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1 Introduction

It is well known that BRST symmetry [1, 2], as a global fermionic remnant of gauge

invariance, plays a fundamental role in quantum field theory, because all fundamental

forces existing in Nature can be described in terms of gauge theories [3–6].

Recently, in a series of papers [7–12] based on Zwanziger’s action [13, 14], a break-

down of BRST symmetry in Yang-Mills theories has been considered from a new point of

view. This breakdown is related to attempts to take into account the Gribov horizon [15],

which restricts the domain of integration in the functional integral presenting the Green’s

functions of the given gauge theory. Effectively this restriction can be implemented by a

particular addition to the standard Faddeev-Popov (FP) action. However, this addition is

not invariant under the original BRST transformations.

We remark that until now all investigations [7–14] of the Gribov horizon in Yang-Mills

theories have been performed in the Landau gauge only. Yet there is a great freedom in the

choice of admissible gauges, and it is well known that the Green’s functions depend on the

gauge. Of course, this dependence is structured, as it must cancel in physical combinations

such as the S-matrix. Modern proofs (see, e.g., [16, 17]) of the gauge independence of the

S-matrix for Yang-Mills theories are based on BRST symmetry. Any violation of BRST

invariance may, therefore, spell doom for the consistency of the gauge theory. Thus, any

claim of a breakdown of BRST symmetry warrants serious investigation.

Modern models of the fundamental forces make use of gauge theories more general than

Yang-Mills theory. Luckily, the concept of BRST invariance generalizes to supergravity,

theories with an open gauge algebra and reducible gauge theories, to name a few. The

present paper formulates the soft breaking of BRST symmetry for general gauge theories
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in the field-antifield formalism [18, 19]. We then investigate the gauge dependence of the

Green’s functions for arbitrary gauge models with softly broken BRST symmetry.

The paper is organized as follows. In section 2, our definition of the soft breaking of

BRST symmetry is given in the field-antifield formalism. Using a suitable regularization

scheme, section 3 derives the Ward identities for the customary generating functionals of

Green’s functions. In section 4 we investigate the dependence of these functionals on an

arbitrary gauge, for general gauge theories. A discussion of the Gribov-Zwanziger action

for the one-parameter family of Rξ gauges is considered in section 5. Finally, section 6

gives concluding remarks.

We employ the condensed notation of DeWitt [20]. Derivatives with respect to sources

and antifields are taken from the left, while those with respect to fields are taken from the

right. Left derivatives with respect to fields are labeled by a subscript l. The Grassmann

parity of any quantity A is denoted by ε(A).

2 Soft breaking of BRST symmetry

Our starting point is a theory of gauge fields Ai, i = 1, 2, . . . , n, with ε(Ai) = εi, described

by an initial action S0 = S0(A) invariant under the gauge transformations

δAi = Ri
α(A)ξα hence S0,i(A)Ri

α(A) = 0 for α = 1, 2, . . . ,m , 0 < m < n , (2.1)

parametrized by m arbitrary functions ξα of the space-time coordinates, with ε(ξα) = εα.

Here, S0,i ≡ δS0/δA
i, and Ri

α(A) are the generators of the gauge transformations, with

ε(Ri
α) = εi+εα. We shall not restrict ourselves to some special type of initial gauge

theory; it may belong to open gauge theories and/or reducible gauge theories. The type of

initial gauge theory defines the structure of configuration space {ΦA} in the field-antifield

formalism [18, 19],

Φ ≡ {ΦA} = {Ai, . . .} with ε(ΦA) = εA , (2.2)

where the dots indicate the full set of ghost and antighost fields, auxiliary fields and so

on. In what follows we do not need to describe the exact structure of the full configuration

space. To each field ΦA of this total configuration space, one introduces the corresponding

antifield Φ∗
A, hence

Φ∗ ≡ {Φ∗
A} = {A∗

i , . . .} , (2.3)

with statistics opposite to that of the corresponding fields ΦA, i.e. ε(Φ∗
A) = εA+1.

On the total space of the fields ΦA and the antifields Φ∗
A, one defines a bosonic func-

tional S̄ = S̄(Φ,Φ∗) satisfying the master equation

1

2
(S̄, S̄) = i~ ∆S̄ (2.4)

with the boundary condition

S̄|Φ∗=~=0 = S0(A) . (2.5)
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In (2.4) we used the notation of the antibracket

(F,G) ≡
δF

δΦA

δG

δΦ∗
A

− (F ↔ G) (−1)[ε(F )+1]·[ε(G)+1] (2.6)

and of the nilpotent operator

∆ ≡ (−1)εA
δl

δΦA

δ

δΦ∗
A

with ∆2 = 0 and ε(∆) = 1 . (2.7)

We assume that formal manipulations with the operator ∆ can be supported by a suit-

able regularization scheme. This is a nontrivial requirement, since the operator (2.7) is

not well-defined on local functionals. The reason is that for any local functional F , one

finds that ∆F ∼ δ(0). The usual way to deal with this problem is to use dimensional

regularization [21], which equates δ(0) to zero. In this paper, we shall imply such a type

of regularization, so that the master equation is reduced to the classical master equation

(S̄, S̄) = 0 . (2.8)

Using the action S̄ and a fermionic gauge fixing functional Ψ = Ψ(Φ), one can construct

the non-degenerate action Sext by the rule

Sext(Φ,Φ∗) = S̄

(
Φ, Φ∗ +

δΨ

δΦ

)
. (2.9)

This action satisfies the classical master equation

(Sext, Sext) = 0 (2.10)

and is used to construct the generating functional of Green’s functions in the field-antifield

formalism [18, 19].

Inspired by [13, 14], we modify the action Sext by adding a functional M = M(Φ,Φ∗),

defining the full action S as

S = Sext + M . (2.11)

We shall speak of a soft breaking of BRST symmetry in the field-antifield formalism if the

condition

(M,M) = 0 (2.12)

is fulfilled. Therefore, the basic classical equation of our approach to the soft breaking of

BRST symmetry reads
1

2
(S, S) = (S,M) . (2.13)

If the soft breaking of BRST symmetry originates from a modification of the integration

measure, then M will be a functional of the field variables ΦA only, i.e. M = M(Φ). In this

case, the condition (2.12) is automatically valid. In fact, this is exactly the situation for

Yang-Mills theory in Landau gauge, when one takes into account the Gribov horizon [13,

14]. We do not restrict ourselves to this special case and consider the more general situation

of M = M(Φ,Φ∗).
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It is interesting to note that the right-hand side of the basic classical equation (2.13)

can be presented in the form

(S,M) = ŝM , (2.14)

where ŝ denotes the Slavnov-Taylor operator defined by the rule

ŝ = (Sext, •) . (2.15)

Due to (2.10) this operator is nilpotent,

ŝ2 = 0 , (2.16)

and we find that

ŝ (S, S) = 0 . (2.17)

On this level we formally meet the same relation as for general gauge theories without a

soft breaking of BRST symmetry.

3 Generating functionals and Ward identities

Let us consider some quantum consequences of the classical equations (2.10), (2.12)

and (2.13). To this end we introduce the generating functional of Green’s functions,

Z(J,Φ∗) =

∫
DΦ exp

{
i

~

(
S(Φ,Φ∗) + JAΦA

)}
, (3.1)

where S(Φ,Φ∗) satisfies the basic classical equation (2.13) and has the form (2.11). Fur-

thermore, JA are the usual external sources for the fields ΦA. The Grassmann parities of

these sources are defined in a natural way, ε(JA) = εA.

From (2.10) it follows that

0 =

∫
DΦ

δSext

δΦA

δSext

δΦ∗
A

exp

{
i

~

(
Sext + M + JAΦA

)}
.

Performing the usual manipulations with the functional integral we arrive at the following

identity for the generating functional Z,

~

i

(
JA + MA

(
~

i

δ

δJ
,Φ∗

))
δZ(J,Φ∗)

δΦ∗
A

− JAMA∗

(
~

i

δ

δJ
,Φ∗

)
Z(J,Φ∗) = 0 . (3.2)

Here the notations

MA

(
~

i

δ

δJ
,Φ∗

)
≡

δM(Φ,Φ∗)

δΦA

∣∣∣
Φ→ ~

i

δ

δJ

and MA∗

(
~

i

δ

δJ
,Φ∗

)
≡

δM(Φ,Φ∗)

δΦ∗
A

∣∣∣
Φ→ ~

i

δ

δJ

have been used. In case of M = 0, the identity (3.2) is reduced to the usual Ward

identity for the generating functional of Green’s functions in the field-antifield formalism.

Hence, we refer to (3.2) as the Ward identity for Z in a gauge theory with softly broken

BRST symmetry.
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Introducing the generating functional of connected Green’s functions,

W (J,Φ∗) = −i~ ln Z(J,Φ∗) , (3.3)

the identity (3.2) can be rewritten as

(
JA + MA

(
δW

δJ
+

~

i

δ

δJ
,Φ∗

))
δW (J,Φ∗)

δΦ∗
A

− JAMA∗

(
δW

δJ
+

~

i

δ

δJ
,Φ∗

)
= 0 . (3.4)

The generating functional of the vertex functions or effective action is obtained by

Legendre transforming W ,

Γ(Φ, Φ∗) = W (J,Φ∗) − JAΦA where ΦA =
δW

δJA
and

δΓ

δΦA
= −JA . (3.5)

Taking into account the equality
δΓ

δΦ∗
A

=
δW

δΦ∗
A

,

we can rewrite the identity (3.4) in terms of Γ as

1

2
(Γ,Γ) =

δΓ

δΦA
M̂A∗ + M̂A

δΓ

δΦ∗
A

. (3.6)

Here, we have used the notation

M̂A ≡
δM(Φ,Φ∗)

δΦA

∣∣∣
Φ→bΦ

and M̂A∗ ≡
δM(Φ,Φ∗)

δΦ∗
A

∣∣∣
Φ→bΦ

(3.7)

where

Φ̂A = ΦA + i~ (Γ
′′−1)AB δl

δΦB
(3.8)

and the matrix (Γ
′′−1) is inverse to the matrix Γ

′′

with elements

(Γ
′′

)AB =
δl

δΦA

(
δΓ

δΦB

)
, i.e. (Γ

′′−1)AC(Γ
′′

)CB = δA
B . (3.9)

Again, in the case M = 0 the identity (3.6) coincides with the Ward identity for the

effective action in the field-antifield formalism. Note that the identity (3.6) is compatible

with the basic classical equation (2.13), since ~ → 0 yields Γ = S, M̂ = M , and (3.6) is

reduced to (2.13).

But this is not the end of the story, because on the classical level we also have the

restriction (2.12), i.e. (M,M) = 0, which on the quantum level generates an additional

identity. To derive it we consider a direct consequence of (2.12),

0 =

∫
DΦ

δM

δΦA

δM

δΦ∗
A

exp

{
i

~

(
Sext + M + JAΦA

)}
. (3.10)

Omitting the details of the functional-integral manipulations, we can rewrite (3.10) as

M̂AM̂A∗ = 0 . (3.11)
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In addition, the relations ∆M = 0 and ∆S = 0 yield quantum consequences. Indeed,

from the evident equality

0 =

∫
DΦ (−1)εA

δl

δΦA

[
δM

δΦ∗
A

exp

{
i

~

(
S + JAΦA

)}]

it follows that

0 =

∫
DΦ

[
∆M +

i

~

(
JA +

δS

δΦA

)
δM

δΦ∗
A

]
exp

{
i

~

(
S + JAΦA

)}
,

which produces the identity (
δΓ

δΦA
− ŜA

)
M̂A∗ = 0 , (3.12)

where

ŜA ≡ SA(Φ̂,Φ∗) =
δS(Φ,Φ∗)

δΦA

∣∣∣
Φ→bΦ

and Φ̂A = ΦA + i~ (Γ
′′−1)AB δl

δΦB
. (3.13)

In turn starting with the equality

0 =

∫
DΦ (−1)εA

δl

δΦA

[
δS

δΦ∗
A

exp

{
i

~

(
S + JAΦA

)}]
,

we have

0 =

∫
DΦ

[
∆S +

i

~

(
JA +

δS

δΦA

)
δS

δΦ∗
A

]
exp

{
i

~

(
S + JAΦA

)}
,

which gives us (
δΓ

δΦA
− ŜA

)
δΓ

δΦ∗
A

= 0 (3.14)

as the quantum version of the equality ∆S = 0.

Finally, it should be noted that from the equality

0 =

∫
DΦ

δ

δΦA

[
exp

{
i

~

(
S + JAΦA

)}]

we can derive in the usual manner the relation

δΓ

δΦA
= ŜA , (3.15)

which is nothing but the other representation of equation for Γ (see (3.5)). It implies the

relations (3.12) and (3.14).

Analogously, starting with the identity

δF (Φ)

δΦ∗
A

≡ 0 (3.16)

for an arbitrary functional F (Φ), we get

0 =

∫
DΦ

δF (Φ)

δΦ∗
A

exp

{
i

~

(
S + JAΦA

)}
(3.17)
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and therefore

F (Φ̂)
δΓ

δΦ∗
A

= F (Φ̂)SA∗(Φ̂,Φ∗) . (3.18)

Since the functional F (Φ) was arbitrary, we also have the relation

δΓ

δΦ∗
A

= ŜA∗ (3.19)

with

ŜA∗ ≡ SA∗(Φ̂,Φ∗) =
δS(Φ,Φ∗)

δΦ∗
A

∣∣∣
Φ→bΦ

.

Clearly, in the ~ → 0 limit M̂ = M , and the identity (3.11) is reduced to (2.12). Therefore,

we have a full set of equalities which describe on the classical and quantum level general

gauge theories with a soft breaking of BRST symmetry in arbitrary gauges within the

field-antifield formalism.

4 Gauge dependence

We turn to a discussion of gauge dependence of the generating functionals Z, W and Γ for

general gauge theories with a soft breaking of BRST symmetry as defined in the previous

section. The derivation of this dependence is based on the fact that any variation of the

gauge-fixing functional, Ψ(Φ) → Ψ(Φ)+δΨ(Φ), leads to a variation of the action Sext (2.9)

and the functional Z [22]. The variation of Sext can be presented in the form

δSext =
δδΨ

δΦA

δSext

δΦ∗
A

(4.1)

or as

δSext = −(Sext, δΨ) = −ŝ δΨ . (4.2)

We also allow the functional M to be gauge dependent, with δM(Φ,Φ∗) being its variation

simultaneous to the variation δΨ of the gauge-fixing functional. From (3.1), (4.1) and the

variation of M we obtain the gauge variation of Z,

δZ(J,Φ∗) =
i

~

∫
DΦ

(
δδΨ

δΦA

δSext

δΦ∗
A

+ δM

)
exp

{
i

~

(
S(Φ,Φ∗) + JAΦA

)}
. (4.3)

With the help of

0 =

∫
DΦ

δl

δΦA

[
δΨ

δSext

δΦ∗
A

exp

{
i

~

(
S(Φ,Φ∗) + JAΦA

)}]

=

∫
DΦ

[
δδΨ

δΦA

δSext

δΦ∗
A

−
i

~

(
JA +

δS

δΦA

)
δSext

δΦ∗
A

δΨ

]
exp

{
i

~

(
S(Φ,Φ∗) + JAΦA

)}
,

where ∆Sext = 0 was used, and the relation

δS

δΦA

δSext

δΦ∗
A

=
δM

δΦA

δS

δΦ∗
A

,
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we can rewrite (4.3) as

δZ(J,Φ∗) =
i

~

[(
JA + MA

(
~

i

δ

δJ
,Φ∗

))
δ

δΦ∗
A

δΨ

(
~

i

δ

δJ

)

−
i

~
JAMA∗

(
~

i

δ

δJ
,Φ∗

)
δΨ

(
~

i

δ

δJ

)
+ δM

(
~

i

δ

δJ
,Φ∗

)]
Z(J,Φ∗) (4.4)

=
i

~

[
q̂ δΨ

(
~

i

δ

δJ

)
+ δM

(
~

i

δ

δJ
,Φ∗

)]
Z(J,Φ∗) , (4.5)

where we have abbreviated the first line by introducing the nilpotent fermionic operator

q̂ =

(
JA + MA

(
~

i

δ

δJ
,Φ∗

))
δ

δΦ∗
A

−
i

~
JAMA∗

(
~

i

δ

δJ
,Φ∗

)
. (4.6)

Its nilpotency, q̂2 = 0, is proved in the appendix.

The corresponding variation of the generating functional of connected Green’s func-

tions takes the form

δW (J,Φ∗) =
~

i
Z−1δZ = Q̂ δΨ

(
δW

δJ
+

~

i

δ

δJ

)
+ δM

(
δW

δJ
+

~

i

δ

δJ
,Φ∗

)
, (4.7)

where the fermionic operator Q̂ is unitarily related to q̂,

Q̂ = exp

{
−

i

~
W

}
q̂ exp

{
i

~
W

}
=

(
JA + MA

(
δW

δJ
+

~

i

δ

δJ
,Φ∗

))
δ

δΦ∗
A

, (4.8)

with the help of the Ward identity (3.4). Note that all terms in Q̂ contain an antifield

derivative. From its construction, Q̂ is nilpotent as well, i.e. Q̂2 = 0.

Let us proceed to the gauge variation of the effective action. We firstly note that

δΓ = δW . Secondly, we observe that the definitions (3.5) and the Ward identity (3.6)

imply that
δ

δΦ∗

∣∣∣
J

=
δ

δΦ∗

∣∣∣
Φ

+
δΦ

δΦ∗

δl

δΦ

∣∣∣
Φ∗

. (4.9)

Next, differentiating the Ward identities (3.2) with respect to the sources J , then rewriting

these relations for the functional W and transforming the latter with allowance for (3.5)

and (3.6), we arrive at

Q̂ΦA
∣∣
J

=

(
M̂A∗ −

δΓ

δΦ∗
A

)
(−1)εA

+
i

~

(
ΦAM̂B

δΓ

δΦ∗
B

(−1)εA − M̂B
δΓ

δΦ∗
B

ΦA

)

+
i

~

(
ΦA δΓ

δΦB
M̂B∗

(−1)εA −
δΓ

δΦB
M̂B∗

ΦA

)
. (4.10)

From (4.7)–(4.10) we can represent the gauge variation of the effective action in the fol-

lowing form,

δΓ = ŝq 〈δΨ〉 + 〈δM〉 , (4.11)
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where the operator ŝq is given by

ŝq = −(Γ, •) + M̂A
δ

δΦ∗
A

+ (−1)εAM̂A∗ δl

δΦA

−
i

~

(
M̂B

δΓ

δΦ∗
B

ΦA − (−1)εAΦAM̂B
δΓ

δΦ∗
B

)
δl

δΦA

−
i

~

(
δΓ

δΦB
M̂B∗ΦA − (−1)εAΦA δΓ

δΦB
M̂B∗

)
δl

δΦA
(4.12)

and we introduced the notation

〈δΨ〉 = δΨ(Φ̂) · 1 and 〈δM〉 = δM(Φ̂,Φ∗) · 1 . (4.13)

Because ŝq is related to Q̂ via a Legendre transformation (which is a change of variables),

it must be nilpotent as well, ŝ2
q = 0.

Another extremely useful representation for δΓ is obtained by a slightly different rewrit-

ing of (4.10) as follows,

δΓ

δΦ∗
A

− M̂A∗ = −(−1)εAεB

(
M̂B −

δΓ

δΦB

)
(Γ

′′−1)AC δl

δΦC

δΓ

δΦ∗
B

+
i

~

(
ΦAM̂B

δΓ

δΦ∗
B

− (−1)εAM̂B
δΓ

δΦ∗
B

ΦA

)

+
i

~

(
ΦA δΓ

δΦB
M̂B∗ − (−1)εA

δΓ

δΦB
M̂B∗ΦA

)
. (4.14)

As the result we obtain our final expression for the gauge variation of the effective action,

δΓ =
δΓ

δΦA
F̂A 〈δΨ〉 − M̂AF̂A〈δΨ〉 + 〈δM〉 , (4.15)

with the operator definition

F̂A = −
δ

δΦ∗
A

− (−1)εB(εA+1)(Γ
′′−1)BC

(
δl

δΦC

δΓ

δΦ∗
A

)
δl

δΦB
. (4.16)

We see from (4.15) that on shell the effective action is generally gauge dependent since

δΓ

δΦA
= 0 −→ δΓ 6= 0 . (4.17)

This negates a consistent formulation of a soft breaking of BRST symmetry within the

field-antifield formalism, unless perhaps the two last terms in (4.15) cancel each other,

〈δM〉 = M̂AF̂A〈δΨ〉 . (4.18)

This is a severe restriction on the BRST-breaking functional M for the effective action

to be gauge independent on-shell. The same statement is valid for physical S-matrix. In

fact, (4.18) fixes the gauge variation of M = M(Φ,Φ∗) under a change of the gauge-fixing

functional Ψ to be

δM =
δM

δΦA
F̂A

0 δΨ (4.19)

where (see (2.11) and (2.13))

F̂A
0 = −(−1)εB(εA+1)(S

′′−1)BC

(
δl

δΦC

δS

δΦ∗
A

)
δl

δΦB
. (4.20)
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5 Gribov-Zwanziger action in a one-parameter family of gauges

In this section we shall apply our above-described general consideration of a soft BRST

breaking to the important case of Yang-Mills theories, since those had been the subject

of recent investigations [7–12]. The initial classical action S0 of Yang-Mills fields Aa
µ(x),

which take values in the adjoint representation of su(N) so that, a = 1, . . . , N2−1, has the

standard form

S0(A) = −
1

4

∫
dDx F a

µνFµνa with F a
µν = ∂µAa

ν − ∂νA
a
µ + fabcAb

µAc
ν , (5.1)

where µ, ν = 0, 1, . . . ,D−1, the Minkowski space has signature (−,+, . . . ,+), and fabc

denote the (totally antisymmetric) structure constants of the Lie algebra su(N). The

action (5.1) is invariant under the gauge transformations

δAa
µ = Dab

µ ξb with Dab
µ = δab∂µ + facbAc

µ . (5.2)

The field configuration space of Yang-Mills theory,

{ΦA} = {Aa
µ, Ba, Ca, C̄a} with ε(Ca) = ε(C̄a) = 1 , ε(Aa

µ) = ε(Ba) = 0 , (5.3)

includes the (scalar) Faddeev-Popov ghost and antighost fields Ca and C̄a, respectively, as

well as the Nakanishi-Lautrup auxiliary fields Ba. The corresponding set of antifields is

{Φ∗
A} = {A∗aµ, B∗a, C∗a, C̄∗a} with ε(A∗aµ) = ε(B∗a) = 1 , ε(C∗a) = ε(C̄∗a) = 0 .

(5.4)

A solution to the classical master equation (2.8) can be presented in the form

S̄(Φ,Φ∗) = S0(A) + A∗aµDab
µ Cb +

1

2
C∗afabcCbCc + C̄∗aBa . (5.5)

The gauge-fixing functional can be chosen as

Ψ(Φ) = C̄aχa(A,B) (5.6)

with free bosonic functions χa, so that the non-degenerate action Sext (2.9) becomes

Sext(Φ,Φ∗) = S0(A) +

(
A∗aµ + C̄c δχc

δAa
µ

)
Dab

µ Cb +
1

2
C∗afabcCbCc +

(
C̄∗a + χa

)
Ba

= SFP (Φ) + A∗aµDab
µ Cb +

1

2
C∗afabcCbCc + C̄∗aBa , (5.7)

where SFP (Φ) is the Faddeev-Popov action

SFP (Φ) = S0(A) + C̄aKabCb + χaBa with Kab =
δχa

δAc
µ

Dcb
µ . (5.8)

The actions (5.8) and (5.7) are invariant under the BRST transformation

δBAa
µ = Dab

µ Cbθ , δBC̄a = Baθ , δBBa = 0 , δBCa =
1

2
fabcCbCcθ (5.9)

where θ is a constant Grassmann parameter.
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In [13, 14] it has been shown that the Gribov horizon [15] in Yang-Mills theory (5.1)

in the Landau gauge,

χa(A,B) = ∂µAa
µ −→ Kab = ∂µDab

µ , (5.10)

can be taken in to account by adding to the Faddeev-Popov action (5.8) the non-local

functional1

M(A) = γ2
(
fabcAb

µ(K−1)adfdecAeµ + D(N2−1)
)

, (5.11)

where K−1 is the matrix inverse to the Faddeev-Popov operator Kab in (5.10). The so-

called thermodynamic or Gribov parameter γ is determined in a self-consistent way by the

gap equation [13, 14]
∂Evac

∂γ
= 0 , (5.12)

where Evac is the vacuum energy given by

exp

{
i

~
Evac

}
=

∫
DΦ exp

{
i

~
SGZ(Φ)

}
(5.13)

pertaining to the Gribov-Zwanziger action [7–12]

SGZ(Φ) = SFP (Φ) + M(A) . (5.14)

Note that the functional M(A) in (5.11) is not invariant under the BRST transforma-

tion (5.9) but trivially satisfies the condition (2.12) of soft BRST breaking because of its

independence on antifields.

The Gribov-Zwanziger action was intensively investigated in a series of papers [7–12]

where various quantum properties of gauge models with this action have been studied.

We stress however that it was impossible in principle to establish the gauge indepen-

dence of physical quantities in these theories because they were formulated in the Landau

gauge (5.10) only. Here, we are going to clarify this crucial issue.

To this end, we extend the Gribov-Zwanziger action (5.14) to the one-parameter family

of Rξ gauges,

χa(A,B, ξ) = ∂µAa
µ +

ξ

2
Ba (5.15)

with a real parameter ξ interpolating between the Landau gauge (ξ=0) and the Feynman

gauge (ξ=1). The Faddeev-Popov action is then written as

SFP (Φ, ξ) = S0(A) + C̄a∂µDab
µ Cb + (∂µAa

µ)Ba +
ξ

2
BaBa . (5.16)

The Faddeev-Popov operator Kab is obviously independent of ξ, but the functional M must

be modified away from ξ = 0, already because Kab ceases to be hermitian [23]. Although

a suitable functional M(A,B, ξ) is not known, we assume its existence with

lim
ξ→0

M(A,B, ξ) = M(A) (5.17)

1The choice of [7–12] agrees with ours after Wick rotation, integrating out auxiliary fields and renaming

γ
4
→ γ

2.
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where M(A) is given by (5.11). Now we propose the Gribov-Zwanziger action for Yang-

Mills theories (5.1) in the Rξ gauge family (5.15) as

SGZ(Φ, ξ) = SFP (Φ, ξ) + M(A,B, ξ) . (5.18)

Because the BRST transformation (5.9) does not depend on the gauge fixing, from (5.17)

by continuity we can conclude that

δBM(A,B, ξ) 6= 0 −→ δBSGZ(Φ, ξ) 6= 0 . (5.19)

Let us recall our consistency condition (4.19), which takes the form

δM(A,B, ξ)
!
=

1

2

δM(A,B, ξ)

δΦA
F̂A

0 C̄aBa δξ . (5.20)

Since the right-hand side necessarily depends on the ghost, antighost or auxiliary fields, it

cannot match the left-hand side for our choice of M . Therefore, soft breaking of BRST

symmetry is not consistent in Rξ gauges.

6 Conclusions

We have proposed a definition of soft breaking of BRST symmetry in the field-antifield

formalism. To this end, a ‘breaking functional’ M had to be added to the gauge-fixed

action Sext. The latter is constructed from an arbitrary classical gauge-invariant action S0

with the rules of the field-antifield method. In terms of the functional M , the soft breaking

of BRST symmetry was defined by the analog of the classical master equation (M,M) = 0.

We have derived all Ward identities for the generating functional of Green’s functions, of

connected Green’s functions and of vertex functions, denoted by Z, W and Γ, respectively.

These identities were employed to investigate the gauge dependence of those functionals.

It was shown that Γ as well as the S-matrix are on-shell gauge dependent in general. We

discussed the Gribov-Zwanziger action for the one-parameter family of Rξ gauges. Already

in this simple case, the functional Γ turned out to depend on the gauge even on shell. We

are forced to conclude that a consistent quantization of gauge theories with a soft breaking

of BRST symmetry does not exist.
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A Proof of nilpotency for q̂

For simplicity of writing let us abbreviate

MA

(
~

i

δ

δJ
,Φ∗

)
=: MA and MA∗

(
~

i

δ

δJ
,Φ∗

)
=: MA∗ . (A.1)

The square of q̂ may be directly presented as a sum of four operators,

q̂2 =

[
(JA + MA)

δ

δΦ∗
A

−
i

~
JAMA∗

]2

≡

4∑

i=1

Di

= (JA + MA)
δ

δΦ∗
A

(JB + MB)
δ

δΦ∗
B

−
i

~
(JA + MA)

δ

δΦ∗
A

JBMB∗

−
i

~
JBMB∗ (JA + MA)

δ

δΦ∗
A

+

(
i

~

)2

JAMA∗ JBMB∗. (A.2)

After rearranging the antifield derivatives, the four summands in (A.2) take the form

D1 = (−1)εA+1 (JA + MA) (JB + MB)
δ

δΦ∗
B

δ

δΦ∗
A

+ (JA + MA)
δMB

δΦ∗
A

δ

δΦ∗
B

,

D2 = (−1)εA
i

~
(JA + MA) JBMB∗ δ

δΦ∗
A

− (−1)εB(εA+1) i

~
(JA + MA)JB

δMB∗

δΦ∗
A

,

D3 = −
i

~
JBMB∗ (JA + MA)

δ

δΦ∗
A

,

D4 = (−1)εB

(
i

~

)2

JBJAMA∗MB∗ +
i

~
JAMA∗

BMB∗ , (A.3)

where the notation

MA∗
B =

δ2M(Φ,Φ∗)

δΦ∗
A δΦB

∣∣∣
Φ→ ~

i

δ

δJ

(A.4)

was used.

The first term in D4 vanishes identically, whereas the first one in D1 reads

(−1)εA+1

(
JAJB + MAMB + JAMB + (−1)εAεBJBMA +

~

i
MAB

)
δ

δΦ∗
B

δ

δΦ∗
A

, (A.5)

with

MAB =
δ2M(Φ,Φ∗)

δΦA δΦB

∣∣∣
Φ→ ~

i

δ

δJ

so that MAB = (−1)εAεBMBA . (A.6)

Since under the exchange A ↔ B the symmetry property of the expression in brackets

is opposite to the symmetry of the second antifield derivative, (A.5) vanishes, and D1 is

reduced to the second term.

Next, we collect the remaining terms in (A.3) which are not proportional to an antifield

derivative operator, i.e. the second terms in D2 and D4,

i

~

[
JA

(
MA∗

BMB∗ − MB
δMA∗

δΦ∗
B

(−1)εA

)
−

(
JAJB +

~

i
MAB

)
δMA∗

δΦ∗
B

(−1)εA

]
. (A.7)
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Note that

δMA∗

δΦ∗
B

=
δ2M(Φ,Φ∗)

δΦ∗
B δΦ∗

A

∣∣∣
Φ→ ~

i

δ

δJ

and
δMA∗

δΦ∗
B

=
δMB∗

δΦ∗
A

(−1)(εA+1)(εB+1) (A.8)

and, therefore, (
JAJB +

~

i
MAB

)
δMA∗

δΦ∗
B

(−1)εA = 0 (A.9)

due to symmetry properties under A ↔ B. From (2.12), (M,M) = 0, we have

0 =
1

2

δ

δΦ∗
A

(M,M) =
δ2M(Φ,Φ∗)

δΦ∗
A δΦB

δM(Φ,Φ∗)

δΦ∗
B

−
δM(Φ,Φ∗)

δΦB

δ2M(Φ,Φ∗)

δΦ∗
B δΦ∗

A

(−1)εA , (A.10)

which, after substituting Φ → ~

i
δ
δJ

, yields

MA∗
BMB∗ − MB

δMA∗

δΦ∗
B

(−1)εA = 0 . (A.11)

We have thus shown that the expression (A.7) vanishes.

Finally, the terms in (A.3) proportional to a single antifield derivative, i.e. the second

term in D1, the first one in D2 and all of D3, have the form

(JA + MA)
δMB

δΦ∗
A

δ

δΦ∗
B

+
i

~

[
(−1)εA(JA + MA)JBMB∗ − JBMB∗(JA + MA)

] δ

δΦ∗
A

=

(
MA

δMB

δΦ∗
A

+ MBAMA∗(−1)εB

)
δ

δΦ∗
B

. (A.12)

Again, this expression is equal to zero as a consequence from the analog of the classical

master equation (M,M) = 0. Indeed,

0 =
1

2

δ

δΦA
(M,M) =

δM(Φ,Φ∗)

δΦB

δ2M(Φ,Φ∗)

δΦ∗
B δΦA

+ (−1)εA
δ2M(Φ,Φ∗)

δΦA δΦB

δM(Φ,Φ∗)

δΦ∗
B

, (A.13)

thus substituting Φ → ~

i
δ
δJ

we find

MB
δMA

δΦ∗
B

+ (−1)εAMABMB∗ = 0 . (A.14)

We have proved our assertion that q̂2 = 0.
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