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(p + 1)-dimensional solutions from spacetime-filling Op-planes with a conformally Ricci-

flat internal space, and p-dimensional solutions with Op-planes that wrap a 1-cycle inside

an everywhere negatively curved twisted torus. The relation between the solution with

smeared orientifolds and the localised version is worked out in detail. We then demonstrate

that a class of non-BPS AdS4 solutions that exist for IASD fluxes and with smeared D3-

branes (or analogously for ISD fluxes with anti-D3-branes) does not survive the localisation

of the (anti) D3-branes. This casts doubts on the stringy consistency of non-BPS solutions

that are obtained in the limit of smeared sources.
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1 Introduction

Many compactifications that give rise to vacua with phenomenologically appealing proper-

ties feature spacetime-filling sources such as orientifold planes or D-branes. In most cases

these solutions are derived in the limit that the sources are smeared, although some lo-

calised solutions are known, see e.g. [1–3]. Smearing means that delta function sources in

the equations of motion are replaced with specific regular functions that integrate to the

same value.

Apart from simplifying the task of finding solutions, reductions with smeared sources

may allow for consistent truncations in certain compactifications on group spaces or coset

manifolds (see e.g. [4, 5]). However, an orientifold plane is defined through its involution

and a D-brane by its boundary conditions, which makes them really localised objects.

It is therefore important to study the corrections to a smeared solution that arise upon

localising an orientifold plane or a D-brane. A notable difference between smeared and

localised solutions is that the equations of motion, in the localised case, necessarily imply

that the spacetime is warped (which can be appealing to solve the hierarchy problem [6]).
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One way to incorporate the changes that arise upon localising a source is through

“warped effective field theory” [7–18], in which one derives the correction to the four-

dimensional effective action. Another way, which we are pursuing in this paper, is to work

directly with the ten-dimensional equations of motion.

There are only few known solutions with localised sources, and we therefore first gener-

alise some existing solutions to other spacetime dimensions. All the solutions turn out to be

T-dual to the known four-dimensional solution of [1]. In the smeared limit these solutions

either have an internal space that is Ricci-flat, being the D-dimensional generalisation of

the GKP solution [1], or the solutions have a negatively curved twisted torus as internal

space, being the D-dimensional generalisation of some solutions given in [19] (which them-

selves are T-dual to the GKP solution, see also [20]). The solutions on the twisted tori

of [19] were obtained in the smeared limit and a discussion on their localisation was given

in [2, 3]. Here we discuss the D-dimensional generalisation of these solutions very explic-

itly from the point of view of the 10-dimensional equations of motion. Furthermore we do

not assume flux configurations that are necessarily supersymmetric, in contrast to most

references on solutions from twisted tori. However, the solutions will be BPS, in the same

sense that the GKP solution is BPS but not necessarily supersymmetric. The phenomenon

of BPS but non-susy solutions has been given a higher-dimensional interpretation in [21],

where the BPSness turns out to be directly related to the existence of brane calibrations

even in absence of SUSY.

Apart from providing a larger playground for studying localisation effects there is a

general interest in constructing the D-dimensional generalisation of the four-dimensional

string landscape. Partly because some stringy consistency issues might be easier to deal

with in lower dimensions (see e.g. the recent discussion in [22]) and partly because the

landscape is really featuring vacua of all kinds of dimensions and there might be transitions

between vacua of various dimensions (see e.g. [23]).

Our motivation for this paper comes from the interesting observation made in [24]

that string/M theory compactifications, at tree-level, using manifolds whose curvature

is everywhere negative, must have significant warping. Since part of our solutions, in the

smeared limit, have negatively curved spaces we can address this issue in concrete examples.

The reason that significant warping is required is that, for unwarped metrics, one can show

that negative curvature in the internal space requires a source of energy momentum with

negative tension at every point. Hence, imagine that in the localised case there exists a

regime in which warping can be neglected compared to the fluxes. Then in that regime

we require a source of negative tension at every point in the internal space. This leads to

a contradiction since this regime is by definition far away from the delta-like orientifold

source, where warping is strong. We elaborate further on this argument and illustrate

it with our simple examples. Specifically, we want to emphasize the rôle of the BPS

condition in achieving localisation. Furthermore the T-duality chain of the BPS solutions

shows that the argument of [24] for large warping corrections to solutions with negatively

curved internal spaces extends also to solutions with Ricci-flat internal spaces and H-flux.

As an important application of our results, we show that the properly integrated negative

curvature of the smeared twisted tori solutions stays negative upon the localization of the

O-planes, contrary to some naive expectations.
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The main conclusion of our examples is that the individual localisation corrections1

cancel against each other in the effective potential for certain BPS solutions (along the

lines of [7]). However, there is in general no reason to expect an analogous cancelation

of localisation effects for non-BPS solutions. As an illustration, we explicitly construct,

in section 5, AdS solutions with smeared sources that are non-BPS by going beyond the

ISD flux configurations. Then we show how AdS4 solutions with D3-branes and imaginary

anti-self-dual (IASD) fluxes (or analogously anti-D3-branes with ISD fluxes) do not survive

localisation. We discuss the possible implications of our results in section 6.

2 Type II supergravity

To establish our notation and conventions, we present the equations of motion for type

IIA/B supergravity with Op-sources in Einstein frame (Dp-branes will be considered in

section 5). We use the conventions of [25] but go to Einstein frame and change the sign of

H (see also appendix A of [26]). Compared to [25] our solutions with µp > 0 correspond

to O-planes for p = 2, 3, 6 and anti-O-planes for p = 1, 4, 5 and analogously for D-branes

which have µp < 0. Note that one can always flip the sign of all RR-fields, which leaves

the closed string action invariant and maps O-planes/D-branes to anti-O-planes/anti-D-

branes. Throughout the paper a, b are 10D indices; µ, ν are along the orientifold plane and

i, j are transverse to it. The common bosonic sector contains the metric gab, the dilaton φ

and the H field strength. The RR sector of (massive) type IIA consist of the (F0, )F2, F4

field strengths, whereas in IIB one has the field strengths F1, F3, F5, with F5 satisfying

F5 = ⋆F5.

The trace reversed Einstein equation is

Rab =
1

2
∂aφ∂bφ + e−φ

(

1

2
|H|2ab −

1

8
gab|H|2

)

(2.1)

+
∑

n≤5

e
5−n

2 φ

(

1

2(1 + δn5)
|Fn|2ab −

n − 1

16(1 + δn5)
gab|Fn|2

)

+
1

2

(

T loc
ab − 1

8
gabT

loc

)

,

where δn5 is the Kronecker delta, and |A|2ab ≡ 1
(p−1)! Aaa2...apA

a2...ap

b , |A|2 ≡
1
p! Aa1...apA

a1...ap .

The non-vanishing part of the local stress tensor is given by2

T loc
µν = e

p−3
4 φµpgµνδ(Op), µ, ν = 0, 1, . . . , p , (2.2)

where µp is a positive number for an orientifold source and δ(Op) is a delta distribution

with support on the Op-plane world volume. The dilaton equation of motion is given by

∇2φ = −e−φ 1

2
|H|2 +

∑

n≤5

e
5−n

2
φ 5 − n

4
|Fn|2 −

p − 3

4
e

p−3
4 φµpδ(Op). (2.3)

1Localisation corrections include, apart from the warp factor, corrections due to the dilaton that varies

in the internal space and the non-zero field strength that is sourced by the orientifold or D-brane.
2Here and in the following, δ(Op) is meant to implicity also include sums of parallel Op-planes.
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The Bianchi identities for the field strength are

dH = 0, (2.4)

dFn = H ∧ Fn−2 − µ8−nδn+1(O(8 − n)),

where δn+1(O(8 − n)) is shorthand for the normalized (n + 1) volume form transverse to

the O(8 − n) orientifold plane multiplied by δ(O(8 − n)). The equations of motion for the

RR field strengths,

d

(

e
5−n

2 φ ⋆ Fn

)

= −e
3−n

2 φH ∧ ⋆Fn+2 − (−1)
n(n−1)

2 µn−2δ11−n(O(n − 2)), (2.5)

can be obtained from the RR Bianchi identities for n > 5 upon employing the rule

e(5−n)φ/2Fn = (−1)(n−1)(n−2)/2 ⋆ F10−n .

Finally, the equation of motion for the H field strength is given by

d(e−φ ⋆ H) = −1

2

∑

n

e
5−n

2
φ ⋆ Fn ∧ Fn−2 , (2.6)

where the sum over n includes all even/odd numbers up to 10 for IIA/IIB.

3 BPS solutions with Ricci-flat internal space

In this section, we consider a flux compactification down to p + 1 dimensions with a

spacetime-filling orientifold plane that has a pointlike extension in the internal space (i.e. an

Op-plane). For p = 3 this is the famous GKP solution [1]. The generalisations we find here

are written down for general p = 1, . . . , 6.

3.1 The smeared solutions

When we look for solutions with smeared orientifold sources, we assume that the dilaton,

φ, is constant and that the metric has the form of a direct product

φ = φ0 , ds2
10 = ds2

p+1 + ds2
9−p . (3.1)

The non-zero form fields are H and F6−p. The rest of the RR-fields are identically zero.

The orientifold source enters the Einstein equation, the dilaton equation (unless p = 3)

and the Bianchi identity for the F8−p field. Smearing implies that the delta form function

in the Bianchi identity is set equal to the normalized internal volume form, ǫ9−p, and in

the Einstein and dilaton equations the delta functions are set equal to one. For a flat

external space (Minkowski vacuum), this gives the following, external Einstein equation

(in form notation)

0 = −1

8
e−φ0 ⋆9−p H ∧ H − 5 − p

16
e

p−1
2 φ0 ⋆9−p F6−p ∧ F6−p +

7 − p

16
µp e

p−3
4 φ0ǫ9−p . (3.2)

Since F8−p = 0, its Bianchi identity becomes

0 = H ∧ F6−p − µp ǫ9−p . (3.3)
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Combining (3.2) and (3.3) we can eliminate the source term to get

0 = H ∧ F6−p −
2

7 − p
e−

p+1
4 φ0 ⋆9−p H ∧ H − 5 − p

7 − p
e

p+1
4 φ0 ⋆9−p F6−p ∧ F6−p . (3.4)

To solve the above relation we apply the following Ansatz

F6−p = (−1)pe−
p+1
4 φ0κ ⋆9−p H , (3.5)

which provides a second order equation in κ. To later be able to solve the dilaton equation,

it turns out that one solution has to be discarded. The remaining solution is

F6−p = (−1)pe−
p+1
4 φ0 ⋆9−p H . (3.6)

For the special case of p = 3 this is the so-called ISD condition on the G-flux [1]. For p = 1

there is a subtlety because of the self-duality of F5. The same derivation still applies as

long as one carries the self-duality around, and the result is that (3.6) needs to be adjusted

by adding the (10-dimensional) Hodge dual piece to the right hand side.

We will refer to the duality (3.6) as the BPS condition for reasons that become clear

below. Note, that just as in GKP, the BPS condition does not necessarily imply super-

symmetry. For constant dilaton the BPS condition equates the H equation of motion to

the F6−p Bianchi identity, and vice versa. Furthermore, using the BPS condition in (3.3)

allows us to express the values of the fluxes in terms of µp,

µp = e−
p+1
4 φ0|H|2 = e

p+1
4 φ0 |F6−p|2 . (3.7)

The dilaton equation of motion gives

0 = ∇2φ0 = −1

2
e−φ0 |H|2 +

p − 1

4
e

p−1
2

φ0|F6−p|2 −
p − 3

4
e

p−3
4 φ0 µp . (3.8)

The BPS relation (3.6) combines the |F6−p|2 term with the |H|2 term, such that

0 =
p − 3

4
e−φ0|H|2 − p − 3

4
e

p−3
4 φ0 µp . (3.9)

This is solved trivially for p = 3 and reduces to (3.7) for p 6= 3.

The internal Einstein equation is

Rij =

(

−1

8
e−φ0|H|2 − 5 − p

16
e

p−1
2

φ0 |F6−p|2 −
p + 1

16
e

p−3
4 φ0 µp

)

gij

+
1

2
e−φ0 |H|2ij +

1

2
e

p−1
2

φ0 |F6−p|2ij ,

(3.10)

which by the use of equations (3.6), (3.7) tells us that the internal space is Ricci-flat3

Rij = 0 . (3.11)

3We have used the BPS condition (3.6) to rewrite |F6−p|
2
ij = e−

p+1
2

φ0

`

|H |2gij − |H |2ij
´

. This relation

is not present in the case of p = 6, since F0 has no indices.
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Summary of the solution. The non-zero fields in the Ansatz for the smeared orientifold

solution are (where p = 1, . . . , 6)

φ = φ0 , H , F6−p , Rij . (3.12)

This leads to a (p + 1)-dimensional Minkowski solution provided the following conditions

are satisfied

F6−p = (−1)pe−
p+1
4 φ0 ⋆9−p H , (3.13)

dH = 0 , dF6−p = 0 , (3.14)

µp = e−
p+1
4 φ0 |H|2 = e

p+1
4 φ0|F6−p|2 , (3.15)

Rij = 0 . (3.16)

For p = 1 the Hodge dual piece needs to be added to the expression for F5.

3.2 The localised solutions

We expect a localised orientifold to (i) induce a warping, (ii) source the F8−p field strength

and (iii) lead to a dilaton that varies in the internal space. This can be seen from the

standard Dp-brane solutions in asymptotically flat space. Therefore, if we consider a lo-

calised orientifold in a flux background, the solution should allow two limits; a limit in

which the smeared flux background is found and a limit in which the Dp-brane solution in

asymptotically flat space is found after eliminating the background fluxes. In that sense

one could view the localised solutions, if one exists, as a superposition of two solutions. So,

as argued, the non-zero fields are

F8−p , F6−p , H , φ . (3.17)

The metric Ansatz is given by

ds2
10 = e2aAds̃2

p+1 + e2bAds̃2
9−p , (3.18)

where a and b are some numbers to be determined later, and A is a function of the internal

coordinates xi and is called the warp factor. The external and internal metric are written as

ds̃2
p+1 = g̃µνdxµdxν , ds̃2

9−p = g̃ijdxidxj . (3.19)

So tildes are used when the warp factor dependence is taken out. This will also apply to

covariant derivatives (∇̃), squares of tensors (T̃ 2) and so on.

There is an ambiguity in what we call the internal metric g̃ij since we can always

absorb powers of A. Hence the number b can be seen as a gauge choice. Nonetheless, when

one considers how warping arises upon localising a source then the internal metric has an

absolute meaning as the internal metric before localisation.

The Ricci tensor for the metric Ansatz (3.18) reads

Rµν =R̃µν − e2(a−b)Ag̃µν

(

a[(p + 1)a + (7 − p)b](∂̃A)2 + a∇̃2A
)

,

Rij =R̃ij −
(

b[(p + 1)a + (7 − p)b](∂̃A)2 + b∇̃2A
)

g̃ij (3.20)

+ [b ((p + 1)a + (7 − p)b) − (p + 1)a(a − b)] ∂iA∂jA − [(p + 1)a + (7 − p)b]∇̃i∂jA .

– 6 –



J
H
E
P
1
2
(
2
0
1
0
)
0
4
3

There are no mixed components. The solution for the sources in flat space have

(p + 1)a + (7 − p)b = 0 , (3.21)

which is what we assume from now on. We furthermore choose the normalisation of A such

that a = 1. Note that this makes the expression for the Ricci tensor much simpler.

The Ansatz for the F8−p field strength is

F8−p = −e−2(p+1)A−
p−3
2

φ⋆̃9−pdα . (3.22)

For p = 3, we have to add the Hodge dual, and this coincides exactly with the Ansatz of

GKP [1]. For p = 2 there is also a subtlety since F8−p is dual to F6−p. Therefore, for p = 2

the dual of the above expression for F6 needs to be added to the expression for F4 we will

now construct (see (3.28)).

We obtain two equations by combining the Bianchi identity for F8−p with the traced

external Einstein equation to remove the source, and by combining the dilaton equation

with the traced external Einstein equation to remove the source. After some algebra, these

two equations can be combined into

∇̃2
(

e(p+1)A+ p−3
4

φ + (−1)p α
)

= e
(p−3)2

p−7
A
e

p−3
4

φR̃p+1 (3.23)

+ e
(p+1)(9−p)

p−7 A−
p−3
4

φ
∣

∣

∣
∂

(

e(p+1)A+ p−3
4

φ + (−1)p α
)
∣

∣

∣

2

+
1

2
e

(p+1)(p−5)A
p−7

+ 3p−5
4

φ
∣

∣

∣
F6−p − (−1)pe−

p+1
4

φ ⋆9−p H
∣

∣

∣

2
,

where the squares in the last two term are with respect to the warped metric. Since

the left hand side integrates to zero on a compact space, we find that R̃p+1 ≤ 0. For

Minkowski solutions (R̃p+1 = 0), both squares need to vanish, and we recover the duality

condition (3.6) together with

α = (−1)p+1e(p+1)A+
p−3
4 φ + cst . (3.24)

Note that these results are obtained without the use of any other equations than the traced

external Einstein equation, the dilaton equation and the Bianchi identity for F8−p. Let us

therefore discuss how all other equations are solved. First of all we assume the Bianchi

identities dH = 0 and dF6−p = 0. A rather lengthy calculation.4 then shows that all the

other equations are satisfied if the following conditions are met

R̃ij = 0 , (3.25)

∇̃2

(

4(p − 3)

7 − p
A − φ

)

= 0 =⇒ φ =
4(p − 3)

7 − p
A + φ0 , (3.26)

∇̃2e
16

p−7A
= −e−φ0 |H̃|2 + e

p−3
4

φ0µpδ̃(Op) . (3.27)

4This computation goes along the same lines of the smeared case but is more involved. Useful identities

are the expression for the Ricci tensor (3.20), the expression for a Laplacian: d⋆̃9−pdα = (−1)p∇̃2α⋆̃9−p1

and the relation ⋆10(An ∧Bm) = (−1)n(9−p−m) ⋆p+1 An ∧ ⋆9−pBm, where An is an external n-form and Bm

an internal m-form.
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We used in the second equation that a regular harmonic function on a compact space is

constant and in the last equation we have pulled out the warp factor in |H̃|2 and δ̃(Op).5

Summary of the solution. The Minkowski solution obtained in the smeared limit

allows a localisation by adding a warp factor, A, in the metric Ansatz (3.18), (3.21). The

varying dilaton can be written in terms of the warp factor via (3.26), and the F8−p field

strength can also be written in terms of the warp factor via (3.22), (3.24). The value of the

warpfactor itself is then determined by the orientifold charge (and related fluxes) through

equation (3.27).

As announced earlier, when p = 2, there is a subtlety since F4 and F6 are each others

dual and the solution needs some adjustment

F4 = e−
3
4
φ ⋆7 H + e−6A+

1
2φ ⋆10 ⋆̃7 dα . (3.28)

If one uses the expression for the dilaton in terms of the warp factor (3.26), then one

finds that the BPS equation (3.13) has not changed since

F6−p = (−1)pe−
p+1
4 φ ⋆9−p H = (−1)pe−

p+1
4 φ0 ⋆̃9−pH , (3.29)

where the first Hodge star is taken with respect to the warped metric. Therefore the

geometric moduli that are fixed by this BPS equation (3.6) have not shifted position due

to the warping. The interpretation of this in terms of an effective potential Veff is that, at

the Minkowski point, the contribution in Veff coming from the warped metric cancels the

source contribution of F8−p in Veff (see also [7]). The integrated version of equation (3.27)

also implies that (3.15) is still valid after localisation. Furthermore, the condition (3.14)

remains unchanged, while the internal space changes from Ricci-flat (3.16) to conformally

Ricci-flat (3.25).

Finally, we mention that for p = 6 this solution is related to the “massive D6 solution”

of [27], which considered the same setup, but in a non-compact setting where the O6 is

replaced by a D6. This probably implies that a non-compact version, for which the Op

source is replaced by a Dp source exists for all values of p we considered here, which

generalises some results in [27].

4 BPS solutions with negatively curved twisted tori

Consider the setup above with a smeared Op-plane whose tadpole is canceled by H- and

F6−p-flux. A formal T-duality along one direction of the F6−p-flux or one direction along

the Op-plane maps this setup into a smeared O(p ± 1)-plane whose tadpole is canceled by

H- and F6∓1−p-flux. Now we want to study cases that arise after one T-duality along the

direction of the H-flux. If we start out with a torus as compact transverse space, then

this leads to twisted tori that have negative curvature. Therefore, these setups are directly

addressing the issue of [24]. There the authors show that compactifications on spaces with

5The delta function is proportional to 1/
p

g(9−p). This means that we have set the overall volume of

the transverse space to one when we take the smeared limit δ(Op) → 1.
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negative curvature that lead to dS or Minkowski solutions require a warp factor whose

contribution to the equations of motion is comparable to the fluxes everywhere in the

compact space.

We assume that the entire H-flux has one leg along the last coordinate which we call

the 9-direction i.e. H = Hij9dxi ∧ dxj ∧ dx9. Furthermore, we assume that our space

has a U(1) isometry (at least in the smeared case) corresponding to shifts of x9. Then

we can perform a T-duality [28, 29] along this direction and find a new space that can

be conveniently written [30] in terms of the 1-forms dxµ, dxi, e9 = dx9 + 1
2f9

ij xi dxj with

µ = 0, . . . , p − 1, i = p, . . . , 8 and f9
ij = Hij9. The T-dual setup has vanishing H-flux

but non-vanishing f9
ij which is often referred to as metric flux. Note that e9 is not closed

but we rather have de9 = 1
2f9

ijdxi ∧ dxj . Motivated by this T-duality, we consider an

Op-plane along µ = 0, 1, . . . , p − 1 and the e9 direction and make the following Ansatz for

the warped metric

ds2 = ds2
p + g99e

9e9 + ds2
9−p = gµνdxµdxν + g99e

9e9 + gijdxidxj (4.1)

= e2A
(

g̃µνdxµdxν + g̃99e
9e9

)

+ e
2(p+1)

p−7
Ag̃ijdxidxj,

which is not block diagonal in the dx-basis since the e9e9 term gives contributions that

mix the dx9 and dxi directions.6 Therefore, the Ricci tensor given in (3.20) is modified. It

now has three contributions. One from the unwarped metric g̃ab, another from the metric

fluxes f9
ij and a third from the warp factor A. A lengthy calculation leads to

Rµν = R̃µν − e
16

7−pA
g̃µν ∇̃2A ,

R99 =
1

2
e

32
7−pA

g̃99g̃99| ˜de9|2 − e
16

7−pA
g̃99 ∇̃2A , (4.2)

R9i = R̃9i +
8

7 − p
e

16
7−pA

g̃99|e9 ∧ dA · de9|unwarped
9i

Rij = R̃ij −
1

2
e

16
7−pA

g̃99| ˜de9|2ij −
p + 1

p − 7
g̃ij∇̃2A +

8(p + 1)

p − 7
∂iA∂jA ,

where |An · Bn|unwarped
ab = 1

(n−1)!Aac1...cn−1Bbd1...dn−1 g̃
c1d1 . . . g̃cn−1dn−1 , and we assume that

the metric (4.1) has R̃99 = 0. With this information we can now solve the equations

of motions.

4.1 The smeared solutions

In this section we solve the equations of motions for a smeared Op-plane i.e. in the non-

warped case A = 0 with δ(Op) → 1. The non-zero fields are

φ0 = cst., F8−p = m7−p ∧ e9, Rµν , R99, R9i, Rij , (4.3)

6Note that, unlike in a usual vielbein basis, e9 does not have unit norm as g99 is in general not equal

to one. Furthermore, all tensors with an index 9 are always meant to be with respect to the basis form e9

rather than dx9.
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where m7−p is a closed (7 − p)-form. The rest of the RR-fields and the H-flux are zero.

Again p = 1, . . . , 6 and some equations require minor modifications for p = 3 due to the

self-duality of F5 = (1 + ⋆)m4 ∧ e9.

We start with the dilaton equation of motion for the smeared case,

0 = ∇2φ0 =
p − 3

4
e

p−3
2 φ0 |F8−p|2 −

p − 3

4
e

p−3
4 φ0µp. (4.4)

Using this in the external Einstein equation,

Rµν = −7 − p

16
e

p−3
2 φ0gµν |F8−p|2 + 7−p

16 e
p−3
4 φ0gµνµp , (4.5)

one finds Rµν = 0.7 This means that our setup only allows for p-dimensional

Minkowski solutions.

The Bianchi identity for F8−p is

dF8−p = −(−1)pm7−p ∧ de9 = −µpǫ9−p. (4.6)

Together with (4.4) this gives

− ⋆9−pdF8−p = e
p−3
4

φ0|F8−p|2. (4.7)

The Einstein equation in the 9-direction is

R99 =
1

2
g99g99|de9|2

= e
p−3
2

φ0

(

1

2
|F8−p|299 −

7 − p

16
g99|F8−p|2

)

+
7 − p

16
e

p−3
4

φ0g99µp (4.8)

= e
p−3
2

φ0
1

2
|F8−p|299,

where we used (4.4). Since for F8−p = m7−p ∧ e9 one has |F8−p|299 = |F8−p|2g99 we find

g99|de9|2 = e
p−3
2

φ0 |F8−p|2. (4.9)

Together with (4.7) this leads to

g99 ⋆9−p de9 ∧ de9 = e
p−3
2

φ0g99 ⋆9−p m7−p ∧ m7−p = e
p−3
4

φ0(−1)pm7−p ∧ de9, (4.10)

which implies

de9 = (−1)pg99e
p−3
4

φ0 ⋆9−p m7−p. (4.11)

This is of course nothing but the T-dual version of the BPS condition (3.6).

The Einstein equations for the directions transverse to the Op-plane are

Rij = R̃ij −
1

2
g99|de9|2ij

= e
p−3
2

φ0

(

1

2
|F8−p|2ij −

7 − p

16
gij |F8−p|2

)

− p + 1

16
e

p−3
4

φ0gijµp (4.12)

= e
p−3
2

φ0

(

1

2
|F8−p|2ij −

1

2
gij|F8−p|2

)

.

7For the special case of p = 3 we assume a Ricci-flat external space, because this is no longer implied

by (4.4) and (4.5).
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Using (4.11) we can rewrite this as

R̃ij =
1

2
e

p−3
2

φ0g99
(

| ⋆9−p m7−p|2ij + |m7−p|2ij − gij |m7−p|2
)

= 0. (4.13)

Note that R̃ij = 0 does not mean that we have no curvature since Rij 6= 0 and R99 6= 0.

The final Einstein equation reads R̃9i = 0.

All other equations of motion are trivially satisfied, so that we have spelled out all the

non-trivial equations of motion.

Summary of the solution. The a priori non-zero fields in the Ansatz for a smeared

Op-plane with p = 1, . . . , 6 and metric (4.1) (with A = 0) are

φ0 = cst., F8−p = m7−p ∧ e9, Rµν , R99, R9i, Rij . (4.14)

The equations of motion only allow for p-dimensional Minkowski solutions (Rµν = 0)

modulo the caveat for p = 3 mentioned in footnote 7. All Bianchi identities and equations

of motion can be reduced to R̃9i = 0 and the following two conditions:

• A duality condition between the curvature, which is encoded in the non-closure of

the 1-form e9, and the RR-flux

de9 = (−1)pg99e
p−3
4

φ0 ⋆9−p m7−p . (4.15)

• The amount of flux, and, as implied by (4.15), also the curvature are fixed by the

Op-plane charge,

µp = e
p−3
4

φ0|F8−p|2 = e−
p−3
4

φ0g99|de9|2 . (4.16)

After giving a simple example we will proceed to show that these solutions can be localised

by introducing a warp factor and allowing the dilaton to vary.

4.2 A simple example

There are many examples of so called twisted tori and coset spaces that can be used to

obtain explicit Minkowski solutions of the type described above. Probably the simplest

case is the one where the metric fluxes satisfy the Heisenberg algebra. Such a space can be

easily compactified and is then T-dual to a three-torus with H-flux [31]. To obtain a simple

solution we choose the unwarped metric to be g̃µν = ηµν , g̃99 = 1, and g̃ij = δij . An explicit

example that solves the equations of motion is then an Op-plane with p = 1, . . . , 6 that

wraps the directions 0, 1, . . . , p − 1, 9, and the directions p, p + 1, . . . , 8 and 9 are compact.

Furthermore, we choose the non-zero fields for our solution to be

φ0 = cst., F8−p = (−1)pe−
p−3
4

φ0f dxp ∧ dxp+1 ∧ . . . ∧ dx6 ∧ e9, (4.17)

f9
78 = −f9

87 = f ⇒ R77 = R88 = −R99 = −1

2
f2, with f2 = e

p−3
4

φ0µp.

This is a p-dimensional Minkowski solution in which a smeared Op-plane is compactified on

an internal everywhere negatively curved space. As we explain in the following subsection,

the Op-plane can be localised if we introduce a warp factor and allow the dilaton to vary

over the internal space.

– 11 –



J
H
E
P
1
2
(
2
0
1
0
)
0
4
3

4.3 The localised solutions

To find localised solutions with p = 1, . . . , 6 we now include a non-zero warp-factor A which

we allow together with the dilaton φ to depend on all the coordinates transverse to the

Op-plane. For F8−p we make the Ansatz

F8−p = F̂8−p − e−2(p+1)A−
p−3
2

φ⋆̃9−pdα, (4.18)

where F̂8−p = m7−p ∧ e9 is the (8− p)-form from (4.3) and α is a function of the transverse

coordinates that will be determined below. The tilde will always mean the unwarped metric

g̃ab, the corresponding unwarped Hodge star ⋆̃, or contractions of forms done with g̃ab.

We start out by deriving a BPS condition similar to (3.23). The dilaton equation of motion

∇2φ = e
2(p+1)
7−p

A∇̃2φ (4.19)

=
p − 3

4
e

p−3
2

φ

(

|F̂8−p|2 + e
2(p+1)(p−6)

7−p
A−(p−3)φ

(∂̃α)2
)

− p − 3

4
e

p−3
4

φµpδ(Op),

gives us an expression for ∇̃2φ, and we find ∇̃2A from the trace of the Einstein equations

along the Op-plane,

g̃µνRµν + g̃99R99 = R̃p − e
16

7−p
A
(p + 1)∇̃2A +

1

2
e

32
7−p

A
g̃99| ˜de9|2 (4.20)

= −(7 − p)(p + 1)

16
e2A+ p−3

2
φ

(

|F̂8−p|2 + e
2(p+1)(p−6)

7−p
A−(p−3)φ

(∂̃α)2
)

+
1

2
e

p−3
2

φ|F̂8−p|299 +
(7 − p)(p + 1)

16
e2A+ p−3

4
φµpδ(Op) .

Finally, from the Bianchi identity for F8−p,

dF8−p = dF̂8−p − d
(

e−2(p+1)A−
p−3
2

φ⋆̃9−pdα
)

= −(−1)pm7−p ∧ de9 (4.21)

−(−1)p
(

e
(p−5)(p+1)

7−p
A− p−3

2
φ∇̃2α + e

(9−p)(p+1)
7−p

A
g̃ij∂i

(

e−2(p+1)A−
p−3
2

φ
)

∂jα

)

ǫ9−p

= −µpδ(Op)ǫ9−p ,

we get ∇̃2α. Putting all these expressions together, we have

∇̃2
(

e(p+1)A+ p−3
4

φ +(−1)pα
)

= e
(p−3)2

p−7
A+ p−3

4
φR̃p

+ e
(p+1)(9−p)

p−7
A−

p−3
4

φ
∣

∣

∣
∂

(

e(p+1)A+ p−3
4

φ + (−1)p α
)
∣

∣

∣

2
(4.22)

+
1

2
e

(p+1)(p−5)
p−7

A+ 3(p−3)
4

φ
∣

∣

∣

√

g99m7−p − (−1)pe−
p−3
4

φ√g99 ⋆9−p de9
∣

∣

∣

2
,

where the squares in the last two term are with respect to the warped metric. Integrating

both sides over the compact space we find for Minkowski solutions that

α = (−1)p+1e(p+1)A+ p−3
4

φ + cst. (4.23)

and

de9 = (−1)pe
p−3
4

φg99 ⋆9−p m7−p. (4.24)
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Plugging the dilaton equation into the external Einstein equation we furthermore find

0 =
4(p − 3)

7 − p
R̃µν = g̃µνe

16
7−p

A∇̃2

(

4(p − 3)

7 − p
A − φ

)

. (4.25)

Since a harmonic function on a compact space is constant, we have

φ =
4(p − 3)

7 − p
A + φ0, (4.26)

which implies that the duality condition (4.11) is unchanged since

de9 = (−1)pe
p−3
4

φg99 ⋆9−p m7−p = (−1)pe
p−3
4

φ0 g̃99⋆̃9−pm7−p. (4.27)

Next we check the internal Einstein equations

Rij = R̃ij −
1

2
e

16
7−p

A
g̃99| ˜de9|2ij −

p + 1

p − 7
g̃ij∇̃2A +

8(p + 1)

p − 7
∂iA∂jA

=
1

2
∂iφ∂jφ + e

p−3
2

φ

[

1

2
|F̂8−p|2ij +

1

2
e−2(p+1)A−(p−3)φ

(

g̃ij(∂̃α)2 − ∂iα∂jα
)

−7 − p

16
e

2(p+1)
p−7

A
g̃ij

(

|F̂8−p|2 + e
2(p+1)(p−6)

7−p
A−(p−3)φ

(∂̃α)2
)

]

(4.28)

−(p + 1)

16
e

2(p+1)
p−7

A+ p−3
4

φ
g̃ijµpδ(Op),

which using (4.16), (4.20) and (4.26) reduces to (4.12).

There is one more non-trivial Einstein equation:

R9i =
8

7 − p
e

16
7−p

Ag̃99|e9 ∧ dA · de9|unwarped
9i (4.29)

=
8

7 − p
e

16
7−p

A+ p−3
4

φ0(−1)p|e9 ∧ dA · ⋆̃9−pm7−p|unwarped
9i ,

which is satisfied due to (4.27).

Finally, we have to make sure that the equation of motion for F8−p is satisfied i.e.

0 = d
(

e
p−3
2

φ ⋆10 F8−p

)

= d
(

e
p−3
2

φ ⋆10 F̂8−p

)

− d ((−1)p⋆̃p+11 ∧ dα) (4.30)

=
16

7 − p
e

16
7−p

A+ p−3
2

φ0dA ∧ ǫp ∧
(

−(−1)p
√

g̃99⋆̃9−pm7−p +
√

g̃99e
− p−3

4
φ0de9

)

,

where we have used (4.23) and (4.26). This equation is again satisfied due to (4.27).

All other equations of motion are trivially satisfied, so that we have spelled out all the

non-trivial equations of motions.

As an important observation, we note, using (4.1) and (4.2), that

∫
√

g(10)R(10−p) =

∫

√

g̃

{

−8
p + 1

7 − p
(∇̃A)2 − 1

4
e

16
7−p

A
g̃99g̃

ij g̃klf9
ikf

9
jl

}

< 0, (4.31)

where the integral is over the (10 − p)-dimensional internal space, and we have dropped

total derivative terms. This is the integral of the full internal curvature computed from the
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warped metric components g99 and gij weighted with the full ten-dimensional metric deter-

minant. This quantity is, up to a Weyl-rescaling, just minus the contribution of the internal

curvature to the p-dimensional scalar potential.8 The last term describes the original neg-

ative curvature term of the twisted torus, now dressed with a warp factor. The first term is

due to the non-constancy of the warp factor in the localised case and clearly vanishes in the

smeared limit. Interestingly, both terms are manifestly negative (assuming p < 7, as we do

in this paper), even though the negative tension objects are now properly localised. This

somewhat circumvents difficulties found in [24], where negative curvature spaces for up-

lifting potentials were argued to be problematic as the negative energy-momentum sources

supporting them are really localized objects. It should be emphasized, however, that there

is no real uplifting in the present context, as we are looking at Minkowski BPS solutions.

Summary of the solution. We have shown that the smeared solution of subsection 4.1

persists after localisation, if we introduce a warp factor A and add a new term to the RR

field strength F8−p,

F8−p = F̂8−p − e−2(p+1)A−
p−3
2

φ⋆̃9−pdα = m7−p ∧ e9 +
16

7 − p
(−1)pe−

16
7−p

A−
p−3
4

φ0 ⋆̃9−pdA .

(4.32)

The only modulus that has changed is the dilaton that is no longer constant but rather

proportional to the warp-factor

φ =
4(p − 3)

7 − p
A + φ0. (4.33)

The warp factor is determined for example through (4.19) which becomes for our choice of

α (4.23)

∇̃2e
16

p−7
A

= −e
p−3
2

φ0 | ˜̂F8−p|2 + e
p−3
4

φ0µpδ̃(Op), (4.34)

where we have pulled out the warp factor dependence in | ˜̂F8−p|2 and δ̃(Op).

In [24] the authors have shown that compactifications down to dS or Minkowski space

on everywhere negatively curved spaces must have significant warping and/or large stringy

corrections. Since we have neglected stringy corrections but found compactifications that

lead to Minkowski solutions, we can conclude that we have large warping everywhere. This

means that the contributions of the warp factor are of the same order as the contributions

of the fluxes and localised sources. This is apparent from (4.34). Far away from a localised

source one could have naively expected that the warp factor approaches a constant and the

warping becomes negligible. This would have made it impossible to find compactifications

on negative curvature spaces that have a large volume i.e. in a regime where we can trust

supergravity. However, as we can see from (4.34) the warp factor is everywhere sourced by

the fluxes so that its contributions will be relevant everywhere even if the compact space

is large.

As we saw in our particular example, however, the warping and the anisotropic con-

formal rescalings of the internal metric can conspire to still give a curvature contribution

8The inclusion of the p-dimensional part of the metric determinant is, in fact, important for the manifestly

negative sign, as it cancels some remaining warp factors in front of the total derivative terms.
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to the p-dimensional scalar potential that is manifestly positive, showing that the situation

can be more complex than expected from [24].

5 Non-BPS solutions

In the previous two sections we saw that the localization of smeared sources that satisfy a

BPS condition leads to modifications of the solution, which, although important individu-

ally, still leave many features of the smeared solution unchanged when they are added up.

As we will now show, in a non-BPS situation localisation corrections may in general lead

to much more drastic effects.

5.1 The smeared solutions

To begin with, we look for non-BPS solutions with smeared sources, assuming that the

dilaton is constant and the metric has the form of a direct product,

φ = φ0 , ds2
10 = ds2

p+1 + ds2
9−p . (5.1)

The non-zero form fields are taken to be H and F6−p with p = 2, . . . , 6, with the rest of

the RR-fields being identically zero. It is convenient to pull out the part of F6−p that is

along ⋆9−pH:

F6−p = F̄6−p + (−1)pe−
p+1
4

φ0κ ⋆9−p H, (5.2)

where F̄6−p is a closed and co-closed form, satisfying F̄6−p ∧ H = 0.

The Bianchi identity for F8−p = 0 then becomes

0 = e−
p+1
4

φ0κ|H|2 ǫ9−p − µp ǫ9−p . (5.3)

So we have e−
p+1
4

φ0κ|H|2 = µp and therefore κ > 0 for an orientifold plane and κ < 0 for a

D-brane corresponding to µp < 0. Using the F8−p Bianchi identity in the dilaton equation

of motion one finds

|F̄6−p|2 =

(

−κ2 +
p − 3

p − 1
κ +

2

p − 1

)

e−
p+1
2

φ0 |H|2. (5.4)

Since |F̄6−p|2 and |H|2 are internal and therefore positive we find the range − 2
p−1 ≤ κ ≤ 1.

The external Einstein equation simplifies to

Rµν = − 1 − κ

2(p − 1)
e−φ0|H|2gµν . (5.5)

So we see that we have AdS solutions for κ < 1 (the case κ = 1 corresponds to the BPS

Minkowski solutions discussed in section 3). The internal Einstein equation gives

Rij = −(1 − κ)(1 + κ(p − 1))

2(p − 1)
e−φ0 |H|2gij +

1

2
e

p−1
2

φ0 |F̄6−p|2ij +
1

2
(1 − κ2)e−φ0 |H|2ij , (5.6)

assuming |F̄6−p · H|ij = 0. Although the internal components of the Ricci tensor have no

fixed sign, one finds from taking the trace

R9−p =
(1 − κ)p

p − 1
e−φ0 |H|2 = − 2p

p + 1
Rp+1. (5.7)

Since the external space is AdS the internal space has to be positively curved.
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5.2 A simple example

Let us consider the simple situation κ = − 2
p−1 , for which (5.4) implies F̄6−p = 0, and we

furthermore have a net D-brane charge,

µp = − 2

p − 1
e−

p+1
4

φ0|H|2 . (5.8)

The value of the external Ricci scalar becomes

Rp+1 = − (p + 1)2

2(p − 1)2
e−φ0 |H|2 , (5.9)

and the internal Einstein equation reduces to

Rij =
p + 1

2(p − 1)2
e−φ0|H|2gij +

(p + 1)(p − 3)

2(p − 1)2
e−φ0|H|2ij . (5.10)

To find simple explicit solutions we take the internal space to be a product of two spheres

(cf. [32] for p = 3),

M9−p = S3 × S6−p , (5.11)

with volume forms ǫ3 and ǫ6−p. Then the solution reads

H = hǫ3 , (5.12)

F6−p = − 2

p − 1
(−1)pe−

p+1
4

φ0 ⋆9−p H = − 2

p − 1
e−

p+1
4

φ0hǫ6−p , (5.13)

and the internal Einstein equation fixes the curvature radii (and hence the volume) of the

S3 and the S6−p,

RS3

ij =
(p + 1)(p − 2)

2(p − 1)2
e−φ0h2gS3

ij , (5.14)

RS6−p

ij =
p + 1

2(p − 1)2
e−φ0h2gS6−p

ij . (5.15)

5.3 The failure to localise?

In order to argue that non-BPS solutions based on smeared sources should in general not be

localisable, we study an explicit example. We show this for κ = − 2
p−1 , since then F̄6−p = 0

due to (5.4).9

We will first consider the case with p = 3 since we can easily compare the O3-plane

solution of GKP [1] with κ = 1, i.e. ISD flux, to a solution with a D3-brane and κ = −1,

i.e. IASD fluxes. To this end, we write for the F3-flux

F3 = ∓e−φ ⋆6 H , (5.16)

where from here on the upper sign corresponds to the BPS solution and the lower sign to

the non-BPS solution. Equation (5.16) is our starting point as we take it as the definition of

the solution. Whether a less standard Ansatz might lead to localised solutions that reduce,

9For an interesting discussion of local solutions that are close to but not at the BPS point see [33].
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in the smeared limit, to the smeared solutions constructed above is not clear. One should

however keep in mind that (5.16) fixes some of the moduli at certain values, so changing

this condition could change the entire solution in a more non-trivial way. We leave this for

future investigation [34].

As in the smeared solution, the fluxes satisfy the Bianchi identities

dH = dF3 = 0 . (5.17)

The most general metric Ansatz for the localised solution is

ds2
10 = e2Ads̃2

4 + ds2
6 , (5.18)

where the internal metric ds2
6 is left arbitrary. With (5.16), the integrated dilaton equation

of motion implies that F1 vanishes, as there are no net orientifold charges for p 6= 3 in our

setup. The dilaton equation then also implies that φ = φ0 is constant. The Ansatz for

F5 reads10

F5 = −(1 + ⋆10)e
−4A ⋆6 dα . (5.19)

Let us go through the equations of motion. The dilaton equation is automatically

satisfied due to the duality condition (5.16). The equations of motion for H and F3 are

solved if

α = ±e4A + cst. (5.20)

The different sign for the F5 field in both cases makes sense since the source is an O3-plane

in the BPS case and a D3-brane in the non-BPS case. The F5 equation then gives

4∇2A = e−φ0 |H|2 ∓ µ3δ(O3/D3) . (5.21)

Note, that µ3 > 0 for the O3-plane and µ3 < 0 for the D3-brane. The external Einstein

equation is

e−2AR̃4 − 4∇2A = −e−φ0 |H|2 + µ3δ(O3/D3) . (5.22)

Combining these two equations leads to

e−2AR̃4 = (1 ∓ 1)µ3δ(O3/D3) (5.23)

Clearly, in the BPS case, we recover the Minkowski solution R̃4 = 0 while in the non-BPS

case there is no AdS solution anymore! One simply goes away from the source and then

this equation is inconsistent with an AdS solution (R̃4 = −2|Λ|). Even if one tries to make

sense out of this by regularising the delta function, one needs that e−2A ∼ δregularised(D3),

which is not true. Only in the smeared limit, where

δ(D3) → 1 , A → 0 , (5.24)

equation (5.23) makes sense since we reproduce the previous result (5.8), (5.9). Due to

our mild assumptions we believe that our simple smeared solution ceases to exist once

10One can verify that this Ansatz is required by the self-duality of F5 and the equations of motion for F3

and H , which also imply that there cannot be any warp factor appearing in (5.16).
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Figure 1. The smeared (left) versus localised (right) case.

localisation effects are taken into account. We should point out that a completely analogous

localisation problem is encountered for the corresponding AdS solution with ISD fluxes and

an anti-D3 brane.

For p 6= 3 one can likewise show that the smeared solutions with κ = − 2
p−1 , i.e.

F̄6−p = 0, have to get altered or even disappear upon taking the localisation effects into

account: plugging the Ansatz F6−p = − 2
p−1(−1)pe−

p+1
4 φ ⋆9−p H into the F6−p and H

equations of motion for a generic F8−p and dilaton φ leads to a contradiction.

There is a simple physical picture behind these technical difficulties with localisation.

As is well known I(A)SD fluxes act as smeared (anti-) D3 branes, from the point of view

of their charge and energy-momentum. Therefore adding anti-D3 branes to ISD flux (or

vice versa), creates a perturbative instability when we localise the anti-branes, as shown in

figure 1. When the anti-branes are localised they single out a preferred point that attracts

ISD fluxes. In the smeared case there is no preferred point of attraction, and the instability

is only non-perturbative (brane-flux annihilation).

Even though our localised Ansatz is not the most general one (see discussion be-

low (5.16)), this physical reasoning seems to strengthen our belief in that even the most

general Ansatz would fail to give a solution.

6 Discussion

We have presented BPS solutions from compactifications on Ricci-flat and negatively curved

spaces. The T-duality chain that relates these BPS solutions to each other is quite straight-

forward if one T-dualises the smeared GKP solution on a torus.11 To obtain the solutions

with a Ricci-flat internal space one either takes the T-duality circle along the orientifold

(going down in dimension) or on the torus along a cycle without H-flux. If we T-dualise a

11The Buscher rules [28, 29] need a U(1) symmetry, which requires us to smear the solutions.
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cycle with H-flux, we obtain a solution on a twisted torus. The solutions obtained in this

way can again be T-dualised up or down giving rise to all the solutions we have presented.

Characterising the solutions by their D-dimensional generalisation of the ISD condition,

we have schematically

H ∝ ⋆9−pF6−p

TOp

⇄

TF7−p

H ∝ ⋆10−pF7−p

TH

⇄

T
e9

de9 ∝ ⋆9−pi9F8−p , (6.1)

where the first pair of arrows indicates how we connect the various smeared solutions with

Ricci-flat internal spaces and the second arrow pair connects the solutions with Ricci-flat

internal spaces to the twisted tori. The latter solutions are characterised by a duality

condition between the metric flux and the RR-flux.

By going through the equations of motion we demonstrated that the smeared BPS

solutions can be localised12 and that the moduli do not shift (even for the smeared solutions

with everywhere negative internal curvature). This is attributed to the BPS condition that

makes the contributions from the localisation cancel against each other in the effective

potential [7]. An intuitive argument for this is the “no-force” condition for mutually BPS

objects. We have the ISD fluxes (and their T-dual generalisations) which act as a smeared

source with positive charge and positive tension and the Op-plane. General lore says that

when such objects are combined in a mutually BPS way they will not affect each other due

to the cancellation between gravitational forces and electromagnetic forces.

While we believe that solutions that do not get altered will be BPS, we do not claim

that all BPS solutions with smeared orientifolds allow a localisation. It rather seems that

the localisation does not always work in such a simple way for BPS solutions. It is for

example not known whether or how the supersymmetric solutions of [35] are localisable,

mainly because they involve multiple intersecting orientifolds. Localised solutions with

similarly BPS intersecting Op-planes or Dp-branes are not even known in ten-dimensional

flat space.

We also studied simple non-BPS solutions where one generically expects problems

when trying to localise smeared sources. Indeed, our most important result concerns the

non-BPS AdS solutions, which we have derived in the smeared limit.13 To our knowledge

this is the first time that such explicit solutions have been constructed. We have argued

from a 10D point of view that the localisation procedure fails for these solutions so that

they probably cease to exist.

If one studies flux compactifications from the point of view of an effective potential,

one has to estimate the size of the individual localisation corrections (such as the warping

correction). The separate terms (the one from the warp factor) were argued in [24] to be

of the same order as the fluxes when one compactifies on everywhere negatively curved

spaces. This was one of the motivations for the explicit presentation of the twisted tori

solutions in this paper. We have generalised the existing localised orientifold solutions on

twisted tori in two ways. First, we extended to Minkowski vacua of different dimensions.

12Note that this is more general than arguments that rely on integrability from supersymmetry. As in

GKP [1] we also allow the solutions to break SUSY.
13In D = 4 these are solutions with non-ISD fluxes.
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Second, our solutions are BPS-like but not necessarily SUSY, because we have analysed the

full 10D equations of motion, instead of just the pure spinor equations. As an important

application, we found that the properly integrated internal curvature stays negative, even

after localisation of the orientifold planes (in fact, the warp factor gradients even introduce

an additional negative term in the integrated internal curvature). We would like to point

out that T-duality connects the twisted tori solutions to the GKP-like solutions. Therefore

the arguments of [24] extends to Ricci-flat internal spaces with H-flux, even in the large

volume limit. Regardless of the size of the warping, we have shown that the sum of the

localisation corrections cancels in certain cases at the BPS points. However, we expect that

smeared non-BPS solutions get changed or might even cease to exist when the localisation

effects are taken into account. Concretely, what we have shown in an explicit example is

that there is an incompatibility between having a static solution (stable or unstable) based

on mutually non-BPS building blocks solving all the equations of motion, and sensible

localisation. It would be interesting to understand in more detail how strong the back

reaction of the localised source is, perhaps in the style of the investigations done in [36].
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