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and it generalizes to arbitrary α6=0 the OSp(4|2) superconformal mechanics of

arXiv:0905.4951[hep-th]. As in the latter case, the U(2) spin variables are described
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with fixed isospins. The conformal potential is determined by the external magnetic field

in the Wess-Zumino term, whose strength is quantized like in the OSp(4|2) case. As a
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1 Introduction

The interest in various models of N=4 superconformal mechanics is mainly caused by the

possibility of using them for the description of supergravity black-hole solutions within the

AdS/CFT correspondence, as was first suggested in [1].

In [2], we constructed a new N=4 superconformal matrix model with U(n) gauge

symmetry. This model is described by the following harmonic superspace action,

S = −
1

4(1 + α)

∫
µHTr

(
X

−1/α
)

+
1

2

∫
µ

(−2)
A V0Z̃

+Z+ +
i

2
c

∫
µ

(−2)
A TrV ++ , (1.1)

where α is a real parameter which can take any non-zero value. The first term in (1.1) is

the gauged action of the (1,4,3) multiplets which are described by hermitian (n×n)-matrix

superfields X = (Xba), a, b = 1, . . . , n. They are in the adjoint of U(n) and are subject to

appropriate gauge-covariant constraints. These constraints involve the gauge connections

which are expressed through the analytic harmonic gauge superfield V ++(ζ, u) [3]. The

third term in (1.1) is a Fayet-Iliopoulos (FI) term for V ++ and the real constant c is its

strength. The second term in (1.1) is a Wess-Zumino (WZ) action describing n commuting

analytic superfields Z+
a which represent off-shell N=4 multiplets of type (4,4,0) and are

in the fundamental of U(n). The superfield V0(ζ, u) is a real analytic gauge prepotential

for the U(n) singlet (1,4,3) superfield X0 ≡ Tr (X) .
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After passing to the WZ gauge, eliminating auxiliary degrees of freedom and fixing a

gauge with respect to the residual gauge group, the model (1.1) involves n bosonic fields

xa which are the first components of the diagonal superfields Xaa (no sum over a), n2

fermionic fields ψba which are the second components in the θ expansion of Xba, and the

lowest commuting components of the superfields Z+
a . The latter variables are described by

Wess-Zumino-type d = 1 actions and parametrize n independent target spheres S2 . Thus,

they may be interpreted as target harmonic variables. After quantization, they become a

sort of non-dynamical spin variables representing n “fuzzy” spheres.

The model (1.1) is invariant under the most general N=4 superconformal symmetry

D(2, 1;α) (with the more customary OSp(4|2) and SU(1, 1|2) symmetries as particular

cases). It contains two SU(2) R-symmetry subgroups one of which acts only on fermions.

In the case of D(2, 1;α=−1
2) ≃ OSp(4|2), this model yields a new N=4 supersymmetric

extension of the U(2) spin An−1 Calogero system.

Note that for α=−1 we have D(2, 1;α=−1) ≃ SU(1, 1|2)⊂×SU(2). It was argued

in [4] that the large-n limit of the n-particle SU(1, 1|2) superconformal Calogero model

provides a microscopic description of the extreme Reissner-Nordström (RN) black hole in

the near-horizon limit. This hypothesis is based on the assertion that for a large number

of particles and in a limit when all coordinates of the Calogero model, except for one,

are treated as “small”, the Calogero model reduces to the conformal mechanics for this

“allocated” coordinate.

For all values of α6=−1/2 , the actions (1.1) yield non-trivial conformal sigma mod-

els in the bosonic limit. Therefore, the model (1.1) can hardly be utilized to describe a

single black hole along the lines of [4]. Yet, it may be relevant to the multi-black-hole sys-

tem, since the corresponding moduli spaces of n black holes in four- and five-dimensional

supergravities are known to be described by sigma-model-type multi-black-hole quantum

mechanics [5–9]. They become flat precisely in the case of OSp(4|2) superconformal sym-

metry, i.e. at α=−1/2.

Note that the construction of a self-consistent n-body generalization of black-hole

quantum mechanics is a rather complicated problem [5–9] beyond the one- and two-body

cases. In order to have a normalizable ground state in the latter cases, one should apply

a proper time redefinition, just as in conformal quantum mechanics [10]. If the general

multi-black-hole quantum mechanics amounts to supersymmetric Calogero models, one

can employ the powerful machinery developed for integrable super-Calogero systems (see

e.g. [11–17]).

In the present paper we investigate the n=1 case of the model (1.1), which describes

the center-of-mass motion in the general super-Calogero model and, therefore, corresponds

to a single black hole. The special case of α=−1/2, both on classical and quantum levels,

was considered in detail in [18]. Here, we extend this consideration to all non-zero values

of α.1 We hope that an exhaustive understanding of the n=1 case will be helpful for

attacking the quantum D(2, 1;α) model for arbitrary values of n.

We use the standard notations of N=4, d=1 supersymmetric theories, following [20, 21]

and [18].

1Another view of the D(2, 1;α) superconformal mechanics models with spin variables (based on an su(2)

Hamiltonian reduction at the classical component level) was presented in [19].
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2 Superfield setup

The one-particle limit of the model (1.1) involves superfields corresponding to three

off-shell N=4 supermultiplets: (i) the “radial” multiplet (1,4,3); (ii) the Wess-Zumino

(“isospin”) multiplet (4,4,0); and (iii) the gauge (“topological”) multiplet. The total

action has the form

S = SX + SFI + SWZ . (2.1)

The first term in (2.1) is the standard free action of the (1,4,3) multiplet (α 6= 0)

SX = −
1

4(1 + α)

∫
µH X

−1/α , (2.2)

where the even real superfield X is subjected to the constraints

D++
X = 0 , (2.3)

D+D−
X = 0 , D̄+D̄−

X = 0 , (D+D̄− + D̄+D−)X = 0 . (2.4)

The set of conditions (2.3) and (2.4) is equivalent to the standard constraints DiDi X = 0,

D̄iD̄
i
X = 0, [Di, D̄i]X = 0 for the superfield X living in the “central basis N=4 superspace”

parametrized by the coordinates θi, θ̄
i and t.

Note that the action (2.2) is in fact non-singular at α = −1 . Indeed, making use

of the fact that
∫
µH X is an integral of total derivative, we cast the action (2.2) in the

equivalent form

SX = −
1

4(1 + α)

∫
µH

(
X

−1/α − X

)
.

Thus in the limit α = −1 we obtain the standard action

SX

∣∣∣
α=−1

= −
1

4

∫
µH X lnX , (2.5)

The action (2.2) is not defined at α=0, and this special case needs a separate analysis (see

section 5). In what follows we always assume that α 6= 0 .

The second term in (2.1) is FI term

SFI =
i

2
c

∫
µ

(−2)
A V ++ (2.6)

for the gauge supermultiplet. The even analytic gauge superfield V ++(ζ, u), D+ V ++ = 0,

D̄+ V ++ = 0 , is subjected to the gauge transformations

V ++′ = V ++ −D++λ, λ = λ(ζ, u) , (2.7)

which are capable to gauge away, locally, all the components from V ++. However, the

latter contains a component which cannot be gauged away globally. This is the reason why

this d = 1 supermultiplet was called “topological” in [3].

Last term in (2.1) is Wess-Zumino (WZ) term

SWZ =
1

2
b

∫
µ

(−2)
A V Z̃+ Z+ . (2.8)
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Here, the complex analytic superfield Z+, Z̃+ (D+Z+ = D̄+Z+ = 0) , is subjected to the

harmonic constraints

D
++ Z+ ≡ (D++ + i V ++)Z+ = 0 , D

++ Z̃+ ≡ (D++ − i V ++) Z̃+ = 0 (2.9)

and describes a gauge-covariantized version of the N=4 multiplet (4,4,0). The relevant

gauge transformations are

Z+′ = eiλZ+, Z̃+′ = e−iλZ̃+ . (2.10)

We explicitly included a coupling constant b in (2.8) in order to track the contribution of

WZ term to the full component action. Afterwards, this constant will be put equal to 1.

The superfield V(ζ, u) in (2.8) is a real analytic gauge superfield (D+ V = D̄+ V = 0),

which is a prepotential solving the constraints (2.3) and (2.4) for X. It is related to the

superfield X in the central basis by the harmonic integral transform [22]

X(t, θi, θ̄
i) =

∫
duV

(
tA, θ

+, θ̄+, u±
) ∣∣∣
θ±=θiu±i , θ̄

±=θ̄iu±i

. (2.11)

The unconstrained analytic prepotential V possesses its own pregauge freedom

δV = D++λ−− , λ−− = λ−−(ζ, u) , (2.12)

which can be exploited to show that V describes just the multiplet (1,4,3) (after choosing

the appropriate Wess-Zumino gauge) [22]. The coupling to the multiplet (1,4,3) in (2.8)

is introduced for ensuring superconformal invariance. We shall see that, upon passing to

components, it gives rise to non-trivial interactions for the physical fields. The invariance

of (2.8) under (2.12) is ensured by the constraints (2.9).

Besides the gauge U(1) symmetry (2.7), (2.10) and pregauge symmetry (2.12), the

action (2.1) respects the rigid N=4 superconformal symmetry D(2, 1;α) . All super-

conformal transformations are contained in the closure of the supertranslations and

superconformal boosts.

Invariance of the action (2.1) under the supertranslations (ε̄i = (εi))

δt = i(θkε̄
k − εkθ̄

k), δθk = εk, δθ̄k = ε̄k

is automatic because we use the N=4 superfield approach.

The coordinate realization of the superconformal boosts ofD(2, 1;α) [3, 21] is as follows

(η̄i = (ηi)):

δ′t = it(θkη̄
k + θ̄kηk) + (1 + α) θiθ̄

i(θkη̄
k + θ̄kηk) , (2.13)

δ′θi = ηit− 2iα θi(θkη̄
k) + 2i(1 + α) θi(θ̄

kηk) − i(1 + 2α) ηi(θkθ̄
k) , (2.14)

δ′θ̄i = η̄it− 2iα θ̄i(θ̄kηk) + 2i(1 + α) θ̄i(θkη̄
k) + i(1 + 2α) η̄i(θkθ̄

k) , (2.15)

δ′tA = α−1ΛtA , δ′u+
i = Λ++u−i , (2.16)

δ′θ+ = η+tA + 2i(1 + α)η−θ+θ̄+ , δ′θ̄+ = η̄+tA + 2i(1 + α)η̄−θ+θ̄+ , (2.17)

δ′(dtd4θ) = −α−1 (dtd4θ)Λ0 , δ′µH = µH
(
2Λ − α−1(1 + α)Λ0

)
, δ′µ

(−2)
A = 0 , (2.18)

– 4 –
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where

Λ = Λ̃ = 2iα(η̄−θ+−η−θ̄+) , Λ++ = D++Λ = 2iα(η̄+θ+−η+θ̄+) , D++Λ++ = 0 , (2.19)

Λ0 = 2Λ −D−−Λ++ = 2iα(θkη̄
k + θ̄kηk) , D++Λ0 = 0 . (2.20)

Taking the field transformations in the form (here we use the “passive” interpretation of

them)

δ′X = −Λ0 X , δ′V = −2ΛV , δ′Z+ = ΛZ+ , δ′V ++ = 0 , (2.21)

it is easy to check the invariance of the action (2.1). Note that the constraints (2.3), (2.4)

and (2.9) as well as the actions (2.2), (2.6) and (2.8), are invariant with respect to

the D(2, 1;α) transformations with an arbitrary α6=0. It is worth pointing out that

the action (2.8) is superconformally invariant just due to the presence of the analytic

prepotential V .

3 Component actions

3.1 Action for (1,4,3) supermultiplet

The solution of the constraint (2.3), (2.4) is as follows (in the analytic basis):

X = x+ θ−ψ+ + θ̄−ψ̄+ − θ+ψ− − θ̄+ψ̄− + θ−θ̄−N++ + θ+θ̄+N−− + (θ−θ̄+ + θ+θ̄−)N

+ θ−θ+θ̄−Ω+ + θ̄−θ̄+θ−Ω̄+ + θ−θ̄−θ+θ̄+D . (3.1)

Here

N±± = N iku±i u
±
k , N = iẋ−N iku+

i u
−
k , D = 2ẍ+ 2iṄ iku+

i u
−
k , (3.2)

ψ± = ψiu±i , ψ̄± = ψ̄iu±i , Ω+ = 2iψ̇+ , Ω̄+ = −2i ˙̄ψ+ (3.3)

and x(tA), N ik = N (ik)(tA), ψi(tA), ψ̄i(tA) = (ψi) are d=1 fields.

Inserting (3.1) in (2.2) we obtain

SX =
1

4α2

∫
dt x−

1
α
−2

[
ẋẋ− i

(
ψ̄kψ̇

k − ˙̄ψkψ
k
)
−

1

2
N ikNik

]
(3.4)

−
1

4α2

(
1

α
+ 2

) ∫
dt x−

1
α
−3N ikψ(iψ̄k)

−
1

12α2

(
1

α
+ 2

)(
1

α
+ 3

) ∫
dt x−

1
α
−4 ψiψ̄kψ(iψ̄k) .

In the central basis the θ expansion (3.1) takes the form:

X(t, θi, θ̄
i) = x+ θiψ

i + ψ̄iθ̄
i + θiθ̄kNik +

i

2
(θ)2ψ̇iθ̄

i +
i

2
(θ̄)2θi

˙̄ψi +
1

4
(θ)2(θ̄)2ẍ , (3.5)

where (θ)2 ≡ θiθ
i = −2θ+θ−, (θ̄)2 ≡ θ̄iθ̄i = 2θ̄+θ̄− . Then, from (2.11) we can identify the

fields appearing in the WZ gauge for V with the fields in (3.5)

V(tA, θ
+, θ̄+, u±) = x(tA) − 2 θ+ψi(tA)u−i − 2 θ̄+ψ̄i(tA)u−i + 3 θ+θ̄+N ik(tA)u−i u

−
k . (3.6)

This expansion will be used to express the action (2.8) in terms of the component fields.

– 5 –
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3.2 FI and WZ actions

Using the U(1) gauge freedom (2.7), (2.10) we can choose WZ gauge

V ++ = −2i θ+θ̄+A(tA) . (3.7)

Then

SFI = c

∫
dtA . (3.8)

The solution of the constraint (2.9) in WZ gauge (3.7) is

Z+ = ziu+
i +θ+ϕ+θ̄+φ+2i θ+θ̄+∇tAz

iu−i , Z̃+ = z̄iu
+i+θ+φ̄−θ̄+ϕ̄+2i θ+θ̄+∇tA z̄iu

−i

where

∇zk = żk + iA zk , ∇z̄k = ˙̄zk − iA z̄k . (3.9)

In (3.9), zi(tA) and ϕ(tA), φ(tA) are d=1 fields, bosonic and fermionic, respectively. The

fields zi form a complex doublet of the R-symmetry SU(2) group, while the fermionic

fields are singlets of the latter. Another (“mirror”) R-symmetry SU(2) is not manifest in

the present approach: the bosonic fields are its singlets, while the fermionic fields form a

doublet with respect to it.

Inserting expressions (3.9) and (3.6) in the action (2.8) and performing integration

over θ s and harmonics there, we obtain a component form of the WZ action

SWZ =
i

2
b

∫
dt
(
z̄k∇z

k −∇z̄k z
k
)
x−

1

2
b

∫
dtN ikz̄izk (3.10)

+
1

2
b

∫
dt
[
ψk (ϕ̄ zk + z̄kφ) + ψ̄k

(
φ̄ zk − z̄kϕ

)
− x

(
φ̄ φ+ ϕ̄ ϕ

) ]
.

The fermionic fields φ,ϕ are auxiliary. The action is invariant under the residual local U(1)

transformations

A′ = A− λ̇0 , zi′ = eiλ0zi , z̄i
′ = e−iλ0 z̄i (3.11)

(and similar phase transformations of the fermionic fields).

The total component action is a sum of (3.4), (3.8) and (3.10). Eliminating the auxil-

iary fields N ik, φ, φ̄, ϕ, ϕ̄, from this sum by their algebraic equations of motion,

Nik = −2bα2x
1
α

+2z(iz̄k) −

(
1

α
+ 2

)
x−1 ψ(iψ̄k) , (3.12)

φ = −
ψ̄kzk
x

, φ̄ =
ψkz̄k
x

, ϕ = −
ψkzk
x

, ϕ̄ = −
ψ̄kz̄k
x

, (3.13)

and making the redefinition

x′ = x−
1
2α , ψ′

k = −
1

2α
x−

1
2α

−1ψk , z′i = x1/2 zi , (3.14)

we obtain the on-shell form of the action (2.1) in WZ gauge (we omitted the primes on x,

ψ and z)

S = Sb + Sf , (3.15)

Sb =

∫
dt
[
ẋẋ+

i

2
b
(
z̄kż

k − ˙̄zkz
k
)
−
b2α2(z̄kz

k)2

4x2
−A

(
bz̄kz

k − c
) ]

, (3.16)

Sf = −i

∫
dt
(
ψ̄kψ̇

k − ˙̄ψkψ
k
)

+ 2bα

∫
dt
ψiψ̄kz(iz̄k)

x2
+

2

3
(1 + 2α)

∫
dt
ψiψ̄kψ(iψ̄k)

x2
. (3.17)
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It is still invariant under the gauge transformations (3.11). The d=1 gauge connection

A(t) in (3.16) is the Lagrange multiplier for the constraint

z̄kz
k = c . (3.18)

This constraint implies c > 0. After varying with respect to A, the action (3.15) is gauge

invariant only with taking into account the constraint (3.18) which is gauge invariant by

itself. The constant b in (3.16), (3.17) marks the contributions of the superfield WZ term to

the physical component action. It can be eliminated by a proper rescaling of the variables

zi, z̄i, so hereafter we choose b = 1 .

It is convenient to fully fix the residual gauge freedom by choosing the phases of z1

and z2 opposite to each other. In this gauge, the constraint (3.18) is solved by

z1 = κ cos
γ

2
eiβ/2 , z2 = κ sin

γ

2
e−iβ/2 , κ2 = c . (3.19)

In terms of the newly introduced fields the bosonic action (3.16) takes the form2

Sb =

∫
dt
[
ẋẋ−

α2c2

4x2
−
c

2
cos γ β̇

]
. (3.20)

As argued in section 5, this action can be relevant to describing some particular orbits near

horizon of the extreme D=5 black holes. The spinor zk provides a parametrization of the

angular part of the set of the horizon coordinates.

Unconstrained fields in the action (3.15), three bosons x, γ, β and four fermions ψk,

ψ̄k, constitute some on-shell supermultiplet with three bosonic and four fermionic fields. As

opposed to the off-shell (3,4,1) supermultiplet considered in [20, 23, 24] the action (3.16)

contains “true” kinetic term only for one bosonic component x which also possesses the

conformal potential, whereas two other fields parametrizing the coset SU(2)R/U(1)R are

described by a WZ term. Taken separately, the WZ term provides an example of Chern-

Simons mechanics [25–31]. The variables γ(t) and β(t) (or zk and z̄k in the manifestly SU(2)

covariant formulation) become (iso)spin degrees of freedom (target SU(2) harmonics) upon

quantization. The realization of the D(2, 1;α) superconformal transformations on these

fields will be given in the next section.

It should be stressed that the considered model realizes a new mechanism of generating

conformal potential ∼ 1/x2 for the field x(t). Before eliminating auxiliary fields, the

component action contains no explicit term of this kind. It arises as a result of varying with

respect to the Lagrange multiplier A(t) and making use of the arising constraint (3.18). As

we shall see, in quantum theory this new mechanism entails a quantization of the constant c .

The naive inspection of the bosonic action (3.16) could lead to the conclusion that

angular variables completely decouple from a radial variable, and, hence, are superfluous.

Moreover, the classical dynamics associated with the WZ term in (3.16) is trivial.

However, like in other Chern-Simons-type theories, this term has a non-trivial impact on

the quantum properties of the model. Indeed, as we shall see in the quantum case, owing

to the non-trivial geometry of the angular space the quantum state vectors necessarily

2The fermionic action (3.17) can also be rewritten in terms of β and γ , like its α=− 1/2 prototype [18].

– 7 –
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carry quantum numbers of the SU(2) spin. Though in the bosonic limit this symmetry

is purely internal (it commutes with the d = 1 conformal group SL(2, R)), the presence

of angular variables leads to the property that the wave function encompasses non-trivial

SU(2) multiplets.3 In the supersymmetry case, when the full action (3.15) is considered,

the situation becomes even more involved. Now this SU(2) symmetry in addition acts on

fermions in parallel with the second SU(2) R-symmetry which from the very beginning

is realized only on fermionic fields, and these either SU(2) are an essential part of the

superconformal group. Examining the action (3.15), we were not able to find any change

of variables which would decouple the angular variables from other ones. Actually, we

already observed the same phenomenon in the particular OSp(4|2) case [18]. Now we see

that it persists at any choice of the parameter α in D(2, 1;α) . Even at the classical level,

the WZ term yields, e.g., a non-trivial additional contribution to the fermionic equations

of motion (coming from the term proportional to b in (3.17)). Although in the β, γ

parametrization both γ and β̇ can be expressed through fermions and some integration

constant by their classical equations of motion, an essential trace of the WZ couplings

still remains in the equations of motion for fermions, producing a mass term for them

and modifying the coefficients before the third order terms.4 The Hamiltonian, N=4

supercharges and other D(2, 1;α) generators also involve important new pieces caused by

the WZ term and additional fermionic couplings associated with it (see below).

3.3 N=4 superconformal symmetry in WZ gauge

The transformations and their generators look most transparent in terms of the SU(2)

doublet quantities zk and z̄k.

To determine the superconformal transformations of component fields, we should

know the appropriate compensating gauge transformations needed to preserve the WZ

gauge (3.7). For supertranslations and superconformal boosts the parameter of the com-

pensating gauge transformations is as follows

λ = 2i
[
(θ+ε̄− − θ̄+ε−) + tA (θ+η̄− − θ̄+η−)

]
A (3.21)

where

ε− := εiu−i , η− := ηiu−i . (3.22)

Taking this into account, we obtain the relevant infinitesimal D(2, 1;α) transformations

which leave the action (3.15) invariant (as in (3.15) we omit ‘primes’ on the newly intro-

3In the bosonic case, in accord with the general concept of separating variables, one can postulate that

the wave function is a product of the chargeless conformal mechanics wave function by the lowest Landau

level wave function associated with the SU(2) WZ term. No such a separation is possible in the generic

superconformal case due to the presence of fermions interacting with both types of bosonic variables.
4We thank S. Krivonos for a discussion on this issue.
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duced variables):

δx = −ωiψ
i + ω̄iψ̄i , (3.23)

δψi = iη̄ix− iω̄iẋ− α
ω̄kz

(iz̄k)

x
− (1 + 2α)

ω̄kψ
kψ̄i + ωkψ

kψi

x
, (3.24)

δψ̄i = −iηix+ iωiẋ− α
ωkz(iz̄k)

x
+ (1 + 2α)

ωkψ̄kψi + ω̄kψ̄kψ̄i
x

, (3.25)

δzi = −2α
ω(iψk) + ω̄(iψ̄k)

x
zk , δz̄i = 2α

ω(iψk) + ω̄(iψ̄k)

x
z̄k , (3.26)

δA = 0 , (3.27)

where ωi = εi+t ηi and ω̄i = ε̄i+t η̄i . Note that the closure of d=1 Poincarè supersymmetry

transformations is a sum of the time translations and residual U(1) gauge transformation

with a field-dependent parameter. Such a sum turns out to vanish for the d=1 gauge field

A. In appendix this specifically d=1 phenomenon is expounded on a simple example of toy

N=2 supersymmetric model.

Now, using the Nöther procedure, we can directly find the classical generators of the

supertranslations

Qi = pψi + 2iα
z(iz̄k)ψk

x
+ i(1 + 2α)

ψkψ
kψ̄i

x
, (3.28)

Q̄i = p ψ̄i − 2iα
z(iz̄k)ψ̄

k

x
+ i(1 + 2α)

ψ̄kψ̄kψi
x

, (3.29)

where p ≡ 2ẋ, as well as of the superconformal boosts:

Si = −2xψi + tQi, S̄i = −2xψ̄i + t Q̄i . (3.30)

The remaining (even) generators of the supergroup D(2, 1;α) can be found by evaluating

mutual anticommutators of the odd generators.

As follows from the action (3.15), the SU(2) spinor variables are canonically self-

conjugate due to the presence of second-class constraints for their momenta. As a result,

non-vanishing canonical Dirac brackets (at equal times) have the following form

[x, p]
D

= 1, [zi, z̄j ]D = −iδij , {ψii
′

, ψkk
′

}
D

=
i

2
ǫikǫi

′k′
(
{ψi, ψ̄j}D

=
i

2
δij

)
(3.31)

where we introduced the notations

ψii
′

= (ψi1
′

, ψi2
′

) = (ψi, ψ̄i), (ψii
′
) = ψii′ = ǫikǫi′k′ψ

kk′ , (ǫ12 = ǫ21 = 1). (3.32)

Using Dirac brackets (3.31), we arrive at the following closed superalgebra:

{Qai
′i, Qbk

′k}
D

= 2i
(
ǫikǫi

′k′T ab+αǫabǫi
′k′J ik−(1+α)ǫabǫikIi

′k′
)
, (3.33)

[T ab, T cd]
D

= −ǫacT bd−ǫbdT ac, (3.34)

[J ij , Jkl]
D

= −ǫikJjl−ǫjlJ ik, [Ii
′j′ , Ik

′l′ ]
D

= −ǫikIj
′l′−ǫj

′l′Ii
′k′ , (3.35)

[T ab, Qci
′i]

D
= ǫc(aQb)i

′i, [J ij , Qai
′k]

D
= ǫk(iQai

′j), [J i
′j′ , Qak

′i]
D

= ǫk
′(i′Qaj

′)i . (3.36)
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In (3.33)–(3.36) we use the notation

Q21′i = −Qi , Q22′i = −Q̄i , Q11′i = Si , Q12′i = S̄i , (3.37)

T 22 = H , T 11 = K , T 12 = −D . (3.38)

The explicit expressions for the generators are

H =
1

4
p2 + α2 (z̄kz

k)2

4x2
− 2α

ψiψ̄kz(iz̄k)

x2
− (1 + 2α)

ψiψ
i ψ̄kψ̄k
2x2

, (3.39)

K = x2 − t xp+ t2H , (3.40)

D = −
1

2
xp+ tH , (3.41)

J ij = i
[
z(iz̄j) + ψik

′

ψjk′
]

= i
[
z(iz̄k) + 2ψ(iψ̄

k)
]
, (3.42)

Ii
′j′ = iψki

′

ψk
j′

(
I1′1′ = −iψkψ

k , I2′2′ = iψ̄kψ̄k , I1′2′ = −iψkψ̄
k
)
. (3.43)

The relations (3.33)–(3.36) provide the standard form of the superalgebra D(2, 1;α) (see,

e.g., [23, 32, 33]). Bosonic generators T ab = T ba, J ik = Jki, Ii
′k′ = Ik

′i′ form mutually

commuting su(1, 1), su(2)R and su(2)L algebras, respectively.5

It is worth pointing out one important feature of the basic relation {Qi, Q̄j}D
= 2iHδij .

Although Q and Q̄ contain terms of the third order in ψ with the coefficients (1 + 2α),

no quartic fermionic term ∼ (1 + 2α)2 appears in the Hamiltonian. This is because of the

vanishing Dirac bracket

{ψkψ
kψ̄i, ψ̄lψ̄lψj}D

= 0 . (3.44)

The expression (3.39) coincides with the canonical Hamiltonian associated with the

action (3.15). Owing to the A-term in (3.15), there is also the first-class constraint

D0 − c ≡ z̄kz
k − c ≈ 0 , (3.45)

which should be imposed on the wave functions in quantum case.

Casimir operators (on classical level) of the su(1, 1), su(2)R and su(2)L algebras are

T 2 ≡
1

2
T abTab = HK−D2 =

1

4
α2(zk z̄k)

2−2α z(iz̄k)ψ(iψ̄k)−
1

2
(1+2α)ψiψ

i ψ̄kψ̄k, (3.46)

J2 ≡
1

2
J ikJik =

1

4
(zkz̄k)

2−2z(iz̄k)ψ(iψ̄k)−
3

2
ψiψ

i ψ̄kψ̄k , (3.47)

I2 ≡
1

2
Ii

′k′Ii′k′ = IĪ−(I3)
2 =

3

2
ψiψ

i ψ̄kψ̄k . (3.48)

Using these expressions and

i

4
Qai

′iQai′i =
i

2
(QiS̄i − SiQ̄i) = 4α z(iz̄k)ψ(iψ̄k) + 2(1 + 2α)ψiψ

i ψ̄kψ̄k , (3.49)

5It would be of interest to clarify the precise relation of our realization of D(2, 1;α) derived from the

concrete model to the realization found recently in [34] from a different reasoning.
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we obtain that the second-order (classical) Casimir operator of D(2, 1;α) ,

C2 = T 2 + αJ2 − (1 + α)I2 +
i

4
Qai

′iQai′i , (3.50)

takes the form

C2 =
1

4
α(α + 1) (zk z̄k)

2 =
1

4
α(α + 1) (D0)2 . (3.51)

It is important to note that the (iso)spin (angular) variables make significant contribu-

tions to D(2, 1;α), su(1, 1) and su(2)R Casimirs (3.46), (3.47), (3.51). Additional terms in

these operators are generated by the second and third terms in the Hamiltonian (3.39) and

the first terms in the generators (3.42), all arising from the terms ∝ b in the actions (3.16)

and (3.17).

By inspecting the expressions (3.46)–(3.49), we observe that the following quantity M

vanishes identically for this particular realization of the D(2, 1;α) superalgebra:

M ≡ T 2 − α2J2 −
1

3
(1 − α2) I2 +

i

8
(1 − α)Qai

′iQai′i = 0 . (3.52)

Using this identity together with the expression (3.50), we obtain the constraint

(α+ 1)
[
T 2 − αJ2 −

1

3
(α− 1)I2

]
− (α− 1)C2 = 0 , (3.53)

which relates the Casimir of D(2, 1;α) to the Casimirs of the three mutually commut-

ing bosonic subgroups SU(1,1), SU(2)L and SU(2)R in our model. Plugging the expres-

sion (3.51) for the D(2, 1;α) Casimir in this constraint, we find that

(α+ 1)
[
T 2 − αJ2 −

1

3
(α− 1)I2 −

1

4
α(α− 1) (D0)2

]
= 0 . (3.54)

Using the expressions (3.46)–(3.48), we can check that the term in the square brackets is

vanishing, that is the expression

T 2 = αJ2 +
1

3
(α− 1)I2 +

1

4
α(α − 1) (D0)2 (3.55)

is valid for all α 6= 0 , including α= − 1 .

Note that the Hamiltonian (3.39) has the standard form of the Hamiltonian of (su-

per)conformal mechanics6

H =
1

4
p2 +

T 2

x2
. (3.56)

Using the expression (3.55), we can represent the Hamiltonian in the convenient equiva-

lent form

H =
1

4
p2 + α(α − 1)

(D0)2

4x2
+ α

J2

x2
+ (α− 1)

I2

3x2
. (3.57)

The last two terms involve the Casimirs of the groups SU(2)R and SU(2)L. The second

term contains the quantity D0=z̄kz
k which is the generator of some extra U(1) commuting

with D(2, 1;α) .

6From H = 1
4
(p2 + g

x2
) and the expressions (3.40), (3.41) we obtain T 2 = g/4.
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It is worth pointing out that at α= − 1, when D(2, 1;α) degenerates into

SU(1, 1|2)⊂×SU(2)L, the SU(2)L Casimir I2 drops out from the expression (3.50) for the

Casimir C2, as it should be. However, since in the model under consideration this SU(2)L
is realized only on fermions, the Casimir I2 reappears in the subsequent formulas from the

term i
4 Q

ai′iQai′i. Hence, even for a fixed D(2, 1;α) Casimir (3.50), the term i
4 Q

ai′iQai′i
makes a contribution ∼ I2 to the SU(1, 1) Casimir (3.55). As a result, the term with the

SU(2)L Casimir I2 is retained in (3.57) even at α= − 1 . Incidentally, the simplest form of

the Hamiltonian is achieved at α=1 .

In the next section we shall construct a quantum realization of the D(2, 1;α) superal-

gebra.

4 D(2, 1; α) quantum mechanics

4.1 Operator realization of D(2, 1;α) superalgebra

Quantum operators of physical coordinates and momenta satisfy the quantum brackets,

obtained in the standard way from (3.31)

[X,P ] = i , [Zi, Z̄j ] = δij , {Ψi, Ψ̄j} = −
1

2
δij . (4.1)

Quantum supertranslation and superconformal boost generators are defined by the

classical expressions (3.28), (3.29), (3.30). We take Weyl ordering of the fermionic quantities

in the last terms of (3.28) and (3.29):

Qi = PΨi + 2iα
Z(iZ̄k)Ψk

X
+ i(1 + 2α)

〈ΨkΨ
kΨ̄i〉

X
, (4.2)

Q̄i = P Ψ̄i − 2iα
Z(iZ̄k)Ψ̄

k

X
+ i(1 + 2α)

〈Ψ̄kΨ̄kΨi〉

X
, (4.3)

Si = −2XΨi + tQi, S̄i = −2XΨ̄i + t Q̄i . (4.4)

The symbol 〈...〉 denotes Weyl ordering. Note that

〈ΨkΨ
kΨ̄i〉 = ΨkΨ

kΨ̄i +
1

2
Ψi , 〈Ψ̄kΨ̄kΨi〉 = Ψ̄kΨ̄kΨi +

1

2
Ψ̄i

and Q̄i = −
(
Qi
)+

, S̄i = −
(
Si
)+

.

Evaluating the anticommutators of the odd generators (4.2), (4.4), one determines

uniquely the full set of quantum generators of superconformal algebra D(2, 1;α). We
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obtain7

H =
1

4
P 2 + α2 (Z̄kZ

k)2 + 2Z̄kZ
k

4X2
− 2α

Z(iZ̄k)Ψ(iΨ̄k)

X2
(4.6)

− (1 + 2α)
〈ΨiΨ

i Ψ̄kΨ̄k〉

2X2
+

(1 + 2α)2

16X2
,

K = X2 − t
1

2
{X,P} + t2 H , (4.7)

D = −
1

4
{X,P} + tH , (4.8)

Jik = i
[
Z(iZ̄k) + 2Ψ(iΨ̄k)

]
, (4.9)

I1′1′ = −iΨkΨ
k , I2′2′ = iΨ̄kΨ̄k , I1′2′ = −

i

2
[Ψk, Ψ̄

k] . (4.10)

Note that

〈ΨiΨ
i Ψ̄kΨ̄k〉 =

1

2

{
ΨiΨ

i, Ψ̄kΨ̄k

}
−

1

4
= ΨiΨ

i Ψ̄kΨ̄k − ΨiΨ̄
i +

1

4
,

Ψi〈ΨlΨ
l Ψ̄kΨ̄k〉 = −〈ΨlΨ

l Ψ̄kΨ̄k〉Ψ
i =

1

2
〈ΨlΨ

lΨ̄i〉 ,

Ψ̄i〈ΨlΨ
l Ψ̄kΨ̄k〉 = −〈ΨlΨ

l Ψ̄kΨ̄k〉Ψ̄i =
1

2
〈Ψ̄kΨ̄kΨi〉 .

It can be directly checked that the generators (4.2)–(4.10) indeed form the D(2, 1;α) super-

algebra which is obtained from the DB superalgebra (3.33)–(3.36) in the standard fashion

(changing altogether DB by (anti)commutators and multiplying the right-hand sides by i):

{Qai′i,Qbk′k} = −2
(
ǫikǫi

′k′Tab+αǫabǫi
′k′Jik−(1+α)ǫabǫikIi

′k′
)
, (4.11)

[Tab,Tcd] = −i
(
ǫacTbd+ǫbdTac

)
, (4.12)

[Jij ,Jkl] = −i
(
ǫikJjl+ǫjlJik

)
, [Ii

′j′ , Ik
′l′ ] = −i

(
ǫikIj

′l′+ǫj
′l′Ii

′k′
)
, (4.13)

[Tab,Qci′i] = iǫc(aQb)i′i, [Jij ,Qai′k] = iǫk(iQai′j), [Ji
′j′ , Qak′i] = iǫk

′(i′Qaj′)i . (4.14)

As in (3.33)–(3.36), in (4.11)–(4.14) we use the notation

Q21′i = −Qi , Q22′i = −Q̄i , Q11′i = Si , Q12′i = S̄i , (4.15)

T22 = H , T11 = K , T12 = −D . (4.16)

7It is worth making here an important clarifying remark which refers as well to our previous paper [18].

In (4.1) and below we assign to quantum operators the following Hermitian conjugation properties

X+ = X, P+ = P , Z̄i = −
“

Zi
”+

, Ψ̄i = −
“

Ψi
”+

, (4.5)

whereas for classical quantities we still have z̄i = (zi), ψ̄i = (ψi). This change of conventions in the quantum

case is necessary for ensuring the standard Clifford algebra for quantum fermionic operators and standard

quantum supersymmetry algebra with the positive-definte right-hand side of the basic anticommutator (see

the comments after (4.11)–(4.16)). As we show in appendix B, the standard conjugation conventions can be

restored by performing the time reversal t→ −t in the initial model, thus bringing the opposite (standard)

sign to kinetic terms of all involved d=1 spinor fields.
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Note that due to (4.5) we have

(
Qai′i

)+
= −ǫikǫi′k′Q

ak′k (4.17)

and, as a result, the basic anticommutator has the standard form {Q,Q+} = H .

In the quantum case, the classical relation (3.44) is replaced by

{〈ΨkΨ
kΨ̄i〉, 〈Ψ̄lΨ̄lΨj〉} =

1

8
δij . (4.18)

and, due to (4.18), the term (1+2α)2

16X2 appears in the quantum Hamiltonian (4.6). This term

is necessary also for preserving the basic supersymmetry relations [H,Q] = [H, Q̄] = 0.

The appearance of such a “conformal” term when quantizing N=4 superconformal systems

was earlier observed in [15–17].

The quantization of the pure bosonic limit (3.16) of the classical system (3.15) does not

lead to appearance of the additional term (1+2α)2

16X2 in the corresponding quantum Hamil-

tonian which is thus a sum of only first two terms in (4.6). Using the same procedure as

in [18] this Hamiltonian can be represented in the form

H =
1

4

[
P 2 + 4α2YaYa

X2

]
, (4.19)

where

Ya =
1

2
Z̄i(σa)

i
jZ

j (4.20)

and σa, a = 1, 2, 3 are Pauli matrices. The quantities Ya, obtained via the first Hopf map

from the SU(2) spinors Zi, Z̄i, generate SU(2)R transformations in the bosonic sector of

the model (the second SU(2)L R-symmetry group of D(2, 1;α) acts in the fermionic sector

only). The operator YaYa in the second term of (4.19) is the Casimir operator of the

group SU(2)R for its realization in the bosonic sector. Due to the constraint (3.45) (for

definiteness, we adopt Z̄kZ
k-ordering in it; see also (4.58) and (4.65)), this Casimir takes the

definite value c
2

(
c
2 + 1

)
. Thus, in the pure bosonic limit our model describes a conformal

particle with the quantum potential α2 c
2

(
c
2 + 1

)
/X2 which possesses the fixed SU(2)R spin

c
2 . In the entire supersymmetric model, with all fermions taken into account, the generators

of SU(2)R contain additional fermionic parts (see (4.9)) and the corresponding full SU(2)R
Casimir operator proves not to be fixed. A thorough consideration of the pure bosonic case

of the α = −1/2 model can be found in our paper [18].

The second-order Casimir operator of the whole supergroup D(2, 1;α) is given by the

following expression [36]

C2 = T2 + αJ2 − (1 + α) I2 +
i

4
Qai′iQai′i . (4.21)
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Using the relations

T2 ≡
1

2
TabTab =

1

2
{H,K}−D2 =

1

4
α2
[
(Z̄kZ

k)2+2Z̄kZ
k
]
−2αZ(iZ̄k)Ψ(iΨ̄k) (4.22)

−
1

2
(1+2α)〈ΨiΨ

i Ψ̄kΨ̄k〉+
1

16
(1+2α)2−

3

16
,

J2 ≡
1

2
JikJik =

1

4

[
(Z̄kZ

k)2+2Z̄kZ
k
]
−

3

2

(
ΨiΨ

i Ψ̄kΨ̄k−ΨiΨ̄
i
)
−2Z(iZ̄k)Ψ(iΨ̄k), (4.23)

I2 ≡
1

2
Ii

′k′Ii′k′ =
1

2
{Ī, I}−(I3)

2 =
3

2

(
ΨiΨ

i Ψ̄kΨ̄k−ΨiΨ̄
i
)
+

3

4
(4.24)

together with

i

4
Qai′iQai′i =

i

4
[Qi, S̄i] +

i

4
[Q̄i,S

i] (4.25)

= 4αZ(iZ̄k)Ψ(iΨ̄k) + 2(1 + 2α)
(
ΨiΨ

i Ψ̄kΨ̄k − ΨiΨ̄
i
)

+ (1 + α) ,

we finally cast C2 in the form

C2 =
1

4
α(1 + α)

[
(Z̄kZ

k)2 + 2Z̄kZ
k + 1

]
. (4.26)

4.2 Invariant spaces in the enveloping algebra of D(2, 1;α)

An important property is that the enveloping algebra of D(2, 1;α) superalgebra has several

subspaces which are closed under the action of D(2, 1;α). The presence of such subspaces

provides an explanation why some bilinear combinations of the D(2, 1;α) generators in the

considered realization identically vanish without conflict with the D(2, 1;α) covariance.

This phenomenon is encountered already at the classical level (see (3.52)). As we shall

see, the realization of the D(2, 1;α) generators in the considered model is such that the

operators forming one of the invariant subspaces just mentioned are vanishing. As a result,

the physical states form a module of such a restricted representation of D(2, 1;α).

One invariant subspace is formed by the bilinear combinations

M ≡ T2 − α2 J2 −
1

3
(1 − α2) I2 +

i

8
(1 − α)Qai′iQai′i , (4.27)

Mai′i ≡
i

4

(
{Ta

b ,Q
bi′i} − α {Jij ,Q

ai′j} +
1

3
(1 − α) {Ii

′

j′ ,Q
aj′i}

)
, (4.28)

Mik, i′k′ ≡ α {Jik, Ii
′k′} −

i

2
Qb(i′(iQb

k′)k) , (4.29)

Mac, i′k′ ≡ {Tac, Ii
′k′} −

i

2
Q

(a(i′jQc)k′)
j , (4.30)

Mai, i′j′k′ ≡ i{I(i′j′ ,Qak′)k} , (4.31)

Mi′j′k′l′ ≡ {I(i′j′ , Ik
′l′)} . (4.32)
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On this set a linear finite-dimensional representation of D(2, 1;α) is realized

[M,Qai′i] = (1+α)Mai′i , (4.33)

{Mai′i,Qck′k} = −i ǫacǫi
′k′ǫikM+

i

3
(2+α) ǫacMik, i′k′−

i

3
(1+2α) ǫikMac, i′k′ , (4.34)

[Mik, i′k′ ,Qbj′j ] = 4ǫj(iǫj
′(i′Mbk′)k)+(1+2α)ǫj(iMbk), i′j′k′ , (4.35)

[Mac, i′k′ ,Qbj′j ] = −4ǫb(aǫj
′(i′Mc)k′)j+(2+α)ǫb(aMc)j, i′j′k′ , (4.36)

{Mai, i′j′k′ ,Qbl′l}= −2iǫbaǫl
′(i′Mil,j′k′)−2iǫliǫl

′(i′Mab,j′k′)+2i(1+α)ǫbaǫliMi′j′k′l′ , (4.37)

[Mi′j′k′l′ ,Qbn′n] = ǫn
′(i′Mbn, i′j′k′) . (4.38)

The second invariant subspace is formed by the quantities

N ≡ T2+
1

3
α(2+α)J2−(1+α)2 I2+

i

8
(2+α)Qai′iQai′i , (4.39)

Nai′i ≡
i

4

(
{Ta

b ,Q
bi′i}+

1

3
(2+α) {Jij ,Q

ai′j}+(1+α) {Ii
′

j′ ,Q
aj′i}

)
, (4.40)

Ni′k′, ik ≡ −(1+α) {Jik, Ii
′k′}−

i

2
Qb(i′(iQb

k′)k) , (4.41)

Nac, ik ≡ {Tac,Jik}−
i

2
Q

(aj′(iQc)
j′
k) , (4.42)

Nai′, ijk ≡ i{J(ij ,Qai′k)} , (4.43)

Nijkl ≡ {J(ij ,Jkl)} . (4.44)

They can also be shown to constitute a basis of a linear finite-dimensional representation

of D(2, 1;α) .

At last, the third invariant subspace is formed by the bilinear operators

L ≡
1

3
(1 + 2α)T2 + α2 J2 − (1 + α)2 I2 +

i

8
(1 + 2α)Qai′iQai′i , (4.45)

Lai
′i ≡

i

4

(
1

3
(1 + 2α) {Ta

b ,Q
bi′i} + α {Jij ,Q

ai′j} + (1 + α) {Ii
′

j′ ,Q
aj′i}

)
, (4.46)

Li
′k′, ac ≡ −(1 + α) {Ii

′k′ ,Tac, } −
i

2
Q

(a(i′jQc)k′)
j , (4.47)

Lik, ac ≡ α{Jik,Tac} −
i

2
Q

(aj′(iQc)
j′
k) , (4.48)

Lii
′, abc ≡ i{T(ab,Qc)i′i} , (4.49)

Labcd ≡ {T(ab,Tcd)} . (4.50)

As for two previous invariant subspaces, these operators are closed under the action of

D(2, 1;α) .

These three invariant subspaces in the enveloping algebra have the following properties.

First, these subspaces and one-dimensional space formed by the Casimir operator (4.21)

exhaust all possible invariant subspaces in the enveloping algebra, such that they are bilin-

ear in the D(2, 1;α) generators and involve singlets of all three bosonic subgroup SL(2, R),

SU(2)R and SU(2)L.
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Second, these subspaces are related to each other via some discrete transformations.

Namely, the subspaces (4.27)–(4.32) and (4.39)–(4.44) are dual to each other. That is,

the discrete transformation

α ↔ −(1 + α) , Jik ↔ Ii
′k′ , (4.51)

which is an automorphism of the D(2, 1;α) algebra (4.11)–(4.14), takes the space (4.27)–

(4.32) into the space (4.39)–(4.44) and vice versa. The subspace (4.45)–(4.50) is a fixed

point of the mapping (4.51).

The subspace (4.45)–(4.50) is related to the subspaces (4.27)–(4.32) and (4.39)–(4.44)

via similar discrete transformations. E.g., under the transformation

α → α−1 , Tab ↔ Jik , Qai′i → α−1/2Qai′i (4.52)

the space (4.39)–(4.44) goes over into the space (4.45)–(4.50). Note, however, that the

change (4.52) (and its analog taking (4.27)–(4.32) into (4.45)–(4.50)) is ill defined for

the real form of the superalgebra D(2, 1;α) since it takes the sl(2, R) generators into

the su(2) ones. These transformations present a true automorphism of the complexified

D(2, 1;α) algebra.

In the case of α = −1/2 (when 1 + 2α = 0) the subspaces (4.27)–(4.32) and (4.39)–

(4.44) coincide. Moreover, the subspace formed by

M , Mai′i , Mik, i′k′ (4.53)

(or N, Nai′i, Ni′k′, ik) is invariant under the D(2, 1;α = −1/2) . Just this subspace was

exploited in [18].

In the case of α = −1 (when D(2, 1;α)=SU(1, 1|2) ⊂×SU(2)L) the operator (4.27)

coincides with the Casimir (4.21),

C2 = M = T2 − J2 +
i

4
Qai′iQai′i . (4.54)

Thus in this special case the appropriate invariant subspaces degenerate into the singlets

of the superconformal group SU(1, 1|2)⊂×SU(2) .8

Actually, in the case of generic α, for the particular representation of generators given

by eqs. (4.22)–(4.24) all quantities (4.27)–(4.32) identically vanish:

M = 0 , Mai′i = 0 , Mik, i′k′ = 0 , Mac, i′k′ = 0 , Mai, i′j′k′ = 0 , Mi′j′k′l′ = 0 .

(4.55)

As a consequence of these identities, there arises the relation

(1 + α)T2 − α(1 + α)J2 +
1

3
(1 − α2)I2 = −(1 − α)C2 . (4.56)

8Although our mechanical system is ill defined at α=0, the D(2, 1;α) algebra (4.11)–(4.14) as it stands

still admits such a choice, and it gives rise to the superalgebra D(2, 1;α=0)=SU(1, 1|2)⊂×SU(2)
R

. In this

case the operator (4.39) coincides with the Casimir (4.21), C2 = N = T2 − I2 + i
4
Qai′iQai′i .
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In the case of α = −1 the constraint (4.56) leads to the condition C2 = 0 that agrees with

eqs. (4.54) and 4.55, as well as with (4.26).

Using the expression (4.26) for the Casimir in r.h.s. of (4.56) we can represent the

relation (4.56) in the form

T2 − αJ2 +
1

3
(1 − α)I2 = −α(1 − α)

[
1

2
D0

(
1

2
D0 + 1

)
+

1

4

]
, (4.57)

which is valid for any value of α. Thus, for an irreducible representation of D(2, 1;α) with

the fixed C2 (see (4.69) below), the values of the Casimir operators T2, J2, I2 of the three

bosonic subgroups sl(2, R), su(2)R, su(2)L prove to be always related according to (4.57).

The operator

D0 = Z̄kZ
k , (4.58)

entering the right-hand side of (4.57) commutes with all generators of the superalgebra

D(2, 1;α) (as in the classical case).

4.3 Quantum spectrum

The Hamiltonian (4.6) and the SL(2, R) Casimir operator (4.22) can be represented as

H =
1

4

(
P 2 +

ĝ

X2

)
, (4.59)

T2 =
1

4
ĝ −

3

16
, (4.60)

where

ĝ ≡ 4α2 1

2
Z̄kZ

k

(
1

2
Z̄kZ

k+1

)
−8αZ(iZ̄k)Ψ(iΨ̄k)−2(1+2α)〈ΨiΨ

i Ψ̄kΨ̄k〉+
1

4
(1+2α)2 . (4.61)

The operators (4.59) and (4.60) formally look like those given in the model of [10]. However,

there is an essential difference. Whereas the quantity ĝ is a constant in the model of [10],

in our case ĝ is an operator which takes fixed, but different, constant values on different

components of the full wave function.

To find the quantum spectrum of (4.59) and (4.60), we make use of the realization

Z̄i = v+
i , Zi = ∂/∂v+

i (4.62)

for the bosonic operators Zk and Z̄k, as well as the following realization of the odd operators

Ψi, Ψ̄i

Ψi = ψi, Ψ̄i = −
1

2
∂/∂ψi , (4.63)

where ψi are complex Grassmann variables. Then, the wave function is defined as

Φ = A1 + ψiBi + ψiψiA2 . (4.64)
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T2 J2 I2 i
4Q

ai′iQai′i

A
(c)
k′

α2(c+1)2−1
4

(c+1)2−1
4

3
4 1 + α

B
′(c)
k

α2(c+1)2−2α(c+1)
4

(c+1)2−2(c+1)
4 0 α(c+ 1)

B
′′(c)
k

α2(c+1)2+2α(c+1)
4

(c+1)2+2(c+1)
4 0 −α(c + 1)

Table 1. The values of the Casimirs of the bosonic subgroups and i

4
Qai

′
iQai′i.

The full wave function is subjected to the same constraints (3.45) as in the bosonic

limit (we use the normal ordering for the even SU(2)-spinor operators, with all operators

Zi standing on the right)

D0Φ = Z̄iZ
iΦ = v+

i

∂

∂v+
i

Φ = cΦ. (4.65)

Like in the bosonic limit, requiring the wave function Φ(v+) to be single-valued gives rise

to the condition that the constant c is integer, c ∈ Z. We take c to be positive in order

to have a correspondence with the bosonic limit where c becomes SU(2) spin. Then (4.65)

implies that the wave function Φ(v+) is a homogeneous polynomial in v+
i of the degree c:

Φ = A
(c)
1 + ψiB

(c)
i + ψiψiA

(c)
2 , (4.66)

A
(c)
i′ = Ai′,k1...kc

v+k1 . . . v+kc , (4.67)

B
(c)
i = B

′(c)
i +B

′′(c)
i = v+

i B
′
k1...kc−1

v+k1 . . . v+kc−1 +B′′
(ik1...kc)

v+k1 . . . v+kc . (4.68)

In (4.68) we extracted SU(2) irreducible parts B′
(k1...kc−1)

and B′′
(ik1...kc)

of the component

wave functions, with the SU(2) spins (c− 1)/2 and (c+ 1)/2, respectively.

On the physical states (4.65), (4.66) Casimir operator (4.26) takes the value

C2 = α(1 + α)(c + 1)2/4 . (4.69)

On the same states, the Casimir operators (4.22)–(4.24) of the bosonic subgroups

SU(1, 1), SU(2)R and SU(2)L take the values given in the table 1.9 For different component

wave functions, the quantum numbers r0, j and i, defined by

T2 = r0(r0 − 1) , J2 = j(j + 1) , I2 = i(i+ 1) ,

take the values listed in the table 2. The fields B′
i and B′′

i form doublets of SU(2)R

9Here we use that

ΨiΨ
i Ψ̄kΨ̄k − ΨiΨ̄

i =
1

4

„

ψiψi
∂

∂ψk

∂

∂ψk
− 2ψi ∂

∂ψi

«

, ZiZ̄kΨ(iΨ̄k) = −
1

2

 

v+i ∂

∂v+
j

ψ(i
∂

∂ψj)

!

.

Therefore, we have

“

ΨiΨ
i Ψ̄kΨ̄k −ΨiΨ̄

i
”

Φ = −
1

2
ψiBi ,

“

ZiZ̄kΨ(iΨ̄k)

”

Φ = −
1

2
v+i ∂

∂v+
j

ψ(iBj) =
1

4
ψi
ˆ

(c+ 2)B′

i − cB′′

i

˜

.
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r0 j i

A
(c)
k′ (x, v+) |α|(c+1)+1

2
c
2

1
2

B
′(c)
k (x, v+) |α|(c+1)+1

2 − 1
2 sign(α) c

2 − 1
2 0

B
′′(c)
k (x, v+) |α|(c+1)+1

2 + 1
2 sign(α) c

2 + 1
2 0

Table 2. The SU(1, 1), SU(2)
R

and SU(2)
L

quantum numbers.

l

A
(c)
k′ (x, v+) |α|(c+ 1) − 1

2

B
′(c)
k (x, v+) |α|(c + 1) − 1

2 − sign(α)

B
′′(c)
k (x, v+) |α|(c + 1) − 1

2 + sign(α)

Table 3. Values of the constant l.

generated by Jik , whereas the component fields Ai′ = (A1, A2) form a doublet of SU(2)L
generated by Ii

′k′ . If the super-wave function (4.64) is bosonic (fermionic), the fields Ai′

describe bosons (fermions), whereas the fields B′
i, B

′′
i present fermions (bosons). It is easy

to check that the relation (4.56) is valid in all cases.

Each of the component wave functions Ai′ , B
′
i, B

′′
i carries an infinite-dimensional

unitary representation of the discrete series of the universal covering group of the one-

dimensional conformal group SU(1,1). Such representations are characterized by positive

numbers r0 [37, 38] (for the unitary representations of SU(1,1) the constant r0 > 0 must

be (half)integer). Basis functions of these representations are eigenvectors of the compact

SU(1,1) generator

R =
1

2

(
a−1K + aH

)
,

where a is a constant of the length dimension. These eigenvalues are r = r0 + n, n ∈

N [10, 37, 38].

Using the expressions (4.6), (4.22)–(4.24) and the values of Casimirs from the table 1,

we can write the Hamiltonian in the unified form:

H =
1

4

(
P 2 +

l(l + 1)

X2

)
(4.70)

where the constant l takes, on the separate wave functions, the values listed in the table 3.

In the above quantization, we took into account all the conditions implied by the

initial classical system. Due to the presence of additional invariant spaces in the enveloping

algebra, we may try to impose additional conditions on the wave function, e.g.

LΦ = 0 (4.71)
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where L was defined in (4.45). As a result, we could expect to obtain more restricted

spectrum at certain values of the parameters α and c. Regrettably, this conjecture fails:

in order to preserve the superconformal D(2, 1;α) covariance, we are led to assume that

all operators from the set (4.45)–(4.50), on equal footing with L , annihilate the physical

states, and these restrictions prove to be too strong. It is an open question whether the

constraints of this kind could have a non-trivial solution in some other D(2, 1;α) invariant

superconformal mechanics models.

Let us focus on some peculiar properties of the D(2, 1;α) quantum mechanics con-

structed.

As opposed to the standard SU(1, 1|2) superconformal mechanics [12, 20, 39], the

construction presented here essentially uses the variables zi (or v+
i ) parametrizing the two-

sphere S2, in addition to the standard (dilatonic) coordinate x.

The presence of additional “(iso)spin” S2 variables in our construction leads to a richer

quantum spectrum. Besides, the relevant wave functions involve representations of the two

independent SU(2) groups, in contrast to the SU(1, 1|2) models of [12, 15–17, 20, 39] where

only the SU(2) realized on fermionic variables really matters.

Also, in a contradistinction to the previously considered models (and in the same way

as in our previous paper [18] devoted to the particular α= − 1/2 case), there naturally

appears a quantization of the conformal coupling constant which is expressed as a SU(2)

Casimir operator, with both integer and half-integer eigenvalues. This happens already in

the bosonic sector of the model, and is ensured by the S2 variables.10

Note that the variables v+
i in the expansions (4.67) and (4.68) can be identified with

a half of the target space harmonic-like variables v±i (though without the standard con-

straint v+iv−i ∼ const). Within a different quantization scheme used e.g. in [40, 41], we

would have even more literal harmonic interpretation of the bosonic isospinor variables.

In both schemes, the S2 constraint (3.18) is not explicitly solved before quantization, it

is imposed on the wave functions as in (4.65). An alternative quantization scheme would

be to deal with an explicit parametrization of the two-spere S2, e.g. the stereographic

projection parametrization [30, 31] or the parametrization by the Euler angles β and γ

as in (3.20), and then to apply the canonical methods (Gupta-Bleuler quantization or

Dirac procedure).11 An important role in this case is played by the requirement of the

square-integrability of the wave function on S2, which substitutes the constraint (4.65)

of the parametrization-independent quantization schemes. As follows from the considera-

tion in [29–31], this demand ensures the wave function to contain unitary representations

of SU(2). General issues of the canonical quantization of Chern-Simons mechanics were

addressed in [27].

10Note that the strength of the conformal potential is related to the strength of the WZ term and so is

quantized also in the N=4 superconformal mechanics associated with the (3,4,1) multiplet (without non-

dynamical S2 variables) [23]. However, no direct relation between these parameters and SU(2) Casimirs

appears in this case.
11One more approach is to quantize in the oscillator variables [25, 26, 29].
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4.4 Comment on the SU(1, 1|2) case

Let us here focus on some peculiarities of the case of SU(1, 1|2) superconformal symmetry.

In the case of α= − 1 one has D(2, 1;α= − 1) ≃ SU(1, 1|2)⊂×SU(2)L, and thus our

model is invariant under SU(1, 1|2) superconformal group and an outer automorphism

group SU(2)L acting only on the fermions. In general, the supergroup SU(1, 1|2) is known

to admit a non-vanishing central charge which breaks this second R-symmetry SU(2) group

down to U(1) [20]12. Thus, if we require our model to be invariant under SU(2)L (as in the

case of generic α) the corresponding SU(1, 1|2) algebra cannot include a central charge.

There arises the question as to whether a different version of the N=4 superconformal

mechanics model with spin variables exists, such that it possesses SU(1, 1|2) symmetry

with a non-vanishing central charge. The answer is affirmative, and it can be derived from

the results of refs. [12, 15–17, 20].

When only SU(1, 1|2) symmetry is required, while SU(2)L symmetry is allowed to be

broken, the constraints (2.3) and (2.4) for the even real superfield X can be weakened [20]

by adding nonzero constants in their right-hand sides. The simplest choice is the following

set of the constraints

(a) DiDiX = 0 , D̄iD̄
i
X = 0 ; (b) [Di, D̄i]X = m (4.72)

where m is a constant. The solution of the constraints (4.72a) is a sum of (3.5) and

additional term −1
4θθ̄A, where A is some undefined constant. The constraint (4.72b) serves

to fix this constant to be m. Then the action (2.2) (with α=−1) will give rise to additional

contributions to the physical component Lagrangian (3.15), such that they are proportional

to m2/x2 and mψψ̄/x2 [20]. These additional terms appear in the Hamiltonian, and

they are induced by the appropriate new terms in the Noether supercharges. Comparing

these modified SU(1, 1|2) generators with those given in [12, 15–17], one can see that they

correspond just to the SU(1, 1|2) algebra with a central charge proportional to m.

More detailed analysis of the U(2) spin N=4 superconformal mechanics in which the

even real superfield X is subjected to the constraints (4.72) with m 6= 0 will be given

elsewhere. An interesting new feature of such a model is the presence of two complementary

mechanisms of generating the conformal potential ∼ x−2: the on-shell one via coupling to

the auxiliary superfields Z+ as in the case of generic α, and the off-shell one based on

the deformed constraints (4.72) and a non-zero central charge in the SU(1, 1|2) algebra.

It should be stressed that such a modification of the constraints is admissible only in the

case of α=−1 ; at any other value of α (not belonging to the equivalence class of the choice

α=−1) the superconformal invariance requires the constants in the right-hand sides of the

constraints to vanish.

5 Summary and outlook

In this paper we presented a new version of N=4 mechanics with D(2, 1;α) superconformal

symmetry. It is obtained as the one-particle reduction of the many-particle Calogero-type

12The quotient of the general SU(1, 1|2) over the central charge generator is sometimes denoted as

PSU(1, 1|2) .
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systems proposed in [2]. This system generalizes the OSp(4|2) superconformal mechan-

ics constructed in our previous work [18], and it shares many characteristic features of

the latter. In the bosonic sector it involves two complex fields (world-line harmonics)

parametrizing the first Hopf map S3 → S2.

Due to the presence of spin variables in the superconformal mechanics, the quantum

spectrum involves diverse D(2, 1;α) representations characterized by the specific values

of the Casimir operator (4.21), (4.26). In these representations, the particle states carry

representations of the bosonic subgroups SU(1, 1), SU(2)L and SU(2)R, the Casimirs of

which are related to each other by the constraint (4.57). This constraint is identically

satisfied for the particular realization of the D(2, 1;α) generators pertinent to our model.

The appearance of this constraint is related to the existence of some invariant subspaces

in the enveloping algebra of D(2, 1;α). We found that at generic α there exist more

invariant subspaces than for the degenerate case of α=−1/2 corresponding to OSp(4|2) [18],

where some invariant subspaces are identified.

The D(2, 1;α) superconformal mechanics was considered here for α6=0. Formally, we

can take the limit α → 0 in the final relations, and we observe that the target harmonic

degrees of freedom decouple (see, e.g., (3.16), (3.17) and (3.23)–(3.27)). Nevertheless, the

superconformal superfield action of the (1,4,3) multiplet is of a special form for α=0, so

this case requires a separate study. Here we give a brief comment on the construction of

the superfield superconformal action at α=0 .

We note that D(2, 1;α→0) reduces to SU(1, 1|2)⊂×SU(2)R. The “passive” supercon-

formal variation (2.21) of X disappears in this case, while the integration measure µH is

transformed as (see (2.18))

δ′µH = −2i(θkη̄
k + θ̄kηk)µH . (5.1)

As suggested in [22, 23], in order to ensure the superconformal invariance, it is necessary

to modify the transformation law of X and, therefore, of V in the following way,

δ′modX = 2i(θk η̄
k + θ̄kηk) , δ′modV = 4i(η̄−θ+ − η−θ̄+) . (5.2)

Then the most general D(2, 1;α=0) superconformal action for the (1,4,3) multiplet

reads [22]

SX
α=0 = −

1

4

∫
µH e

X +

∫
µ

(−2)
A c+2

V , (5.3)

where c+2 = ciju+
i u

+
j , and cij are constant parameters. The second FI term in (5.3) is

superconformal only at α=0 . It yields a conformal potential for the dilaton field with

a strength ∼ cikcik , breaks the decoupled SU(2)R down to U(1) and induces a central

charge ∼ cik in SU(1, 1|2) . Actually, this action is dual to the α=−1 action for X with

the modified constraints (4.72) [42]: the duality interchanges SU(2)L with SU(2)R and also

α with −(1+α) . However, the D(2, 1;α=0) superconformal invariance is not compatible

with the presence of V in the WZ term of the action (2.8), still implying the transformation

laws (2.21) for Z+ and for V ++ . As a consequence, the WZ term and the FI term of V ++
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decouple from the X action:

SZ,V ++

α=0 =
1

2

∫
µ

(−2)
A Z̃+Z+ +

i

2
c

∫
µ

(−2)
A V ++ . (5.4)

i.e. we loose any interaction between the superfields X and Z+. This situation is quite

analogous to what happens in the N=1 and N=2 super Calogero models considered in [2],

where the center-of-mass supermultiplet X decouples from the WZ and gauge supermulti-

plets. Note that in the many-particle N=4 super Calogero models the (matrix) X super-

multiplet will still interact with the (column) Z supermultiplet via the gauge supermultiplet

even in the α=0 case.

Based on the duality just mentioned between the cases of α=0 and α=−1, one may

expect that in the α=0 case the interaction of the superfield X with the U(2) spin variables

can still be gained by placing the latter into a “mirror” (4,4,0) multiplet, for which the

SU(2)R and SU(2)L R-symmetry groups switch their roles. In this context, it is worth

noting that the bi-harmonic N=4 approach [35] achieves a unified description of systems

with D(2, 1;α) and D(2, 1;−1−α) invariance. It allows one to naturally incorporate mirror

counterparts for all N=4 supermultiplets with four fermions. Hence, it may provide an

extension of the D(2, 1;α) superconformal models considered here, by adding such extra

supermultiplets. Upon quantization, the mirror (4,4,0) auxiliary multiplets would produce

a second family of target harmonic-like U(2) variables.

For the remainder of this outlook and as a continuation of the discussion in the Intro-

duction, let us illustrate how the models considered in this paper and in [2, 18] could be

inscribed into the context of D=5 extreme black-hole quantum mechanics.

The motion of a test particle with mass m near the horizon of an extremal Tangherlini

black hole of chargeQ (a straightforwardD=5 generalization of theD=4 extremal Reissner-

Nordström solution) is described by the simple action [5–9]

S =
mQ2

2

∫
dt |~̇y|2 , (5.5)

where ~y are the coordinates of Euclidean four-space which are related to the isotropic

near-horizon black-hole coordinates ~x via ~y = ~x/|~x|2.

Making a polar decompostiion of the 4-vector ~y into a radial part ρ = |~y| and an S3

angular part, we rewrite the action (5.5) in first-order form as

S =

∫ [
pρdρ+ ~J ·~ω − dt

1

2mQ2

(
p2
ρ +

4 ~J · ~J

ρ2

)]
. (5.6)

Here, ωi are the invariant one-forms on S3 ∼ SU(2) , parametrized by the Euler angles

(0≤γ≤π, 0≤β≤2π, 0≤φ<4π):

ω1 = − sinφdγ+cosφ sinγ dβ , ω2 = cosφdγ+sinφ sinγ dβ , ω3 = dφ+cosγ dβ . (5.7)

In the Hamiltonian approach, the quantities ~J generate some SU(2) invariance [43]. It is

easy to see that the action (5.5) is indeed reproduced by eliminating pρ and ~J in (5.6) by
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their algebraic equations of motion. Firstly, we obtain the action

S =
mQ2

2

∫
dt

[
ρ̇ρ̇+ ρ2 1

4
~ωt·~ωt

]
where ~ω = ~ωtdt . (5.8)

However, 1
4~ω·~ω is precisely the S3 metric [43, 44]. Therefore secondly, the action takes

the form

S =
mQ2

2

∫
dt
[
ρ̇ρ̇+ ρ2~̇n·~̇n

]
where |~n| = 1 . (5.9)

This is just (5.5) with ~y = ρ~n.

Performing in (5.6) a reduction with respect to the variables ~J [45],

J1 = J2 = 0 , J3 = a = const , (5.10)

and identifying ρ = bx, pρ = b−1px, a = −c/2 , where b2 = 2
mQ2 , we obtain the one-particle

bosonic limit (3.20) of the action (1.1) at |α| = 1.

The fact that just this particular value of α comes out is not surprising because the

action (5.5) was obtained in [5–9] as the bosonic limit of the SU(1, 1|2) superconformal

model. It is interesting that the action (3.20) at arbitrary non-zero value of α can still

be reproduced by the same reduction (5.10) from a deformation of the action (5.5) (or,

equivalently, of (5.6)).

This can be done in two different ways. One option is to substitute 4(J1J1 + J2J2 +

α2J3J3)/ρ
2 for 4 ~J · ~J/ρ2 in the last term of (5.6). The action (5.8) deformed in this

way involves the metric 1
4(ωt1ωt1 +ωt2ωt2 +α−2ωt3ωt3) instead of 1

4~ωt·~ωt. Such a system

describes the particle motion on a squashed 3-sphere, with α−2 as the squashing parameter.

This model may bear a tight relation to D=5 rotating black holes, whose horizon is known

to be a squashed 3-sphere [44, 46–48]. The O(4) symmetry of (5.5) is broken to O(3) in

this situation.

Another possibility is to replace 4 ~J · ~J/ρ2 in the last term of (5.6) by 4α2 ~J · ~J/ρ2. The

Lagrangian in (5.8) is then deformed into [ρ̇ρ̇ + α−2ρ2 1
4~ωt·~ωt]. This system describes

particle motion on a 4-dimensional cone C(S3) over the round sphere S3 of radius α−2 as

the base [23, 49]. This cone is conformally flat and exhibits O(4) isometry at any α6=0 ,

including the values α=±1 which correspond to the action (5.5).

In both cases, the reduction (5.10), performed in the relevant counterparts of the

action (5.6), exactly yields our action (3.20). It is amusing that the parameter α acquires

a nice geometric meaning within such a framework.
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A Toy model with N=2 supersymmetry

Here we consider N=2 supersymmetric model describing a “matter” supermultiplet cou-

pled to U(1) gauge background. Matter is represented by two chiral superfields Zk(tL, θ),

Z̄k(tR, θ̄) = (Zk)+, tL,R = t ± iθθ̄, satisfying irreducible conditions D̄Zk = 0, DZ̄k = 0,

k = 1, 2. Here, the covariant spinor derivatives are

D = ∂θ + iθ̄∂t , D̄ = −∂θ̄ − iθ∂t , {D, D̄} = −2i∂t .

The gauge prepotential is a real superfield V (t, θ, θ̄), (V )+ = V . The action has the

following form

S =

∫
dtd2θ

[
Z̄k e

2VZk + c V
]
. (A.1)

It is invariant under the local U(1) transformations:

Zk → e−iΛZk , Z̄k → eiΛ̄Z̄k , V → V +
i

2

(
Λ − Λ̄

)
(A.2)

where Λ(tL, θ), Λ̄(tR, θ) = (Λ)+ are chiral and antichiral superfield gauge parameters.

Supersymmetry transformations of a general N=2 superfield F are defined by

δF = −(δt∂t + δθ∂θ + δθ̄∂θ̄)F = −(εQ− ε̄ Q̄)F (A.3)

where the generators of SUSY transformations are

Q = ∂θ − iθ̄∂t , Q̄ = −∂θ̄ + iθ∂t .

Component contents of the superfields defined above are

Zk = zk+2iθφk+ iθθ̄żk , Z̄k = z̄k+2iθ̄φ̄k− iθθ̄ ˙̄zk , V = v+θχ− θ̄χ̄+θθ̄A , (A.4)

where φk, φ̄k = (φk) and χ, χ̄ = (χ) are fermionic fields. For the component fields the

transformations (A.3) yield

δzk = −2iεφk , δz̄k = −2iε̄φ̄k , δφk = −ε̄żk , δφ̄k = −ε ˙̄zk , (A.5)

δv = −εχ+ ε̄χ̄ , δχ = −ε̄(A+ iv̇) , δχ̄ = −ε(A− iv̇) , δA = −i(εχ̇+ ε̄ ˙̄χ) . (A.6)

Let us consider the action (A.1) in the WZ gauge,

V (t, θ, θ̄) = θθ̄A(t) , e2V = 1 + 2θθ̄A . (A.7)

It takes the form (
∫
d2θ (θθ̄) = 1)

SWZ =

∫
dt

[
i(z̄k∇z

k −∇z̄kz
k) + cA − 4φ̄kφ

k

]
,

where ∇z and ∇z̄ are the gauge-covariant derivatives,

∇zk = żk − iAzk , ∇z̄k = ˙̄zk + iAz̄k . (A.8)
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The action (A.8) is invariant under the residual local U(1) transformations

δzk = −iλzk , δz̄k = iλz̄k , δA = −λ̇ , (A.9)

where λ(t) is the d=1 gauge parameter.

Supersymmetry transformations (A.5)–(A.6) do not preserve the WZ gauge conditions

v = 0, χ = 0, χ̄ = 0 , and we are led to modify these transformations by a field-dependent

compensating gauge transformation with the parameter

Λ = −2iθε̄A , Λ̄ = −2iθ̄εA .

Then the supersymmetry transformations leaving invariant the action (A.8) are given by

δWZzk = −2iεφk , δWZ z̄k = −2iε̄φ̄k , δWZφk = −ε̄∇zk , δWZ φ̄k = −ε∇z̄k , (A.10)

δWZA = 0 . (A.11)

Let us study the closure of these transformations. On the fields zk we have

(δWZ

1 δWZ

2 − δWZ

2 δWZ

1 ) zk = 2i (ε1ε̄2 − ε2ε̄1)∇z
k = 2ia12ż

k − iλ12z
k , (A.12)

where

a12 = ε1ε̄2 − ε2ε̄1 , λ12 = 2i (ε1ε̄2 − ε2ε̄1)A . (A.13)

Thus, the r.h.s. of (A.12) is the time translation with the parameter a12 accompanied by

a residual gauge transformation with the parameter λ12. Clearly, the closure on the gauge

field A(t) should be the same. We find

δWZ

12 A = 2ia12Ȧ− λ̇12 = 0, (A.14)

in agreement with (A.11).

On shell, after eliminating the auxiliary fields φ, φ̄ in the action (A.8),

φk = 0 , φ̄k = 0 , (A.15)

the action (A.8) and the supersymmetry transformations (A.10), (A.11) become

SWZ =

∫
dt

[
i(z̄k∇z

k −∇z̄kz
k) + cA

]
, (A.16)

δ̃WZzk = 0 , δ̃WZ z̄k = 0 , δ̃WZA = 0 . (A.17)

Taking into account the equations of motion

∇zk = ∇z̄k = 0 ,

these on-shell transformations close on the time translations and gauge transformation like

their off-shell counterparts (A.10), (A.11).

The structure of the component N=4 supersymmetry transformations in the WZ gauge

in our D(2, 1;α) superconformal mechanics model is basically the same as in the toy model

just considered.
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B Time reversal in mechanics

Let us consider the simple mechanical model with the Lagrangian

L1 = ẋ2 − i(ψ̄ψ̇ − ˙̄ψψ) − i(z̄ż − ˙̄zz) − U(x, ψ, ψ̄, z, z̄) . (B.1)

The canonical momenta are13

p = 2ẋ, pψ = −iψ̄, pψ̄ = −iψ, pz = −iz̄, pz̄ = iz (B.2)

with Poisson brackets

[x, p]
P

= 1, [z, pz ]P = [z̄, pz̄]P = 1, {ψ, pψ}P
= {ψ̄, pψ̄}P

= 1 . (B.3)

Therefore, the Hamiltonian is

H = pẋ+ pψψ̇ + pψ̄
˙̄ψ + pz ż + pz̄ ˙̄z − L =

1

4
p2 + U. (B.4)

The definition (B.2) implies second-class constraints

Gψ = pψ+iψ̄ ≈ 0, Gψ̄ = pψ̄+iψ ≈ 0, Gz = pz+iz̄ ≈ 0, Gz̄ = pz̄−iz ≈ 0

{Gψ , Gψ̄}P
= 2i , [Gz , Gz̄ ]P = 2i . (B.5)

Introducing Dirac brackets

[A,B}
D

= [A,B}
P

+
i

2
[A,Gψ}P

[Gψ̄, B}
P

+
i

2
[A,Gψ̄}P

[Gψ, B}
P
;

−
i

2
[A,Gz}P

[Gz̄, B}
P

+
i

2
[A,Gz̄}P

[Gz , B}
P

we obtain

[x, p]
D

= 1, [z, z̄]
D

=
i

2
, {ψ, ψ̄}

D
=
i

2
. (B.6)

Then, passing to quantum theory, we obtain the following operator algebra

[X,P ] = i, [Z, Z̄ ] = −
1

2
, {Ψ, Ψ̄} = −

1

2
. (B.7)

The time-reversed system is described by the Lagrangian14

L2 = ẋ2 + i(ψ̄ψ̇ − ˙̄ψψ) + i(z̄ż − ˙̄zz) − U(x, ψ, ψ̄, z, z̄) . (B.8)

Performing the same procedure as above we obtain that the system (B.8) has the same

Hamiltonian (B.4), but different Dirac brackets

[x, p]
D

= 1, [z, z̄]
D

= −
i

2
, {ψ, ψ̄}

D
= −

i

2
(B.9)

which yield

[X,P ] = i, [Z, Z̄] =
1

2
, {Ψ, Ψ̄} =

1

2
. (B.10)

Comparing (B.10) with (B.7), we observe that the former turns into the latter after

redefining

Z̄ = − (Z)+ , Ψ̄ = − (Ψ)+ .

13We use the notations which are related to those in [50, 51] through a redefinition. In particular, we

define the fermionic momenta as right derivatives of the Lagrangian.
14To be more precise, under the time reversal we also need to change the sign of the overall normalization

constant before the invariant action since the integral
R

dt changes its sign.
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