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increments. Decoupling the center of mass before effecting the spherical reduction pro-
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Finally, we attach spin degrees of freedom to our particles and extend the results to the

spin-Calogero system.
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1 Introduction and summary

The Calogero model [1] and its generalizations, called Calogero-Moser models, constitute

the paradigm of integrable and solvable multi-particle systems in one space dimension (for

reviews, see [2–4]). They have been applied to fluid mechanics, spin chains, gauge theory

and string theory, and seemingly all their aspects have been thoroughly analyzed. Despite

the long history of the subject [5], however, there still appear to be untrodden paths em-

anating. One of these, a codimension-one reduction of the rational Calogero-Moser model

to an integrable system on a sphere, is the subject of this paper.

One may view n interacting particles in one dimension as a single particle in R
n moving

in a specific potential (and possibly seeing a nontrivial metric). Due to the conformal invari-

ance of the rational Calogero-Moser model, with the dilatation operator generating a rescal-

ing of the radial coordinate r in R
n, a reduction of the model to Sn−1 is natural.1 Indeed,

upon passing to polar coordinates in R
n, all dependence on angular coordinates or momenta

in the Hamiltonian H resides in a ‘deformed’ centrifugal barrier term. Its r−2 coefficient

equals the quadratic Casimir of the conformal sl(2) algebra (shifted by 3
8) and defines the

Hamiltonian HΩ of a reduced Calogero-Moser system living on the sphere Sn−1, which we

call the (rational) angular Calogero-Moser model. A variant of this reduction first separates

the center of mass from the particles’ relative motion before applying the polar decomposi-

tion (then in R
n−1), arriving at a relative angular Calogero-Moser model defined on Sn−2.

Various classical properties of these reduced models have already been investigated,

such as their superintegrability [6, 7], their conserved charges [8, 9] or their angle-action

variable representation [10, 11]. Intertwining relations for the quantum models were studied

in [12].

1Likewise, the translational symmetry of the model allows for a reduction to R
n−1, which decouples the

center of mass. We also treat this reduction and combine the two.
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In the current paper, we deal with the fundamental properties of the quantum models

and focus on energy spectra, their degeneracies and eigenstates. We render the energy spec-

tra discrete by adding a (one-body) harmonic confining potential, a harmless modification

which preserves integrability. It turns out that the energy levels are easy to obtain, while

one has to work a bit harder for the eigenfunctions. We present two different ways to con-

structing them: firstly, by projecting the full model’s eigenstates onto its radial-oscillator

ground state and, secondly, by computing appropriate homogeneous symmetric polynomi-

als with the help of Dunkl operators. At integer values for the Calogero-Moser coupling

constant magic happens: the energy levels are those of a free particle on the sphere, but

with degeneracies given by an effective angular momentum which gets diminished with

growing coupling. We also extend this analysis to Calogero-Moser models associated with

Coxeter groups [3].

The issue of degeneracies becomes richer when one attaches ‘spin’ variables to each

particle. These so-called ‘spin-Calogero models’ [13] may equally be spherically reduced to

obtain angular versions endowed with spin degrees of freedom. We present the calculation

of their degeneracies.

Part of our results (for the relative model) can be discovered already in the appendices

of the original Calogero paper [1] (see also [14, 15] for n=3). We include them here for a

more modern exposition and their relation to the mathematical framework developed later.

2 The angular Calogero-Moser model

The prototypical integrable multi-particle system in one space dimension is the Calogero-

Moser model, whose two-body interaction comes in a rational, trigonometric, hyperbolic

or elliptic version. Here, we restrict ourselves to the rational model and include a common

(one-body) harmonic confining potential in order to obtain a discrete energy spectrum in

the quantum theory.

We parametrize the n-particle quantum phase space with coordinates xi and momenta

pj , subject to the canonical commutation relations (setting ~ = 1)

[xi , pj ] = i δij with i, j = 1, . . . , n , (2.1)

and introduce a radial coordinate r and momentum pr via

n∑

i=1

(xi)2 = r2 and

n∑

i=1

p2i = p2r +
1

r2
L2 +

(n− 1)(n− 3)

4 r2
(2.2)

with L2 =
∑

i<j(x
ipj−x

jpi)
2 being the Laplacian on Sn−1. The quantum Hamiltonian
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reads

H =
1

2

∑

i

p2i +
ω2

2

∑

i

(xi)2 +
∑

i<j

g(g−1)

(xi−xj)2

=
1

2
p2r +

ω2

2
r2 +

(n− 1)(n− 3)

8 r2
+

1

r2
HΩ

=
1

2n
P 2 +

nω2

2
X2 + H̃

=
1

2n
P 2 +

nω2

2
X2 +

1

2
p̃2r +

ω2

2
r̃2 +

(n− 2)(n− 4)

8 r̃2
+

1

r̃2
H̃Ω ,

(2.3)

where we introduced the center-of-mass coordinate and momentum

X =
1

n

∑

i

xi and P =
∑

i

pi , (2.4)

respectively, as well as a relative Hamiltonian H̃, radial coordinate r̃ and momentum p̃r via

1

n

∑

i<j

(xi−xj)2 = r̃2 and
1

n

∑

i<j

(pi−pj)
2 = p̃2r +

1

r̃2
L̃2 +

(n− 2)(n− 4)

4 r̃2
, (2.5)

with p̃r canonically conjugate to r̃ and L̃2 defined analogously to L2. A useful relation is

r2 = nX2 + r̃2.

The implicitly given operators HΩ and H̃Ω are named ‘angular Calogero-Moser Hamil-

tonian’ and ‘relative angular Calogero-Moser Hamiltonian’, since they define integrable

submodels independent of the radial and relative radial degree of freedom, living on the

spheres Sn−1 and Sn−2, respectively. Their classical properties have been thoroughly inves-

tigated in [6–11]. In the present paper, we focus on their quantum features, in particular

their energy spectrum and eigenstates. Explicitly, these Hamiltonians read

HΩ =
1

2
L2 + r2

∑

i<j

g(g−1)

(xi−xj)2
=

1

2
L2 +

g(g−1)

2

(
n(n−1)

2
+
∑

α∈R+

tan2 θα

)
, (2.6)

H̃Ω =
1

2
L̃2 + r̃2

∑

i<j

g(g−1)

(xi−xj)2
=

1

2
L̃2 +

g(g−1)

2

(
n(n−1)

2
+
∑

α∈R+

tan2 θ̃α

)
, (2.7)

where the sum runs over the positive roots of An−1, and θα (θ̃α) is the angle of the unit

vector θ ∈ R
n (θ̃ ∈ R

n−1) with the root α. Because L2 (L̃2) is the Laplacian on the sphere

Sn−1 (Sn−2), these Hamiltonians describe particle motion on that sphere in the presence

of specific potentials, which become singular on the intersections with the Weyl chamber

walls. These potentials are sometimes called ‘Higgs oscillators’ [16, 17]. Note that the

frequency ω does not appear here. The confining potential only serves to render the full

Calogero-Moser spectrum discrete and may be turned off when convenient. We will assume

g ≥ 0 without loss of generality.

On position wave functions, the momentum operators pi are represented by −i∂i, hence

P 7→ −i∂X and pr 7→ −i

(
∂r +

n− 1

2 r

)
, p̃r 7→ −i

(
∂r̃ +

n− 2

2 r̃

)
, (2.8)

– 3 –



J
H
E
P
0
7
(
2
0
1
3
)
1
6
2

and therefore

H 7→ −
1

2
∂2r −

n− 1

2 r
∂r +

ω2

2
r2 +

1

r2
HΩ

= −
1

2n
∂2X +

nω2

2
X2 −

1

2
∂2r̃ −

n− 2

2 r̃
∂r̃ +

ω2

2
r̃2 +

1

r̃2
H̃Ω ,

(2.9)

Hence, on these wave functions, we can represent

HΩ = r2H −
ω2

2
r4 +

1

2
(r∂r + n−2) r∂r ,

H̃Ω = r̃2H̃ −
ω2

2
r̃4 +

1

2
(r̃∂r̃ + n−3) r̃∂r̃ .

(2.10)

The standard similarity transformation (with θ ∈ Sd−1 and θ̃ ∈ Sd−2)

Ψ(r, θ) = r−
n−1

2 u(r, θ) or Ψ̃(X, r̃, θ̃) = r̃−
n−2

2 ũ(r̃, θ̃)χ(X) (2.11)

removes the first-derivative term at the expense of a constant shift,

H 7→ −
1

2
∂2r +

ω2

2
r2 +

(n− 1)(n− 3)

8 r2
+

1

r2
HΩ

= −
1

2n
∂2X +

nω2

2
X2 −

1

2
∂2r̃ +

ω2

2
r̃2 +

(n− 2)(n− 4)

8 r̃2
+

1

r̃2
H̃Ω ,

(2.12)

which amounts simply to

P 7→ −i∂X and pr 7→ −i ∂r , p̃r 7→ −i ∂r̃ (2.13)

in (2.3).

3 Energy spectra

In order to find the spectra of HΩ and H̃Ω, we define the following eigenvalue problems,

H uk = Ek uk, H̃ ũk = Ẽk ũk , (3.1)

HΩ vk = εk vk, H̃Ω ṽk = ε̃k ṽk , (3.2)

where k collectively counts the discrete eigenvalues.

The standard Calogero-Moser spectrum in the presence of a harmonic term is a classic

result [1, 3, 4],

Ek = ω

(
1

2
g n(n−1) +

n

2
+ k1 + 2k2 + 3k3 + . . .+ nkn

)
with ki = 0, 1, 2, . . . . (3.3)

Since the center-of-mass Hamiltonian is a standard harmonic oscillator,

(
−

1

2n
∂2X +

nω2

2
X2

)
χk(X) = ω

(
k+

1

2

)
χk(X) , (3.4)
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its contribution in (3.3) is identified with the k1 term (and a constant 1
2ω). Hence, the

relative Calogero-Moser spectrum must just lack the k1 term,

Ẽk = ω

(
1

2
g n(n−1) +

n− 1

2
+ 2k2 + 3k3 + . . .+ nkn

)
with ki = 0, 1, 2, . . . . (3.5)

A simple trick reveals the spectra of HΩ and H̃Ω. According to (2.3), on any HΩ

eigenspace for eigenvalue εk, the full Calogero-Moser Hamiltonian reduces to

H
∣∣
εk

=
1

2
p2r +

ω2

2
r2 +

(n− 1)(n− 3)

8 r2
+

εk

r2
=

1

2
p2r +

ω2

2
r2 +

h(h− 1)

2 r2
, (3.6)

reparametrizing

εk +
1

8
(n−1)(n−3) =:

1

2
h(h−1) . (3.7)

However, this is just the relative two-particle Calogero-Moser Hamiltonian H̃ for n=2, as

can be seen from (2.3) and (2.6) with

L̃2 = 0 ,
1

2
(x1−x2)2 = r̃2 , g → h (3.8)

and the tildes removed. Thus, we know from (3.5) that

spec

(
H
∣∣
εk

)
=

{
ω

(
h+

1

2
+ 2k2

)
with k2 = 0, 1, 2, . . .

}
, (3.9)

and comparing to (3.3) yields the identification

h =
1

2
g n(n−1) +

n− 1

2
+ k1 + 3k3 + 4k4 + . . .+ nkn =: q +

n− 1

2
. (3.10)

Note that the k2 term has disappeared from h. From (3.7) we now read off that

εk =
1

2
h(h−1)−

1

8
(n−1)(n−3) =

1

2
q (q + n− 2) (3.11)

with

q =
1

2
g n(n−1) + k1 + 3k3 + 4k4 + . . .+ nkn . (3.12)

We see that, while the full Calogero-Moser energy Ek depends linearly on the n quantum

numbers k1, k2, k3 . . . , kn, the angular Calogero-Moser energy εk is independent of k2 and

depends quadratically on the remaining ki via the combination q. For integer values of

the coupling g, the angular energy spectrum (3.11) is that of a free particle with angular

momentum q on the (n−1)-sphere, but has a lower degeneracy as we shall see. Each time

g is increased by one, q grows by 1
2n(n−1), so the lowest 1

2n(n−1) energy levels disappear

from the spectrum while the rest is reproduced, with a reduced degeneracy.

This story gets repeated for the relative angular Calogero-Moser energy. We have

H̃
∣∣
ε̃k

=
1

2
p̃2r +

ω2

2
r̃2 +

h̃(h̃− 1)

2 r̃2
with

1

2
h̃(h̃−1) = ε̃k +

1

8
(n−2)(n−4) , (3.13)
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and, hence, obtain from (3.5) the identification

h̃ =
1

2
g n(n−1) +

n− 2

2
+ 3k3 + 4k4 + . . .+ nkn =: q̃ +

n− 2

2
. (3.14)

Both k1 and k2 are absent from h̃. From (3.13) we finally extract

ε̃k =
1

2
h̃(h̃−1)−

1

8
(n−2)(n−4) =

1

2
q̃ (q̃ + n− 3) (3.15)

where

q̃ =
1

2
g n(n−1) + 3k3 + 4k4 + . . .+ nkn = q − k1 . (3.16)

The relative angular Calogero-Moser energy depends quadratically only on the quantum

numbers k3, k4, . . . , kn of the full Calogero-Moser model. For comparison, we rewrite the

full absolute and relative Calogero-Moser energies,

Ek = ω

(
q +

n

2
+ 2k2

)
and Ẽk = ω

(
q̃ +

n− 1

2
+ 2k2

)
, (3.17)

in terms of q and q̃, respectively.

To summarize, the center of mass and the (absolute or relative) radial degree of freedom

in the Calogero-Moser model account for the k1 and k2 quantum numbers of the energy

eigenstates. Setting them to zero provides the quantum numbers for the relative angu-

lar Calogero-Moser model, whose energy depends quadratically on the combination (3.16)

in (3.15).

It is known that the energy eigenstates are uniquely characterized by the multiindex k.

Let us define its level number m(k) by

m = k1 + 2k2 + 3k3 + 4k4 + . . .+ nkn for k = (k1, k2, k3, k4, . . . , kn) . (3.18)

Since only one branch of the quadratic functions (3.11) and (3.15) is relevant, the degen-

eracy of a given energy eigenvalue is given by the number pn(m) of partitions of m into

integers not bigger than n. The only difference between the four models is that, in the

relative cases, the ‘ones’ are excluded from the partitions, while for the angular models the

‘twos’ have to be omitted. Therefore, the respective degeneracies are given by

pn(m) , pn(m)−pn(m−1) , pn(m)−pn(m−2) , pn(m)−pn(m−1)−pn(m−2)+pn(m−3) .

(3.19)

We close this section by giving explicit formulae for the special cases of n=2 and n=3.

In the two-particle system, our equations degenerate to q = g+k1 and q̃ = g, thus

Ek = ω(g+1+k1+2k2) , Ẽk = ω

(
g+

1

2
+2k2

)
, εk =

1

2
q2 , ε̃k =

1

2
q̃(q̃−1) . (3.20)

As the relative angular two-body Calogero-Moser system is empty, its energy reduces to a

constant. For three particles, one has q = 3g+k1+3k3 and q̃ = 3g+3k3, and therefore

Ek=ω

(
3g+

3

2
+k1+2k2+3k3

)
, Ẽk=ω(3g+1+2k2+3k3) , εk=

1

2
q(q+1) , ε̃k=

1

2
q̃2 , (3.21)

i.e. ε̃k = 9
2(g+k3)

2, which is known from the Pöschl-Teller model. No simplifications appear

to occur for n ≥ 4.

– 6 –
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4 Energy eigenstates

It is well known how to construct the energy eigenfunctions2 Ψk(x) = 〈x | k1, k2, k3, . . . , kn〉

of the rational Calogero-Moser model with common harmonic potential, for any energy

eigenstate |k〉 = |k1, k2, k3, . . . , kn〉.

The ground-state wave function reads3

Ψ0 = ∆g e−
1

2
ωr2 = ∆g e−

1

2
ωr̃2e−

n

2
ωX2

= Ψ̃0(x̃)χ0(X) with ∆ =
∏

i<j

(xi−xj) (4.1)

and is annihilated by

Aℓ = Iℓ(p−iωx, x) for ℓ = 1, 2, 3, . . . , n , (4.2)

where Iℓ(p, x) is the ℓth-order conserved charge of the scattering Calogero-Moser model

(without harmonic term), given by the matrix trace of the ℓth power of the n×n matrix-

valued Lax operator [3]. The creation operators

A
†
ℓ = Iℓ(p+iωx, x) for ℓ = 1, 2, 3, . . . , n (4.3)

commute with one another and help build all excited states,

|k1, k2, k3, . . . , kn〉 =
(
A

†
1

)k1(A†
2

)k2 · · ·
(
A†

n

)kn |0, 0, . . . , 0〉 . (4.4)

Employing

(−∂i+ωx
i)Ψ0 =

(
2ωxi − g

∑

j( 6=i)

(xi−xj)−1

)
Ψ0 (4.5)

and some identities on partial fractions it is straightforward but cumbersome to compute

any Ψk.

For illustration, the first three conserved charges take the form

I1(p, x) =
∑

i

pi = P , I2(p, x) =
∑

i

p2i + 2g(g−1)
∑

i<j

(xi−xj)−2 = 2H ,

I3(p, x) =
∑

i

p3i + 3g(g−1)
∑

i<j

(xi−xj)−2(pi+pj) ,
(4.6)

and, therefore,

A
†
1 = P + iωnX , A

†
2 = 2H + iω(x·p+ p·x)− 2ω2r2 ,

A
†
3 =

∑

i

(pi+iωx
i)3 + 3g(g−1)

∑

i<j

(xi−xj)−2(pi+pj + iωxi+iωxj) , (4.7)

leading to

Ψ100...0 = 2iωnX Ψ0 , (4.8)

Ψ200...0 = 2ωn (1− 2ωnX2)Ψ0 , (4.9)

2Arguments x and p stand for {x1, x2, . . . , xn} and {p1, p2, . . . , pn}, respectively. Similarly for x̃ and p̃.
3Here and below, we do not normalize states or wave functions. k = 0 means k = (0, 0, . . . , 0).

– 7 –
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Ψ300...0 = 4iω2n2(3X − 2ωnX3)Ψ0 , (4.10)

Ψ010...0 =
(
2ωgn(n−1) + 2ωn− 4ω2r2

)
Ψ0 , (4.11)

Ψ110...0 = 4iω2nX
(
gn(n−1) + (n+2)− 2ωr2

)
Ψ0 , (4.12)

Ψ001...0 =
(
12iω2n[1+g(n−1)]X − 8iω3∑

i(x
i)3
)
Ψ0 . (4.13)

An equivalent strategy makes use of the exchange-creation operators [18, 19]

a
†
i = −iDi + iωxi and ai = −iDi − iωxi , (4.14)

constructed using Dunkl operators

Di = ∂i + g
∑

j( 6=i)

1− sij

xi − xj
, (4.15)

which contain permutation operators sij , commute with each other and map polynomials

to polynomials. Employing the totally symmetric Newton sums

B
†
ℓ =

∑

i

(a†i )
ℓ , (4.16)

we may alternatively write

Ψk(x) = ∆g
(
B

†
1

)k1(B†
2

)k2 · · ·
(
B†

n

)kn e− 1

2
ωr2 . (4.17)

Each wave function is a totally symmetric polynomial of degreem =
∑

i iki multiplying Ψ0.

Due to the invariance under permutations of the coordinates xi, the degeneracy at a given

level m is much smaller than that of an n-dimensional isotropic harmonic oscillator.

How can one extract from these full eigenfunctions the eigenfunctions Ψ̃k = r̃−
n−2

2 ũk,

vk and ṽk of the other Hamiltonians? This task is rather straightforward for Ψ̃k: for any

given multiindex

k = (0, k2, k3, . . . , kn) with 2k2 + 3k3 + . . .+ nkn = m, (4.18)

rewrite the corresponding Ψk in terms of X and x̃, then expand its X dependence into the

harmonic-oscillator basis {χk′
1
} of the center of mass,

Ψk(X, x̃) =
∑

k′

ck
′

k χk′
1
(X) Ψ̃0 k′

2
k′
3
...k′n

(x̃) with
n∑

i=1

ik′i = m. (4.19)

In each term, the energy is split as

E = ω

(
gn(n−1) +

n

2
+m

)
= ω

(
1

2
+ k′1

)
+ ω

(
gn(n−1) +

n− 1

2
+m− k′1

)
. (4.20)

The coefficient of χ0 may be identified with Ψ̃k; it lives in the relative eigenspace with

Ẽ = E−ω
2 . This relative eigenspace is spanned by all Ψ̃0,k2,k3,...,kn obtained from parti-

tions (4.18). In other words, we select those Calogero-Moser states whose center-of-mass

oscillator is not excited. The simplest example is m=2,

Ψ010...0 =
(
2ωgn(n−1) + 2ωn− 4ω2r2

)
Ψ0

=
(
2ωgn(n−1) + 2ω(n−1)− 4ω2r̃2

)
Ψ0 +

(
2ω − 4ω2nX2

)
Ψ0

= χ0 Ψ̃010...0 + χ2 Ψ̃000...0

(4.21)
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with χ2 = 2ω(1−2ωnX2)χ0, thus

Ψ̃010...0 ∝
(
(gn+1)(n−1)− 2ωr̃2

)
Ψ̃0 . (4.22)

The situation is more involved for the eigenfunctions vk, where now

k = (k1, 0, k3, k4, . . . , kn) with k1 + 3k3 + 4k4 + . . .+ nkn = m. (4.23)

To derive these at a given energy level E = ω(gn(n−1) + n
2 +m), we have to rewrite

Ψk(x) = r−
n−1

2 uk(r, θ) (4.24)

in terms of the radial (r) and angular (θ ∈ Sd−1) coordinates. The r dependence of uk has

to be expanded in terms of the solutions of the following eigenvalue problem,
(
−
1

2
∂2r+

1

2
ω2r2+

h(h− 1)

2 r2

)
ρk′

2
(r) = Ek′

2
ρk′

2
(r) with Ek′

2
= ω

(
h+

1

2
+2k′2

)
. (4.25)

This is nothing but the (reduced) radial wave equation for the isotropic harmonic oscillator

in n dimensions, with angular momentum q = h− n−1
2 and principal quantum number k′2.

Hence, we know that

ρk′
2
(r) ∝ rh e−

1

2
ωr2F

(
− k′2, h+

1

2
;ωr2

)
∝ rh e−

1

2
ωr2L

h− 1

2

k′
2

(ωr2) , (4.26)

involving the confluent hypergeometric function F or associated Laguerre polynomials Lα
n,

F (−n, β; z) =
n∑

j=0

(−1)j n! Γ(β)

(n−j)! j! Γ(β+j)
zj or Lα

n(z) =
1

n!
z−αez

dn

dzn
(
e−zzn+α

)
.

(4.27)

In each term of the expansion

uk(r, θ) =
∑

k′

dk
′

k ρk′2(r) vk′1 0 k′3k′4...k′n(θ) with
n∑

i=1

ik′i = m, (4.28)

the value of h belonging to ρk′
2
is fixed by the requirement

Ek′
2
= Ek =⇒ h =

1

2
gn(n−1) +

n− 1

2
+m− 2k′2 . (4.29)

The coefficient of ρ0 = rhe−
1

2
ωr2 may be identified with vk(θ),which amounts to setting

dk
′

k = δkk′ for k
′
2=0. In other words, vk is the projection of uk to its radial oscillator ground

state (with the proper value of h). As a check, vk should not depend nontrivially on ω. By

collecting the vk pertaining to all partitions of m in (4.23), we span the eigenspace of HΩ

to the energy

ε =
1

2
q (q + n− 2) with q =

1

2
g n(n−1) +m. (4.30)

Let us consider the first nontrivial example,

k = (2, 0, 0, . . . , 0) =⇒ m = 2 and k′2 = 0, 1 . (4.31)
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The task is to expand

u20...0 = 2ωn (1− 2ωnX2)∆g r
n−1

2 e−
1

2
ωr2 (4.32)

into

ρ0 = r2ρ and ρ1 =

((
1

2
gn(n−1)+

n

2

)
− ωr2

)
ρ with ρ = r

1

2
gn(n−1)+n−1

2 e−
1

2
ωr2

(4.33)

as

u20...0(r, θ) = ρ0(r) v20...0(θ) + ρ1(r) v00...0(θ) , (4.34)

where we are allowed to absorb expansion coefficients into the vk′ . After splitting

X = r X̂ and ∆ = r
1

2
n(n−1) ∆̂ (4.35)

and matching powers of r, we read off that

2ωn ∆̂g =

(
1

2
gn(n−1)+

n

2

)
v00...0 and − 4ω2n2X̂2∆̂g = v20...0 − ω v00...0 (4.36)

and arrive at

v00...0 ∝ ∆̂g and v20...0 ∝
{
1− [g(n−1)+1]n2X̂2

}
∆̂g . (4.37)

Since only the first two modes are excited, the angular dependence above the ground state

is expressed through X̂ alone. Hence, we may rotate our coordinate system such that only

a single angle γ appears, nX̂2 = cos2 γ. Already for m=3, however, k3 will be turned on,

and the complexity increases noticeably.

A more elegant way to extract the angular wave functions makes use of the Dunkl

operators (4.15). Since we do not need the normalizability of the radial wave functions,

we put ω = 0 in the following. To each angular eigenfunction vk(θ), we may associate a

homogeneous polynomial hk(x) of degree m via

vk(θ) = r−mhk(x) ∆̂
g =⇒ ∆g hk(x) = r

1

2
gn(n−1)+mvk(θ) = rqvk(θ) . (4.38)

Comparing

1

2
(r∂r + n−2) r∂r (r

qvk) =
1

2
q(q+n−2) rqvk = εk r

qvk = HΩ (rqvk) (4.39)

to the first line of (2.10) at ω=0, we learn that

H (rqvk) = H (∆g hk) = 0 . (4.40)

Introducing the gauged Calogero-Moser operator

L(g) =
∑

i

∂2i +
∑

i<j

2g

xi−xj
(∂i−∂j) , (4.41)
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which on symmetric functions agrees with
∑

iD
2
i , and employing the fact that

H∆g = −
1

2
∆g L(g) , (4.42)

it follows that hk(x) must be a ‘deformed’ harmonic polynomial,

L(g)hk(x) = 0 . (4.43)

Fortunately, the construction of such homogeneous degree m polynomials is known [20]:4

hk(x) = rgn(n−1)+n−2+2m (B†
1)

k1(B†
3)

k3 · · · (B†
n)

kn r−gn(n−1)−n+2

= rgn(n−1)+n−2+2m (
∑

iDi)
k1(
∑

iD
3
i )

k3 · · · (
∑

iD
n
i )

kn r−gn(n−1)−n+2
(4.44)

generates all of them. It is easy to see that they are linearly independent. Note that, again,

k2=0, because the Dunkl operators commute and

∑

i

D2
i r

−gn(n−1)−n+2 = 0 , (4.45)

as is easily checked.

For instance, direct computation at m=2 produces

h20...0 = rgn(n−1)+n+2 (
∑

iDi)
2 r−gn(n−1)−n+2

= rgn(n−1)+n+2 (
∑

i∂i)
2 r−gn(n−1)−n+2 ∝ r2 − [g(n−1)+1]n2X2 ,

(4.46)

which, using (4.38), yields v20...0 agreeing with (4.37). As a less trivial example at m=3,

we also present

h0010...0 = rgn(n−1)+n+4∑
iD

3
i r

−gn(n−1)−n+2

∝ 3[g(n−1)+1]r2nX − [gn(n−1)+n+2]
∑

i(x
i)3

(4.47)

which yields

v0010...0 ∝
{
3[g(n−1)+1]nX̂ − [gn(n−1)+n+2]

∑
i(x̂

i)3
}
∆̂g . (4.48)

The degeneracy of the energy ε(q) = 1
2q(q+n−2) with q = 1

2gn(n−1) +m is given by

the dimension of the space of certain harmonic homogeneous polynomials of degreem. If all

such polynomials are considered, they furnish the totally symmetric rank m representation

of SO(n), whose dimension is given by

d(m) =
(
n+m−1
n−1

)
−
(
n+m−3
n−1

)
, (4.49)

where the subtracted term accounts for removing the trace parts. In our case, we are

restricted to the subset of harmonic polynomials invariant under the action of the permu-

tation group Sn, which reduces the dimension to

dsym(m) = pn(m)− pn(m−2) , (4.50)

4For another method, see section 3 of [21].
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as stated earlier. In the free theory (g=0), this is obvious since m = q. Surprising looks

the fact that, for any integer coupling g, the degeneracy of the energy ε(q) is given by the

same formula but with a diminished ‘effective angular momentum’ m = q − 1
2gn(n−1).

This observation can also be explained with the help of intertwining operators K(g).

These intertwine two Calogero-Moser operators with couplings g and g+1 [22]:

K(g)L(g+1) = L(g)K(g) , (4.51)

where K(g) is a differential operator which has the form

K(g) =
[∏

i<j

(Di −Dj)
]
∆ (4.52)

when acting on permutation-symmetric polynomials. We note that the kernel of K(g)

does not contain such polynomials. Indeed, let us suppose that there exists a permutation-

symmetric polynomial f with K(g)f = 0. Then, for the inner product

(h′, h) = h′(D1, . . . ,Dn)h(x
1, . . . , xn)

∣∣
x=0

, (4.53)

we have that

0 =
(
K(g)f , h

)
=
([∏

i<j

(Di−Dj)
]
∆ f , h

)
=
(
∆ f , ∆h

)
(4.54)

because the adjoint of Di is D∗
i = xi [23]. Restricting h to permutation-symmetric poly-

nomials, it follows that the inner product is degenerate on anti-invariants. However, for

integer g, this contradicts the non-degeneracy of (·, ·) and the equivariance of the Dunkl

operators Di (see [23]).

The intertwining relation (4.51) means that K(g) maps eigenfunctions of L(g+1) to

eigenfunctions of L(g). By the above remark, eigenfunctions cannot be lost. Consequently,

the operator K(g) maps isomorphically the space spanned by deformed harmonic poly-

nomials hk with fixed m and coupling g+1 to the space spanned by deformed harmonic

polynomials (4.44) with the same m and coupling g, and for any integer g these spaces

have the same dimension.

Finally, the eigenstates ṽk of the relative spherical Hamiltonian H̃Ω are constructed by

combining the methods outlined above. For

k = (0, 0, k3, k4, . . . , kn) with 3k3 + 4k4 + . . .+ nkn = m, (4.55)

the relative energy eigenfunctions Ψ̃k = r̃−
n−2

2 ũk are expanded analogously to (4.28),

dressing all equations with tildes and shifting h by 1
2 . The ground state of this system is

ṽ0(θ) ∝ ∆̃g where ∆̃(θ̃) = r̃−
1

2
n(n−1)∆ = (1− nX̂2)−

1

4
n(n−1)∆̂(θ) . (4.56)

Note that θ̃ 6= θ. For small values of n, the function ∆̃ = ∆̃n is readily computed:

∆̃2 = 1 , ∆̃3 = cos 3φ̃ , ∆̃4 = sin2θ̃ cos4θ̃ cos 2φ̃(cos2φ̃ tan2θ̃−1)(sin2φ̃ tan2θ̃−1) .

(4.57)
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The excited state wave functions may be obtained in the same fashion, either by projecting

first to the center-of-mass ground state and then to the relative radial oscillator ground

state, or by employing Dunkl operators, after projecting the Newton sums
∑

iD
ℓ
i onto the

hyperplane given by
∑

i x
i = 0 and omitting any power of the first Newton sum. The

degeneracies are further reduced in accord with the equations already presented.

5 Generalized angular models

Let R ⊂ R
n be a Coxeter root system [24] with associated finite reflection group W . Let

gα = g(α) ≥ 0 be aW -invariant multiplicity function on the set of roots α = (α1, . . . , αn) ∈

R. Consider the corresponding Calogero-Moser Hamiltonian [3] (see also [25, 26] for

rank two)

H =
1

2

∑

i

p2i +
ω2

2

∑

i

(xi)2 +
∑

α∈R+

gα(gα−1)(α · α)

2(α · x)2
, (5.1)

where R+ is a positive half of the root system R and · is the standard scalar product in

R
n. Our previous analysis can be extended to the corresponding angular Hamiltonian HΩ

given by (2.10).

Let d1=2, d2, . . . , dn be the degrees of basic homogeneous W -invariant polynomials

σ1=r
2, σ2, . . . , σn. Then the spectrum of the Hamiltonian (5.1) is given by [3]

Ek = ω
( ∑

α∈R+

gα +
n

2
+

n∑

i=1

diki

)
with ki = 0, 1, 2, . . . . (5.2)

The spectrum of HΩ has the form

εk =
1

2
q (q + n− 2) with q =

∑

α∈R+

gα +m and m =

n∑

i=2

diki . (5.3)

The corresponding eigenfunctions are given by r−q∆ghk(x), where

∆g =
∏

α∈R+

(α · x)gα , (5.4)

hk(x) = r2(q−1)+n σ2(Di)
k2σ3(Di)

k3 · · ·σn(Di)
kn r2(m−q+1)−n , (5.5)

Di = ∂i +
∑

α∈R+

gααi

α · x
(1− sα) , (5.6)

and sα is the orthogonal reflection about α · x = 0 (cf. [20]).

Let S ⊂ R be W -invariant. Consider the differential operator K which has the form

K =
[ ∏

α∈S∩R+

α · D
][ ∏

α∈S∩R+

α · x
]
, (5.7)

with D = (D1, . . . ,Dn) when acting on W -invariant functions. Let 1S be a multiplicity

function which takes value 1 on the roots from S and is zero otherwise. Then K satisfies

the intertwining relation [22]

L(g)K = K L(g+1s) , (5.8)
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where L(g) is the Calogero-Moser operator in the potential-free gauge:

L(g) =
∑

i

∂2i +
∑

α∈R+

2gα
α · x

(α · ∂) . (5.9)

Similarly to the type A analysis above, the operator K yields an isomorphism of the

spaces spanned by deformed harmonic polynomials hk at couplings g and g+1S , and the

degeneracies of the spectra of the operators HΩ at integer couplings coincide.

Another approach to construct eigenfunctions is to use the exchange-creation opera-

tors and to separate the radial component. These operators have the form (4.14) where Di

are now given by (5.6), and they satisfy the commutation relations

[a†i , a
†
j ] = [ai, aj ] = 0 and [a†i , aj ] = −2ωδij − 4ω

∑

α∈R+

αiαjgα

α · α
sα . (5.10)

Therefore, on W -invariant functions, we have the operator coincidence

H :=
n∑

i=1

a
†
iai + 2ω

∑

α∈R+

gαsα = −L(g) + ω2r2 − ωn . (5.11)

This operator obeys the commutation relations (cf. [13, 27])

[H, a†j ] = 2ωa†j and [H, aj ] = −2ωaj . (5.12)

Application of W -invariant combinations of the creation operators a†j to the ground state

leads to the energy eigenstates.

6 Angular spin-Calogero model

The Calogero model can be extended to a model with particles carrying internal degrees of

freedom (which we shall call “spin”, although there is no notion of space rotations under

which they transform) and interact through ferromagnetic or antiferromagnetic interac-

tions. By reducing this model to radial and angular variables we can recover angular

spin-Calogero models and obtain their wavefunctions.

The most straightforward way to obtain the spin-Calogero models is to start with

the full exchange-Calogero model (not projected to spatially symmetric or antisymmetric

states) and endow the particles with s internal states (spin), which we will view as being

in the fundamental representation of SU(s). The fundamental single-particle SU(s) gener-

ators ~Si = {Sa
i } (i = 1, . . . , n, a = 1, . . . , s2−1) acting on the states of particle i span the

set of all possible spin operators.

So far, spins do not participate in the dynamics, as the Hamiltonian does not involve

any ~Si and has a trivial symmetry SU(s)n. We now restrict our states to be totally

symmetric (bosonic) or antisymmetric (fermionic) under full particle exchange, swapping

both space and internal degrees of freedom. Calling sij and σij the corresponding space

and spin exchange operators, the total permutation operator is Pij = sijσij , and we impose

Pij |ψ〉 = sijσij |ψ〉 = ±|ψ〉 . (6.1)
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So on bosonic (fermionic) states sij = ±σij . Replacing all sij with ±σij in the exchange-

Calogero Hamiltonian we obtain the spin model

H =
1

2

∑

i

p2i +
ω2

2

∑

i

(xi)2 +
∑

i<j

g(g∓σij)

(xi−xj)2
. (6.2)

On fundamental SU(s) states the spin exchange operator can be expressed as

σij =
1

2

(
~Si · ~Sj +

1

s

)
. (6.3)

Hence, the Hamiltonian includes a (position-dependent) two-body spin coupling. Bosonic

(fermionic) states give an (anti)ferromagnetic interaction respectively. The original SU(s)n

symmetry is reduced to a global SU(s), corresponding to ~S =
∑

i
~Si, when restricted to

the above states.

The reduction of the above model to radial and angular parts proceeds exactly as in the

spinless model. The angular Hamiltonian HΩ involves the corresponding spin interactions,

while the radial part remains the same.

The spin-Calogero model has the same energy eigenvalues as the spinless model (as can

be seen by applying exchange-creation operators on the ground state) but with different

degeneracies. Each energy level can be characterized by its spin representation content,

which is a direct sum of SU(s) irreps. These spin degeneracies are the same as in the

free (g=0) theory. Although their many-body state reconstruction is quite simple, their

expression in terms of the bosonized quantum numbers ki is a bit awkward.

For the bosonic model, the ground state is fully symmetric under both sij and σij .

Denoting by [ℓ] the ℓ-fold symmetric irrep of SU(s) (with a single Young tableau row of

length ℓ), the ground state carries the spin state [n]. The spin content of the energy level

Ek corresponding to k = (k1, k2, . . . , kn) can be expressed as

[c1]× [c2−c1]× · · · × [cr−cr−1]× [n− cr] (6.4)

where c1 < c2 < · · · < cr are the indices (positions) i of all nonvanishing ki. For example,

k = (1, 0, 2) has r=2 nonvanishing entries, in the positions c1 = 1 and c2 = 3. The above

can be decomposed into SU(s) irreps using standard Young tableau techniques.

The states of the antiferromagnetic spin model are harder to express, as they depend

nontrivially on the spin of the vacuum. Denoting by {ℓ} the ℓ-fold antisymmetric irrep of

SU(s) (with a single Young tableau column of length ℓ), the vacuum carries the spin state

{n mod(s)}. The expression for excited states in terms of the ki are quite complicated and

will not be reproduced here.

The corresponding spin states for the angular spin-Calogero model can be obtained in

two ways: either by direct construction or by reduction from the full spin-Calogero model,

as in the spinless case. We will present both methods and give the final result.

The construction of angular spin-Calogero states can be done similarly to the spinless

case. Specifically, we can act on the ground state with any polynomial of the Di and create

(the polynomial part of) excited states. The difference now is that these polynomials need
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not be symmetric in the Di as we do not consider space-symmetric states. Instead, the

full state, involving also spin degrees of freedom, must be subsequently (anti)symmetrized

to give the corresponding bosonic (fermionic) spin state. We will, again, analyze the

bosonic case.

Consider the monomial

Db1
i1
Db2

i2
· · · Dbn

in
(6.5)

acting on the ground state, where i1, . . . , in are all distinct, and bi are defined in terms of

the ki via

bi =
n∑

m=i

km . (6.6)

It is clear that the total degree is m = k1 + 2k2 + · · · + nkn. The bi obey bi ≥ bi+1 and

are, essentially, bosonic single-particle excitation numbers. The total state has, now, to be

symmetrized in positions and spins combined. Any particle index i appearing in a unique

power of Di transforms in the fundamental of the symmetric group Sn under permutations

and, combined with the spin states, will give a fundamental of SU(s). Two indices ia and

ia+1 appearing with equal powers of D (i.e., with ba = ba+1), however, are already sym-

metric and, therefore, transform as the two-symmetric irrep of the symmetric group under

permutations. Combined with spin states they will give the [2] irrep of SU(s). Similarly,

for ba = · · · = ba+ℓ−1 we will obtain, upon symmetrization, the [ℓ] irrep of SU(s), and so

on for all indices. The remaining spin states, corresponding to indices that do not appear

in the above monomial (i.e., for vanishing bi) will be symmetrized among themselves and

will produce [n−r], where r is the number of nonvanishing bi. The total spin state is the

direct product of all the above symmetric states.

It is easy to see that this construction reproduces the full set of spin states of the

spin-Calogero model as described previously.5 What is missed in the above analysis is the

possibility that some of such states may vanish. And they do. As an example, consider

D2
i . Acting on the ground state would produce

[1]× [n−1] = [n] + [n−1, 1] (6.7)

where [n−1, 1] refers to the Young tableau with rows of length n−1 and 1. Among these

symmetrized states, however, are states where the index i is symmetrized separately, cor-

responding to
∑

iD
2
i . Those states would contribute the irrep [n] in the spin states, but

they actually vanish. Hence, the true spin state built from D2
i is just [n−1, 1]. So the task

of constructing all spin states of the angular model amounts to identifying all components

that would be produced from the subset of states involving (powers of)
∑

iD
2
i and elimi-

nating them. Clearly the set of all such states at level m can be obtained by acting with

the operator
∑

iD
2
i times monomials of the form (6.5) of degree m−2. These states span

the representation content of spin-Calogero states at level m−2, since
∑

iD
2
i is a singlet.

Removing these states from the full set of states we obtain the simple and explicit result

SΩ(m) = S(m)− S(m−2) (6.8)

5Note that equality of successive bi means vanishing of the corresponding ki.
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where SΩ(m) is the SU(s) representation content of the angular spin-Calogero model at

level m while S(m) is the SU(s) representation content of the full spin-Calogero model.

This is analogous to the corresponding formula (4.50) for the degeneracies of the spinless

model, where all spin “irreps” are the singlet. It is easy to see that, e.g., the above formula

reproduces the reduction at level two due to D2
i that we discussed above.

The same result is obtained using the reduction method. The states of the full spin-

Calogero model can be produced by combining the states of the angular Hamiltonian with

the radial part. The spectrum and degeneracy of the radial Hamiltonian are exactly the

same as in the spinless case for each eigenvalue of the angular Hamiltonian, while the full

spin content of the states is provided by the angular states. An analysis similar to the

spinless case yields again the result (6.8). The first few spin states are listed below:

SΩ(0) = [n] ,

SΩ(1) = [1]× [n−1] ,

SΩ(2) = [2]× [n−2] + [1]× [n−1] − [n] ,

SΩ(3) = [1]× [1]× [n−2] + [3]× [n−3] ,

SΩ(4) = [1]× [1]× [n−2] + [1]× [2]× [n−3] + [4]× [n−4] .

(6.9)

Finally, we can produce a relative angular spin-Calogero model by separating the

center-of-mass degrees of freedom from the full spin-Calogero model and then reducing to

radial and angular parts, as in the spinless case. The analysis of the spectrum and states is

similar to the one for the angular spin-Calgero model above and will not be repeated here.

Using either direct construction or the reduction method, we obtain the representation

content of states at level m for the bosonic (ferromagnetic) case as

S̃Ω(m) = SΩ(m)− SΩ(m−1) = S(m)− S(m−1)− S(m−2) + S(m−3) (6.10)

again a result similar to (3.19) for the spinless case.

We conclude by mentioning that the spin-Calogero model can yield a corresponding

spin chain model using the “freezing” trick: by driving the coupling constant g and fre-

quency ω to infinity, the coordinates “freeze” in their classical equilibrium configuration

and the spin degrees of freedom decouple [28]. The angular (reduced or not) spin-Calogero

model in that limit gives rise to the same spin chain model, since the radial and center-of-

mass coordinates belong to the decoupling kinematical degrees of freedom, and the angular

Hamiltonian captures the full spin content of the model.
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