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Abstract—The ever-increasing need to diversify the Internet
has recently revived the interest in network virtualization.
Network virtualization carries a significant benefit to Service
Providers, as it enables the deployment of network services within
customized virtual networks (VN) that offer performance and
reliability guarantees. VN embedding across multiple substrate
providers creates the need for a layer of indirection which is
fulfilled by VN Providers. VN Providers are expected to have very
limited knowledge of the physical infrastructure, since substrate
providers do not disclose their network topology and resource
information. This entails significant implications on resource
discovery and assignment.

In this paper, we study the challenging problem of multi-
domain VN embedding with limited information disclosure (LID).
In this context, we discuss the visibility of VN Providers on
substrate network resources and question the suitability of
topologies for VN request specifications. Our main contributions
are as follows: (i) we present a traffic matrix based VN embedding
framework that enables VN request partitioning under LID, and
(ii) we conduct a feasibility study on VN embedding with LID
compared to a “best-case” scenario where all information is
available to VN Providers.

I. INTRODUCTION

Over the last years, the Internet has seen the emergence

of many new network applications and services, such as

video conferencing, IPTV, and online gaming. Unlike the

evolution and the advent of new network services, the Internet

architecture has remained almost unchanged, providing merely

“best-effort” delivery. Existing technologies for Quality of

Service, robust routing and security experience difficulties in

transcending organization or enterprise boundaries. This has an

adverse impact on the deployment of network services across

wide areas, especially when network services pose stringent

and varying requirements in terms of throughput, delay, packet

loss or security.

The ever-increasing need to diversify the Internet has

revived the interest in network virtualization [11]. Recent

advances on server and router virtualization (e.g., [7], [5],

[12], [22], [8]) satisfy the various requirements (e.g., high

packet forwarding performance, isolation) for the concurrent

deployment and operation of service-tailored network slices on

top of shared physical infrastructures [19], [26]. In this con-

text, both Service Providers (SPs) and Physical Infrastructure

Providers (InPs) benefit from network virtualization. SPs can

deploy network services within customized virtual networks

(VNs) that offer performance and reliability guarantees. For

InPs, network virtualization improves resource efficiency and

reduces the operational (OPEX) and technology investment

costs (CAPEX).

Wide-area VN deployment requires the ability to provision

and operate VNs across multiple InPs. This creates the need

for a layer of indirection, which is fulfilled by the so-called

VN Providers (VNPs) that are responsible for the discovery,

selection and allocation of virtual resources from multiple

InPs. Essentially, VNPs assemble the resources allocated from

the InPs into a functional network which can be subsequently

configured and operated by the SP. The role and the required

control interfaces for VNPs are exemplified in [19], while a

similar layer of indirection also exists in Cabernet [26] and

GENI [3].

VN embedding across multiple substrate networks entails

significant challenges for VNPs. More precisely, the various

InPs, as separate administrative entities, will be reluctant to

disclose any resource and network topology information to

third parties. As such, VNPs are required to discover and

assign resources for VN embedding with limited knowledge

of the substrate topology and resource availability. Most VN

embedding algorithms require full knowledge of the substrate

resources and network topology, and therefore cannot be used

to map VN topologies onto multiple substrate networks [10],

[24], [25], [17], [13]. An existing approach for VN request

partitioning among substrate providers is based on a highly

abstract view of the underlay (i.e., AS-level topology without

any information on peering nodes) and as such, it can generate

suboptimal embeddings [15].

In this paper, we investigate the feasibility of multi-domain

VN embedding with limited information disclosure (LID).

First, we discuss the visibility of VNPs on substrate network

resources and define a minimum level of information dis-

closure based on the composition of resource and network

topology information that is not treated as confidential by

InPs. Subsequently, we present a framework that decomposes

multi-domain embedding into a set of operations allowing

VNPs and InPs to process incoming VN requests based on

their visibility on substrate resources. In particular, the VNP

matches requested to offered resources and partitions VN

requests across multiple InPs. Subsequently, InPs select the

resources relying on their detailed knowledge of substrate

resources. To provide the ability to embed VN requests across

multiple substrate networks, we present formulations for the

VN request partitioning and intra-domain resource assignment

problems.
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Fig. 1. VN embedding request across multiple domains.

A novel aspect of our embedding framework is the process-

ing of VN requests, in which flow demands are represented by

traffic matrices. In contrast to topology-based VN requests, VN

specifications using traffic matrices enhance the flexibility in

VN partitioning and mapping, while offering a higher level of

abstraction to Service Providers. According to our knowledge,

our work comprises the first study on the feasibility of multi-

domain VN embedding with LID.

The remainder of the paper is organized as follows. In Sec-

tion II, we discuss the multi-domain VN embedding problem

and investigate some of its most critical aspects, such as the

level of information disclosure and the specification of VN

requests. Section III outlines our VN embedding framework

which circumvents the difficulty of embedding VN requests

across multiple InPs with LID. Section IV includes the VN

partitioning and intra-domain resource assignment problem

formulations. In Section V, we present our simulation results

and discuss the feasibility of multi-domain VM embedding

with LID. Section VI discusses related work. Finally, in

Section VII, we highlight our conclusions.

II. PROBLEM DESCRIPTION

In this section, we elaborate on multi-domain VN embed-

ding with LID. In this respect, we investigate the level of

substrate resource and network topology information that can

be divulged without violating InP policies. Furthermore, we

question the suitability of network topologies for VN request

specifications and seek network abstractions that facilitate VN

request partitioning and embedding.

Consider the example depicted in Fig. 1, where a SP

requests the deployment of a VN consisting of virtual nodes

and links associated with certain specifications. VN speci-

fications are formulated by SPs based on the requirements

of a particular service and are typically set at a high level

of abstraction. The VN is mapped onto a number of InPs

that offer the geographic footprint required by the SP. We

rely on the multi-layer control plane architecture in [19] and

particularly on the presence of VNPs, which act as brokers

between SPs and InPs, carrying out resource discovery and

InP selection for VN embedding. As such, VN requests are

initially relayed to VNPs, which subsequently partition the VN

among the participating InPs while satisfying one or multiple

objectives (e.g., minimize the expenditure for the SP).

A. Information Disclosure

VNP’s visibility on the substrate networks is critical for

VN embedding. In this respect, it is important to enhance the

ability of VNPs to access the resource and network topology

information that is not regarded as confidential by InPs. Such

level of information disclosure constitutes a prerequisite for

multi-domain VN embedding, as discussed in Section III. To

this end, we investigate information disclosure with respect

to (i) (virtual) resource availability and (ii) substrate network

topology.

Inline with cloud computing platforms such as Amazon

EC2 [1], an InP classifies its resources into types and ad-

vertises them along with the associated cost. Each resource

type essentially comprises all resources (i.e., nodes) with

a common set of attributes (e.g., operating system, main

memory, storage, virtualization technology). We anticipate,

though, that InPs will not disclose the number of available

instances for each offered resource type in order to conceal

their resource utilization.

We further examine which aspects of the substrate network

topology can be disclosed by InPs. For instance, a Point-

of-Presence (PoP) level topology could augment VNP in

estimating the link costs between any pair of virtual nodes.

Fig. 2(a) illustrates POP-level topologies of three substrate

providers, including the costs (i.e., per capacity unit) for

purchasing bandwidth over the intra-domain and peering links.

Taking into account the policies of Internet Service Providers

(ISPs), the disclosure of router-level topologies is prohibitive.

Instead, some ISPs publish topologies with PoPs. However,

most of these topologies are oversimplified lacking not only

router-level connectivity but also PoP structure [20].

Based on these observations, detailed topology information

cannot be assumed to be accessible by VNPs. However, VNPs

can enhance their limited substrate network view with certain

aspects of the substrate topology which are not treated as

confidential. Similar to ISPs, InPs may disclose their PoPs

and information about their peerings. A VNP can also collect

publicly available information from Internet Exchange Points

(IXP) (e.g., DE-CIX [2] advertises topology information and

traffic statistics) and databases on peering locations and par-

ticipants (e.g., peeringDB [6]). Such information enables a

VNP to construct a more comprehensive view of the underlay,

including the location and connectivity of peering nodes. This

is illustrated in Fig. 2(b), which shows the view of VNP on the

substrate networks of Fig. 2(a), with U,V,W, ...,Z representing

the peering nodes.

The peering agreements between InPs (i.e., paid peering

or settlement-free peering) will have an impact on the cost

of virtual links that span multiple domains. Although the InP

policies for inter-domain path selection will remain confiden-

tial, any incurring transit fees will be reflected in the advertised
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Fig. 2. Substrate network visibility.

peering link costs. More precisely, the peering link costs will

comprise the transit fees to the provider (in the case of paid

peering) or the cost for the operation and maintenance of the

peering link (in the case of settlement-free peering) plus the

profit for the InP.

To optimize VN partitioning among InPs, the VNP will

seek to minimize the VN embedding cost, which comprises

all virtual node and link allocation costs. Since the VNP lacks

detailed knowledge of the substrate topology, the total virtual

link allocation cost will be estimated based on the advertised

costs of the links between the peering nodes, as shown in Fig.

2(b). As such, the VNP will not be in position to account the

intra-domain link costs. These costs will be known after the

VN assignment by the InPs. Nevertheless, peering link cost is

anticipated to be the dominant factor of the total link cost and

thereby, the intra-domain link costs will not increase the SP’s

expenditure significantly.

B. VN Request Specification

Nearly all existing embedding algorithms (e.g., [10], [24],

[25], [17], [13], [15]) process VN topology requests which are

typically specified as undirected weighted graphs. VN topolo-

gies introduce unnecessary constraints in the VN embedding

problem [21]. In particular, the efficiency of VN embedding

depends on the VN topology specification, which in return

may require detailed knowledge of the substrate network

topology and resource availability. As discussed above, most of

this information will remain confidential. On the other hand,

SPs may prefer to specify VN requests at a higher level of

abstraction, obviating the need for any VN topology speci-

fications. In fact, a VN request comprising the virtual node

specifications and the flow demands for each pair of nodes is

deemed sufficient for most network service requirements.

As such, we investigate potential gains by using traffic

matrices instead of topology-based VN requests. Fig. 3 illus-
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trates a traffic matrix that specifies the required traffic flow

units between all pairs of 3 virtual nodes. This traffic matrix

essentially abstracts all four topology-based requests shown

below, while it further represents the flow requirements of

additional VN topologies that include intermediate nodes.

Using a traffic matrix for the VN request specification

provides higher flexibility for VN partitioning, as shown in

Fig. 4, where U,V represent peering nodes. We consider the

partitioning of the VN request of Fig. 3 between two InPs

given that virtual nodes a and b can be allocated only from

InP 2 and InP 1, respectively, due to specific constraints such

as location. As such, VN request partitioning depends only

on the assignment of virtual node c. In this respect, Figs. 4(a)

and 4(b) represent two different VN partitions. We observe that

the topology (ii) is suitable for the VN partition in Fig. 4(a),

since it directly gives the capacity requirement for the peering

link. The other VN topology-based requests complicate the

VN partitioning for different reasons: topologies (iii) and (iv)

may result in resource overprovisioning along the peering

link increasing the expenditure for the SP, while topology

(i) requires a transformation to derive the overall capacity

requirement over the peering link. Similarly, among the four

topology-based VN requests, only topology (iv) is suitable for

the VN partition in Fig. 4(b).

Consequently, topology-based VN requests unnecessarily

restrict the VN embedding problem space excluding efficient

solutions, in contrast to the traffic matrix counterpart. As

such, we provide the ability to embed traffic matrix based

VN requests across multiple substrate networks.
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III. VN EMBEDDING FRAMEWORK

Hereby, we present our multi-domain VN embedding frame-

work. Similar to [15], we decompose multi-domain VN em-

bedding into a set of operations that allow the VNP and

the participating InPs to process VN requests based on their

knowledge of the substrate network. In the remainder of this

section, we exemplify these VN embedding steps.

Resource Information Disclosure. The disclosure of resource

information can facilitate resource discovery and VN request

partitioning. As discussed in Section II-A, we expect that each

InP will advertise the bandwidth cost of the links between

peering nodes. Furthermore, we consider InPs advertising one

instance of each offered virtual node type along with its

unit cost. Virtual node types are explicitly associated with a

set of (attribute, value) pairs that comprise the specification

of this resource type. All disclosed information is collected

and registered by the VNP into a local repository, which is

subsequently used for resource matching and VN partitioning.

Fig. 5 illustrates the resource and substrate topology in-

formation available to the VNP. This comprises the set of

offered virtual node types represented by {a,b,c, ...,g}, the

location of peering nodes represented by {U,V,W, ...,Z}, and

the connectivity of peering nodes along with the respective link

costs. The disclosure of virtual node types promotes competi-

tion among InPs, since multiple InPs may offer resources with

similar attributes.

Resource Matching. VNPs rely on the information disclosed

by InPs to match requested to offered resources. To this end,

the VNP identifies a set of candidate resources that fulfill the

requirements of each requested virtual node. Fig. 6 depicts

how four different virtual node types (i.e., a, b, c, d) of a VN

request are matched against the resources advertised by the

InPs. In this particular example, the requested and advertised

resources have specifications of the same level (i.e., same set of

attributes) which facilitates their matching. It is also possible

that the attributes of the requested resources comprise a subset

of the attributes of the advertised resources. In this case, the

identification of matches across the set of disclosed resources

requires similarity-search techniques, such as [18], [14].

VN Request Partitioning. VN requests are partitioned across

multiple InPs, when none of the participating substrate

providers can offer all the resources requested by the SP.

Requests for wide-area VN deployments that exceed the
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geographic footprint of any InP comprise such an example.

We consider VN partitioning as a cost minimization prob-

lem, taking into account all disclosed resource costs as well as

the inter-dependencies between virtual node and link costs. In

Section IV-B, we present a formulation for the VN request

partitioning problem. Our solution provides a set of VN

segments, where each virtual node is mapped onto a particular

peering node.

The exact placement of each virtual node is determined

by InPs exploiting the detailed knowledge of the substrate

resources. To this end, each VN segment is relayed to its

corresponding InP, where resource assignment and allocation

is carried out. Similar to the initial VN request, each VN

segment consists of virtual node specifications and a traffic

matrix that represents the flow demands spanning all pairs of

virtual and peering nodes (Fig. 7).

Resource Assignment. Upon VN request partitioning, InPs

map their assigned VN segments onto their substrate networks

while satisfying certain virtual node capacity and flow require-

ments. The mapping complies with the virtual node to peering

node bindings, as given in the VN segment specification.

Resource assignment corresponds to the intra-domain VN

embedding problem which has been investigated in [10], [24],

[25], [17], [13], [15]. However, these methods have limited

applicability to our embedding framework, since they cannot

process VN requests specified using traffic matrices. In Section

IV-C, we present an adapted problem formulation along with

a developed solver for the resource assignment problem.

IV. VN EMBEDDING PROBLEM FORMULATION

In this section, we provide formulations for the VN request

partitioning and intra-domain resource assignment problems.

A. Network Model

Substrate Network Model. The substrate network is repre-

sented as a weighted directed graph Gs = (Ns,Ls), where Ns
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is the set of substrate nodes and Ls is the set of substrate

links between the nodes within the set Ns. Each substrate node

u∈Ns is associated with a set of attributes, such as the location

and the residual capacity denoted by ru. Each substrate link

(u,v) ∈ Ls between two substrate nodes u and v is associated

with the residual capacity denoted by ruv.

VN Request Model. A VN request consists of the set of

virtual nodes Nv and the flow demands di j between any pair of

virtual nodes i, j ∈ Nv. Each virtual node i is associated with

a set of attributes (e.g., location) and the required capacity

denoted by gi. For a VN request partitioned into k segments,

Nk
v denotes the set of nodes that comprise the VN segment

specification, including the virtual nodes plus the assigned

peering nodes (e.g., VN request 1 and 2 in Fig. 7). For any pair

of nodes i, j ∈ Nk
v , di j represents the respective flow demands

for the kth VN segment.

B. VN Partitioning Formulation

We consider a VNP having access to limited resource and

substrate topology information, as discussed in Section II-A.

Given the set of disclosed peering nodes across the InPs,

denoted by P, we seek the assignment of requested virtual

nodes to peering nodes, i.e., Nv → P, such that the cost for the

SP is minimized.

We define a binary integer programming (BIP) formulation

that takes as inputs the VN request, the node and link

allocation costs advertised by InPs, and the virtual node to

peering node mapping feasibility obtained from the preceding

resource matching phase. In this respect, let ci
p denote the

cost for allocating the virtual node i from peering node p. We

further introduce a weight wi
p ∈{1,∞} to specify the feasibility

of mapping virtual node i to p. Hence, wi
p = ∞ if the mapping

is not feasible (i.e., none of the advertised node specifications

matches the requested virtual node specification). We use a

binary variable xi
p to indicate the mapping between virtual

node i and p. Similarly, a binary variable y
i j

pp′
indicates

whether a pair of virtual nodes i, j are mapped to a pair of

peering nodes p, p′, respectively. Essentially, the variable y
i j

pp′

allows the VNP to account for the link costs (denoted by c
i j

pp′
)

between all assigned virtual nodes. In the case that the peering

nodes p, p′ belong to different InPs, c
i j

pp′
accumulates all the

link costs along the inter-domain path from p to p′. In the

presence of multiple paths, the path with the lowest cost is

selected.

The BIP formulation is expressed as follows:

Minimize ∑
i∈Nv

∑
p∈P

wi
pci

pxi
p + ∑

i, j∈Nv
(i6= j)

∑
p,p′∈P

wi
pw j

pc
i j

pp′
y

i j

pp′
(1)

subject to:

∑
p∈P

xi
p = 1 ∀i ∈ Nv (2)

∑
p′∈P

∑
j∈Nv

y
i j

pp′
+ y

ji

p′p
= 2(|Nv|−1) · xi

p

i 6= j,∀i ∈ Nv,∀p ∈ P (3)

xi
p,y

i j

pp′
∈ {0,1} ∀i, j ∈ Nv,∀p, p′ ∈ P (4)

The first term of the objective function (1) represents the

sum of the costs for the mapping of virtual nodes to the peering

nodes. By multiplying each node cost ci
p by wi

p, we exclude

all the infeasible virtual node to peering node mappings (since

the cost becomes infinite). The second term of (1) accumulates

the link costs between feasibly mapped nodes.

We briefly explain the BIP constraints. Constraint (2) en-

sures that each virtual node i is mapped to exactly one of

the peering nodes. Constraint (3) binds the mapping of each

virtual node to the mapping of the respective virtual links.

The full traffic matrix implies that a mapped virtual node

i ∈ Nv is connected to (|Nv| − 1) virtual nodes j ∈ Nv using

bidirectional links. Finally, condition (4) denotes the binary

domain constraints for the variables xi
p and y

i j

pp′
.

C. Resource Assignment Formulation

Next, we formulate the resource assignment problem within

InPs as a mixed integer multi-commodity flow problem. In

this context, each traffic flow requirement corresponds to a

commodity Comi j = {i, j,di j}, where i, j ∈ Nk
v represent the

source and destination nodes, respectively, while di j is the

flow demand. The flow variable f
i j
uv denotes the total amount

of flow units on the substrate link (u,v) for the flow demand

between the virtual nodes i and j, with u,v ∈ Ns. We also use

the binary variable xi
u to indicate whether the virtual node i

is mapped to the substrate node u (i.e., a value of 1 denotes

the assignment). Since not all substrate nodes may fulfill the

requirements of a virtual node, we use the weight wi
u ∈ {1,∞}

to denote the feasibility of mapping virtual node i to substrate

node u (i.e., wi
u = ∞ denotes that the mapping is not feasible).
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Furthermore, we define αu and βuv as the substrate node and

link cost per capacity unit, respectively.

We seek the assignment of all virtual nodes within Nk
v and

the computation of flows f
i j
uv with i, j ∈ Nk

v and u,v ∈ Ns,

such that the VN embedding cost is minimized. The resource

assignment problem formulation is as follows:

Minimize ∑
u∈Ns

αu ∑
i∈Nk

v

wi
ugixi

u + ∑
(u,v)∈Ls
(u6=v)

βuv ∑
i, j∈Nk

v
(i6= j)

wi
uw j

v f i j
uv (5)

subject to:

∑
u∈Ns

xi
u = 1 ∀i ∈ Nk

v (6)

∑
v∈Ns

f i j
uv − ∑

v∈Ns

f i j
vu = di j(xi

u − x j
u)

i 6= j,∀i, j ∈ Nk
v ,u 6= v,∀u ∈ Ns (7)

∑
i∈Nk

v

gixi
u ≤ ru ∀u ∈ Ns (8)

∑
i, j∈Nk

v

f i j
uv ≤ ruv ∀u,v ∈ Ns (9)

xi
u ∈ {0,1} ∀u ∈ Ns,∀i ∈ Nk

v (10)

f i j
uv ≥ 0 ∀u,v ∈ Ns,∀i, j ∈ Nk

v (11)

Conditions (6)–(11) imply the following constraints. First,

constraint (6) ensures that each node i ∈ Nk
v is mapped to

exactly one of the substrate nodes. Note that Nk
v includes the

virtual nodes as well as their associated peering nodes. To

satisfy the flow demands at the peering nodes (as specified

in the VN request), we map each peering node i ∈ Nk
v to

its respective substrate (peering) node u ∈ Ns, by setting

the wu vector to infinity, except wi
u = 1. Furthermore, each

peering node is associated with zero required capacity, i.e.,

gi = 0. The constraint (7) enforces flow conservation, i.e.,

the summation of flows entering or leaving a substrate node,

which is not a source or a sink, must be zero. Given flow

demand specifications for all pairs of virtual nodes in both

traffic directions, the summation of flows must be zero in any

substrate node that does not host a virtual node. Constraint

(8) enforces the residual capacity limit for each substrate

node, while constraint (9) ensures that the summation of flow

units on a traffic direction does not exceed the substrate link

capacity. Condition (10) denotes the binary domain constraints

for the variable xi
u. Finally, constraint (11) ensures that the

flows f
i j
uv are always positive.

The complexity of the VN partitioning and intra-domain

resource assignment problems can be reduced by employing

relaxation and rounding techniques (e.g., similar to [10]).

Since our main goal is to investigate the VN embedding

feasibility with LID, we leave this for future work.

V. EVALUATION

In this section, we evaluate the efficiency and discuss the

feasibility of VN embedding with limited information disclo-

sure. In Section V-A we present our evaluation environment, in

Section V-B we describe the comparison method and metrics,

and in Section V-C we discuss our simulation results.

A. Evaluation Environment

We have implemented a simulation environment for multi-

domain VN embedding. The implementation consists of a set

of modules for resource advertisement, resource matching, VN

request partitioning across multiple InPs, and resource assign-

ment within InPs, as discussed in Section III. We implemented

all modules in C/C++ and we further relied on the GNU Linear

Programming Kit 4.47 (GLPK) [4] to solve the linear programs

of Section IV using the branch-and-cut method. Our tests are

carried out on a server with one Intel Xeon six-core CPU at

2.66 GHz and 6 GB of main memory. Below, we give more

details on the substrate network and VN request specifications,

as used in our evaluation.

Substrate Network. For substrate networks, we use synthetic

topologies which are generated using the IGen network topol-

ogy generator [16]. We exemplary fix the number of substrate

nodes for each InP to 25 and generate links using the Waxman

method [23]. We use a fixed number of substrate nodes for

each InP in order to compare results with a diverse number

of InPs. The mean number of intra-domain and peering

links per InP is set to 70 and 4, respectively. Each node is

associated with a location identifier, while the capacity value

for each node and link is randomly selected from a uniform

distribution. The residual capacities for substrate nodes and

links are updated after a new VN request has been admitted

or an existing VN allocation has expired. We also update

the resource advertisements from an InP to the VNP, when a

previously advertised resource is no longer available or in the

case that new resources become available due to VN releases.

VN Request. A VN request consists of virtual node specifi-

cations and the traffic flow specification between each pair of

virtual nodes using a traffic matrix. The number of virtual

nodes for each VN request is randomly sampled from a

uniform distribution. The node capacity and flow demands also

follow a uniform distribution. In each virtual node specifica-

tion, we use a location attribute, which consists of latitude

and longitude values with a maximum tolerance between 250

and 500 distance units. We use the location to purposely

enforce constraints on the assignment of virtual nodes onto

InPs. Location constraints essentially prohibit the assignment

of VNs onto a single InP, without significantly restricting the

search space, since different InPs have overlapping geographic

presence and consequently any virtual node can be still

mapped onto multiple InPs.

In our simulations, we process a fixed number of VN

requests with limited lifetime which is randomly given by

a uniform distribution. We model the arrival of VN requests

through a Poisson process, which is an established assumption

in the literature (e.g., [10], [15], [17], [24], [25]). We set
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TABLE I
EVALUATION PARAMETERS

Substrate Network

Nodes per InP 25
Intra-domain links per InP 70 (mean)

Peering links per InP 4 (mean)
Link distribution Waxman method
Node capacity uniform distrib. [200, 300]
Link capacity uniform distrib. [4000, 6000]

Virtual Network Request

Virtual nodes uniform distrib. [5, 15]
Node capacity uniform distrib. [1, 8]
Flow demand uniform distrib. [1, 10]

Mean arrival rate 1 request per 100 time units
VN lifetime uniform distrib. [500, 5000]

the mean arrival rate to 1 request for every 100 time units.

The evaluation parameters for the substrate network and VN

requests are summarized in Table I.

We point out that VNP constitutes an emerging business

model that has not yet materialized in the Internet. Given

the lack of real-data sources for VN request workloads, our

simulation parameters are adjusted after broad inspection of

resource pricing by cloud providers (e.g., Amazon EC2) and

the input parameters used in other VN embedding evaluation

environments [10], [15], [17], [24], [25].

B. Comparison Method

Our main goal is to investigate whether (and to what

extent) LID composes a limiting factor for multi-domain VN

embedding. We further aim to evaluate the efficiency of our

VN embedding method. Due to the lack of previous work

on multi-domain VN embedding with a well-defined level

of resource and topology information disclosure, we compare

our VN embedding solution to a “best-case” scenario where

all information is available to VNPs, i.e., full information

disclosure (FID). In this case, the complete knowledge of

the substrate networks allows their composition into a single

substrate where VN requests can be directly embedded using

any VN mapping algorithm. For VN embedding with FID,

we rely on our resource assignment method (Section IV-C)

with the required modifications in terms of node feasibility

mapping.

We compare VN embedding with LID versus FID in terms

of embedding cost and VN request acceptance rate. We define

the embedding cost of one VN request as:

∑
k∈K









∑
u∈N∗

s

αu ∑
i∈Nk

v

gi + ∑
(u,v)∈L∗s
(u 6=v)

βuv ∑
i, j∈Nk

v
(i6= j)

f i j
uv









+ ∑
i, j∈Nv
(i 6= j)

∑
p,p′∈P∗

c
i j

pp′
(12)

where the superscript (·)∗ at the sets P∗, N∗
s , and L∗

s denotes the

set of assigned peering points, substrate nodes and substrate

links, respectively. The set K comprises all VN segments of a

given VN request. The explanation of the remaining subscripts

and superscripts is given in Section IV. The embedding cost

for multiple VN requests is the sum of the individual VN

request costs, each given by (12). The first term in (12)

represents the costs associated with assigned substrate nodes

and links for all VN segments of one VN request. The second

term in (12) comprises the peering costs incurring between the

VN segments.

In the following, we use the metric extra cost to represent

the proportion of additional cost incurred by embedding with

LID in comparison to FID. We further explore the origins of

this extra cost through regression models that empirically show

the correlation with specific model variables. Additionally, we

use the VN request acceptance rate to represent the proportion

of accepted VN requests.

C. Evaluation Results

Initially, we measure the extra cost with LID across 60

simulations runs. To this end, we consider a large-scale VN

embedding scenario with 250 VN requests across a diverse

number (5-10) of InPs. Each VN request includes a random

number of virtual nodes within [5,15], as discussed in Section

V-A. Fig. 8 shows that in the considered scenario LID incurs

15%-20% extra cost compared to the ideal case where all

information is available to the VNP. Considering that most

resource and substrate topology information is concealed from

the VNP, such cost increase is deemed reasonable. This

result also corroborates the efficiency of our multi-domain

VN embedding solution. Fig. 9 depicts the extra cost for

VN embedding with LID versus the number of InPs and the

number of virtual nodes per request. This indicates an increase

in the extra cost for VNs of larger size.

In addition, we investigate the number of InPs selected

for VN embedding with LID and FID. We find no statistical

evidence of significant difference of the medians between the

two information disclosure levels as given in Fig. 10.

Next, we investigate the origins of the extra cost with LID.

To this end, we examine the correlation between the extra cost

and the extra link cost. Fig. 11 illustrates a scatter plot of extra

cost vs. extra link cost, showing a strong correlation between

both quantities. This is validated by the coefficients provided

by the regression model, i.e., slope β = 0.82 with R2 = 0.96

and p-value < 0.001. With respect to nodes, our results (not

shown here) do not reveal any perceptible increase in the node

cost with LID. This occurs because the costs of virtual nodes

with certain specifications are advertised to the VNP and are

therefore, taken into account during VN partitioning. In fact,

we observe a few cases where the embedding cost minimiza-

tion with FID results in the selection of more expensive virtual

nodes (compared to the nodes assigned with LID) when the

associated link cost is lower.

To further investigate the origin of the extra link cost, we

depict in Fig. 12 a scatter plot of the extra hop count versus the

extra link cost. We perform a linear regression analysis on this

data to obtain the following coefficients: slope β = 1.18, R2 =
0.80, and p-value < 0.001. Thereby, we find that the extra link
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Fig. 13. CDF of hop count of virtual links.

cost is correlated with longer paths (i.e., additional hops). This

finding is also confirmed by Fig. 13, which depicts the CDF

of the hop count of virtual links both with LID and FID. It is

clearly shown that embedding with LID increases the number

of hops onto which virtual links are mapped. According to

Fig. 13, the maximum increase in the number of hops is 3 for

95% of the virtual links, which is considered acceptable given

the restricted access to resource information in this example.

Finally, we compare the acceptance rate of VN requests with

LID and FID across 20 simulations runs, each one containing

1000 VN requests. Fig. 14(a) depicts the acceptance rate with

non-expiring VN requests. Embedding with LID leads to VN

request rejection prior to the full information counterpart.

The higher acceptance rate for FID implies better resource

utilization and essentially higher revenue for the substrate

providers. Fig. 14(b) provides a comparison in the acceptance

rate of expiring VN requests with diverse VN request arrival

rates under LID. It is shown that the acceptance rates for

all arrival rates reach a steady state. This indicates that a

significant fraction of the VN requests can be embedded

for long periods. As depicted in Fig. 14(b), the steady-state

acceptance rate decreases for higher arrival rates.

Our simulation results indicate the feasibility of multi-

domain VN embedding with LID. Although most of resource

and topology information is concealed from the VNP, the

embedding cost in most cases is moderately higher, while

the VN request acceptance rate converges to a steady-state

which ensures predictable embedding. The mapping of virtual

links onto longer substrate paths mainly accounts for the extra

embedding cost. Furthermore, the higher revenue under FID,

as the outcome of the higher acceptance rate, can incentivize

InPs to disclose more resource information to VNPs.

VI. RELATED WORK

In the following, we discuss related work with respect to

VN embedding and network virtualization architectures.

Multi-domain VN Embedding. Multi-domain VN embedding

has not been studied in depth. The work in [15] is one of

the few studies that provide algorithms for VN embedding

across multiple substrate networks. The main goal of [15] is

the comparison of exact and heuristic methods in terms of

VN embedding efficiency. Without any inspection of resource

information disclosure, VN partitioning is carried out based

on a highly abstract view of the substrate network (i.e., AS-

level topology), which does not include information that is

publicly available (e.g., location of PoPs and peering nodes).

This abstract underlay view combined with the restrictions

of topology-based VN requests can lead to inefficient VN

embeddings and increased expenditure for SPs. Based on our

simulation results, the low level of information disclosure

considered by [15] can increase the embedding cost and

reduce the VN acceptance rate and revenue for InPs.

Intra-domain VN Embedding. Most VN embedding

algorithms require full knowledge of the available physical

resources and substrate topology [10], [24], [17], [25],
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Fig. 14. Acceptance rates of VN requests under different scenarios.

[13]. As such, they are not applicable to multi-domain VN

embedding with LID. These algorithms are comparable only

to our intra-domain resource assignment problem formulation

(Section IV-C). In contrast to these algorithms which process

and embed topology-based VN requests, we assign VNs in

which flow demands are specified using traffic matrices. In

this way, we avoid the constraints induced by topology-based

VN requests and their restrictions in the problem space.

Network Virtualization Architectures. Previous work [19],

[26], [9] presents architectures for VN provisioning across

multiple substrate networks. Our multi-domain VN embedding

methods are directly applicable to the network virtualization

architectures [19], [26] that rely on a layer of indirection

between SPs and InPs. The architecture presented in [9],

where VN embedding requests are relayed across InPs until

the completion of the VN embedding, also benefits from our

VN embedding algorithms. In particular, our VN partitioning

method (Section IV-B) can be used to determine the InP that

should be contacted first, improving the convergence of this

distributed VN embedding approach.

VII. CONCLUSIONS

In this paper, we conducted a feasibility study on multi-

domain VN embedding with LID based on a well-defined level

of information disclosure and formulations for the the VN

partitioning and intra-domain resource assignment problems.

We showed that LID incurs moderately increased embedding

costs, in comparison to a “best-case” scenario where all

substrate network information is available to VNPs. We also

found that the additional embedding cost under LID stems

from the increased hop count for virtual links. The lower

embedding cost in conjunction with the higher VN request

acceptance ratio under FID can incentivize InPs to divulge

more information to VNPs, since this can improve the resource

utilization and increase the revenue for InPs. Beyond the

scope of VN embedding, we believe that our results are

encouraging for other emerging business models that require

separation between the network operations and the physical

infrastructure.
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