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Abstract: In quasi-brittle materials such as concrete, numerical methods are frequently used to
simulate the crack propagation for monotonic loading. However, further research and action are
required to better understand the fracture properties under cyclic loading. For this purpose, in this
study, we present numerical simulations of mixed-mode crack propagation in concrete using the
scaled boundary finite element method (SBFEM). The crack propagation is developed based on a
cohesive crack approach combined with the thermodynamic framework of a constitutive concrete
model. For validation, two benchmark crack-mode examples are modelled under monotonic and
cyclic loading conditions. The numerical results are compared against the results from available
publications. Our approach revealed good consistency compared to the test measurements from
the literature. The damage accumulation parameter was the most influential variable on the load-
displacement results. The proposed method can provide a further investigation of crack growth
propagation and damage accumulation for cyclic loading within the SBFEM framework.

Keywords: mixed mode crack propagation; cohesive zone method; cyclic loading; SBFEM

1. Introduction

The application of fatigue fractures is essential in analysing the performance of con-
crete structures. In fracture mechanics, concrete discontinuities also have the most sig-
nificant investigation in the field of engineering [1,2]. To better understand the rapid
failure of concrete structures under cyclic loading, a detailed procedure of fatigue crack
propagation is required. The prediction of the direction of crack propagation and orienta-
tion of quasi-brittle material as concrete is essential for the robust and reliable design of
concrete structures.

In concrete material, modelling of crack propagation and the numerical simulation
of crack growth remains an outstanding issue and a critical topic of ongoing research.
Primarily, the finite element technique is mainly used to simulate the crack behaviour
numerically. Still, discontinuities in material simulation cannot be fully demonstrated,
since the finite element method (FEM) is based on a continuum approach.

The cracks are typically mapped by areas of high strain rates when using the smeared
crack approach, as in Ref. [3]. The division of the crack opening into an equivalent element
length of a finite element causes the effect of smeared crack formation. This method
has a drawback in that it cannot accurately reflect the actual fracture pattern because
the distortion and discontinuity in the displacement field are not mapped. Alternately,
discontinuities are added at the element edges in the discrete crack approach [4]. This
method is affiliated with a high numerical effort since each iteration step has a continuous
re-meshing process.

Based on the extensions of the conventional FEM, cohesive numerical approaches
in modelling crack propagation have been developed to avoid this disadvantage [5–8].
Particular crack tip components were created to reduce the mesh quality essential for crack
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simulation by the FEM [9]. However, many difficulties have been reported by Ref. [10]
for material modelling using the FEM framework. The nodal displacements for finite
elements at the crack tip should be omitted when calculating the stress intensity factor
(SIFs). To determine the crack propagation path, several theories have been put forward [11].
Since it has an approximate explicit solution for the crack growth direction (θ) as a function
of the stress intensity factor under pure tension (KI) and mixed-mode condition (KI I),
the maximum tangential stress criterion is frequently used in FEM simulations of cyclic
crack propagation. In this case, it should be noted that the procedure of mesh refinement is
typically needed in the vicinity of the crack tip. The global or local re-meshing technique
is the most standard method to describe monotonic and cyclic crack propagation under
linear elastic fracture mechanics (LEFM) assumptions [11].

The cohesive zone model of Ref. [12] is most commonly used to model the process
zone. The process zone is often modelled in FEM utilizing the zero-thickness interface
elements. Interface elements are used in a variety of modelling techniques in the litera-
ture, such as placing them along the crack paths [13,14], inserting them along all element
interfaces in the mesh [15–17], and placing them along the crack surfaces as the crack
propagates [18–20]. While some methods are derived based on a priori information of the
crack paths obtained from experiments [13,14,21], sophisticated re-meshing algorithms
to propagate the crack with high mesh densities or particular finite elements were imple-
mented to model the singular stress fields around crack tips [22,23]. High mesh densities
are needed to achieve smooth and precise predicted crack paths, even though the methods
developed in Refs. [15–17,24] do not. An additional nodal enrichment with special stress
functions was included by using the extended finite element method (XFEM) to simulate
singular stress zones around crack tip [25]. The same appealing property that does not
require re-mesh to describe crack propagation is shared by XFEM and embedded crack
models. The cohesive tractions at the crack edges are included in the governing equations
to account for their work. Many research investigations have discussed cohesive crack
propagation for statics and dynamics issues using XFEM [26,27].

Meanwhile, the scaled boundary finite element method (SBFEM) has been proposed
recently to facilitate the dilemma of the computation burdens [28–31]. The SBFEM is
a very efficient method in solving problems with unbounded media and singularities.
The method’s effectiveness in handling singularities and unbounded domain problems
has prompted researchers to extend its applications to solve diverse problems in various
engineering fields, such as fracture mechanics [32,33], dam reservoir interaction [34], elec-
tromagnetic [35] and image-based analysis [36]. In order to minimize computation costs,
the SBFEM assigns no discretization of side-face boundaries [33]. Using polygon elements
created by the SBFEM, Ref. [37] has developed an automatic LEFM-based crack propagation
modelling technique. By utilizing SBFEM’s appealing feature, the particular stress fields
near crack tips were analytically represented [28]. The SBFEM has shown a considerable
efficiency compared to the classical FEM in calculating the stress singularities [38]. Crack-
tip mesh refinement, as in FEM, is avoided since the SBFEM calculates SIFs from the stress
solutions at the edges of subdomains and the nodes on the domain boundary. Furthermore,
a domain can be divided into subdomains in any required way, and the accuracy of the
stress and SIFs solutions is specified based on the re-meshing procedure. Accordingly,
this feature is more flexible in simulation crack propagation than in the FEM. In addition,
the re-meshing procedure can be as simple as used in the boundary element method (BEM).
Egger et al. [39] examined the computational efficiency of the SBFEM for solving linear
elastic fracture mechanics problems. A comparison between the SBFEM, Extended finite
element method (XFEM), and FEM was constructed by introducing different examples for
calculating the SIFs. The output showed that the SBFEM reached the exact solution faster
than XFEM. An extended finite element method by Ref. [40] was developed to simulate
nonlinear dynamic analysis. A direct remeshing algorithm for crack propagation has been
obtained in quasi-brittle materials. However, more investigations are required in modelling
crack propagation for concrete under cyclic and fatigue loading. As the singularities of
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cracks in the material interface are analytically calculated, the initial crack and the stress
state can be easily defined.

In this study, the SBFEM framework developed in Ref. [32] is implemented to model
cohesive crack propagation in quasi-brittle materials under cyclic loading. A new con-
stitutive model based on Ref. [41] is implemented to model the propagating cracks that
depend on the direction of applied loads. This model introduces an efficient simulation of
concrete material under cyclic behaviour. At sub-critical loading levels, the model relies on
the cumulative measure of propagation as a key damage-driving mechanism. The results
of the proposed approach are validated against the methods in Refs. [42,43]. Concerning
the concrete elements’ fracture and material response, analyses are performed using the
thermodynamic constitutive material law for concrete. The material model assumes a
combination of plasticity and damage theory in Refs. [44–46]. Similarly, as in Ref. [47] the
proposed method aims to simulate the crack propagation of concrete under cyclic loading.
However, we further extend the SBFEM framework to simulate the mixed mode crack
damage behaviour under various loading scenarios. As results, two mixed-mode crack
propagation problems are modelled for monotonic and cyclic loading. The results are
discussed and compared with the data available in publications.

The paper is structured as follows. In Section 2, the principle of the constitutive
material model at the cohesive interface element is explained. In addition, the constitutive
material model at the cohesive interface element for mixed-mode material response is
investigated. Section 3 introduces the proposed mixed-mode crack procedure for concrete
material using SBFEM. Additionally, the re-meshing procedure of crack propagation is
introduced. Section 4 introduces a nonlinear crack model for cohesive interactions, and a
flowchart for solving the SIFs is given. In Section 5, two numerical simulations are modelled
to validate the nonlinear model. Based on the findings of the cyclic bending test of plain
concrete that were published in the literature, we provide the calibration and validation of
the proposed model. The effect of the loading sequence on the material’s stiffness was the
main focus of the numerical investigations.

2. Constitutive Relation under Cyclic Loading

The advanced material models define a direct relationship between the invariant of
the strain and stress by linking the damage evolution with the strain, as in Refs. [10,48,49].
In order to reflect the opening/closure and growth of the micro-cracks and/or the frictional
sliding along their length, the formulation of the dissipative mechanisms has been refined by
introducing the internal sliding strain as a damage-driving variable within the framework
of isotropic damage and internal sliding strain. This way, a unified model for monotonic
and low cycle fatigue loads was proposed by Refs. [50,51].

Comparing the thermodynamic softening law of the constitutive model for the fracture,
the proposed model has the ability to simulate the plastic deformation of the experimental
results based on the plasticity and damage variables. Therefore, a numerical approach is in-
troduced in this work to consider monotonic and cyclic behaviour. The proposed approach
considers the cumulative measure of slip as an essential damage-driving mechanism at
the subcritical loading levels, as illustrated in Figure 1. The constitutive behaviour of the
embedded interface elements that represent the fracture process zone has been identified
utilizing the thermodynamic-based interface model [1,47].

A cumulative measure of the inelastic displacement inside the interface governs the
damaged evolution of concrete material. The evolution law in Equation (1) introduces the
cumulative opening and/or sliding as the fundamental source of damage. The adopted
failure criterion is identified based on the evolution law of the threshold function of the
damage plasticty law, as described in Ref. [41]. In a manner similar to how Lemaitre’s
damage potential was presented in Ref. [52], this feature has been introduced through the
modified flow potential in Refs. [50,53].
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Figure 1. Modelling approach of the cohesive concrete zone for both crack opening and sliding.

ω̇ = (1−ω)c+1
(

Y
S

)r( σn

σ̃n −mσ0

)
|u̇P| (1)

with

u̇P =
λ̇

1−ω
sign(σ̃n − X) (2)

where u̇P is a representation of the relative displacement at the interface (i.e., opening
displacement w = COD in the normal direction and slip s = CSD in the tangential/ shear
direction, see Figure 1), Y is the energy release rate related to the damage mechanism,
and X represent the thermodynamic force. The state variables of the damage variable ω, S
are the damage strength parameter, and c, r are the exponential parameters controlling the
accumulation rate of the damage. The σ̃n, σ0 and σn are the effective stress limits.

The introduced material model has been integrated as an implicit time-stepping
method into the Scaled Boundary Finite Element Framework. The return mapping proce-
dure is used to correct the internal variables after an elastic trial step, and the incremental
multiplier at each time step is computed numerically from the consistency condition, ḟ .
The exact process has been applied to the finite element framework by Ref. [41].

The incremental value ∆λ can be obtained by substituting the evolution equations
into the consistency condition as in Refs. [47,51].

∆λ =
f trial
n+1

E/(1−ωn) + γ + K
(3)

where E is the elastic stiffness, K and γ represent the isotropic and kinematic hardening
moduli, respectively. Due to the implicit form of the damage evolution Equation (1),
the iterative Newton scheme is applied to identify an admissible state. For fatigue and
cyclic simulations, this might be too expensive. As a result, we adopt the assumption of a
damage quasi-constant over a time step in Refs. [41,54], which significantly speeds up the
simulation without sacrificing accuracy. The proposed model needs a consistent algorithmic
stiffness to ensure a reliable and effective numerical implementation. The algorithmic
stiffness establishes a relationship between the rates of stress and displacement by

σ̇ = (Ealg)u̇ (4)

The stress rate then can be expressed as

σ = (1−ω)E(u̇− u̇P)− ω̇E(u− uP) (5)
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The algorithmic stiffness is obtained by substituting the evolution equations for dam-
age and displacement with the incremental multiplier in Equation (3) as

Ealg =(1−ω)E− (1−ω)E2

E + (γ + K)(1−ω)

−
(1−ω)cE2(u− up)( σ

σ−mσ0
)(Y

S )
rsign(σ̃p,trial

n+1 − γαn)

(E/(1−ω) + γ + K)

(6)

Following the formulation of the equilibrium condition on a zero-thickness element of
the interface, the described material model is embedded into the initial boundary value
problem of the SBFEM in a usual manner.

3. Modelling Crack Propagation
3.1. Crack Tip Stress Field in the Presence of Cohesive Traction

Fracture in quasi-brittle materials such as concrete involves a process zone [55]. The nu-
merical models and simulations consider the cracking phenomenon that can be detected
physically. Due to surface friction and aggregate interlocking, normal and shear tractions
can be transferred across crack surfaces. In this study, the interface elements are utilized
to model the cohesive cracks that result from mixed-mode loading scenarios. Figure 2
illustrates a typical bounded domain of an interface element at the crack tip. The crack dis-
placement in Figure 2b along the interface elements consists of crack opening displacement
(COD) and crack sliding displacement (CSD). The nonlinear cohesive tractions for normal
traction and tangential cohesion are σ and τ, respectively.

Crack Propagation

Vertices

Scaling Center
a) b) ft

COD
CSD

Δ aσ (ξ )

a
Interface 
element 

L1

L3

L2

r

A

1

n

Figure 2. Crack propagation of interface SBFEM element: (a) interface cohesive model in SBFEM,
(b) distribution of the cohesive forces.

The governing equations of SBFEM for an element containing a crack tip with side
face tractions is motivated by the works in Ref. [38]. Along the radial lines, ξ nodal
displacement functions u(ξ) are used, while the displacement functions in the η direction
are interpolated by the shape functions [N(η)]. The displacement field u(ξ, η) is scaled as
boundary coordinates and expressed including the normal displacement modes and the
sideface displacement modes as

{u(ξ, η)} = [N(η)]
N+M

∑
i=1

ciξ
(λi−1){φi} (7)

where φi is the side-face load mode, ci is the integration constants, and λi is the eigen-
value matrix.

The stress field can be calculated in the presence of cohesive traction as

{σ(ξ, η)} =
N+M

∑
i=1

ciξ
(λi−1){ψi(η)} (8)
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where each term in Equation (8) can be interpreted as a stress mode and

{ψi(η)} = [D](λi[B1(η)] + [B2(η)]){φi} (9)

where [D] is the material constitutive matrix [43], [B1(η)] and [B2(η)] are the SBFEM strain-
displacement matrices. In addition, it indicates that N is the number of displacement
modes and stress modes, where an extra M are added to both fields when the cohesive
traction is considered.

The stress intensity factors for the homogeneous material square root singular problem
are defined as {

KI
KI I

}
=
√

2πL0 ∑
i=I,I I

(
ci

{
ξ−λi−1σyy|θ=0
ξ−λi−1σxy|θ=0

}
i

)
(10)

where L0 = L3 is the distance between the crack tip and the point A at the crack surface
direction on the boundary, see Figure 2a. ci are integration constants. As ξ → 0, two modes
can yield singular stresses with λi = 0.5 . These two stress modes will be considered as
mode I and mode II.

3.2. Crack Propagation

The crack initiation in the SBFEM domain is determined according to the zero-K
condition [56]. Once the stress at the crack tip is finite, a cohesive crack will propagate.
Any crack that satisfies the zero-K condition at the end of each load step will be identified
using the SBFEM-based algorithm created by Ref. [57]. This hypothesis assumes that a
cohesive crack will propagate if there is no stress singularity and finite stress at the crack
tip. The crack propagates under the following condition

KI(θ) ≥ 0 (11)

The procedure of crack propagation is illustrated in Figure 3 and is described as
follows. In order to locate the new crack tip in each crack propagation step, it is necessary
to first identify the crack propagation direction (Θc) and the specified crack propagation
length (∆a). Once the stress intensity factors (SIFs) have been calculated from Equation (10),
the Θc can be computed as in Ref. [58].

 

(a) New crack tip 

  

Δ a
crack tip 

New crack tip 

A

 

(b) Final mesh 

V2

  

  V1

E1 E2

E3 E4

1

3

2

Figure 3. Crack propagation re-meshing procedure.

The re-meshing procedure is outlined in Figure 3a,b for one crack propagation step.
Given ∆a and Θc, the location of the new crack tip, shown in Figure 3a, is calculated and
located in the cracked subdomain (point A is used to compute the SIFs). Two new vertices
(V1 and V2 in Figure 3b) have been created from the former crack tip. Four new edges
(E1–E4) are constructed along with the creation of two new subdomains (1 and 2). All edges
of the newly cracked subdomain (3) must be visible from the new crack tip, and the new
edges and subdomains are utilized to track the crack path.

The crack propagation criteria are examined when the external load increases. Once
it is satisfied at a particular load, the crack length ∆a and the crack angle θ are utilized to
pinpoint the location of the new crack tip in the mesh as in Ref. [33].

The cohesive tractions along the crack are obtained based on the condition KI ≥ 0.
The crack subdomain is split up into standard subdomains called cell interface elements
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(CIEs). The new CIEs are then coupled with SBFEM normal cells. The system stiffness
matrix can be created by assembling the stiffness matrices and equivalent nodal forces of
the subdomains and CIEs. The SIFs can then be calculated once the nodal displacements
and cohesive tractions along the crack are identified. The material softening is represented
by the constitutive material model, explained in Section 2.

4. Implementation Procedure by SBFEM

The flow chart for the numerical process is shown in Figure 4. A further explanation
of the numerical procedure is presented as follows:

Obtain the crack displacement 
ui  (COD and CSD)

Compute at GP 
local stiffness kn, kt 
cohesive forces tn, ts

material damage ωi

material plasticity αi

Compute
interface element stiffness matrix Kint

polygon element stiffness matrix  Kpol

Determine
stress field of the domain σ( , η)

nodal cohesive traction Fts, Ftn

stress intensity factor SIFs KI, KII

Input-set
Load: [P, N]
Geometry: [L, h, b, a] 
Material: [E, ν, α, z, γ]

N= 1

Po
s t

 p
r o

ce
ss

in
g

Failed

Remeshing

KI > 0 

End

No 

Yes

Yes

No 

Figure 4. Key steps of the stress field domain and stress intensity factor SIFs.

1. Input the geometric dimensions of the specimen including; the span length L, height
h, width b, and initial crack length a, along with the material parameters; the initial
fracture toughness, Poisson’s ratio ν, Young’s modulus E, damage parameter ω,
and the material plasticity α, γ and z under both static and cyclic loading P;

2. Establish the model (SBFEM) with the initial crack length a. Apply the external load
P. Calculate the stress field of the domain, cohesive nodal traction, and the stress
intensity factors (SIFs) KI and KI I . Adjust the applied load until the initial cracking
is reached;

3. Re-establish the SBFEM of the crack angle θ with crack length a. ∆a is the increment
of crack length. If i = 1, the number of cyclic loading N1 = 1. Apply cyclic load Pmax
and the cohesive force according to Equation (13). Finally, the single and mixed mode
KI and KI I for monotonic and cyclic crack propagation process can be calculated
according to Equation (10);
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4. Repeat step 3 until the structure fails and the numerical simulation is terminated.
Output the necessary parameters, such as the crack propagation path, the number of
cyclic loads N, and CMOD and CMSD displacements.

The above modelling methodology has been implemented in a computer program
using MATLAB software. Figure 4 shows a proposed flowchart of the program. The pre-
processing step is to define the input set of the tested problem. The constitutive law is
inserted into the SBFEM framework as an interface element at the crack tip. The nonlinear
consistent interface model is solved using the displacement control algorithm to obtain the
post-processing findings for monotonic and cyclic loading. The cyclic damage accumulation
during loading and unloading is formulated within the constitutive model.

Based on the constitutive model at the material point level, the relative displacement
of the crack surface ui is calculated, including the opening displacement (COD) and the
sliding displacement (CSD) of the crack surface. The key concept behind this method is
the linear superposition of an iterative methodology applied to the relative displacement of
the crack surface in order to solve and estimate the cohesive tractions on the crack surface.

The standard SBFEM solution of the stress intensity factor formula can calculate all
three stress intensity factors.

KI = KP
I + KC

I (12)

where KI is the total stress intensity factor and KP
I and KC

I are the components related to
the external and cohesive forces, respectively. Thus, KP

I > 0 when the crack expands due
to the external force of the model, while KC

I < 0 when the crack tends to close due to the
cohesive force. When force balance is achieved as a result of the aspects covered by the
external and cohesive forces, KI = 0, equivalently. Therefore, KI ≥ 0 can be utilized as the
criterion for considering whether the crack will continue to propagate or not as in Ref. [59].
The solution of the cohesive tractions is summarized with the following steps:

(a) As shown in Figure 4, the linear elastic assumptions of SBFEM can be used to
determine the relative displacement ui of the crack element when the structure is
subject to the external force P. As a result, the corresponding cohesive traction ti
can be acquired;

(b) Both the external force and the cohesive force obtained in the previous step are
applied to the structure, with the cohesive traction ti being applied in the form of a
side-face force and formulated in accordance with Equation (13). Along the fracture
process region, cohesive tractions tn, ts are related to the relative opening and sliding
displacements on the crack faces u

{t} = [k]{u} (13)

where k is the stiffness of the softening laws.
The stiffness matrix of an interface element in the local coordinate system is:

[kint] =
A
2

ng

∑
i=1

wi Mi
T [k]Mi (14)

where A is the crack surface area, wi is the one-dimensional Gaussian weight, ng is
the number of integration points, and Mi is the linear shape function matrix [33].
Based on Equation (14) the solution of the displacement and stress equations is
calculated in Equations (7) and (8), respectively;

(c) Proceed until the variation depicted in Figure 4 is consistent with the relationship
between ti and ui+1.

5. Numerical Simulation and Model Verification
5.1. Three-Point Bending Beam

The mixed mode I-II in the TPB beam under monotonic and cyclic loading was
predicted based on the numerical procedure presented in Figure 4. The experimental test
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results were done by Ref. [60] for concrete beams under mixed mode fracture. Table 1
summarizes the material parameters of the tested concrete specimens. The geometric
dimensions of the specimen; TPB specimen with cross-section height of h = 160 mm.
The beam height was scaled to the beam length and span, as shown in Figure 5. The beam
width is kept constant with b = 80 mm. The notch depth was set to h0 = h/2.

P

h

b

L0 = 4 h

h0 = h / 2

CMOD

(a)

(b)

h / 4

CMOD

Time

CMOD

Time

Figure 5. (a) Loading scenarios used in the simulation. Monotonic loading (left) and cyclic loading
(right); (b) three-point bending beam for mixed mode crack propagation.

In the analyses, two systematic sets of loading scenarios are used. The first loading
scenario introduces a typical monotonically increasing loading Figure 5a. In the second
loading scenario, the sequence of unloading cycles are applied in Figure 5b.

Table 1. The parameters of the material of the experimental test in Ref. [60].

Parameter Denomination Value Unit

fc Compressive strength 44.24 [MPa]
fct Tensile strength 3.35 [MPa]
Ec Young’s Modulus 35.38 [GPa]
ν Poisson ratio 0.21 [-]

The properties of the concrete and cohesive interface element for COD and CSD
responses are listed in Table 2. The proposed constitutive model has a set of plastic parame-
ters γ, K and the damage strength S, as reported in Ref. [47]. In this study, the nonidentical
material response of the proposed model and the experimental data is caused by the unified
parametric prediction of the calibrated material behaviour for both monotonic and cyclic
loading scenarios. In this calibration, the unified parameters of monotonic and cyclic
material response at the Gauss point are plotted in Figure 6. A comparison of the experi-
mental [60] and numerical simulations is depicted in Figure 7 for the traction stress curve
of the mixed-mode crack displacement under monotonic loading. It should be noted that
more advanced cohesive constitutive laws with coupled normal and tangential damage
evolution can be used, e.g., see Ref. [61].
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Table 2. Model parameters for the concrete cohesive interface element.

Parameter Denomination Value Unit

E Elastic cohesive modulus 3000 [MPa]
σ Reversibility limit 2.0 [MPa]
K Isotropic hardening modulus 400.0 [MPa]
γ Kinematic hardening modulus 500.0 [MPa]
S Damage strength 0.25 × 10−4 [MPa]
r Damage accumulation parameter 1.0 [-]
c Damage accumulation parameter 2.0 [-]

(a) (b)
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monotonic
cyclic
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M

Pa
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3.5
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T
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n 
t s 

[M
Pa
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Figure 6. Cohesive traction response under cyclic loading (blue lines) and monotonic loading (gray
lines) at the material point level: (a) traction-crack opening, (b) traction-crack sliding.

0.00 0.05 0.10 0.15 0.20

Displacement [mm]
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4.0

T
ra

ct
io

n 
[M

Pa
]

Proposed model

Experiment

0.5

1.5

2.5

3.5

Figure 7. A comparison between the experimental measurements in Ref. [60] and the modelling
results of the cohesive traction for mixed mode I-II fracture.

The two-dimensional SBFEM modelling was utilized to establish the mesh of the
TPB beam. A total of 205 elements were used. The mesh refinement near the crack tip
was refined, as depicted in Figure 8a. Based on COD and CSD derived from the SBFEM
calculation, the SIFs were computed. Eventually, the complete mixed mode I-II cyclic
and monotonic crack propagation in TPB beam was simulated, as illustrated in Figure 8b.
The crack propagation due to the increasing load is shown in Figure 8b. The results showed
a curved crack path in the direction of the point of the external load (F). The distribution of
the traction forces is shown in Figure 8c.
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0 10 20 30 40 50 60 70

0

5

10

15

(a)

(b)

(c)

Figure 8. Predicted final crack paths of a TPB beam; (a) SBFEM mesh with 313 elements and boundary
conditions, (b) predicted final crack path, (c) cohesive traction distribution.

To demonstrate the effectiveness of the numerical method, the SBFEM results of test
simulation were compared with the experimental results in Ref. [60]. Figure 9 shows the
comparison of the crack propagation paths for monotonic loading, where the shaded region
contains the experimentally measured crack paths. As can be shown, there is a reasonable
agreement between the numerically predicted paths in SBFEM and both numerical FEM,
as well as the experimental results in Ref. [60].

Experiment

SBFEM

FEM

a) b)

Figure 9. Predicted final crack paths of a TPB beam; (a) experimental shadow results in Ref. [60],
(b) SBFEM simulation.
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Figure 10 compares the predicted load-crack mixed-displacement of the TBP beam
with the experimental results reported by Ref. [60] under monotonic loading. The SBFEM
numerical predictions’ related curve is shown in Figure 10, plotted in a black dashed
line. The numerical results of the load-displacement curve are in good agreement with
the experimental measurements. A maximum load of 53.1 kN is obtained at CMOD of
0.027 mm.
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Figure 10. Numerical predictions of load-CMSD curves and the corresponding experimental data in
Ref. [60] for the three-point bending test under monotonic loading.

Figure 11 shows the results of the monotonic SIFs for both mode I and mode II, where
the numerically measured SIFs are plotted. In Figure 11a, the points representing the initial
mesh of Figure 10 are calculated once KI ≥ 0. Then, the crack opens gradually based on
a crack propagation criterion. The numerical calculation of KI by SBFEM with a fewer
number of degrees of freedom (DOFs) manifests good crack trajectory predictions.
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Figure 11. Mixedmode I–II crack displacement for monotonic loading: KI-CMOD (a) and KII-CMSD (b).

The experimental observations and numerical calculations for a cyclically mixed-
mode loading are shown in Figure 12. The loading is controlled by the CMOD/CMSD,
including eight unloading cycles. The results show that the numerical comparison of crack
propagation CMSD is relatively stable while the CMOD increases as the N of the cycle
increases. As a result, there is a good agreement between the experiment results and the
numerical predictions of CMSD in Figure 12.

Figure 11. Mixedmode I–II crack displacement for monotonic loading: KI-CMOD (a) and
KII-CMSD (b).

The experimental observations and numerical calculations for a cyclically mixed-
mode loading are shown in Figure 12. The loading is controlled by the CMOD/CMSD,
including eight unloading cycles. The results show that the numerical comparison of crack
propagation CMSD is relatively stable while the CMOD increases as the N of the cycle
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increases. As a result, there is a good agreement between the experiment results and the
numerical predictions of CMSD in Figure 12.
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Figure 12. Crack displacement versus the number of cycles for experimental data in Ref. [60] and
SBFEM; crack mouth opening CMOD and sliding CMSD.

5.2. Four-Point Bending Beam

The proposed method is next verified using the numerical results of the four-point
bending concrete beam under mixed mode fracture [62]. The geometry, loads, and support
conditions are illustrated in Figure 13. The width and height of the specimen are denoted by
100 × 100 [mm]. The material properties of the concrete beam are summarized in Table 3.

h

b

L = 440

180

h0 = h / 5

CMOD

P1 = 10 F/11

18020 20

P2= F\11

(a)

(b)

Figure 13. A single-notched concrete beam under monotonic mixed-mode loading. (a) Geometry, (b)
initial mesh with boundary conditions.
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Table 3. Parameters of the material in the experimental test by Ref. [63].

Parameter Denomination Value Unit

fct Tensile strength 3.44 [MPa]
G f fracture energy 0.126 [N/mm]
Ec Young’s Modulus 30.0 [GPa]
ν Poisson ratio 0.20 [-]

A particular loading condition is implemented to generate mode II crack initiation
for both monotonic and cyclic loading. The calculation is performed under displacement-
controlled loading. For the analysis of the concrete beam, the following material properties
are used, see Table 4 below.

Table 4. Model parameters for the concrete cohesive interface element.

Parameter Denomination Value Unit

E Elastic cohesive modulus 3500 [MPa]
σ Reversibility limit 2.0 [MPa]
K Isotropic hardening modulus 400.0 [MPa]
γ Kinematic hardening modulus 500.0 [MPa]
S Damage strength 0.25 × 10−4 [MPa]
r Damage accumulation parameter 1.0 [-]
c Damage accumulation parameter 2.0 [-]

The initial mesh of the tested beam is illustrated in Figure 13. The mesh consists of
1069 elements. The crack propagation length of ∆a = 22 mm is adopted in the crack propa-
gation simulation. Figure 14 compares the predicted traction point displacement response
of the developed method with the numerical results of Ref. [62] in the literature. Overall,
there is good agreement between the results of the developed method and the experimental
measurements. The pre-peak response compares very well with the previously reported
numerical results. The numerical SBFEM predicted a maximum load of 36.2 kN and is
closest to both the experimental and FEM predictions of Ref. [62].
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Figure 14. Comparison of the tested beam in Ref. [62] and the proposed cohesive traction for mixed
modes I–II fracture.

Figure 15 represents the predicted crack propagation process. During the simulation,
a crack propagates from the tip notch towards the loading point on the bottom surface of
the four point bending beam. The paths of the crack in the experimental results and SBFEM
are curved. In Figure 15, the predicted crack path of the FEM simulation in Ref. [62] seems
to be more efficient, however, the mesh adaptive procedure of the SBFEM will produce
more efficient results and reduce the computational time costs.
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Experiment

SBFEM

FEM

a) b)

Figure 15. Predicted final crack paths of a tested beam; (a) the experimental shadow results in Ref. [62]
and the numerical results and (b) SBFEM simulation.

Figure 16 compares the predicted load-crack displacement response of the developed
method with the numerical FEM results of Ref. [62]. Overall, the results obtained from the
developed method agree well with the numerical for the monotonic loading. The pre-peak
response compares well with the previously published numerical results. All the numerical
predictions below estimate the maximum load. The SBFEM predicted a maximum load of
34.8 kN and is closest to the FEM predictions.
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Figure 16. Numerical predictions of load-CMSD curves and the corresponding experimental data
in Ref. [62] for the tested beam under monotonic loading.

Figure 17 shows SBFEM numerical predictions and FEM results for a cyclically mixed-
mode loading. The loading is controlled by the CMSD, also including eight unloading
cycles applied until failure. The results in Figure 17a show that the traction forces of SBFEM
have a very good agreement with the numerical results in FEM. In Figure 17b, the crack
displacement of the SBFEM simulation is more underestimated in comparison to the FEM
measurements. The calculation of the mixed crack displacement at the material point,
the number of load steps, and the democratization of the applied mesh have a significant
effect on the SBFEM numerical results. However, more experimental data of cyclic mixed
mode tests are required to validate the proposed numerical method.



Materials 2023, 16, 1916 16 of 19

(a) (b)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
number of cycles [N]

16.0

F
or

ce
 [

kN
]

18.0

20.0

22.0

24.0

26.0

9.08.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

number of cycles [N]

0.000

C
M

S
D

 [
m

m
]

0.004

0.008

0.012

0.016

0.020

9.08.0

FEM

SBFEM FEM

SBFEM

Figure 17. SBFEM numerical predictions of (a) load-CMSD curves and (b) crack displacement of the
corresponding finite element data for tested beam under cyclic loading in Ref. [62].

6. Conclusions

In this paper, a newly developed SBFEM numerical method for mixed mode crack
propagation in concrete under cyclic loading was proposed. The proposed procedure
allowed accurate SIFs to be calculated directly from the SBFEM analytical framework
without more discretization at crack-tip meshes or by using singular elements, as in FEM.
Comparing the thermodynamic softening law of the constitutive model for fracture, several
aspects have been provided, which incorporate the loading-unloading path, the damage
evolution during the load cycle, and the crack traction displacement behaviour.

The cyclic behaviour of interfaces using SBFEM has been successfully described using
the damage accumulation hypothesis. The proposed method showed the ability to simulate
both monotonic and cyclic behaviour of a cohesive crack interface element, e.g., concrete
interface, utilizing a consistent set of material parameters. The cyclic loading simulations’
output agreed well with experimental data from the literature. The proposed method
performed to study the effect of fatigue loading provides promising results and establishes
a damage accumulation hypothesis for the simulation of multiple cohesive cracks under
1000 load cycles.
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Nomenclature

u̇P Relative displacement ω Damage variable
w = COD Crack opening at material point Y Energy release rate
s = CSD Crack sliding at material point S Damage strength parameter
c, r Exponential damage parameters σn, σ Effective stress limit
m Material constant E Elastic stiffness
α Hardening material variable E Elastic stiffness
σ = tn Cohesive normal stress τ = ts Cohesive tangential stress
Elag Element stiffness of the interface γ, K Isotropic and kinematic hardening moduli
η, ξ Local coordinate system of SBFEM λi Eigenvalue matrices
{u} Displacement field D Material constitutive matrix
N(η) Nodal shape function Kpol Stiffens matrix of the domain
φi Eigenvector matrices ci Integration constants of the SBFEM
[B1], [B2] Strain-displacement matrices of SBFEM system M Number of displacement modes
P External applied force N Number of load cycles
θ Crack propagation angle ∆a Crack propagation length
L0 Crack length Kint Stiffens matrix of interface element
A Crack surface area wi Gaussian weight function
CMSD Crack mouth sliding displacement Ft Nodal side face load
CMOD Crack mouth opening displacement KI , KI I Crack mode I & mode II

stress intensity factors{σ} Stress field
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