
Vol.:(0123456789)

Applied Physics B (2024) 130:28 
https://doi.org/10.1007/s00340-023-08163-z

RESEARCH

Viscosity effects and confined cochlea‑like geometry in laser‑induced 
cavitation dynamics

Liza Lengert1,2,3 · Hinnerk Lohmann1,2,4 · Sonja Johannsmeier1,2,3 · Tammo Ripken1,2,3 · Hannes Maier2,3,4 · 
Alexander Heisterkamp2,4,5 · Stefan Kalies2,4

Received: 24 July 2023 / Accepted: 8 December 2023 / Published online: 12 January 2024 
© The Author(s) 2024

Abstract
On the path to an optoacoustic hearing implant for stimulation of residual hearing, one possibility for tone generation in 
liquids is the concatenation of acoustic click events, which can be realized i. a. by the acoustic transients that accompany an 
optical breakdown. The application of a viscous gel is helpful in this context, as this results in an attenuation of the distortion 
of tone quality caused by higher harmonic components. To further understand the underlying cavitation bubble dynamics 
both in the viscous gel and in a confined volume that is dimensioned similarly to the human cochlea, a numerical model built 
in OpenFOAM was adapted and compared to additional experiments. Experimentally, the acoustic transients were generated 
by optical breakdown by nanosecond laser pulses with a pulse duration of 0.7 ns and a wavelength of 1064 nm. The pulses 
were focused on a viscous gel inside a water container. The pressure transients were measured by a needle hydrophone. 
The comparison of the bubble dynamics in different viscosities between the model and the experiment shows that, except 
for high viscosities, the experimental observations could be modeled by the simulation. We assume that the maximum size 
of the cavitation bubble strongly decreases with increasing viscosity, which can be used for high-frequency attenuation as 
reported in our previous research. In conclusion, this study aims at an application-oriented realization of the numerical cavi-
tation bubble dynamics model to understand the experimental findings on the pathway to an optoacoustic hearing implant.

1  Introduction

Cochlear implants are state-of-the-art neuro-implants for 
profound hearing loss that stimulate the spiral ganglion of 
the auditory nerve electrically. While speech intelligibility 
in quiet environments is sufficient for most patients, there 
are strong deficits concerning speech perception in noise 

and tonal languages, as the frequency resolution is mainly 
reduced compared to normal human hearing.

Different alternatives, such as optical stimulation meth-
ods, are being investigated to increase frequency selectivity. 
There are also other approaches to optical stimulation such 
as infrared stimulation and optogenetics. While the infrared 
method researched by, e. g., the group of Richter uses the 
thermal effect for stimulation [1, 2], in our previous study, 
we applied the nonlinear optoacoustic effect [3], which uti-
lizes the shockwave emission during optical breakdown and 
accompanying generation of cavitation bubbles in transpar-
ent media [4–11]. This mechanism has the main advantage 
that the thermal influence on the surrounding medium is 
negligible and the shorter thermal time constant allows for 
a higher maximum repetition rate. By high-repetition-rate 
laser pulse trains, tones can be generated, e.g. in the coch-
lear fluid, and detected by the hair cells that convert them 
into auditory nerve signals, via the same principle as normal 
hearing.

In our experiments, we exploit the nonlinear optoacoustic 
effect—the generation of cavitation bubble as the result of 
a cascade of free electrons within the focus of a short laser 
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pulse—to trigger a plasma with the accompanying shock-
wave as an acoustic event. The concatenation of laser pulses 
was used by our group to generate tones covering the entire 
human hearing range [3]. In this previous work, we used a 
laser focused on a viscous gel. An optical breakdown with 
an accompanying short pressure event was induced by the 
high energy density within the laser focus deposited by each 
laser pulse. For frequencies below 500 Hz, a pulse density 
modulation was applied, resulting in modulation frequency 
fundamentals of the laser-generated tone.

This study investigates the underlying bubble dynamics 
with both a computational model and additional experi-
ments with an increased temporal resolution. To achieve 
this, we simulated the cavitation bubble dynamics with a 
finite volume method. Additionally, we measured the exact 
time development using a fast needle hydrophone with a 
time resolution of approx. 20 MHz, sufficient for meas-
urements of cavitation bubble pressure peaks with typical 
widths < 1 µs [12, 13].

The simulation was developed with a finite volume 
method in OpenFOAM, an open-source computational 
fluid dynamics toolbox [14]. The computational model is 
based on the model by Koch, that applies the Finite Vol-
ume method for spatial discretization and the Volume of 
Fluid method for the two phases of gas inside the bubble 
and liquid surrounding the bubble [15]. A flexible design of 
the geometry is possible with OpenFOAM and shock wave 
phenomena can be modelled as well as the radius develop-
ment of the bubble.

Here, we extend this model for the investigation of the 
effects of viscosity in reference to our earlier study. Addi-
tionally, we investigated the influence of a confined volume 
such as the cochlea to assess the dynamics induced by a 
hearing aid based on nonlinear optoacoustic stimulation. 
With a diameter of approx. 1 mm, it is expected that the liq-
uid-bone boundaries in the cochlea lead to several reflections 
of the acoustic waves. As a pre-step, we tested a geometry 

with one rigid boundary near the laser focus, both in our 
computational model and in experiments.

2 � Methods

2.1 � Experiment

The first experimental setup is similar to our previous 
study [3]. A nanosecond pulsed laser (HELIOS 1064-5-
50, Coherent, Inc.) with a wavelength of 1064 nm, a pulse 
duration of 0.7 ns, and a pulse energy of 20 μJ was used. 
The laser power was controlled using a half-wave plate 
(WPH05M-1064, Thorlabs) and a polarizing beam splitter 
(PBS12-1064, Thorlabs). Lenses served to adjust the beam 
diameter to the focusing objective (Mitutoyo Plan Apo SL 
infinity corrected 20×, 378-810-3, Edmund Optics) with a 
numerical aperture (NA) of 0.28. The laser focus was placed 
in a water container (4 × 4 × 6 cm3). On the optical window, 
PNC 400 gel with a concentration between 3 and 20 g/l was 
placed inside the container, such that the laser focus was 
within the gel (cf. Fig. 1b). To investigate the bubble dynam-
ics in the first series of experiments, we applied single laser 
pulses. The gel was manufactured by mixing the respective 
amount of PNC 400 powder with distilled water and centrif-
ugation afterwards (for details see [3]). The gel layer in the 
fiber-based setup was quasi-cylindrically shaped and approx. 
3–4 mm thick and approx. 2–3 mm in diameter. The gel has 
a density that deviates from the density of water by less than 
5%. Hence, the acoustic impedance difference is negligible.

Pressure measurements were conducted with a needle 
hydrophone (diameter 1 mm, NH1000, Precision Acoustics) 
with a maximum time resolution of 20 MHz, which allows 
for sufficiently time-resolved investigation of the bubble 
dynamics. However, the uncertainty of the measured pres-
sure is between 9 and 18%, depending on the frequency [16]. 
A high-speed oscilloscope (Rohde & Schwarz RTB2004) 

Fig. 1   a Experimental setup 
with half-wave plate and polar-
izing beam splitter (PBS) to 
control the laser power, and 
two lenses (f1, f2) to adjust the 
beam diameter to the objective, 
which focuses the laser into the 
water container with gel (yel-
low) around the laser focus. The 
pressure is measured with a nee-
dle hydrophone (H), which is 
read out by a high-speed oscil-
loscope (OSC). b Setup with 
fiber end, two ball lenses (BL) 
glued into a polymer ferrule
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with a 1 GHz sampling rate served to read out the hydro-
phone signal.

In the experiments, different gel concentrations—equiva-
lent to a variation of the viscosity—were applied and the 
change in the pressure transients was investigated, focus-
ing on a change in the amplitude and the duration between 
the expansion and the collapse. Additionally, the influence 
of the distance to the nearest wall of the water container 
was measured to mimic a future application in the confined 
geometry of the human cochlea. Additionally, an experimen-
tal setup for a minimum bubble to boundary distance and 
for future application in the inner ear was built. The laser 
was delivered by a fiber setup (step-index multimode fiber, 
FP1000ERT, NA = 0.5, core diameter 1 mm, Thorlabs) with 
the same laser as in [3]. At the fiber end, two ball lenses (43-
709, Lens ball, Edmund optics, diameter 1.5 mm, refractive 
index 1.517) glued into a plastic ferrule created the laser 
focus. This focusing setup was inspired by Yang et al., where 
the same fiber diameter and lens diameters were used for 
imaging [17].

2.2 � Computational model

Both the influence of the viscosity and of the geometry were 
simulated with a numerical model for cavitation dynam-
ics in foam-extend, an extension of OpenFOAM, with the 
solver compressibleInterFoam, based on the model by Koch, 
who already applied it for laser-induced bubble dynamics 
in water [15]. We extended this model for the application 
with viscous media surrounding the bubble as well as for 
the confined volume. To this end, we chose different matrix 
solvers than Koch.

The basic assumption of the model is that the cavitation 
bubble is an oscillating gas bubble with an expansion phase 
and several collapses until the temperature of the bubble 
equals the surrounding liquid [9, 18]. For further details on 
the assumptions of the model, see [15].

The main equations that are used in OpenFOAM are the 
equations of state and the equations of motion. The equa-
tions of state are the Tait and the Nobel Abel equations, for 
water and gas, respectively. The equations of motion consist 
in our case of a continuous, moving fluid that is locally in 
thermodynamic equilibrium, of five distributional quantities: 
three velocity components U(r, t) and two thermodynamic 
variables—here: pressure p(r, t) and density ρ(r, t). Hence, 
five equations are necessary to solve the system. In this 
application, as the model uses a Volume of Fluid method, 
there is a sixth parameter necessary to distinguish between 
the gas inside the bubble and the liquid in the surrounding 
medium, which is α [15].

In this model, we applied the Navier–Stokes-equation 
with the tensor T for the viscous tension, � for the surface 
tension, � for the double of the average curvature of the 

surface, S for the contact area between the bubble and the 
surrounding liquid, the viscosity µ, and ⊗ for the dyadic 
product [15, 19]:

with

The Tait equation of state describes the thermodynamics 
of a cavitation bubble in water-like media:

with p∞ as the atmosphere pressure, �∞ as the equilibrium 
density, B = 304.6 MPa as the Tait pressure and n

T
= 7.15 

as the Tait exponent.
For the gas inside the bubble, the Nobel Abel equation of 

state is used [15, 20]:

wherein Rspec describes the specific gas constant and � the 
co-volume.

The maximum bubble radius Rmax is calculated for water 
as the surrounding medium pressure is dependent on the 
half-time interval tc between pressure waves of the expansion 
and the first collapse by [21]:

with p0 = 1 bar; �l = 1 × 103 kg/m3 (for water at 20 °C), vapor 
pressure pv = 0.0233 bar. Due to the neglection of viscos-
ity influences in this equation, it cannot be applied for the 
viscous gel.

In addition, a parameter α was applied to distinguish 
between the gas and liquid phase, such that, due to the 
neglection of mass transfer between the phases, the follow-
ing continuity equation was applied [15]:

The maximum bubble radius was calculated from Eq. (2) 
with the experimentally measured time interval tc = 11 µs in 
water (chapter 3A) with a result of Rmax = 118 µm. However, 
Eq. (2) is only valid for inviscid media and hence was not 
used for the gel applied in the experiments.

To compare the experiment and the model, the time dis-
tance between the expansion and the first collapse tcis the 
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first important parameter [22]. In our model, we applied 
the energy-deposit case, which includes both the expan-
sion phase after the laser energy is deposited within the 
medium and the collapses that follow later. However, the 
simplification of the model does not allow to start immedi-
ately at energy deposition. Hence, we chose to perform the 
simulation starting with an initial bubble radius of 20% of 
the maximum bubble radius in agreement with [6].

The most important parameters of the model are the 
excess pressure pexc that is responsible for driving the 
expansion but does directly not correspond to the pressure 
value emitted by the bubble, the maximum bubble radius 
Rmax, the equilibrium radius Rn (i.e., the final radius after 
oscillations have ceased, for t → ∞ ), and the characteristic 
parameters of the surrounding medium, i.e. viscosity, den-
sity, and vapor pressure. The corresponding equilibrium 
pressure pn is calculated from the equilibrium radius Rn 
by [15]:

where σ is the surface tension, γ = 1.4 is the adiabatic expo-
nent with the value for air, and p∞ = 101,315 Pa. The param-
eter β describes the co-volume and is given by Koch as [15]:

where bvan is the Van-der-Waals-constant, Rgeneral is the gen-
eral gas constant (in J/(mol K)), Tref is the reference tem-
perature (in K).

The initial low pressure requires an adjusted initial 
density within the bubble as well. Since there is no con-
densation or evaporation in the model, the chosen density 
determines the bubble mass for the model and is calculated 
by [15]:
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,

The expansion of the bubble requires to set a pressure 
source with an initial excess pressure pexc:

Hence, the expansion is driven by pexc with a rapid fall-off 
with a time-constant λ.

The model only allowed for a constant viscosity, inde-
pendent of the frequency. The relevant frequency regime is 
approx. 100 kHz–10 MHz for the pressure rise and fall-off 
of the bubble expansion and collapse. The measured values 
of the shear-dependent dynamic viscosity for 1–20 min−1 
were extrapolated to this regime. The dependence was strong 
in the regime of ca. 1–10 min−1, but weaker towards higher 
shear rates. In addition, the literature reports Newtonian pla-
teaus at high shear rates [23]. The extrapolated values were 
converted to kinematic viscosity and applied in the simula-
tion (cf. Table 1).

2.3 � Meshing

The viscosity investigation was modelled with spherical 
symmetry in a one-dimensional mesh. All other investiga-
tions regarded the geometry and are were modelled in axial 
symmetry in two dimensions (cf. Appendix for details on 
the meshing).

The model requires a mesh that allows for precise but also 
efficient calculations. The meshing was done with the utility 
blockMesh given by OpenFOAM with hexahedral blocks.

By choosing fitting boundary conditions and a sym-
metrical setup, the calculations were reduced to a lower-
dimensional problem while still yielding three-dimen-
sional result. For spherical cases, the problem can be 
reduced to one dimension and hence only a slice of a 
sphere was calculated. For the boundary case with only 
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Table 1   Viscosity values: 
dynamic viscosity measured 
(from [3]) and extrapolated 
dynamic and kinematic 
viscosity at high frequencies

Gel concentra-
tion in g/l

Dynamic viscosity in Pa s (meas-
ured at a shear rate 8 min−1)

Extrapolated dynamic viscos-
ity in Pa s at 100 kHz

Kinematic viscos-
ity in m2/s at 
100 kHz

3 20 0.56 5.6 × 10–4

5 27 0.78 7.8 × 10–4

6 33 0.93 9.3 × 10–4

7.5 35 1 1 × 10–3

10 38 1.1 1.1 × 10–3

20 42 1.2 1.2 × 10–3
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an axisymmetric geometry, thus two-dimensional, another 
mesh was applied.

The desired precision of the calculation results requires 
that the size of the blocks is smaller near the cavitation 
bubble surface. The width of the blocks has to be designed 
such that it grows consistently with the radial coordinate 
and that the resulting sum of blocks is a section of a 
sphere.

The boundary conditions for the simple setup of the 
cavitation bubble without rigid boundaries were chosen 
such that the opposite side faces are connected by the 
built-in boundary condition “wedge”. The outer face in 
radial direction requires setting three vector fields: the 
volume fraction α to distinguish between liquid and gas 
phase, the velocity U and the pressure field p. For the 
volume fraction, the “zeroGradient” boundary condition 
was applied, which resulted in the boundary field hav-
ing the value of the internal field. As water should not 
flow out of the domain, the velocity boundary field is set 
to zero with the condition “pressureInletOutletVelocity”, 
which allows only for pressure-induced temporary flows. 
For the boundary of the pressure field, the “waveTransmis-
sive” condition is applied, as it undermines the reflection 
of outgoing waves.

For the case with one rigid boundary, a two-dimen-
sional model with only axisymmetric geometry, the inner 
core of the wedge was deformed by an additional param-
eter. The non-orthogonality and ratio of the side lengths of 
the cells are small, as the mesh is split up into four block 
sections for meshing with blockMesh, with the core sec-
tion approaching a radial form outwards (cf. Fig. 8). The 
rigid boundary was placed at a distance of 2 × Rmax to the 
bubble center, at the wall orthogonal to the symmetry axis 
at which the bubble is mirrored, with all other boundaries 
remaining open as before. The corresponding boundary 
conditions for the rigid boundary were chosen as “zero-
Gradient” for alpha and the pressure and as “fixedValue” 
for the velocity.

For the cochlear geometry, a special mesh was designed 
with the cochlear approximated by a cylinder which is 
22 mm long and has a radius of 1 mm, as the literature 
reports similar dimensions for human cochleae, but untan-
gled and simplified by letting out the basilar membrane as 
the separation between scala vestibuli and scala tympani 
[24]. The cylinder for the cochlea model was modelled with 
rigid walls, while only one side is open by the “waveTrans-
missive” and “pressureInletOutletVelocity” boundary condi-
tions [25]. The open top of the cylinder is placed opposite to 
the pressure source on the bottom, which has a distance of 
1 mm to the wall. The bubble is hence located on the axis of 
symmetry. A grading of the mesh parallel to the axis and in 
the radial direction was chosen to better support the actual 
bubble dynamics.

3 � Results of the model and experiment 
for viscosity variation

3.1 � Spherical cavitation bubble in water

First, the experiment and simulation were conducted with 
the kinematic viscosity of water, i.e., 1 × 10−6 m2/s and in 
the objective-based setup. The experimental results shown 
in Fig. 2 (and analog for Figs. 3, 4a–c, 6) are single repre-
sentative measurements out of ten measurements. The nee-
dle hydrophone measurement showed clearly the expan-
sion (1), the first collapse (2), the second collapse (3), and 
one reflection for each of the former (R1–R3), cf. Fig. 2. 
The reflections occurred after ca. 3.5 µs, equivalent to ca. 
5.25 mm acoustic path. With the reflection occurring at 
the optical window distance of ca. 3 mm, the acoustic path 
is expected to be ca. 6 mm, but the pressure wave has a 
supersonic velocity at the beginning. Hence, the measure-
ment was in agreement with the experimental geometry.

The rebounds (collapses) of the bubble occurred after 
22 µs and an additional 12 µs. The amplitude ratio between 

Fig. 2   Pressure measurement in water after inducing a cavitation 
bubble with a laser pulse energy of 10 µJ, measured with the needle 
hydrophone. a The pressure waves from the expansion (1), first and 
second collapse (2, 3) are visible, as well as the reflections (R). b The 
same measurement (black) with the simulation results (red) with an 
extrapolated kinematic viscosity of 1 × 10−6 m2/s for water, an excess 
pressure pexc = 1.31 GPa, a maximum bubble radius calculated by 
Eq. (2) from the tc value of the experiment to be Rmax = 118 µm and 
an equilibrium bubble radius Rn = 26 µm
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the expansion pressure wave and the first collapse was ca. 
70% and from the first to the second collapse ca. 40%.

The simulation was conducted with a viscosity of 
1 × 10−6 m2/s and a maximum bubble radius calculated 
by the Rayleigh equation (Eq. 5) from the experimentally 
measured time constant tc = 11 µs to be Rmax = 118 µm. 
Then, the equilibrium radius and the excess pressure 
were varied to fit the model pressure development to the 
experimentally measured pressure development. With 
an excess pressure pexcess = 1.31 GPa and an equilibrium 
bubble radius Rn = 26 µm, the experimental results for the 
interval between the first and second collapse were best 
approximated. Reflective boundaries were not included in 
this part of the simulation, hence no reflections occurred 
in this model. The distance of the probe location was 

chosen based on the amplitude of the maximum pressure 
of the expansion. The time course of the amplitudes of 
the expansion and the two rebounds were similar between 
model and experiment (cf. Fig. 2). However, the third 
rebound could not be measured experimentally, most prob-
ably due to the background noise, mostly caused by the 
needle hydrophone and its limited sensitivity. The dura-
tion between expansion and first collapse in the simulation 
differed by approximately 2 µs from the experiments. The 
main reason might be the excess pressure which was cho-
sen to fit to the absolute amplitudes of the pressure peaks. 
In addition, the needle hydrophone has an uncertainty in 
amplitude of 9–18%. This is supported by the fact that the 
bubble radius reaches only 116 μm in the model, instead 
of the anticipated 118 μm calculated from the tc and fed 

Fig. 3   Experimental results for pressure transient (a–f), measured 
with the needle hydrophone with different gel concentrations (black) 
in the objective-based setup. Corresponding simulations (red) without 

reflective boundaries (1D spherical symmetry) with estimated kine-
matic viscosity (cf. Table 1)
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into the model. Still, the results are in good agreement as 
they approximate the experimental behavior.

3.2 � Increase of viscosity yields smaller cavitation 
bubble

In the next step, the viscosity was increased, both in the 
experiment and in the model. The experimental results for 
the pressure transient, measured with the needle hydrophone 
with different gel concentrations in the objective-based 
setup, showed a decrease of the time tc, which means half of 
the time interval between the initial pressure wave caused by 

the expansion and the first collapse, decreases with increas-
ing viscosity (cf. Figs. 3, 5d). This is related to a strong 
decrease in the bubble maximum radius. The simulation 
showed that an increasing viscosity for a constant maximum 
bubble radius results in an increase of tc. Hence, the decrease 
of the maximum bubble radius with higher viscosity has to 
overcome this effect (cf. Fig. 4a–c).

The smallest tc which was possible in the simulation 
with a viscosity of at least 1 × 10−6 m2/s was 8 µs and fits 
the experimental results of a gel concentration of 7.5 g/l 
(cf. Fig. 3d). However, for higher viscosities, only longer 
tc results were possible. This does not fit the experimental 

Fig. 4   a–c Simulation results of the radius development for different 
viscosities and bubble radii (same parameters as simulation in Fig. 3); 
d summary of experimental results from Fig.  3 for time interval tc 

between expansion and collapse as a function of dynamic viscosity 
(cf. Table 1). Mean values (circles) from 5 measurements, error bars 
depict standard deviation

Fig. 5   Simulation results for bubble near a rigid boundary (at the top 
of the depicted image section) for an initially spherical bubble with 
Rmax = 118 µm, Rn = 26 µm, pexc = 1.31 GPa; distance to the boundary 
from the bubble center was = 2 Rmax; a phase parameter (blue = gas 

inside the bubble, red = liquid outside) approx. 34 µs after the start of 
the simulation; b modeling results for pressure transient probed by a 
sensor placed at 5.6 mm from the bubble center
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results, which show a further decrease of the tc with increas-
ing viscosity.

3.3 � Bubble with nearby boundary and in a confined 
volume

For a later application in the inner ear, the effects of a bubble 
near a rigid boundary and, in a second step, inside a small, 
confined volume, were modeled.

The expansion of the initially spherical bubble was almost 
symmetric, with a slightly decelerated growth towards the 
boundary. During the first collapse, the complete bubble 
moved rapidly to the boundary, and a part of the bubble was 
accelerated towards its center, such that the bubble deformed 
to a toroidal shape due to a jet-like behavior with velocities 
of up to approx. 180 m/s in the center of the torus. At the 
end of the collapse, the jet reached the boundary (Fig. 5a).

The peak amplitudes were reduced to approx. 2/3 than in 
the spherically symmetric case. After the peaks, additional 
oscillations followed, which were not present in the spheri-
cal case (Fig. 5b). These oscillations had a different shape, 
amplitude and time course when the sensor position was 
changed. They were caused by the reflection at the boundary.

For future applications of our tone generation setup in 
the inner ear, a fiber delivery method was added to the 
setup. The laser focus was created by two ball lenses glued 
to the fiber end and had a distance of approx. 150 ± 10 µm 
to the last rigid surface of the lens, as estimated with 

Zemax software. In the fiber setup (Fig. 6d), the pressure 
amplitude was smaller and the oscillations after the expan-
sion and collapse pressure waves had a remarkably higher 
amplitude than in the objective-based setup (Fig. 6a–c). 
The effect of adding oscillations to the original wave in the 
fiber setup is comparable to the result of the simulation for 
a wall near the cavitation bubble (Fig. 5b).

This deviation between the experiments in the objec-
tive-based setup and the fiber setup is explainable by the 
different bubble radii. The distance between the focus and 
the rigid ball lens boundary was approx. 150 µm for the 
fiber setup. In contrast to this, the smallest applied dis-
tance to the next rigid boundary was approx. 1 mm. The 
pressure measurements show that the influence on the bub-
ble dynamics is negligible in the objective-based setup, but 
strong in the fiber setup.

To further investigate the explicit influence of the 
cochlear geometry on the pressure transient, a cylinder of 
length 22 mm and radius of 1 mm was modeled, as these 
values are the typical dimensions of a human cochlea, for 
the complete acoustic pathway over the two basal turns, 
measured in the central radial position [24]. The bubble 
was designed identical to the basic spherical bubble in 
water with Rmax = 118 µm, Rn = 26 µm, pexc = 1.31 GPa 
and the kinematic viscosity of water (1 × 10−6 m2/s) (cf. 
Fig. 2a). The bubble was placed at a distance of 1 mm to 
the rigid wall and the probe sensor locations were in a lon-
gitudinal direction at 6 mm and 20 mm from the bubble, 

Fig. 6   Experimental results for pressure measurement with needle 
hydrophone with variation of distance between the laser focus (i. e. 
place of bubble) to the next boundary, which is the optical window of 

the water container in the objective-based setup for a–c, and for d the 
ball lens glued to the fiber end in the fiber setup
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in radial direction at 1 µm, 500 µm and 900 µm from the 
center.

In contrast to the basic spherical case without rigid 
boundaries, the bubble did not expand up to its maximum 
radius in the cochlea-like volume, but only up to approx. 
70% of Rmax, where the collapse started. This is caused 
by the confined volume with rigid boundaries everywhere 
except in one small open end of the cylinder. Furthermore, 
the bubble developed a non-spherical shape and the effec-
tive radius development (radius calculated from the volume) 
was asymmetric during the expansion and the first collapse 
(Fig. 7a). Also, the pressure amplitude of the expansion and 
the collapse were different than in the case without a con-
fined volume (cf. Figs. 2, 7b). Different radial sensor loca-
tions revealed that the maximum pressure was reached in 
the center of the cylinder. In comparison to the simulation 
with only one rigid boundary, the oscillations after the initial 
pressure peak are slower, longer lasting and their amplitude 
showed a weaker decrease over time.

4 � Discussion

In our earlier study, we found that viscous media around the 
laser focus led to an attenuation of higher frequency compo-
nents of the pressure transients generated by the laser pulses 
[3]. The experiments with high time resolution showed that 
with increasing viscosity, the time between expansion and 
first collapse shortens. This corresponds to a decrease in the 
maximum bubble radius with increasing viscosity. In the 
highest viscosity regime, there was no collapse measurable, 
likely because it is too small to be distinguished from the 
background noise.

In the computational model, an increase in viscosity leads 
to a slower expansion and thus to a longer time between 
expansion and first collapse. For water, the maximum bub-
ble radius was calculated via Eq. (2). However, this was not 
valid for the viscous gel. Hence, three parameters had to be 
fit in the model: maximum and equilibrium radii of the bub-
ble (Rmax and Rn), and excess pressure pexc that drives the 

Fig. 7   a Simulation results of 
effective radius. The bubble is 
not spherical due to the con-
fined volume. b, c Simulation 
of effective pressure develop-
ment for the case of a bubble 
inside a cochlea-like confined 
volume with the same bubble 
parameters as in the spherical 
simple case. The first collapse 
is slowed down, such that the 
radius development is asym-
metric. Pressure probes were 
taken at longitudinal distances 
of 6 mm (b) and 20 mm (c) 
from the bubble center. While 
the radial sensor position leads 
to different pressure signals near 
the bubble (b), this is not the 
case for a larger distance (c): 
here, the three probe locations 
cannot be distinguished
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initial expansion of the bubble. The maximum cavitation 
radius has to be sufficiently small to model the experimental 
result of the shorter intervals. The model could mimic the 
experimental pressure transients for medium viscosity but 
was unable to simulate the shortest measured intervals at 
high viscosities.

One reason is that the application of higher viscosities 
was only possible with assumptions within the model. Espe-
cially, the non-Newtonian viscosity of the applied gel could 
not be monitored within the model. Hence, the exact value of 
the viscosity for the relevant high-frequency regime was not 
indisputably extrapolatable from the viscosity measurements 
in low frequencies. Still, polymer gels show Newtonian pla-
teaus for low and high frequencies and support the approxi-
mation of our study [23]. In addition, the optical investi-
gation of bubble dynamics in polyacrylamide gels by [26] 
showed that for geometries without a nearby boundary, non-
Newtonian effects are negligible. For future improvement of 
the precision, high-frequency viscosity measurements with 

a method shown by [27] might be promising. Additionally, 
the model assumes adiabatic and barotropic conditions and 
neglects condensation and evaporation and hence cannot 
model the precise bubble oscillation process.

Despite all these obstacles, the experimental results for 
the viscosity variation could be modeled by the simula-
tion for medium viscosities. This was not possible for the 
highest viscosities. The reason is the strong decrease of the 
maximum bubble radius in the model that was necessary 
to approximate the experimentally observed decrease of tc 
with increasing viscosity. For viscosities corresponding to 
gel concentrations of 10 g/l or more, extremely small bub-
bles would be necessary to reach the experimentally meas-
ured tc values around 4 µs, requiring significantly higher 
computational power for the model calculations.

The observed decrease of the time constant of the bubble 
collapse with increased viscosity is congruent with model-
ling results via Chebyshev spectral collocation method by 
[28] and via Levin–Voigt-based viscoelastic model by [29]. 

Table 2   Simulation parameters

Material to 
model

Modelled 
dimensions 
and geometry

Kinematic 
viscosity 
(m2/s)

Maximum 
radius Rmax 
(µm)

Equilibrium 
radius Rn 
(µm)

Excess 
pressure pexc 
(GPa)

Cell size of 
inner meshing 
area (µm)

Size (radius) 
of computa-
tional domain 
(cm)

Size of comp. 
domain in units 
of Rmax

Water 1D, no 
reflective 
boundaries

1 × 10−6 118 26 1.31 0.67 10 847

Gel 3 g/l 1D, no 
reflective 
boundaries

5.6 × 10−4 25 11 0.98 0.67 10 4000

Gel 5 g/l 1D, no 
reflective 
boundaries

7.8 × 10−4 11 4 0.7 0.67 10 9091

Gel 6 g/l 1D, no 
reflective 
boundaries

9.3 × 10−4 8 3.2 0.64 0.2 3 3750

Gel 7.5 g/l 1D, no 
reflective 
boundaries

1 × 10−3 7 3 0.58 0.2 3 4286

Gel 10 g/l 1D, no 
reflective 
boundaries

1.1 × 10−3 6.5 2.9 0.3 0.2 3 4615

Gel 20 g/l 1D, no 
reflective 
boundaries

1.2 × 10−3 6.3 2.8 0.2 0.2 3 4762

Water 2D, reflective 
boundary in 
distance of 2 
· Rmax mm to 
bubble

1 × 10−6 118 26 1.31 0.67 10 847

Water 2D, cylin-
der: length 
22 mm, 
radius 1 mm

1 × 10−6 118 26 1.31 0.67 Cylinder see 
second 
column
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Similar results were observed by experimental investigation 
of the bubble maximum radius with direct visualizations of 
the collapse in polyacrylamide gels by [30] and agarose gels 
by [31]. This study found that the maximum radius of the 
laser-generated bubble decreased with increasing viscosity, 
which was also observed by [30]. A quantitative comparison 
is however not possible as the PNC 400 gel of this study 
is by far less stiff and elastic than the gels applied by [30, 
31]. For further review of bubble modelling in viscoelastic 
media, see [32–38].

The applied model is a further development of the Gil-
more model. A detailed comparison of the OpenFoam 
model to the Gilmore model was conducted by Koch et al. 
who showed that both models were comparable until the 
first rebound and that the OpenFoam model fitted the sec-
ond rebound better than the Gilmore model [15]. Further-
more, they found that the Gilmore model resulted in a 
slightly larger collapse time and a larger rebound radius 
than the full Navier Stokes equations used in OpenFoam. 
Another comparison was done by [15] to the Keller–Mik-
sis model with the result that its applicability was limited 
to Mach numbers below 0.82 and already there the pres-
sure is underestimated.

For future applications in the inner ear, we investigated 
the influence of a confined volume. The modeling of both 
the intermediate step of geometry with one nearby rigid 
boundary and a cylinder of cochlea-like dimensions was 
successful and revealed the influence of the boundaries on 
the bubble dynamics. Singular aspects of the identified phe-
nomena, such as the jet-like behavior and the separation of 
the bubble, were also reported by, e. g., Lauterborn et al. 
from both experimental and computational results [13]. 
Both Koch et al. [15] and Supponen et al. [39] found that 
the bubble near a rigid boundary leads to a toroidal bubble 
shape, coherent with the results of our work. In congruence 
with our modeling results, Supponen et al. measured sev-
eral shock waves additional to the single pressure waves by 
expansion and collapses. They attributed those additional 
waves to the jet formation. According to our results, it is 
more likely that the additional oscillations are due to the 
reflections from the rigid boundaries, as their time inter-
val to the first pressure wave varies depending on the probe 
location (cf. Appendix, Fig. 9). Also, the slow-down of the 
collapse in the cochlea-volume in our model results, leading 
to an asymmetric pressure wave, was found by Koch et al. 
already when a single boundary is present near the bubble 
[15]. As a recent study by Lechner et al. on bubble dynamics 
directly at a solid boundary in viscous liquids found, strong 

bubble deformation and jetting occurs for low and medium 
viscosities but the speed of the jet decreases with increasing 
viscosity and the highest studied viscosity showed no jetting 
any more [40].

For quantitative investigations of the prospective design 
of a hearing device via optoacoustic stimulation, a more 
complex geometrical model of the cochlea might be applied, 
such as the one developed by [41].

5 � Conclusion

In this work, we adapted the computation model for 
bubble dynamics in OpenFOAM by Koch for a viscosity 
study and investigation of the effect of a nearby rigid 
boundary and of the confined volume with cochlea-like 
dimensions.

The general experimental effects of the increase of vis-
cosity, which enabled us in our earlier study to attenuate the 
higher harmonic frequency components, are both a decrease 
in pressure amplitude and in the time interval between the 
expansion and the first collapse. Our model results lead to 
the assumption that the maximum size of the bubble strongly 
decreases with increasing viscosity. This could be the main 
reason why the higher frequency components are attenuated, 
as reported by our earlier study [3].

By comparison of the simulation with the experimental 
results, the cavitation bubble dynamics in our optoacoustic 
tone generation setup could be understood in more detail 
and the effects for a future application within the coch-
lea were studied. At this point, no experimental data are 
available for the application inside the cochlea with its 
more complicated shape and rigid boundaries as well as 
compliance in different directions. Future experiments are 
planned to investigate whether the tone generation inside 
the cochlea is similar to the results of our previous study 
in the water container. [3] With the computational results 
for the geometry of similar size, the tone generation in the 
inner ear should be feasible.

Appendix

Rigid boundary

See Fig. 8.
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Figure 9 shows the simulation results for the same 
parameter as Fig. 5b, but for a probe distance of 1 mm, 
to show that the oscillations are reflections at the rigid 
boundary, as they change their time distance to the origi-
nal wave with the probe location. The overlay of the reflec-
tions with the original waves leads in some cases to a 
change of the peak shape.

Convergence

The time convergence was verified by choosing a small 
maximum Courant number and checking if the real equi-
librium bubble radius is close to the input parameter Rn. 
As described by [15] in Sect. 4.2.4, the maximum Courant 
number of 0.4 was sufficient for convergence and a high 
resolution there. In [15], the maximum radius was in most 
cases 747 µm and the equilibrium radius was about 170 µm. 
For this study, we chose a maximum Courant number of 0.1 
to make sure that for the here applied values of the radius of 
the cavitation bubble with 118 µm for water and 25 µm or 
less for gel (cf. Table 2), time convergence is still achieved.

The spatial convergence relies on the grid resolution, i. 
e. the mesh size. We chose a mesh size of 0.67 µm In the 
area of the mesh where the bubble is placed for water and 
gel with concentrations ≤ 6 g/l and a mesh size of 0.2 µm 
in the bubble region for gel concentrations > 6 g/l, as the 
bubble radii are smaller for higher gel concentrations. As 
shown by a mesh size variation in [15] in Fig. 7, the time 
constant of the first collapse is not affected by a higher 
resolution of the mesh size, just the later collapses are 
influenced. Hence, for the estimation of the time constants 

Fig. 8   Geometry of the mesh. a Mesh used for spherical symmetric 
collapse. The hexahedral blocks get smaller. towards the center. The 
pyramidal shape imitates a slice of a sphere. The cell size in the radial 
direction reduces dramatically towards the center. b Mesh applied for 
axisymmetric collapses which are not spherical symmetric. A slice of 
a sphere with wedge boundary conditions imitates the symmetry. The 
curvature of the inner core prevents numerical errors due to high non-
orthogonality

Fig. 9   Simulation results of the pressure transient for the spherical 
cavitation bubble near a rigid boundary in detail for the expansion 
and the first and second collapse, to show the oscillations after the 

first pressure peak, here the sensors are placed at a distance of 1 mm 
to the mesh center
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to compare the modelling results with the experimen-
tal values, the mesh size resolution does not need to be 
extremely high. Still, the non-smoothness in the second 
collapse, visible in Fig. 4a–c, could arise due to a mesh 
resolution that is not high enough. However, the conclu-
sions were taken from the second collapse so we neglected 
this fact. In [15], it is most important that the mesh size 
is always smaller than the bubble in the area where the 
bubble is placed. By choosing the mesh sizes shown in 
Table 2, we made sure that this was fulfilled.
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