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1 Introduction and setting of the problem

The study of two-dimensional integrable models possessing an integral of motion which is

cubic or quartic in velocities has a long history. Having been discovered originally within

the context of rigid body dynamics [1, 2], such systems were later generalized in a number

of ways and have been a topic of active research for the last three decades [3]–[34] (for a

review see [14]).

A conventional two-dimensional conservative system is governed by the Lagrangian

L =
1

2

2
∑

i,j=1

aij(q) q̇
iq̇j − V (q) , (1.1)

where aij(q) is assumed to be an invertible matrix which encodes the geometry of a curved

background, and V (q) is a potential. Because aij(q) and V (q) do not explicitly depend

on time, the energy is conserved. Given the potential V (q) and the metric aij(q), several

methods to uncover a second integral of motion have been proposed. In particular, these

include the Painlevé analysis, the Lax-pair approach and the separation of variables in

the Hamilton-Jacobi equation. A more direct method considers a polynomial I2 in the

velocities, with the coefficients being arbitrary functions of the coordinates, and requires

that it be conserved in time. This condition yields a system of coupled nonlinear partial

differential equations on the coefficients, which also involve aij(q) and V (q).

In general, by applying a coordinate transformation and a redefinition of the temporal

coordinate, one can reduce the number of coefficients in the polynomial and, thus, simplify

the system of partial differential equations. As was demonstrated in [24], one can always

choose new coordinates, qi = qi(x, y) such that the system in terms of (x, y) is on the zero

energy level,1

ẍ = Ux ÿ = Uy , I1 ≡ ẋ2 + ẏ2 − 2U = 0 . (1.2)

1Here and in what follows we use the conventions in [24, 27]. The subscripts denote partial derivatives

with respect to the corresponding variable. Throughout the paper we impose time-reversal invariance.
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For the case of a conserved polynomial cubic in the velocities, the new variables simplify

this integral to

I2 = ẋ3 + J(x, y) ẋ+K(x, y) ẏ , (1.3)

involving only two functions J(x, y) and K(x, y) to be determined. Taking into account

the equations of motion and the zero energy condition (1.2),2 one can verify that I2 is

conserved in time provided the system of partial differential equations

Kx + Jy = 0 , Jx −Ky + 3Ux = 0 , UxJ + UyK + 2KyU = 0 (1.4)

holds [24].

Without loss of generality one can choose K(x, y) in the form

K(x, y) = −Exy(x, y) , (1.5)

where E(x, y) is a function to be determined. Then the leftmost equation in (1.4) implies

J(x, y) = Exx(x, y) + α(x) , (1.6)

where α(x) is an arbitrary function of x only. As is evident from (1.5) and (1.6), α(x)

can always be removed by a redefinition of E(x, y). So in what follows we will ignore it.

Substitution of (1.5) and (1.6) into the second equation in (1.4) yields

Exx + Eyy + 3U = β(y) , (1.7)

where β(y) is an arbitrary function of y only. Again, one can get rid of β(y) by a redefinition

of E(x, y), which does not alter the form of K(x, y) or J(x, y) while fixes the potential

U = −
1

3

(

Exx + Eyy

)

. (1.8)

The rightmost equation in (1.4) then reads [24] (see also a related earlier work [7])

Exx(Exxx + Exyy)− Exy(Eyxx + Eyyy)− 2Exyy(Exx + Eyy) = 0 . (1.9)

To summarize, the dynamical system (1.2), which admits an integral of motion cubic

in the velocities, is governed by the triple

J(x, y) = Exx(x, y) , K(x, y) = −Exy(x, y) , U(x, y) = −
1

3

(

Exx(x, y) + Eyy(x, y)
)

,

(1.10)

which is derived from the generating function E(x, y) obeying the master equation (1.9).

Note that in practice, in order to verify that the system (1.2) admits an extra cubic

integral of motion (1.3), it suffices to substitute J(x, y), K(x, y) and U(x, y) into (1.4) and

to verify that the equations are satisfied identically. As an exercise, one can check that

the models exposed below in (3.11) indeed obey the structure equations (1.4). Of course,

finding the explicit form of the potential U giving rise to a cubic integral of motion requires

2When computing the derivative of I2, a term which involves ẏ2 appears. In that term ẏ2 should be

changed by ẏ2 = 2U − ẋ2, which then leads to (1.4).
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solving the master equation (1.9). This will allow us to construct new two-dimensional

integrable models.

A similar situation holds for the case of a polynomial quartic in the velocities,

I2 = ẋ4 + P (x, y) ẋ2 +Q(x, y) ẋ ẏ +R(x, y) . (1.11)

For this to be an integral of motion of the system (1.2), the partial differential equations

Qx + Py = 0 , Px −Qy + 4Ux = 0 ,

Ry + UxQ = 0 , Rx + UyQ+ 2UxP + 2QyU = 0 (1.12)

must be obeyed [27].3 Repeating the same arguments as above, one can verify that (1.12)

is equivalent to the chain of relations [27]

P (x, y) = Fxx(x, y) , Q(x, y) = −Fxy(x, y) , U = −
1

4

(

Fxx + Fyy

)

,

R(x, y) = −
∫ y

y0

dỹ
(

QUx

)

(x, ỹ)−
∫ x

x0

dx̃
(

QUy + 2P Ux + 2U Qy

)

(x̃, y0) , (1.13)

which all are derived from the single generating function F (x, y) obeying the master equa-

tion

(FxxxxFxy − FyyyyFyx) + 3(FxxxFxxy − FyyyFyyx) + 2(FxxFxxxy − FyyFyyyx) = 0 . (1.14)

Again, it should be stressed that, given the polynomial (1.11), the partial differential

equations (1.12) allow one to directly verify that (1.11) is an integral of motion of the

system (1.2), irrespective of any knowledge of the generating function F (x, y). As an

example, one may consider the system given below in (3.12) and check that (1.12) holds.

Yet, for defining new models possessing a quartic integral of motion we have to find a

generating function F solving (1.14).

It is unknown how to solve the master equations (1.9) or (1.14) in full generality. So far,

particular solutions have been constructed in a form where the variables are separated [19–

21, 27, 30],

E(x, y) or F (x, y) = H1(x) +H2(y) + Ψ(x) Φ(y) . (1.15)

This turns out to encompass almost all known models with a cubic or quartic second

integral of motion. Our goal in this work is to construct new solutions to (1.9) and (1.14)

which are not of the type (1.15) and thus generate new models with a cubic or a quartic

integral of motion.

In section 2 we analyze the symmetries of the master equations and uncover the dihe-

dral groupsD6 andD8 for the cubic and quartic cases, respectively. The dihedral symmetry

suggests the use of special invariant variables, which allow one to reduce the master equa-

tions (1.9) and (1.14) to nonlinear ordinary differential equations. It will be shown that

the reduced master equation for the quartic case is just the derivative of the corresponding

equation in the cubic case. In section 3 the reduced master equation for the cubic case is

3Note that, in deriving (1.12), the zero energy condition was used again to express ẏ2 via ẋ2 and U .
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solved in full generality, which also provides a particular solution for the quartic case. The

corresponding integrable models are discussed, and the most simple examples are displayed

explicitly. The concluding section 4 contains the summary and an outlook.

2 Symmetries of the master equations and invariant variables

Before making some ansatz, it is advisable to investigate the symmetries of the master

equations (1.9) and (1.14). Those may reveal adapted coordinate systems in which the

analysis simplifies. Obviously, we can independently rescale the functions or both coor-

dinates x and y, but the latter two simultaneously. Hence, with any solution E(x, y) or

F (x, y) we immediately have a two-parameter family

Eλ,µ(x, y) = λE

(

x

µ
,
y

µ

)

and F λ,µ(x, y) = λF

(

x

µ
,
y

µ

)

with λ, µ ∈ R .

(2.1)

But there is more: Let us rewrite the master equations in terms of complex coordinates

z = x+ iy and z̄ = x− iy ⇒ ∂x = ∂z + ∂z̄ and ∂y = i(∂z − ∂z̄) , (2.2)

which produces

∂z
(

EzzEzz̄

)

+ ∂z̄
(

Ez̄z̄Ez̄z

)

= 0 and (2.3)

∂z
(

2FzzFzzz̄ + FzzzFzz̄

)

− ∂z̄
(

2Fz̄z̄Fz̄z̄z + Fz̄z̄z̄Fz̄z

)

= 0 . (2.4)

It is apparent that these equations are invariant under

z 7→ eiαz for α =
π

3
and α =

π

4
, (2.5)

respectively. Together with their invariance under the conjugation z 7→ z̄, the symmetry

transformations generate the dihedral group D6 respectively D8 (the symmetry group of

the 6-gon respectively 8-gon), with 12 respectively 16 elements. Below we treat the two

cases in turn.

For the cubic situation in the (x, y) coordinates, the D6 group is generated by

(x, y) 7→
1

2
(x−

√
3y,

√
3x+y) and (x, y) 7→ (−x, y) . (2.6)

The sign of y may also be flipped independently. As a consequence, every solution E

produces 11 other solutions by discrete transformations, some of which may coincide if E

is invariant under part of the D6 group. From these observations, it is clear that

E(x, y) = E1(y) or E(x, y) = E2(
√
3x+y) or E(x, y) = E3(

√
3x−y) (2.7)

yield trivial solutions. Let us search for solutions E invariant (possibly up to sign) under

part of the D6 symmetry. To be more precise, we identify D6 invariant combinations of x

and y as improved coordinates and suggest to use them in searching for solutions of the
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master equation (1.9). These are obtained by multiplying the original coordinates with all

their D6 images, which yields (up to overall coefficients)

x2(x−
√
3y)2(x+

√
3y)2 and y2(

√
3x+y)(

√
3x−y)2 . (2.8)

Weakening the demand to D6 invariance only up to a sign, it suffices to take

v = x3 − 3x y2 and u = 3x2y − y3 . (2.9)

From (2.7) we see that E1(y) solves (1.9) while E1(x) does not. Therefore, we look for

solutions which depend only on u,

E(x, y) = f(u) . (2.10)

Substitution in (1.9) yields the nonlinear ordinary differential equation

f ′f (3) + 3uf ′′f (3) + 4f ′′f ′′ = 0 , (2.11)

where the prime denotes the derivative with respect to u. Since f appears only via its

derivatives, we pass to

p(u) = f ′(u) (2.12)

and bring (2.11) to the form

p p′′ + 3u p′p′′ + 4 p′p′ = 0 . (2.13)

We note that the potential

U(x, y) = −3(x2+y2)2 p′(u) (2.14)

and the building blocks

J(x, y) = −6yp(u)+36x2y2p′(u) and K(x, y) = 6xp(u)−18xy(x2−y2) p′(u) (2.15)

are constructed directly from the solution p(u). Thus we have demonstrated that solving

the nonlinear ordinary differential equation (2.13) will produce two-dimensional integrable

models admitting a cubic integral of motion.

Before solving (2.13) in full generality, let us repeat the exercise for the quartic case.

In the (x, y) coordinates, the basic D8 actions read

(x, y) 7→
1√
2
(x−y, x+y) and (x, y) 7→ (−x, y) . (2.16)

They generate, in particular, the interchange of x and y and independent sign flips of x

or y. Hence, every solution F produces up to 15 other solutions by discrete transformations,

some of which may coincide. Note that

F (x, y) = F1(x) + F3(y) or F (x, y) = F2(x−y) + F4(x+y) (2.17)

yields trivial solutions.4

4At the end of the paper we comment more on such cases.
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Let us look for solutions F invariant (possibly up to sign) under part of the D8

symmetry. To this end, we identify more symmetric combinations of the variables by

multiplying suitable D8 images of x or y. The simplest possibilities are the so-called

parabolic coordinates

s = x y and t =
1

2
(x2−y2) , (2.18)

which are invariant under (x, y) 7→ (−x,−y), so that only a D4 subgroup remains effective.

Indeed, the two generators in (2.16) act as

(s, t) 7→ (t,−s) and (s, t) 7→ (−s, t) . (2.19)

Consider solutions which depend only on one of the parabolic variables, thus being mani-

festly invariant under a quarter of the original D8 symmetry. From the x ↔ y symmetry

of (1.14) it does not matter which variable we choose, so we consider the ansatz

F (x, y) = f(s) , (2.20)

which is inert under (x, y) 7→ (y, x) as well. Substitution in (1.14) yields the nonlinear

ordinary differential equation

f ′f (4) + 3sf ′′f (4) + 12f ′′f (3) + 3sf (3)f (3) = 0 , (2.21)

where the prime now denotes the derivative with respect to s. It can immediately be

integrated once to

f ′f (3) + 3sf ′′f (3) + 4f ′′f ′′ = C (2.22)

with an integration constant C. Since f appears only via its derivatives, we pass to

p(s) = f ′(s) (2.23)

and bring (2.21) to the form

p p′′ + 3s p′p′′ + 4 p′p′ = C . (2.24)

We note that the building blocks

U(x, y) = −
1

4
(x2+y2) p′(s) , P (x, y) = y2p′(s) , Q(x, y) = −(1 + s∂s)p(s) (2.25)

and R(x, y) are constructed directly from the solution p(s). Solving (2.24) will thus provide

integrable models with a quartic integral of motion.

It will not have escaped the reader’s attention that, for vanishing integration con-

stant C, the reduced master equation (2.24) coincides with the reduced master equa-

tion (2.13) for the cubic case! Therefore, the cubic task is contained in the quartic one, and

we may again discuss them together from now on, writing s as the variable in both cases.

The reduced master equation (2.24) is still invariant under the following two continuous

transformations,

(

p̃(s) , C̃
)

=
(

λ p(s/λ) , C
)

and
(

p̃(s) , C̃
)

=
(

λ p(s) , λ2C
)

, (2.26)

– 6 –
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which yield new solutions p̃ from an old solution p. The first case amounts to a simultaneous

rescaling of p and s, keeping p′ and C inert, while the second case scales only p but also

changes C, relating solutions for different (nonzero) values of the integration constant.

Therefore, it suffices to consider C = 0,+1,−1 only. Unfortunately, we failed to solve (2.24)

for nonzero C.5 So in what follows we restrict ourselves to the case C = 0, which is no loss

in the cubic case and keeps both transformations in (2.26) viable.

3 Reduced master equation and new integrable models

The key to solving

p p′′ + 3s p′p′′ + 4 p′p′ = 0 (3.1)

is the substitution

p′(s) = s−1g
(

p(s)
)

, (3.2)

where g(p) is a function to be determined. This reduces (3.1) to the form

0 =
(

p+ 3g(p)
)dg

dp
(p) + g(p)− p =

1

2

d

dp

[

(

3g(p)− p
)(

g(p) + p
)

]

, (3.3)

from which we obtain, with an integration constant written as 4
3β

2 for later convenience,

(

3g(p)− p
)(

g(p) + p
)

=
4

3
β2 ⇒ g(p) = −

1

3

(

p+ 2ǫ
√

p2 + β2
)

, (3.4)

where ǫ = ±1 distinguishes the two roots of the quadratic equation. Inserting (3.4)

into (3.2), we get an ordinary differential equation which is readily solved by

s =
(

p+ 2ǫ
√

p2 + β2
)(

p+
√

p2 + β2
)−2ǫ

, (3.5)

where an integration constant was absorbed into rescaling s. The scaling freedom (2.26)

also allows us to reduce β2 to ±1 unless it is zero.

To invert for p(s) at β2=± 1, we bring this relation to the form

4ǫ s p3 − 3 p2 ± 6ǫ s p+ s2 ∓ 4 = 0 , (3.6)

which shows that the two cases ǫ = ±1 differ simply by a sign flip of s. A solution to this

cubic equation reads 6

p(s) =
ǫ

4s

{

1+(1∓8s2)
[

1±20s2−8s4+8ǫs(s2±1)
3

2

]− 1

3 +
[

1±20s2−8s4+8ǫs(s2±1)
3

2

]+ 1

3

}

.

(3.7)

The full two-parameter family is obtained by reinstating the scaling variables,

p(s) = ǫ
λµ

4s

{

1 + (µ2 ∓ 8s2)
[

µ6 ± 20µ4s2 − 8µ2s4 + 8ǫµ2s (s2 ± µ2)
3

2

]− 1

3

+ µ−2
[

µ6 ± 20µ4s2 − 8µ2s4 + 8ǫµ2s (s2 ± µ2)
3

2

]+ 1

3

}

. (3.8)

5One particular C 6=0 solution gives a Calogero model with additional harmonic potential.
6For the upper sign choice, it is the unique real solution. For the lower sign choice, we can always define

a real branch of the cubic roots. In the interval s ∈ [−1, 1], two further real solutions exist.
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In order to construct the corresponding integrable models, its suffices to substitute this

function into the building blocks (2.14), (2.15) and (2.25) for the cubic and quartic cases,

respectively, and to express the variables u and s in terms of x and y via (2.9) and (2.18).

The advantage of our models is that they are given in terms of elementary functions

(cf. [27]).

Because the resulting models are rather bulky, it is instructive to dwell on the special

case of β = 0. The two possibilities ǫ = ±1 yield

g(p) = −p ⇒ p(s) = λs−1 , (3.9)

g(p) =
1

3
p ⇒ p(s) = λs

1

3 , (3.10)

We remark that for small and for large values of s the function p in (3.8) asymptotes to

the first and the second β=0 solutions, respectively. Let us expose the potential and the

higher invariant for β = 0. In the cubic case, one finds

U =
3λ(x2+y2)

2

(3x2y−y3)2
and I2 = ẋ3 −

6λ(3x2+y2)

(3x2−y2)2
ẋ−

12λxy

(3x2−y2)2
ẏ , (3.11)

U = −
λ(x2+y2)

2

(3x2y−y3)
2

3

and I2 = ẋ3 +
6λy2(5x2−y2)

(3x2y−y3)
2

3

ẋ−
12λxy(2x2−y2)

(3x2y−y3)
2

3

ẏ

for ǫ = +1 and ǫ = −1, respectively. It is straightforward to verify that the structure

functions U , J and K derived from (3.11) obey the equations (1.4), which provides a

consistency check for our considerations. The quartic case produces

U = −
λ

12
(x2+y2)(xy)−

2

3 and I2 = ẋ4 +
λ

3
(xy)

1

3

y

x
ẋ2 −

4λ

3
(xy)

1

3 ẋẏ −
λ2

36
(xy)

2

3

(

8−
y2

x2

)

(3.12)

for ǫ = −1, while ǫ = +1 yields merely two decoupled conformal particles in one dimen-

sion. Again, one readily verifies that the functions U , P , Q and R derived from (3.12)

solve (1.12). To the best of our knowledge, the models (3.11) and (3.12) are new. Act-

ing with D6 respective D8 transformations on these solutions yields little new besides the

obvious possibility of replacing s with t in all quartic-integral solutions.

We conclude with a remark concerning the second form of a trivial ansatz in (2.17).

Clearly, F = F2 + F4 satisfies the two-dimensional wave equation,

Fxx − Fyy = 0 , (3.13)

which leads to the simplifications

P (x, y) = −2U(x, y) and R(x, y) = −
1

4
Q(x, y)2 (3.14)

and finally to

I2 = −
(

ẋ ẏ −
1

2
Q(x, y)

)2

. (3.15)

– 8 –
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Thus, the quartic integral is the square of a quadratic one and, hence, it is reducible. As

an illustration, let us consider the following polynomial of fifth degree,

F (x, y) =

{

1

60
(x+y)5 +

1

24
(x+y)4

}

−
{

1

60
(x−y)5 −

1

24
(x−y)4

}

=
1

60

(

5x4 + 10x4y + 30x2y2 + 20x2y3 + 5y4 + 2y5
)

. (3.16)

In this case, the potential and the quartic integral of motion read

U(x, y) = −
1

2
(x2+y2)− x2y −

1

3
y3 and I2 = −

(

ẋ ẏ + x y +
1

3
x3 + x y2

)2

, (3.17)

which reproduces the model studied in [35].7

4 Summary and outlook

In this work we uncovered a dihedral D6 or D8 symmetry of the master equation underlying

two-dimensional integrable models featuring a second integral of motion which is cubic or

quartic in the velocities. We introduced a symmetry-adapted ansatz employing invariant

variables, which reduced the master equation to an ordinary differential equation. The

latter was then solved by conventional methods. Interestingly, the reduced master equation

for the quartic case is just the derivative of the corresponding equation in the cubic case.

Our second result is that solutions of the two-dimensional wave equation generate another

family of integrable models possessing a quartic invariant which, however, degenerates to

the square of a quadratic one and, thus, is reducible. Finally, we conjecture that, quite

generally, the master equation governing two-dimensional models with a constant of motion

of nth order in the velocities enjoys a D2n invariance. We hope to test and apply this idea

to the quintic and sextic cases in the future.
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