
ScienceDirect

Available online at www.sciencedirect.com

Procedia CIRP 118 (2023) 116–121

2212-8271 © 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering
10.1016/j.procir.2023.06.021

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering

Keywords: Deep learning; Uncertainty quantification; RUL prediction; Predictive maintenance; PHM systems; Hyper-deep ensemble

1. Introduction

The need for developing effective maintenance strategies
has arisen since the beginning of the industry. In principle, the
main objective of maintenance is to reduce unplanned
downtime as well as to improve the overall equipment
effectiveness. Despite great improvements over the last
decades, efficient maintenance management still poses a
challenge in the manufacturing community. Two traditional
maintenance strategies, namely reactive and preventive
maintenance, are known to be not really effective. They
perform maintenance either only after a failure occurred or
always at a fixed regular rate without considering the health
state of the target system. In contrast, with the modern
predictive maintenance strategy, one aims to schedule
maintenance according to the prediction of the remaining useful
life (RUL) of the target system based on its historical operating
data such that maintenance can be efficiently performed in a
proactive manner.

RUL of an asset is defined as the length of time left until the
asset reaches its end of life (EOL), i.e. when it can no longer
operate properly and needs to be repaired. Typically, RUL is
given in the number of operating cycles. The increased

availability of condition monitoring data and the recent
breakthroughs in Artificial Intelligence are the key factors that
make data-driven solutions for RUL prediction extremely
promising. In this context, deep learning (DL) has been shown
to be a powerful data-driven method capable of predicting the
RUL of an asset given its historical operating data collected by
multiple sensors [1, 2, 3, 4]. However, standard DL tools
typically do not take the uncertainty inherent in RUL prediction
tasks into account.

In this work, we present a novel DL-based approach for
uncertainty-aware RUL prediction that predicts not only the
RUL but also outputs the associated confidence interval
capturing both aleatoric and epistemic uncertainties [5] of the
RUL prediction. To this end, we propose: 1) to train
probabilistic models to output both the mean and the log
variance of the predicted RUL with a novel alternate training
scheme; 2) to deploy hyper-deep ensemble [6] that utilizes the
diversity resulting from combining multiple models defined by
different hyperparameters and weight initializations. We
evaluate the performance of our proposed method in
comparison with other existing state-of-the-art methods on the
benchmark dataset CMAPSS [7]. Experiment results have
shown the superior performance of our proposed method in

16th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ‘22, Italy

Uncertainty-aware remaining useful life prediction for predictive
maintenance using deep learning

Quy Le Xuana,*, Yeremia G. Adhisantosoa, Marco Munderloha, Jörn Ostermanna

aInstitut für Informationsverarbeitung, Leibniz Universität Hannover, Appelstr. 9A, 30167 Hannover, Germany

* Corresponding author. Tel.: +49 511 762-19581; Fax: +49 511 762-5333; E-mail address: lexuan@tnt.uni-hannover.de

Abstract

Reliably predicting Remaining Useful Life (RUL) is crucial for reducing asset maintenance costs. Deep learning emerges as a powerful data-
driven method capable of predicting RUL based on historical operating data. However, standard deep learning tools typically do not account for
the uncertainty inherent in prediction tasks. This paper presents an uncertainty-aware approach that predicts not only the RUL but also the
associated confidence interval, capturing both aleatoric and epistemic uncertainty. The proposed approach is evaluated on publicly available
datasets of aircraft turbofan engines, showing its ability to estimate accurate RUL and well-calibrated uncertainties that are robust to out-of-
distribution data.

Quy Le Xuan et al. / Procedia CIRP 118 (2023) 116–121 117

terms of both prediction accuracy and quality of the uncertainty
quantification, especially for out-of-distribution data.

2. Related work

With impressive successes achieved recently in multiple
fields such as computer vision and natural language processing,
DL has also been seen as a promising tool to address the task
of RUL prediction. Researchers from both academic and
industrial communities have shown an increased interest in
solving this challenging task using diverse deep neural network
(DNN) architectures, such as deep convolutional neural
networks (DCNN) [1, 2], long short-term memory [3], or
autoencoder [4]. The main advantage of DL-based approaches
is the ability to learn the direct mapping from historical
condition monitoring data to the target RUL without the need
for manual feature engineering that requires domain
knowledge. Nevertheless, most of the existing DL-based
approaches can only perform a point estimation without
providing any information about how certain they are with their
prediction. This hinders the application of DL-based
approaches for safe-critical systems in practice.

Fig. 1. RUL prediction with point estimation (a) and uncertainty-aware
method (b).

To quantify the uncertainty for RUL prediction, Zhao et al.
[8] recently proposed a probabilistic ResNet-based DCNN,
which models the prediction uncertainty using a parametric as
well as a non-parametric approach. With the parametric
approach, the uncertainty is modeled in the form of the standard
deviation of the conditional target distribution that is assumed
to be Gaussian. In contrast, the non-parametric approach aims
to predict multiple quantile levels of the target conditional
distribution by optimizing the sum of the corresponding
quantile regression losses. The main limitation of [8] is that the
work only captures aleatoric uncertainty.

Bayesian neural networks (BNNs) [9] are known as a
theoretically well-founded framework to account for epistemic
uncertainty in neural networks. To capture epistemic
uncertainty, in BNNs one treats model parameters as random
variables and places some prior distribution over them.
However, due to a large number of parameters in DNNs as well
as a large number of samples in the training dataset, exact
Bayesian inference is computationally intractable such that
approximation approaches are typically employed instead.

Monte Carlo Dropout (MCD) [10] is one of the most
efficient methods to implement the approximation of Bayesian
inference for DNNs based on a technique called dropout. While

the standard dropout is only applied for training DNNs as a
regularization technique to avoid overfitting, MCD applies
dropout also at test time. Each forward pass at test time will
result in the output of a randomly sampled and thinned
network, such that combining the outputs of multiple forward
passes will allow the prediction uncertainty to be quantified.
Recently, MCD has also been proposed to apply for
quantifying uncertainty in RUL prediction. For example,
Biggio et al. [11] analyzed the performance of MCD in
comparison with several Deep Gaussian-based alternatives for
the task of uncertainty-aware RUL prediction. However, only
a relatively simple network architecture composed of fully
connected (FC) layers was employed for MCD.

3. Background

Let us assume we have a dataset of N input-target pairs

() ()() () ()
1

, : , .
N

i i i iM T

i
y y

=
= X X (1)

Each input sample ()iX is a 2D matrix including operating data
recorded by M sensors for the last 1T − time steps and the
current one indexed by T :

() () () ()()1 2, , , ,i i i iM= x xX x (2)

where ()T() () () ()
1 2, , ,m i m i m i m i

Tx x x= x with 1,2, , .m M
Each target sample is a scalar representing the actual RUL of
our system computed from the current time step.

Point estimation: In a typical supervised learning setup,
given dataset , the task is to learn a mapping

: M Tf →θ

ˆ() ,f y=θX X (3)

with parameters ,θ such that the empirical risk w.r.t a
pre-defined loss function L

()data

() ()
ˆ(,)~

1

1[((),)] (),
N

i i
y p

i
L f y L f y

N =

= θ θX X X (4)

is minimized [12]. Here, datap̂ denotes the empirical
distribution defined by the training data. For point estimation,
Euclidean loss or squared error (SE) is typically used as the loss
function. It has been shown that the empirical risk in Eq. (4)
(with SE being the loss function) is minimized when the
predicted output for a given input X is equal to the expectation
of the target data with respect to the conditional probability
distribution ()dataˆ |p y X [13].

Mean-variance estimation: The actual remaining useful
life of a system/component depends not only on the historical
operating data and its current health state but also on many
other factors, such as future operating conditions or future load.
These kinds of influence factors are typically unknown as well
as unpredictable at the time when the RUL prediction is
performed. Therefore, the RUL ty of a system at time ,t given
the measured historical operating data ,tX has to be considered
as a random variable capturing the randomness in the real (but
unknown) data-generating process, which is commonly
referred to as aleatoric or data uncertainty [5, 14]. In order to
account for this data uncertainty, instead of
learning the mapping which produces a single predicted

Start Start

Start Start

Features Features

Health
indicator

Health
indicator

EOL EOL

EOL EOL

Network

a b
Network

Time Time

Time Time

t t

t tt T−

RUL()t

RUL()t

RUL()t

RUL()t

t T−

118 Quy Le Xuan et al. / Procedia CIRP 118 (2023) 116–121

RUL ()ŷ f= θ X for a given input ,X it is more desirable to
model the conditional target distribution ()| .p y X Let us
assume that (|)p y X is a Gaussian distribution given by

() ()()2ˆ ˆ() ; , .p y y =X X X (5)

Here, ̂ and ̂ are the mean and variance, respectively. Both
of them are modeled to be a function of the input .X Our task
is now to learn the mapping

with the model parameters ,θ such that the negative log-
likelihood computed over all data samples

()
() ()()

()

() ()

1
2() ()2 ()

2 ()
1

1NLL log |

ˆˆlog1 const.
2 ˆ2

N
i i

i
i iiN

i
i

p y
N

y

N

=

=

= −

−
= + +

X

XX

X

(7)

is minimized. Intuitively, training a model to minimize the
NLL w.r.t the model parameters θ can also be interpreted as
minimizing the Kullback-Leibler divergence representing the
dissimilarity of the empirical distribution data ,p defined by the
training data and the model distribution .p Note that this
method of mean-variance estimation would reduce to the
conventional point estimation method described in the previous
section under the assumption that the variance of the
conditional target distribution is a constant.

4. Method

4.1. Quantifying aleatoric uncertainty

As discussed previously, aleatory uncertainty can be
quantified by minimizing the NLL loss when training a
predictive neural network that outputs both the mean and
variance of the conditional target distribution. In practice,
training such a model suffers from numerical instability when
the variance 2̂ is close to zero. To avoid this problem, we
train our model to predict the log variance () ()2ˆlogs =X X
instead of ()2ˆ . X The corresponding loss function can then
be formulated as

()
() ()()

()()

2() ()()
2

NLL 2()
1

ˆ1 .
2 2ˆ2 exp

i iiN

i
i

ys
N s

=

−
= + +

XX
θ θ

X
(8)

In [8] and [15], the authors propose to add an L2 regularization
term of the variance to the NLL loss function with the aim to
learn small variances. In this work, we do not use this kind of
variance decay. We observed that this variance decay might
impact the desired calibration property of the predicted
variances. Instead, we propose to add an L2 regularization term
of model weights to the loss function. Varying the weight decay
coefficient allows us to train different models with different
effective complexities, which is crucial for the method to
quantify epistemic uncertainty as described in the following
section.

Alternately training scheme: Our empirical observations
suggest that the standard training scheme that aims to learn the

mean and the log variance jointly by directly optimizing the
NLL suffers from poor prediction performance. Such a
standard joint training scheme often drives our models to
undesired sub-optimal local minimums. To overcome this
problem, we propose to train predictive models to learn the
mean and the log variance in an alternate manner (see
Algorithm 1). For each training epoch, we first update the
weights of the encoder and the mean-head parts towards
optimizing the MSE loss. After that, we update the weights for
the logvar-head part towards optimizing the NLL loss while
freezing the encoder and the mean-head parts (see Fig. 3). In
the following, the methods with models trained according to
the alternate training scheme will be denoted with the suffix -A.

4.2. Quantifying epistemic uncertainty

Basically, the mapping represented by a neural network
trained to fit a given set of observed data is a deterministic
function. This is also true even for the case in which our
network is designed to account for the aleatoric uncertainty as
described in section 4.1. The reason for this is that, after
training, each network's parameter will take a single fixed
value. However, in principle, there might exist multiple
possible models with different combinations of the parameters
that are able to well explain the observed data. This kind of
uncertainty in model parameters is commonly referred to as
epistemic uncertainty [5, 14].

Fig. 2. Difference between deep ensemble and hyper-deep ensemble. Each
point represents a network trained with weights' initialization init

iθ and
hyperparameter jλ . Deep ensemble considers models with the same
hyperparameter configuration but trained with different weights' initializations.
Fixed-init-hyper ensemble considers models with different hyperparameters
but trained using a fixed weights' initialization. Hyper-deep ensemble
subsumes both aforementioned methods by exploiting two sources of diversity,
namely the variation of hyperparameters and weights' initialization [6].

Deep ensembles-based approaches [16, 17, 18, 6], provide
an efficient way to realize the approximation of Bayesian
inference for DNNs. Using deep ensembles, one samples the
posterior weight distribution (|)p θ by training multiple
models with different weights' initialization. The models
trained this way are empirically shown to be diverse in both

: M T +→ θg
(6)() ()() ()1 2 2ˆ ˆ, , ,g g =θ θX X X

Algorithm 1: An alternate training epoch
Input: Training set of batched input-target pairs, network net
Output: Updated network weights θ
Function: alternately_training_epoch(net):
1 (): , ,= encoder mean_head logvar_headθ θ θ θ ; # weights of the last epoch
2 Foreach ()input, target in :
3 pred_mean,pred_logvar = net(input); # forward pass
4 ()=loss MSE pred_mean,target ;
5 Compute lossθ and update weights ,encoder mean_headθ θ ;
6 Freeze encoder and mean-head parts of the network;
7 ()loss= NLL pred_mean,target ;
8 Compute lossθ and update weights logvar_headθ ;
9 return θ updated

Quy Le Xuan et al. / Procedia CIRP 118 (2023) 116–121 119

weight and function space, such that combining these models
can significantly improve the prediction performance in terms
of the accuracy as well as the quantification of uncertainty [17].
In this work, we propose to apply hyper-deep ensemble [6] - an
enhanced version of deep ensembles - to quantify the epistemic
uncertainty for the underlying task of RUL prediction. The
main idea of hyper-deep ensembles is to additionally exploit
the diversity resulting from combining neural networks defined
by different hyperparameters. In this work, the hyperparameter
search is done by employing Optuna [19] - a Bayesian
hyperparameter optimization framework. The selection of
models from the set of the model candidates, resulting from
varying weight initializations and hyperparameters, to build the
desired ensemble is realized by means of a so-called hyper-ens
selection algorithm [6]. Using hyper-ens, the ensemble
members are iteratively selected from the set of model
candidates with replacement to maximize a performance metric
on a validation set until a pre-defined number of candidates are
selected or no further performance improvement is possible [6].
See Fig. 2 for an illustration of the difference between deep
ensemble and hyper-deep ensemble.

4.3. Combining aleatoric and epistemic uncertainty

For a given ensemble of K networks under consideration

init| , 1
jj j

K

j=
=

θ θ λ
g and a given input ,X let

() ()
init| ,

ˆ ˆ, jj jj j =
θ θ λ

g X be the mean and variance of RUL

predicted by the -thj member of the ensemble, which is defined
by the hyperparameters jλ and trained with the weights'
initialization init

jθ . The combined prediction for the mean and
the variance that captures both the aleatoric and epistemic
uncertainty can then be computed as follows (cf. [16, 14]):

1

1ˆ ˆ ,
K

j
jK

=

= (9)

2
2 2

1 1 1

1 1 1ˆ ˆ ˆ ˆ .
K K K

j j j
j j jK K K

= = =

= + −

 (10)

Note that each model in the ensemble can be interpreted as
being sampled from the weight posterior ()|p θ in the
context of BNNs. The combined prediction of the mean and the
variance as given in Eq. (9) and (10) are actually the mean
and variance of the predictive posterior distribution
(marginal) ()| , (| ,) (|)d ,p y p y p

= X X θ θ θ which is

approximated by Monte Carlo integration [9].

4.4. Network architecture

Fig. 3 visualizes our proposed network architecture for the
task of uncertainty-aware RUL prediction. The basis of the
architecture is inspired by the DCNN proposed in [2], which
also deals with RUL prediction for aircraft turbofan engines but
without accounting for the inherent prediction uncertainty. The
reason for choosing this architecture is that it is a simple but
efficient one that achieved state-of-the-art performance on the
CMAPSS dataset [2, 20]. The main components of the

proposed network architecture are a CNN module and two FC
modules. The CNN module is composed of five 2D-
convolutional layers followed by a flatten and dropout layer. It
is responsible for extracting a feature vector of a desired length
from the input. As a reminder, the input includes multivariate
time series of fixed length representing historical operating
data of the asset of interest. The feature vector extracted by the
CNN module is then fed into two separate FC modules that
output the predicted mean RUL and the associated log variance
representing the aleatoric uncertainty (see section 4.1). Note
that the convolutional layers used here are two-dimensional,
meaning that their kernels are shifted along both dimensions of
their input map to compute the corresponding feature map.
Each kernel, however, is one-dimensional. This allows learning
features along the temporal dimension separately from each
time series, instead of learning features blurred across multiple
time series by using 2D kernels.

Fig. 3. Network architecture. In the first part of the CNN module, four
convolutional layers are stacked, each of them having 10 kernels of size 11 1,
followed by a Tanh activation function. The output of each of these four
convolutional layers is 10 feature maps with the same dimensions as those of
the input .X The final convolutional layer with kernel size 3 1 combines the
previous feature maps, along the channel dimension. The extracted features are
then flattened and dropout before being passed onto two separate FC modules
to output the predicted mean RUL and its corresponding variance.

5. Experiments and Results

5.1. Metrics

Root-mean-squared error (RMSE): Let id be the
difference between the predicted RUL ˆiy and the actual RUL

iy of the -thi data sample:

ˆ .i i id y y= − (11)

The RMSE for a dataset with N samples can be formulated as

2

1

1RMSE .
N

i
i

d
N =

= (12)

NASA's scoring function: Another metric that is also
commonly used to evaluate the accuracy of RUL prediction is
a so-called scoring function proposed by NASA [21]:

1

exp 1, if 0
13, with

exp 1, if 0,
10

i
N i

i i
ii

i

d d
s ss d

d=

− −
 =
 −

=

 (13)

where id is the prediction error as given in Eq. (11). In contrast
to RMSE, the scoring function s is not symmetric and
penalizes over-estimation more than under-estimation.

Conv2D,
Tanh

Conv2D,
Tanh

Conv2D,
Tanh

Conv2D,
Tanh

Conv2D,
Tanh

Flatten
Dropout

Input

FC 100
Tanh

FC 100

FC 100
Tanh

FC 100

Predicted
mean RUL

Predicted
log-variance

()2ˆlog

ŷ

Encoder

mean-head

logvar-head

120 Quy Le Xuan et al. / Procedia CIRP 118 (2023) 116–121

Negative Log-Likelihood (NLL): We use NLL as a further
metric to jointly evaluate the accuracy of the predicted mean as
well as the quality of the predicted variance. NLL measures
how well the distribution modeled by the neural network fits
the actual distribution defined by the data samples. We report
NLL according to Eq. (7) except for the constant term.

Quantile losses (QL-0.1, QL-0.9): Let ()iy be the actual
RUL and ()iy the predicted RUL at quantile level . The
corresponding quantile loss [22] can be then formulated as

() ()()() () () ()

1
Q 1L- i i

N
i i

i
y y y

N
y

=

= − − 1 , (14)

where ()A1 is an indicator function that equals 1 (or 0) if A is
true (or false).

5.2. Dataset

CMAPSS is an aircraft turbofan engine degradation dataset
provided by NASA [7, 21]. It is one of the most popular
benchmark datasets widely used to evaluate approaches
addressing the RUL prediction problem. CMAPSS consists of
four sub-datasets (FD001-4) including multivariate time series
data of 21 sensors that represent the operating state of different
components of a fleet of turbofan engines. The data is
simulated under different operational conditions and fault
modes using a model-based simulation program called
Commercial Modular Aero-Propulsion System Simulation.
Each sub-dataset contains one training and one test set, each of
which includes data of 100 engine units. Each engine unit starts
with different degrees of initial wear and has different
manufacturing variation that is unknown. The training sets
include run-to-failure data, i.e., the sensor readings until the
engine units reach their end of life. In contrast, the test sets
include data up to some time, before the system failure occurs.
Further details of CMAPSS can be found in [7, 21, 2].

5.3. Implementation details

The data including multivariate sensor readings are
normalized to be within the range 1,1− . The normalization is
done by fitting a Min-Max-Scaler using the available training
data. The fitted scaler is applied to the training data as well as
to the testing data that is supposed to be not available when
building models. To predict the RUL of an engine unit at a

given time, we consider the operating data of the last T
timesteps which are set according to the length of the shortest
recorded trajectory in each subset.

Fig. 4. (a) Ground-truth RUL (blue solid line) and RUL predictions (dark
orange dots) with 0.1-0.9 confidence interval (light orange filled region) of an
exemplary test engine unit in FD001; (b) Reliability diagram for evaluating the
calibration of predicted uncertainty.

Models in this work are implemented in PyTorch. We use
the official train/test split of CMAPSS as described in
section 5.2 to build models and report their performance. For
each subset, we further split the available training data into
train (80%) and validation (20%) sets. For training models,
mini-batch gradient descent with a batch size of 512 was
applied. Moreover, we use the Adam optimizer with an initial
learning rate and a weight decay , which are, along with
the dropout rate ,p the hyperparameters to be tuned. For
hyperparameter optimization (HPO) we employed a Bayesian
optimization framework called Optuna [19] with a TPE
sampler. The search space was:)log 1e-5, 0.1 ,U

)0, 0.01 ,U discrete (0,1, 0.1).p U The number of trials
for HPO was set to 100 across all settings. Furthermore, we set
the number of training epochs to 200 and applied early stopping
to avoid overfitting. The number of ensemble members was set
to 5 for the ensemble methods. All the experiments were
repeated 5 times with different seeds.

5.4. Results

The experimental results of the different methods under
comparison are given in Table 1. The results of point estimation
(PE, see section 3), mean-variance estimation (MVE-A, see
section 4.1), Monte Carlo dropout (MCD-A, see section 2),
deep ensemble (DE-A, see sections 4.2 and 4.3), hyper-deep
ensemble (HDE-A, see sections 4.2 and 4.3) are reported
according to our implementation, whereas those of the other

Table 1. Experimental results on four sub-datasets of CMAPSS.

Method
Sub-dataset FD001 Sub-dataset FD003

RMSE↓ Score↓ NLL↓ QL-0.1↓ QL-0.9↓ RMSE↓ Score↓ NLL↓ QL-0.1↓ QL-0.9↓
PE 13.11 1.24 322 116 − − − 12.86 0.34 331 39 − − −

B1-PE [2] 12.61 0.19 274 24 − − − 12.64 0.14 284 27 − − −
B2-PE [8] 13.26 n/a 291 n/a − − − 12.66 n/a 277 n/a − − −
MVE-A 12.62 0.64 263 51 2.93 0.07 1.96 0.06 2.32 0.10 12.49 0.25 324 21 2.90 0.06 2.41 0.04 2.00 0.19

B-MVE [8] 12.48 n/a 242 n/a n/a 3.85 n/a 3.89 n/a 12.71 n/a 303 n/a n/a 4.80 n/a 2.91 n/a
MCD-A 12.32 0.39 237 33 2.88 0.04 1.92 0.06 2.22 ± 0.09 12.06 0.20 271 ± 18 2.87 0.06 2.26 0.05 2.00 0.20
DE-A 12.27 0.38 246 35 2.88 0.03 1.93 0.04 2.26 0.08 12.50 0.28 322 21 2.89 0.06 2.39 0.04 2.02 0.18

HDE-A 12.05 ± 0.17 234 ± 14 2.84 ± 0.01 1.80 ± 0.02 2.25 ± 0.02 11.78 ± 0.10 278 9 2.78 ± 0.01 2.23 ± 0.05 1.81 ± 0.01

Sub-dataset FD002 Sub-dataset FD004
PE 21.68 1.57 5250 1785 − − − 25.59 2.01 11202 5454 − − −

B1-PE [2] 22.36 0.32 10412 544 − − − 23.31 0.39 12466 853 − − −
MVE-A 20.01 1.03 4678 2988 3.47 0.04 3.67 0.21 3.36 0.13 22.47 0.49 6426 826 3.61 0.04 4.62 0.14 3.64 0.17
MCD-A 20.15 0.96 3781 1678 3.48 0.04 3.62 0.20 3.37 0.17 22.46 0.48 6418 833 3.58 0.04 4.60 0.15 3.64 0.16
DE-A 19.54 1.16 3657 1453 3.46 0.02 3.64 0.10 3.32 0.15 21.94 0.33 5491 672 3.55 0.02 4.39 0.15 3.58 0.06

HDE-A 18.41 ± 0.06 2551 ± 93 3.42 ± 0.01 3.41 ± 0.01 3.22 ± 0.03 21.60 ± 0.13 4734 ±191 3.52 ± 0.01 4.12 ± 0.04 3.55 ± 0.02

(a) (b)

Quy Le Xuan et al. / Procedia CIRP 118 (2023) 116–121 121

baselines B1-PE [2] , B2-PE [8], and B-MVE [8] are taken
from the referenced work. As can be seen here, ensemble
methods including MCD-A, DE-A, HDE-A show better
performance compared to the PE and MVE methods w.r.t both
error-based and uncertainty-based metrics. This confirms that
combining the predictions of multiple models enables a
performance improvement in terms of both prediction accuracy
and quality of uncertainty quantification. Especially, our
proposed HDE-A method shows the best performance in most
settings, indicating the superior benefit of utilizing the diversity
resulting from the variation of hyperparameters as well as the
weights' initialization.

Fig. 4a depicts the RUL predictions with the 0.1-0.9
confidence interval of an exemplary test engine unit in FD001.
Following [23], we analyzed the calibration of the considered
models regarding the predicted uncertainty using reliability
diagrams, which are also commonly referred to as calibration
curves. The reliability diagram visualizes the calibration by
plotting the observed confidence level as a function of the
predicted confidence level. Our calibration analysis indicates
that all implemented models are well-calibrated since their
calibration curves closely follow the 1:1 line (see Fig. 4b for an
example).

Fig. 5. Out-of-distribution analysis. Here, the models under consideration are
trained on FD001 and evaluated on FD001, FD002, FD003, and FD004.

We further evaluate the robustness of the uncertainty
quantification of different methods regarding out-of-
distribution data. For that, we trained the models on FD001 and
reported their predicted standard deviation on all sub-datasets
FD001-4 (see Fig. 5). For FD001 and FD003, all methods
under consideration output relatively small standard deviations
(STDs). This is comprehensible since data of FD001 and
FD003 are expected to be in-distribution due to the fact that
they are simulated under the same operational condition [7].
For out-of-distribution data (FD002 and FD004, simulated
under six operational conditions [7]), the predicted STDs of
MVE-A are still small, indicating that their uncertainty
quantification is over-confident, whereas larger STDs are
observed for the ensemble methods (MCD-A, DE-A, HDE-A).
This evidence again supports the importance of modeling
epistemic uncertainty. Overall, it is obvious that the uncertainty
estimation of the proposed HDE-A method is most indicative
w.r.t the out-of-distribution data.

6. Conclusion

In this work, we proposed a novel uncertainty-aware
framework for RUL prediction that is able to predict not only a
single value for RUL like traditional DL-based methods but is
also capable of providing the associated confidence interval
capturing both aleatoric and epistemic uncertainty. The
evaluations using the aircraft turbofan engine dataset CMAPSS

showed superior performance of the proposed method in terms
of both prediction accuracy and quality of the uncertainty
quantification, especially for out-of-distribution data.

Acknowledgements

This work was supported by the Federal Ministry for
Economic Affairs and Climate Action (BMWK), Germany,
within the framework of the project IIP-Ecosphere (project
number 01MK20006A).

References

[1] G. S. Babu, P. Zhao and X.-L. Li, "Deep convolutional neural network
based regression approach for estimation of remaining useful life," in
International conference on database systems for advanced
applications, 2016.

[2] X. Li, Q. Ding and J.-Q. Sun, "Remaining useful life estimation in
prognostics using deep convolution neural networks," Reliability
Engineering & System Safety, vol. 172, p. 1–11, April 2018.

[3] S. Zheng, K. Ristovski, A. Farahat and C. Gupta, "Long short-term
memory network for remaining useful life estimation," in International
Conference on Prognostics and Health Management (ICPHM), 2017.

[4] C. Sun, M. Ma, Z. Zhao, S. Tian, R. Yan and X. Chen, "Deep Transfer
Learning Based on Sparse Autoencoder for Remaining Useful Life
Prediction of Tool in Manufacturing," IEEE Transactions on Industrial
Informatics, vol. 15, p. 2416–2425, April 2019.

[5] Y. Gal, "Uncertainty in deep learning," 2016.
[6] F. Wenzel, J. Snoek, D. Tran and R. Jenatton, "Hyperparameter

Ensembles for Robustness and Uncertainty Quantification," Advances
in Neural Information Processing Systems, January 2021.

[7] A. Saxena and K. Goebel, Turbofan Engine Degradation Simulation
Data Set, 2008.

[8] Z. Zhao, J. Wu, D. Wong, C. Sun and R. Yan, "Probabilistic
Remaining Useful Life Prediction Based on Deep Convolutional
Neural Network," SSRN Electronic Journal, 2020.

[9] R. M. Neal, Bayesian learning for neural networks, Springer, 1996.
[10] Y. Gal and Z. Ghahramani, "Dropout as a bayesian approximation:

Representing model uncertainty in deep learning," in international
conference on machine learning, 2016.

[11] L. Biggio, A. Wieland, M. A. Chao, I. Kastanis and O. Fink,
"Uncertainty-Aware Prognosis via Deep Gaussian Process," IEEE
Access, vol. 9, p. 123517–123527, 2021.

[12] I. Goodfellow, Y. Bengio and A. Courville, Deep learning, Cambridge,
Massachusetts: The MIT Press, 2016.

[13] C. M. Bishop, "Mixture density networks," 1994.
[14] A. Kendall and Y. Gal, "What uncertainties do we need in bayesian

deep learning for computer vision?," arXiv:1703.04977, 2017.
[15] M. Kim and K. Liu, "A Bayesian deep learning framework for interval

estimation of remaining useful life in complex systems by
incorporating general degradation characteristics," IISE Transactions,
vol. 53, p. 326–340, 2020.

[16] B. Lakshminarayanan, A. Pritzel and C. Blundell, "Simple and scalable
predictive uncertainty estimation using deep ensembles," Advances in
neural information processing systems, vol. 30, 2017.

[17] S. Fort, H. Hu and B. Lakshminarayanan, "Deep ensembles: A loss
landscape perspective," arXiv preprint arXiv:1912.02757, 2019.

[18] Y. Wen, D. Tran and J. Ba, "Batchensemble: an alternative approach to
efficient ensemble and lifelong learning," arXiv:2002.06715, 2020.

[19] T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, "Optuna: A
next-generation hyperparameter optimization framework," in
Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, 2019.

[20] O. Serradilla, E. Zugasti, J. Rodriguez and U. Zurutuza, "Deep learning
models for predictive maintenance: a survey, comparison, challenges
and prospects," Applied Intelligence, January 2022.

[21] A. Saxena, K. Goebel, D. Simon and N. Eklund, "Damage propagation
modeling for aircraft engine run-to-failure simulation," in International
Conference on Prognostics and Health Management, 2008.

[22] R. Koenker and G. Bassett, "Regression Quantiles," Econometrica, vol.
46, p. 33, January 1978.

[23] V. Kuleshov, N. Fenner and S. Ermon, "Accurate uncertainties for
deep learning using calibrated regression," in International conference
on machine learning, 2018.

