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Abstract: The debate and controversy concerning the momentum of light in a dielectric medium
(Abraham vs Minkowski) is well-known and still not fully resolved. In this paper, we investigate
the origin of both momenta in the frame of special relativity by considering photons in media
as relativistic quasiparticles. We demonstrate for the first time to the best of our knowledge
that the Minkowski form of the photon mass, momentum, and energy follows directly from the
relativistic energy conservation law. We introduce a new expression for the momentum of light
in a dispersive medium, consistent with the experimentally observed propagation of photons at
the group velocity. Finally, the effect of light-induced optical stretching is discussed, which can
be used for experimental verification of the existing expressions for the photon momentum.
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1. Introduction

There was a century-long debate concerning the momentum of light and the electromagnetic
energy-momentum tensor in a dielectric medium related to two famous German scientists: Max
Abraham and Hermann Minkowski. Many excellent reviews have been devoted to this problem
[1–4], but the controversy is still not fully resolved, as can be seen from recent publications
[5–13]. Theoretical papers devoted to derivations of components of the energy-momentum
tensor based on different formulations of the electromagnetic field theory continue to appear.
For example, it has been shown that the Abraham energy-momentum tensor contradicts special
relativity, whereas the Minkowski tensor is fully consistent with it [14–18].

The debate about the momentum of light has gained additional importance, following recent
advances in the development of single- and few-photon sources and detectors for quantum
technologies (see a recent review [19]). Investigations of the discrete nature of light, single
photon experiments including temporal and spatial control, manipulation, and structuring of
photons, all these achievements are opening a new era of quantum photonics. That is why
it is important to know what happens to a single photon in a dielectric medium, where, due
to the excitation of dipole oscillations of bound electrons and polarization wave, the photon
(together with the excited dipoles) forms a relativistic quasiparticle (photon in medium, which
will be called m-photon) propagating at the speed of light v = c/n in nondispersive dielectrics.
Concerning a full classification of the existing photonic quasiparticles, a recent review [20] can
be recommended.

In many papers and textbooks, without mentioning the above controversy, people are simply
using the Minkowski momentum for a photon in a dielectric medium pM = nℏω/c, where n is
the refractive index, ω is the frequency of light, and c is the speed of light in free space (vacuum).
We all agree, at least many of us, that this expression is correct and is broadly used in photonics,
laser physics, and nonlinear optics. However, to obtain and verify this expression from classical
electrodynamics, the components of the energy-momentum tensor must be derived. Even for the
case of plane monochromatic waves, this derivation is quite complex and can only be followed by
experts in the field. Moreover, using different formulations of electrodynamics results in different
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expressions for the energy-momentum tensor and photon momentum – the reason for the ongoing
Abraham/Minkowski debate.

In this paper, we present a simple derivation of the photon momentum, by considering photons
in media as relativistic quasiparticles (m-photons). In contrast to the complex derivations
and discussions of the energy-momentum tensor components, our derivations can be easily
reproduced by a very broad scientific audience including students. In Sec. 2, we first introduce the
well-known formulas for the momentum, mass, and energy of the m-photon and discuss arguments
for and against the Abraham and Minkowski momenta. Afterwards in Sec. 3, we demonstrate
that the Minkowski form of the photon momentum follows directly from the relativistic energy
conservation law for the m-photon quasiparticle. In Sec. 4, the presented theory is directly
applied to derive a new expression for the photon momentum in dispersive media. In the final
part, we discuss the effect of light-induced optical stretching and its potential application for
measurement of photon momenta in dispersive media.

2. Mass, momentum, and energy of the m-photon (Abraham vs. Minkowski)

In this section, we introduce the well-known formulas for the momentum, mass, and energy of
the m-photon following Abraham and Minkowski. For simplicity, we consider first a uniform,
non-dispersive, non-absorbing, linear dielectric medium with the refractive index n ≥ 1. In such
a medium the photon phase and group velocities coincide and are determined by v = c/n × k/k,
where k is the wave vector. Both, the speed of light c/n and its wavelength λ/n, where λ is the
wavelength of light in free space, are reduced. The frequency of light ω remains unchanged.
In this paper, the refractive index and light frequency are defined for a medium at rest with
anti-reflection coatings and the geometry shown in Fig. 1. The medium at rest coincides with the
laboratory coordinate frame.

Fig. 1. Illustration of a photon entering a dielectric medium with antireflection coatings
at normal incidence, exciting dipole oscillations, and generating a "photon in medium"
quasiparticle (m-photon).

The speed of light and its wavelength are directly proportional to each other. For the electrical
field of a plane wave propagating along the z axis, we can write

E = E0 eiω(t−zn/c) = E0 ei(ωt−kz) , (1)

where k = nω/c = 2πn/λ is the wavenumber. Using the definition of momentum p = ℏk, we get
the absolute value of the Minkowski momentum pM = nℏω/c, which is also called the canonical
momentum [5,21,22]. On the other hand, in special relativity the particle momentum p and
energy E are connected by the equation p = vE/c2, where v is the particle velocity. Introducing
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the photon energy E = ℏω and photon speed v = c/n, we get from p = vE/c2 the absolute value
of the Abraham momentum pA = ℏω/nc, which is also called the kinetic momentum [5,21,22].
Both momenta coincide in vacuum, but differ in a dielectric medium with pM = n2pA. Some
people say that the Abraham momentum emphasises the particle nature of a photon and the
Minkowski momentum corresponds to its wave nature. It will be shown in the next section, that
the Minkowski momentum also corresponds to the particle nature of a photon. Note that there are
several important arguments in favour of the Minkowski momentum following from the Snell’s
law [23], Doppler and Cherenkov effects [22,24–26], and diffraction [27].

Below we provide expressions for the m-photon mass and energy, which follow from the
Abraham and Minkowski momenta. A photon has a zero mass in vacuum. In a dielectric medium
it becomes a quasiparticle (m-photon) with non-zero mass, which can be found by equating the
relativistic momentum to that of Abraham or Minkowski. From v = c/n, the relativistic Lorentz
factor γ = 1/

√︁
1 − v2/c2 = n/

√
n2 − 1, and the expression γ mA,M v = pA,M , we obtain two

different rest masses for Abraham and Minkowski m-photons, which are related by the following
expression:

mM = n2 mA =
ℏω
c2 n

√︁
n2 − 1 . (2)

Remember that here we consider the case of n ≥ 1. Introducing these masses into the relativistic
expression for the quasiparticle energy EA,M = γ mA,M c2, we get EA = ℏω and EM = n2 ℏω,
respectively. In both cases the relativistic energy-momentum relation is fulfilled:

E2
A,M/c2 = p2

A,M + m2
A,Mc2 . (3)

Moreover, (EA,M/c, pA,M) = pi
A,M is the four-momentum of the m-photon and adheres to Lorentz

transformations. For example, Lorentz transformation from the laboratory coordinate frame to
the m-photon rest frame is obtained by:

ER
A,M = γ (E

L
A,M − vpL

A,M), pR
A,M = γ (p

L
A,M −

v
c2 EL

A,M) , (4)

and results correctly in ER
A,M = mA,M c2 and pR

A,M = 0.
Now we turn to the discussion of the m-photon energy. In Abraham’s case, the m-photon

energy EA = ℏω is equal to the photon energy in vacuum and at first glance everything appears
perfect, since the energy conservation is fulfilled. In case of Minkowski, the m-photon energy
EM = n2 ℏω is n2 times larger than the energy of the photon in vacuum. To fulfil the energy
conservation law for the Minkowski m-photon, an additional term U = (n2 − 1)ℏω must be
introduced:

ℏω = n2 ℏω − U. (5)

The appearance of this term and its physical meaning has so far not been fully understood. Some
authors attribute it to a negative potential energy of the photon inside the medium [28], giving no
explanation for the origin of this energy. More recent publications [8,9], have suggested that
U represents the mass energy, which is transferred by a mass density wave (MDW) inside the
medium. The authors justified this assumption by numerical simulations of elastic and optical
waves in dielectric media. However, their MDW theory would imply that the atoms inside the
dielectric medium are periodically displaced, which has so far not been experimentally verified.

In the next section, we will use relativistic energy conservation principles to present a direct
derivation of Eq. (5), without the reliance on additional assumptions. Based on this, we will
explain the physical origin of the U term and arrive at the Minkowski form for the momentum of
the m-photon.
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3. Energy conservation for a photon crossing boundary with a dielectric medium

In this section, we demonstrate for the first time to the best of our knowledge that the Minkowski
form of the photon momentum follows directly from the relativistic energy conservation law
for the m-photon quasiparticle. The first statement that we make, is that a low energy (infrared,
visible, ultraviolet) photon with a zero-mass in vacuum is not creating a new mass when entering
into the dielectric medium. The low energy photon is not able to start a nuclear reaction and/or
to convert its energy to the birth of a new particle. In a non-absorbing medium the photon energy
can be transferred only to kinetic energy, defined as the total relativistic energy minus the rest
energy:

ℏω = γmc2 − mc2, (6)

where m is the total rest mass. Using γ = n/
√

n2 − 1, this equation allows to define the following
masses:

m =
ℏω
c2 (n

√︁
n2 − 1 + n2 − 1) = mM + md, (7)

mM =
ℏω
c2 n

√︁
n2 − 1 and md =

ℏω
c2 (n2 − 1) . (8)

Now we can provide the physical meaning of these two rest masses: mM is the rest mass of the
m-photon quasiparticle, which coincides with the Minkowski mass given by Eq. (2), and md can
be considered as the effective rest mass of dipole oscillations of bound electrons induced by
the photon. The rest mass of the m-photon is determined in the moving frame. The rest mass
of the oscillating dipoles is determined in the laboratory frame. Taking into account that in a
non-absorbing medium n2 = 1 + χ(1) in SI units, where χ(1) is the first-order linear susceptibility
defining refraction as a two-photon process shown in Fig. 2, we can write md = χ

(1)ℏω/c2. Since
χ(1) determines the medium polarization, it justifies the interpretation of md as the effective
dipole rest mass.

Fig. 2. Illustration of χ(1) processes responsible for refraction and absorption.

The excited dipole oscillations of bound electrons and moving polarization wave are the
integral part of the m-photon quasiparticle. The masses mM and md are connected to each other
by mM = mdγ, i.e. the so-called relativistic mass of oscillating dipoles mdγ is equal to the rest
mass of the m-photon. Taking this into account, Eq. (6) can be rewritten in the form equivalent
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to Eq. (5) :
ℏω = γmMc2 − mdc2 = n2 ℏω − U . (9)

The additional term U in Eqs. (5), (9) corresponds to the rest energy of oscillating dipoles induced
by the photon: U = mdc2 = (n2 − 1)ℏω = χ(1)ℏω. The derived above energy conservation
Eq. (9) rewritten in the form ℏω + mdc2 = γmMc2 tells us that the photon energy plus the dipole
rest energy are equal to the total energy of the m-photon. The m-photon quasiparticle with the
mass mM is moving at the velocity v = c/n and its momentum coincides with the Minkowski
expression pM = nℏω/c. The total energy of the m-photon is related to the dipole rest energy by
the following equation EM = γmMc2 = γ2mdc2 = n2ℏω.

Now we turn to the discussion of the derived energy conservation Eq. (9) in its final, most
important form:

ℏω = γmMc2 − mMc2/γ, (10)

where the last term on the right hand side represents the Minkowski rest mass reduced by the
γ factor. Recall that this energy conservation law follows directly from Eq. (6). According to
the relativistic generalization of the virial theorem for a bounded system of charged particles
interacting via the Coulomb law, the term mMc2/γ represents the total average energy of such a
system [29], which is smaller than the rest energy due to the negative potential energy of this
bounded system. In the non-relativistic limit v = c/n<<c, corresponding to a medium with very
high refractive index, from Eq. (10) using Taylor expansion we get:

ℏω ≃ mMc2 + mMv2/2 − mMc2 + mMv2/2 = mMv2, (11)

where mM = n2ℏω/c2 is the classical mechanics mass of the m-photon quasiparticle. Note that
in classical mechanics the energy conservation Eq. (11) can be obtained by considering the
m-photon as a field oscillator. According to the virial theorem for an oscillator [30], its average
kinetic and potential energies are equal giving for the total m-photon energy E = mMv2 = ℏω.

The Abraham mass satisfies the following equation ℏω = γmAc2, which assumes that the
Abraham photon is generating a new mass in the dielectric medium, since in this case the photon
energy is spent not only on the kinetic energy, but also on the rest energy, which is not physically
justified. In contrast, the presented derivation of Eq. (10) and above discussions provide a
straightforward physical justification for the Minkowski momentum nℏω/c, which in this form is
broadly used in scientific literature as the photon momentum in a dielectric medium.

4. Dispersive medium

A single photon radiated by an atom or a quantum dot has a certain time duration and frequency
bandwidth satisfying the Heisenberg uncertainty relation ∆ω∆ t ∼ 2π. Therefore, it is reasonable
to expect that the behaviour of such a photon in a dispersive medium with a frequency dependent
refractive index will change.

In a dispersive medium, due to the difference between phase and group velocities, the planes
of constant phase and constant amplitude do not in general coincide and can be tilted against
each other. In such a medium, the propagation of light is determined by the group velocity
vg = dω/dk = c/ng, where ng = n + ω dn/dω is the refractive index for the group velocity
(the group index) calculated at the carrier frequency ω0. The group index is constrained by
causality to be greater than unity regardless of the sign of the medium refractive index [14,31].
In a uniform isotropic medium the following relation between the group and phase velocities is
fulfilled, vgng = vpn = c sign(n)k/k, where the phase velocity, wavevector, and the refractive
index are defined at the carrier frequency. This relation is valid also in case of n<0 when the
phase and group velocities are antiparallel with the phase and group fronts propagating in the
opposite directions [14,31].
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It has been experimentally demonstrated that single photons propagate in different media
with the group velocity [32–34]. For the m-photon propagating with the group velocity, we can
use the energy conservation Eq. (6) with the Lorentz factor determined by the group velocity
γ = 1/

√︂
1 − v2

g/c2 = ng/
√︂

n2
g − 1. We will get the same Eqs. (7)–(10), with n replaced by ng and

the m-photon momentum determined by p = pM = ngℏω/c. This expression corresponds to the
m-photon propagating with the group velocity as relativistic quasiparticle with the rest mass
mM = (ℏω/c2) ng

√︂
n2

g − 1 and the total energy EM = n2
gℏω.

Using ℏω = γmAc2, it is straightforward to show that the Abraham momentum in a dispersive
medium is determined by pA = pM/n2

g = ℏω/cng. All papers agree with this expression for
the Abraham momentum, whereas several different expressions have been proposed for the
Minkowski momentum in a dispersive medium. The first one is pM1 = n2ℏω/cng [21,22,26] and
another pM2 = nℏω/c [2,5]. Recall that according to the relativistic quasiparticle approach, as
it is shown above, pM = ngℏω/c. Thus, there are three different expressions for the m-photon
momentum. This could be a good motivation for experimentalists to look at what happens to
the light momentum in a dispersive medium and which expression is correct. There is only one
relatively old experiment [35], where an attempt to measure the light momentum in a dispersive
medium has been performed with sufficient accuracy, with the result that this momentum is equal
to p = nℏω/c. However, recent theoretical simulations of this experiment leave a lot of questions
and uncertainties [36].

Let us briefly discuss the case of 0<n<1, which naturally occurs at high frequencies, when
the refractive index is determined by n =

√︂
1 − ω2

p/ω
2, where ωp is a model parameter (plasma

frequency). In this case the phase velocity v = c/n is larger than the speed of light and cannot
be used in the relativistic energy conservation Eqs. (6), (10). These equations can be used only
with the group velocity. It is easy to verify that the group velocity refractive index is given by
ng = 1/n, corresponding to the group velocity vg = cn. According to the expressions derived
above, we get in such a medium for the m-photon Minkowski momentum pM = ngℏω/c = ℏω/cn.
Note, that the Abraham momentum will be defined by pA = ℏω/cng = nℏω/c.

In a medium with negative refraction index, the light momentum defined by p = nℏω/c is
oppositely directed to the group velocity and corresponds in case of total reflection to the attractive
(negative) light pressure [14,31]. This scenario is difficult to combine with the behaviour of
single photon quasiparticles. According to the above discussions, their momentum is determined
by p = ngℏω/c and they can generate only the positive light pressure. This conclusion is in
agreement with recent numerical simulations examining optical forces in negative refractive
index materials and demonstrating the positive light pressure [37].

5. Optical stretching

The effect of light-induced optical stretching can be used for experimental verification of the
existing expressions for the photon momentum. According to Minkowski, for a photon entering a
dielectric medium at normal incidence from free space (see Fig. 1), the momentum increases
and the change of momentum ∆p = (n − 1)ℏω/c = F∆ t produces a stretching force F acting at
the interface in the opposite direction to the propagation of the photon. If we have a laser pulse
with the pulse duration ∆ t = τ and the total number of photons N, the stretching force acting
at the interface will be given by F = (n − 1)ℏωN/cτ = (n − 1)P/c, where P is the laser pulse
power. When the laser pulse leaves the medium at the opposite end, the same stretching force
is produced at the interface acting now in the direction of the laser pulse. The total stretching
force acting at the dielectric medium (assuming that the medium length fulfils the condition
l<<cτ) F = 2(n − 1)P/c. If the dielectric material is elastic, as for example polydimethylsiloxan
(PDMS), the light-induced changes in the material length can be measured by interferometric
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techniques. Choosing a medium with a strong dispersion, one should be able to verify the value
of the momentum p = ndℏω/c in the dispersive medium and the corresponding expression for
the stretching force F = 2(nd − 1)P/c, where there are 3 possibilities for the nd value: n, n2/ng,
and ng.

6. Conclusion

In this paper the origin of differences between the Abraham and Minkowski expressions for the
photon mass, momentum, and energy in a dielectric medium has been clarified by considering
photons in media as relativistic quasiparticles. The Abraham expressions can be easily derived
from the equation ℏω = γmc2. For the first time, to the best of our knowledge, we have shown
how the Minkowski expressions can be derived from the following energy conservation equation
ℏω = γmc2 − mc2 = γmMc2 − mMc2/γ. In this case, it is considered that the photon energy is
transferred into the kinetic energy of a "photon in medium" quasiparticle (m-photon) and is not
used for the creation of a new mass (as in the Abraham case). Therefore, from the relativistic
energy conservation law the Minkowski expressions for the photon mass, given by Eq. (2),
momentum p = nℏω/c, and energy E = n2ℏω in a dielectric medium are correct and fully
justified.

Using the same relativistic approach for quasiparticles moving with the group velocity, a new
expression for the photon momentum in a dispersive dielectric medium p = ngℏω/c, where
ng is the group index, has been derived. Additionally, we have discussed the effect of light
induced optical stretching, which may be exploited for an experimental verification of the existing
expressions for the photon momentum in dispersive media.
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