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1. Introduction

The need for developing effective maintenance strategies
has arisen since the beginning of the industry. In principle, the 
main objective of maintenance is to reduce unplanned
downtime as well as to improve the overall equipment 
effectiveness. Despite great improvements over the last 
decades, efficient maintenance management still poses a 
challenge in the manufacturing community. Two traditional 
maintenance strategies, namely reactive and preventive 
maintenance, are known to be not really effective. They 
perform maintenance either only after a failure occurred or 
always at a fixed regular rate without considering the health 
state of the target system. In contrast, with the modern 
predictive maintenance strategy, one aims to schedule
maintenance according to the prediction of the remaining useful 
life (RUL) of the target system based on its historical operating 
data such that maintenance can be efficiently performed in a 
proactive manner.

RUL of an asset is defined as the length of time left until the 
asset reaches its end of life (EOL), i.e. when it can no longer 
operate properly and needs to be repaired. Typically, RUL is 
given in the number of operating cycles. The increased 

availability of condition monitoring data and the recent 
breakthroughs in Artificial Intelligence are the key factors that 
make data-driven solutions for RUL prediction extremely 
promising. In this context, deep learning (DL) has been shown 
to be a powerful data-driven method capable of predicting the 
RUL of an asset given its historical operating data collected by 
multiple sensors [1, 2, 3, 4]. However, standard DL tools 
typically do not take the uncertainty inherent in RUL prediction 
tasks into account.

In this work, we present a novel DL-based approach for 
uncertainty-aware RUL prediction that predicts not only the 
RUL but also outputs the associated confidence interval 
capturing both aleatoric and epistemic uncertainties [5] of the 
RUL prediction. To this end, we propose: 1) to train 
probabilistic models to output both the mean and the log 
variance of the predicted RUL with a novel alternate training 
scheme; 2) to deploy hyper-deep ensemble [6] that utilizes the 
diversity resulting from combining multiple models defined by 
different hyperparameters and weight initializations. We 
evaluate the performance of our proposed method in 
comparison with other existing state-of-the-art methods on the 
benchmark dataset CMAPSS [7]. Experiment results have 
shown the superior performance of our proposed method in 
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terms of both prediction accuracy and quality of the uncertainty 
quantification, especially for out-of-distribution data.

2. Related work

With impressive successes achieved recently in multiple 
fields such as computer vision and natural language processing, 
DL has also been seen as a promising tool to address the task 
of RUL prediction. Researchers from both academic and 
industrial communities have shown an increased interest in 
solving this challenging task using diverse deep neural network 
(DNN) architectures, such as deep convolutional neural 
networks (DCNN) [1, 2], long short-term memory [3], or 
autoencoder [4]. The main advantage of DL-based approaches 
is the ability to learn the direct mapping from historical 
condition monitoring data to the target RUL without the need 
for manual feature engineering that requires domain 
knowledge. Nevertheless, most of the existing DL-based
approaches can only perform a point estimation without 
providing any information about how certain they are with their 
prediction. This hinders the application of DL-based 
approaches for safe-critical systems in practice.

Fig. 1. RUL prediction with point estimation (a) and uncertainty-aware 
method (b).

To quantify the uncertainty for RUL prediction, Zhao et al.
[8] recently proposed a probabilistic ResNet-based DCNN,
which models the prediction uncertainty using a parametric as 
well as a non-parametric approach. With the parametric 
approach, the uncertainty is modeled in the form of the standard 
deviation of the conditional target distribution that is assumed
to be Gaussian. In contrast, the non-parametric approach aims 
to predict multiple quantile levels of the target conditional 
distribution by optimizing the sum of the corresponding 
quantile regression losses. The main limitation of [8] is that the 
work only captures aleatoric uncertainty.

Bayesian neural networks (BNNs) [9] are known as a 
theoretically well-founded framework to account for epistemic 
uncertainty in neural networks. To capture epistemic 
uncertainty, in BNNs one treats model parameters as random 
variables and places some prior distribution over them. 
However, due to a large number of parameters in DNNs as well 
as a large number of samples in the training dataset, exact 
Bayesian inference is computationally intractable such that 
approximation approaches are typically employed instead.

Monte Carlo Dropout (MCD) [10] is one of the most 
efficient methods to implement the approximation of Bayesian 
inference for DNNs based on a technique called dropout. While 

the standard dropout is only applied for training DNNs as a 
regularization technique to avoid overfitting, MCD applies 
dropout also at test time. Each forward pass at test time will 
result in the output of a randomly sampled and thinned 
network, such that combining the outputs of multiple forward 
passes will allow the prediction uncertainty to be quantified.
Recently, MCD has also been proposed to apply for 
quantifying uncertainty in RUL prediction. For example,
Biggio et al. [11] analyzed the performance of MCD in 
comparison with several Deep Gaussian-based alternatives for 
the task of uncertainty-aware RUL prediction. However, only 
a relatively simple network architecture composed of fully 
connected (FC) layers was employed for MCD.

3. Background

Let us assume we have a dataset of N input-target pairs
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Each input sample ( )iX is a 2D matrix including operating data 
recorded by M sensors for the last 1T − time steps and the 
current one indexed by T :
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Each target sample is a scalar representing the actual RUL of 
our system computed from the current time step.

Point estimation: In a typical supervised learning setup,
given dataset , the task is to learn a mapping 
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with parameters ,θ such that the empirical risk w.r.t a
pre-defined loss function L
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is minimized [12]. Here, datap̂ denotes the empirical 
distribution defined by the training data. For point estimation, 
Euclidean loss or squared error (SE) is typically used as the loss 
function. It has been shown that the empirical risk in Eq. (4)
(with SE being the loss function) is minimized when the 
predicted output for a given input X is equal to the expectation 
of the target data with respect to the conditional probability 
distribution ( )dataˆ |p y X [13].

Mean-variance estimation: The actual remaining useful 
life of a system/component depends not only on the historical 
operating data and its current health state but also on many 
other factors, such as future operating conditions or future load. 
These kinds of influence factors are typically unknown as well 
as unpredictable at the time when the RUL prediction is
performed. Therefore, the RUL ty of a system at time ,t given 
the measured historical operating data ,tX has to be considered
as a random variable capturing the randomness in the real (but 
unknown) data-generating process, which is commonly 
referred to as aleatoric or data uncertainty [5, 14]. In order to 
account for this data uncertainty, instead of 
learning the mapping which produces a single predicted 
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RUL ( )ŷ f= θ X for a given input ,X it is more desirable to
model the conditional target distribution ( )| .p y X Let us
assume that ( | )p y X is a Gaussian distribution given by

( ) ( )( )2ˆ ˆ( ) ; , .p y y  =X X X (5)

Here, ̂ and ̂ are the mean and variance, respectively. Both 
of them are modeled to be a function of the input .X Our task 
is now to learn the mapping

with the model parameters ,θ such that the negative log-
likelihood computed over all data samples
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is minimized. Intuitively, training a model to minimize the 
NLL w.r.t the model parameters θ can also be interpreted as 
minimizing the Kullback-Leibler divergence representing the 
dissimilarity of the empirical distribution data ,p defined by the 
training data and the model distribution .p Note that this 
method of mean-variance estimation would reduce to the 
conventional point estimation method described in the previous 
section under the assumption that the variance of the 
conditional target distribution is a constant.

4. Method

4.1. Quantifying aleatoric uncertainty

As discussed previously, aleatory uncertainty can be 
quantified by minimizing the NLL loss when training a 
predictive neural network that outputs both the mean and 
variance of the conditional target distribution. In practice, 
training such a model suffers from numerical instability when 
the variance 2̂ is close to zero. To avoid this problem, we 
train our model to predict the log variance ( ) ( )2ˆlogs =X X
instead of ( )2ˆ . X The corresponding loss function can then
be formulated as
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In [8] and [15], the authors propose to add an L2 regularization 
term of the variance to the NLL loss function with the aim to 
learn small variances. In this work, we do not use this kind of 
variance decay. We observed that this variance decay might 
impact the desired calibration property of the predicted 
variances. Instead, we propose to add an L2 regularization term 
of model weights to the loss function. Varying the weight decay 
coefficient  allows us to train different models with different 
effective complexities, which is crucial for the method to 
quantify epistemic uncertainty as described in the following 
section.

Alternately training scheme: Our empirical observations 
suggest that the standard training scheme that aims to learn the 

mean and the log variance jointly by directly optimizing the 
NLL suffers from poor prediction performance. Such a 
standard joint training scheme often drives our models to 
undesired sub-optimal local minimums. To overcome this 
problem, we propose to train predictive models to learn the 
mean and the log variance in an alternate manner (see 
Algorithm 1). For each training epoch, we first update the 
weights of the encoder and the mean-head parts towards 
optimizing the MSE loss. After that, we update the weights for 
the logvar-head part towards optimizing the NLL loss while 
freezing the encoder and the mean-head parts (see Fig. 3). In 
the following, the methods with models trained according to 
the alternate training scheme will be denoted with the suffix -A.

4.2. Quantifying epistemic uncertainty

Basically, the mapping represented by a neural network 
trained to fit a given set of observed data is a deterministic 
function. This is also true even for the case in which our 
network is designed to account for the aleatoric uncertainty as 
described in section 4.1. The reason for this is that, after 
training, each network's parameter will take a single fixed 
value. However, in principle, there might exist multiple 
possible models with different combinations of the parameters 
that are able to well explain the observed data. This kind of 
uncertainty in model parameters is commonly referred to as 
epistemic uncertainty [5, 14].

Fig. 2. Difference between deep ensemble and hyper-deep ensemble. Each 
point represents a network trained with weights' initialization init

iθ and 
hyperparameter jλ . Deep ensemble considers models with the same
hyperparameter configuration but trained with different weights' initializations. 
Fixed-init-hyper ensemble considers models with different hyperparameters
but trained using a fixed weights' initialization. Hyper-deep ensemble 
subsumes both aforementioned methods by exploiting two sources of diversity, 
namely the variation of hyperparameters and weights' initialization [6].

Deep ensembles-based approaches [16, 17, 18, 6], provide 
an efficient way to realize the approximation of Bayesian 
inference for DNNs. Using deep ensembles, one samples the 
posterior weight distribution ( | )p θ by training multiple 
models with different weights' initialization. The models 
trained this way are empirically shown to be diverse in both 

: M T +→ θg
(6)( ) ( )( ) ( )1 2 2ˆ ˆ, , ,g g  =θ θX X X

Algorithm 1: An alternate training epoch
Input: Training set of batched input-target pairs, network net
Output: Updated network weights θ
Function: alternately_training_epoch(net):
1 ( ): , ,= encoder mean_head logvar_headθ θ θ θ ; # weights of the last epoch
2 Foreach ( )input, target in :
3 pred_mean,pred_logvar = net(input); # forward pass
4 ( )=loss MSE pred_mean,target ;
5 Compute  lossθ and update weights ,encoder mean_headθ θ ;
6 Freeze encoder and mean-head parts of the network;
7 ( )loss= NLL pred_mean,target ;
8 Compute  lossθ and update weights logvar_headθ ;
9 return θ updated
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weight and function space, such that combining these models 
can significantly improve the prediction performance in terms 
of the accuracy as well as the quantification of uncertainty [17].
In this work, we propose to apply hyper-deep ensemble [6] - an 
enhanced version of deep ensembles - to quantify the epistemic 
uncertainty for the underlying task of RUL prediction. The 
main idea of hyper-deep ensembles is to additionally exploit 
the diversity resulting from combining neural networks defined 
by different hyperparameters. In this work, the hyperparameter
search is done by employing Optuna [19] - a Bayesian 
hyperparameter optimization framework. The selection of 
models from the set of the model candidates, resulting from 
varying weight initializations and hyperparameters, to build the 
desired ensemble is realized by means of a so-called hyper-ens 
selection algorithm [6]. Using hyper-ens, the ensemble 
members are iteratively selected from the set of model 
candidates with replacement to maximize a performance metric 
on a validation set until a pre-defined number of candidates are 
selected or no further performance improvement is possible [6].
See Fig. 2 for an illustration of the difference between deep 
ensemble and hyper-deep ensemble.

4.3. Combining aleatoric and epistemic uncertainty

For a given ensemble of K networks under consideration
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jj j

K
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Note that each model in the ensemble can be interpreted as 
being sampled from the weight posterior ( )|p θ in the
context of BNNs. The combined prediction of the mean and the 
variance as given in Eq. (9) and (10) are actually the mean 
and variance of the predictive posterior distribution
(marginal) ( )| , ( | , ) ( | )d ,p y p y p


= X X θ θ θ which is 

approximated by Monte Carlo integration [9].

4.4. Network architecture

Fig. 3 visualizes our proposed network architecture for the 
task of uncertainty-aware RUL prediction. The basis of the 
architecture is inspired by the DCNN proposed in [2], which 
also deals with RUL prediction for aircraft turbofan engines but 
without accounting for the inherent prediction uncertainty. The 
reason for choosing this architecture is that it is a simple but 
efficient one that achieved state-of-the-art performance on the 
CMAPSS dataset [2, 20]. The main components of the 

proposed network architecture are a CNN module and two FC 
modules. The CNN module is composed of five 2D-
convolutional layers followed by a flatten and dropout layer. It
is responsible for extracting a feature vector of a desired length 
from the input. As a reminder, the input includes multivariate 
time series of fixed length representing historical operating 
data of the asset of interest. The feature vector extracted by the 
CNN module is then fed into two separate FC modules that 
output the predicted mean RUL and the associated log variance 
representing the aleatoric uncertainty (see section 4.1). Note 
that the convolutional layers used here are two-dimensional,
meaning that their kernels are shifted along both dimensions of 
their input map to compute the corresponding feature map. 
Each kernel, however, is one-dimensional. This allows learning
features along the temporal dimension separately from each 
time series, instead of learning features blurred across multiple 
time series by using 2D kernels.

Fig. 3. Network architecture. In the first part of the CNN module, four 
convolutional layers are stacked, each of them having 10 kernels of size 11 1,
followed by a Tanh activation function. The output of each of these four 
convolutional layers is 10 feature maps with the same dimensions as those of 
the input .X The final convolutional layer with kernel size 3 1 combines the 
previous feature maps, along the channel dimension. The extracted features are 
then flattened and dropout before being passed onto two separate FC modules 
to output the predicted mean RUL and its corresponding variance.

5. Experiments and Results

5.1. Metrics

Root-mean-squared error (RMSE): Let id be the 
difference between the predicted RUL ˆiy and the actual RUL

iy of the -thi data sample:

ˆ .i i id y y= − (11)

The RMSE for a dataset with N samples can be formulated as

2
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d
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NASA's scoring function: Another metric that is also 
commonly used to evaluate the accuracy of RUL prediction is 
a so-called scoring function proposed by NASA [21]:
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where id is the prediction error as given in Eq. (11). In contrast 
to RMSE, the scoring function s is not symmetric and 
penalizes over-estimation more than under-estimation.
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Negative Log-Likelihood (NLL): We use NLL as a further 
metric to jointly evaluate the accuracy of the predicted mean as 
well as the quality of the predicted variance. NLL measures
how well the distribution modeled by the neural network fits 
the actual distribution defined by the data samples. We report 
NLL according to Eq. (7) except for the constant term.

Quantile losses (QL-0.1, QL-0.9): Let ( )iy be the actual 
RUL and ( )iy the predicted RUL at quantile level . The
corresponding quantile loss [22] can be then formulated as 

( ) ( )( )( ) ( ) ( ) ( )

1
Q 1L- i i

N
i i

i
y y y

N
y  

=

= − −  1 , (14)

where ( )A1 is an indicator function that equals 1 (or 0) if A is
true (or false).

5.2. Dataset

CMAPSS is an aircraft turbofan engine degradation dataset 
provided by NASA [7, 21]. It is one of the most popular 
benchmark datasets widely used to evaluate approaches 
addressing the RUL prediction problem. CMAPSS consists of 
four sub-datasets (FD001-4) including multivariate time series
data of 21 sensors that represent the operating state of different 
components of a fleet of turbofan engines. The data is 
simulated under different operational conditions and fault 
modes using a model-based simulation program called 
Commercial Modular Aero-Propulsion System Simulation. 
Each sub-dataset contains one training and one test set, each of 
which includes data of 100 engine units. Each engine unit starts 
with different degrees of initial wear and has different
manufacturing variation that is unknown. The training sets 
include run-to-failure data, i.e., the sensor readings until the 
engine units reach their end of life. In contrast, the test sets
include data up to some time, before the system failure occurs. 
Further details of CMAPSS can be found in [7, 21, 2].

5.3. Implementation details

The data including multivariate sensor readings are 
normalized to be within the range  1,1− . The normalization is
done by fitting a Min-Max-Scaler using the available training 
data. The fitted scaler is applied to the training data as well as 
to the testing data that is supposed to be not available when 
building models. To predict the RUL of an engine unit at a 

given time, we consider the operating data of the last T
timesteps which are set according to the length of the shortest 
recorded trajectory in each subset.

Fig. 4. (a) Ground-truth RUL (blue solid line) and RUL predictions (dark 
orange dots) with 0.1-0.9 confidence interval (light orange filled region) of an 
exemplary test engine unit in FD001; (b) Reliability diagram for evaluating the 
calibration of predicted uncertainty.

Models in this work are implemented in PyTorch. We use 
the official train/test split of CMAPSS as described in 
section 5.2 to build models and report their performance. For 
each subset, we further split the available training data into 
train (80%) and validation (20%) sets. For training models, 
mini-batch gradient descent with a batch size of 512 was
applied. Moreover, we use the Adam optimizer with an initial 
learning rate  and a weight decay , which are, along with 
the dropout rate ,p the hyperparameters to be tuned. For 
hyperparameter optimization (HPO) we employed a Bayesian 
optimization framework called Optuna [19] with a TPE 
sampler. The search space was:  )log 1e-5, 0.1 ,U

 )0, 0.01 ,U discrete (0,1, 0.1).p U The number of trials
for HPO was set to 100 across all settings. Furthermore, we set 
the number of training epochs to 200 and applied early stopping 
to avoid overfitting. The number of ensemble members was set 
to 5 for the ensemble methods. All the experiments were
repeated 5 times with different seeds.

5.4. Results

The experimental results of the different methods under 
comparison are given in Table 1. The results of point estimation 
(PE, see section 3), mean-variance estimation (MVE-A, see 
section 4.1), Monte Carlo dropout (MCD-A, see section 2),
deep ensemble (DE-A, see sections 4.2 and 4.3), hyper-deep 
ensemble (HDE-A, see sections 4.2 and 4.3) are reported 
according to our implementation, whereas those of the other

Table 1. Experimental results on four sub-datasets of CMAPSS.

Method
Sub-dataset FD001 Sub-dataset FD003

RMSE↓ Score↓ NLL↓ QL-0.1↓ QL-0.9↓ RMSE↓ Score↓ NLL↓ QL-0.1↓ QL-0.9↓
PE 13.11 1.24 322 116 − − − 12.86 0.34 331 39 − − −

B1-PE [2] 12.61 0.19 274 24 − − − 12.64 0.14 284 27 − − −
B2-PE [8] 13.26 n/a 291 n/a − − − 12.66 n/a 277 n/a − − −
MVE-A 12.62 0.64 263 51 2.93 0.07 1.96 0.06 2.32 0.10 12.49 0.25 324 21 2.90 0.06 2.41 0.04 2.00 0.19

B-MVE [8] 12.48 n/a 242 n/a n/a 3.85 n/a 3.89 n/a 12.71 n/a 303 n/a n/a 4.80 n/a 2.91 n/a
MCD-A 12.32 0.39 237 33 2.88 0.04 1.92 0.06 2.22 ± 0.09 12.06 0.20 271 ± 18 2.87 0.06 2.26 0.05 2.00 0.20
DE-A 12.27 0.38 246 35 2.88 0.03 1.93 0.04 2.26 0.08 12.50 0.28 322 21 2.89 0.06 2.39 0.04 2.02 0.18

HDE-A 12.05 ± 0.17 234 ± 14 2.84 ± 0.01 1.80 ± 0.02 2.25 ± 0.02 11.78 ± 0.10 278 9 2.78 ± 0.01 2.23 ± 0.05 1.81 ± 0.01

Sub-dataset FD002 Sub-dataset FD004
PE 21.68 1.57 5250 1785 − − − 25.59 2.01 11202 5454 − − −

B1-PE [2] 22.36 0.32 10412 544 − − − 23.31 0.39 12466 853 − − −
MVE-A 20.01 1.03 4678 2988 3.47 0.04 3.67 0.21 3.36 0.13 22.47 0.49 6426 826 3.61 0.04 4.62 0.14 3.64 0.17
MCD-A 20.15 0.96 3781 1678 3.48 0.04 3.62 0.20 3.37 0.17 22.46 0.48 6418 833 3.58 0.04 4.60 0.15 3.64 0.16
DE-A 19.54 1.16 3657 1453 3.46 0.02 3.64 0.10 3.32 0.15 21.94 0.33 5491 672 3.55 0.02 4.39 0.15 3.58 0.06

HDE-A 18.41 ± 0.06 2551 ± 93 3.42 ± 0.01 3.41 ± 0.01 3.22 ± 0.03 21.60 ± 0.13 4734 ±191 3.52 ± 0.01 4.12 ± 0.04 3.55 ± 0.02

(a) (b)
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baselines B1-PE [2] , B2-PE [8], and B-MVE [8] are taken 
from the referenced work. As can be seen here, ensemble 
methods including MCD-A, DE-A, HDE-A show better 
performance compared to the PE and MVE methods w.r.t both 
error-based and uncertainty-based metrics. This confirms that 
combining the predictions of multiple models enables a
performance improvement in terms of both prediction accuracy 
and quality of uncertainty quantification. Especially, our 
proposed HDE-A method shows the best performance in most 
settings, indicating the superior benefit of utilizing the diversity
resulting from the variation of hyperparameters as well as the 
weights' initialization.

Fig. 4a depicts the RUL predictions with the 0.1-0.9 
confidence interval of an exemplary test engine unit in FD001.
Following [23], we analyzed the calibration of the considered 
models regarding the predicted uncertainty using reliability 
diagrams, which are also commonly referred to as calibration 
curves. The reliability diagram visualizes the calibration by 
plotting the observed confidence level as a function of the 
predicted confidence level. Our calibration analysis indicates 
that all implemented models are well-calibrated since their 
calibration curves closely follow the 1:1 line (see Fig. 4b for an 
example).

Fig. 5. Out-of-distribution analysis. Here, the models under consideration are 
trained on FD001 and evaluated on FD001, FD002, FD003, and FD004.

We further evaluate the robustness of the uncertainty 
quantification of different methods regarding out-of-
distribution data. For that, we trained the models on FD001 and 
reported their predicted standard deviation on all sub-datasets
FD001-4 (see Fig. 5). For FD001 and FD003, all methods 
under consideration output relatively small standard deviations
(STDs). This is comprehensible since data of FD001 and 
FD003 are expected to be in-distribution due to the fact that 
they are simulated under the same operational condition [7].
For out-of-distribution data (FD002 and FD004, simulated 
under six operational conditions [7]), the predicted STDs of 
MVE-A are still small, indicating that their uncertainty 
quantification is over-confident, whereas larger STDs are 
observed for the ensemble methods (MCD-A, DE-A, HDE-A). 
This evidence again supports the importance of modeling
epistemic uncertainty. Overall, it is obvious that the uncertainty 
estimation of the proposed HDE-A method is most indicative
w.r.t the out-of-distribution data.

6. Conclusion

In this work, we proposed a novel uncertainty-aware 
framework for RUL prediction that is able to predict not only a 
single value for RUL like traditional DL-based methods but is 
also capable of providing the associated confidence interval
capturing both aleatoric and epistemic uncertainty. The 
evaluations using the aircraft turbofan engine dataset CMAPSS 

showed superior performance of the proposed method in terms 
of both prediction accuracy and quality of the uncertainty 
quantification, especially for out-of-distribution data.
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