accurate

analytical measurements, as the elution volume influences the recovery percentages.

Comparison of QuEChERS methods for the recovery of dimethipin

To ensure accurate recovery of the target analyte, selecting the appropriate QuEChERS

method is crucial. In this study, we compared the recovery percentages of dimethipin using

three different QuEChERS versions: Original, AOAC (Association of Official Analytical

Chemists), and EN (European QuEChERS). The data obtained indicate variations in the

recovery percentages of dimethipin among these three QuEChERS versions. The original

QuEChERS method yielded recovery percentages ranging from 87% to 92%, while the AOAC

QuEChERS method showed slightly lower recovery percentages ranging from 82% to 90%. On

the other hand, the EN QuEChERS method resulted in the highest recovery percentages, rang-

ing from 88% to 89%. Based on the results, the EN QuEChERS method was selected as the

optimal approach for extracting dimethipin from animal-based food products. This method

consistently demonstrated the highest recovery percentages among the tested versions, sug-

gesting its effectiveness in accurately extracting dimethipin from food matrices.

Priming and analyte protectant

For analysis of dimethipin in different matrices, two precursor ions (210 and 118 m/z) were

chosen for the multiresidue method (MRM) transition. These precursor ions were selected in

preparation for subsequent analysis of dimethipin across various matrices using GC–MS/MS.

Fig 1 provides clear and concise information about the experimental setup and the observed

effects of pepper leaves on the dimethipin signal by GC–MS/MS. This indicates that at a con-

centration of 0.01 ppm, both with and without the pepper leaf matrix, the dimethipin signal

was measured. Additionally, at a higher concentration of 0.06 ppm with the pepper leaf matrix,

signal suppression of dimethipin was observed after 3 h of continuous batch running.

As implied in Fig 2, adding an analyte protectant (AP) after priming with a pepper leaf

matrix can significantly enhance the signal of dimethipin in GC–MS/MS analysis. Further-

more, the signal enhancement level increases with higher AP concentrations, with the highest

enhancement observed at a 30% AP concentration. These findings demonstrate the impor-

tance of optimizing the use of an analyte protectant to improve the detection and quantifica-

tion of dimethipin in the presence of the pepper leaf matrix. The matrix of pepper leaves

potentially contains a higher number of compounds than pepper itself, which can render the

GC system’s active site inactive. This active site is responsible for the decomposition of analytes

[35]. In this context, kresoxim-methyl and its two thermolabile metabolites, BF 490–2 and BF

490–9, were assessed in pear samples using a pepper leaf matrix as a protective measure to pre-

serve these metabolites during GC analysis. Incorporating the pepper leaf matrix into the pear

matrix ensured the integrity of the compounds, resulting in a precise and sensitive GC out-

come for thermolabile kresoxim-methyl metabolites. The limits of detection (LOD) and quan-

tification (LOQ) were determined to be 0.006 and 0.02 mg/kg for kresoxim-methyl and 0.02

and 0.065 mg/kg for the metabolites, respectively [39].

From the author’s experience, pepper leaf as an AP over alternatives, such as 3-ethoxy-

1,2-propanediol or D-sorbitol, may offer the following advantages: 1- Pepper leaf is a natural,

plant-derived material, which might make it more compatible with certain analytes or matrices

compared to synthetic compounds such as 3-ethoxy-1,2-propanediol. 2- The use of a natural

AP could reduce interference in the analysis. Synthetic protectants might introduce additional

compounds that could interfere with the detection or identification of the target analyte. 3-

Plant-derived materials might have components that help in preserving sample integrity
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during the analysis. This is especially important when dealing with complex matrices, such as

food products. 4- Pepper leaves, being a natural product, may be more cost-effective than syn-

thetic alternatives. 5- The use of a natural product aligns with eco-friendly practices, which is

increasingly important in analytical chemistry. 6- The specific chemical composition of pepper

leaves might offer unique properties that enhance the stability of the analyte during analysis.

Method performance

Fig 3 displays representative GC–MS/MS chromatograms of matrix-matched standards, blank

samples, and spiked blank samples of dimethipin with various analytes. Specificity was ensured

by examining the presence of noise or interference at the retention times of the target analytes

in the blank sample. An absence of signal or interference below 30% of the limit of quantifica-

tion (LOQ) at the retention times of the target compounds indicated the method’s specificity

and minimal interference.

The matrix-matched calibration exhibited excellent linearity, with R2 values ranging from

0.9988 to 0.9997 (Table 1). This indicates a strong linear relationship between the concentra-

tion of dimethipin and the corresponding response in the analytical method. The LOQ for

dimethipin was determined to be 0.005 mg/kg (Table 1). The low LOQ values indicate the

Fig 1. Effect of pepper leaf matrix on dimethipin signal at GC–MS/MS; (a) dimethipin 0.01 ppm without pepper leaf (b) dimethipin 0.01 ppm

with pepper leaf matrix (c) dimethipin 0.06 ppm with pepper leaf matrix (d) signal suppression of dimethipin 0.06 ppm with pepper leaf matrix

after three hours of continuous batch running.

https://doi.org/10.1371/journal.pone.0295968.g001
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sensitivity and reliability of the developed method, allowing for the accurate detection and

quantification of the herbicide even at very low concentrations within complex matrices. The

practical benefits may enable the early detection of the herbicide, which is crucial for prevent-

ing and managing potential contamination in various complex matrices. Furthermore, it may

indicate that our method complies with the regulations set by regulatory bodies (stringent lim-

its), providing reliable data for regulatory purposes. It could also be essential for quality control

and accurate assessment of the risk associated with herbicide exposure.

Table 1 presents the recovery rates and RSD values for dimethipin. All analytes exhibited

recovery rates ranging from 88.8 to 110.0%, which fell within the acceptable range of 70–120%

according to the SANTE guidance document on analytical quality control and method valida-

tion procedures for pesticide residue analysis in food and feed 2015 [37]. The observed preci-

sion values ranged from 1.4% to 12.0%, which were considered acceptable, as they fell within

Fig 2. Optimization of analyte protectant (AP) for GC–MS/MS signal enhancement of dimethipin after priming with pepper leaf matrix (a) no

priming (b) 10% AP after priming (c) 20% AP after priming (d) 30% AP after priming.

https://doi.org/10.1371/journal.pone.0295968.g002
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the coefficient of variation (20%). In this context, Rahman et al. [40] determined methiocarb

and its metabolites in livestock products using liquid chromatography-tandem mass spectrom-

etry. The method was validated at three fortification levels, yielding recovery rates ranging

from 76.4% to 118.0% and relative standard deviations below 10.0%. These data suggest that

the developed analytical method is effective for analyzing dimethipin in various matrices.

Across all matrices, dimethipin showed minimal matrix enhancement, ranging from +3.0%

to +8.7% (Table 1). The matrix effects observed are within an acceptable range, indicating that

the method accounts for the matrix composition to achieve accurate and reliable results.

Fig 3. GC–MS/MS chromatograms of dimethipin in chicken (1), pork (2), beef (3), egg (4), and milk (5); a: standard

in matrix (0.005 mg/kg), b: blank, c: recovery equivalent to 0.05 mg/kg, and d: market sample.

https://doi.org/10.1371/journal.pone.0295968.g003
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Method application

After establishing the methodology, the developed method was effectively applied to analyze

five different types of animal products (chicken, pork, beef, egg, and milk) acquired in 2019

and obtained from various markets across the Republic of Korea. The meat and egg samples

were collected from nonorganic livestock markets in ten different locations, including Dae-

jeon, Gyeongsan, Jeonbuk, Jeongup, Muan, Cheonan, Hongseong, Jangheung, Gyeonggi-do

Gwangju, and Namwon. The milk samples represented ten major brands of milk produced in

the Republic of Korea: Seul Milk, Maeil Milk, Home Plus, Pasteur Milk, Got Taste & Fresh

Tech, Ildong, Purmil, Seoul Baby Milk, E-mart, and Sangha Farm. Importantly, none of the

tested samples showed any positive results for the presence of dimethipin (Fig 3).

Conclusion

In conclusion, a novel analytical method was developed using GC–MS/MS to detect dimethipin

in animal-based food products. The technique employed priming with a pepper leaf matrix and

an analyte protectant (AP) to enhance sensitivity and prevent thermal degradation. The method

demonstrated a low limit of quantification (LOQ) of 0.005 mg/kg in all tested matrices. By syn-

ergistically integrating priming and analyte protectant strategies, we anticipate significant

advancements in the sensitive detection of dimethipin residues in animal-based food products.

This method offers a reliable and routine monitoring tool for detecting and quantifying

dimethipin residues, providing valuable information for food safety and regulatory purposes.
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Table 1. Linearity, matrix effect, and recovery of dimethipin in animal-based food products.

Compound Sample Linearity (R2) Matrix effect (0.5 g/mL) Recovery (n = 5) (Average ± RSD%)

LOQ 2×LOQ 10×LOQ

Dimethipin Chicken 0.9992 +5.0±11.9 95.0 (10.7) 91.5 (5.0) 95.9 (1.8)

Pork 0.9988 +8.7±13.5 97.5 (12.0) 96.1 (5.0) 96.3 (2.3)

Beef 0.9989 +6.2±7.6 106.4 (8.1) 105.1 (5.1) 92.8 (8.8)

Egg 0.9997 +3.0 ±4.3 110.0 (6.2) 97.2 (4.7) 101.6 (4.0)

Milk 0.9997 +6.6±3.4 103.0 (6.7) 97.0 (3.3) 88.8 (1.4)

Limit of quantification (LOQ): 0.005 mg/kg.

https://doi.org/10.1371/journal.pone.0295968.t001
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