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Abstract. An accurate numerical simulation of the structural lifetime of offshore wind
turbines is a challenging task due to several reasons. One of them is the uncertainty of met-
ocean conditions acting on a turbine, e.g. wind and waves. This uncertainty can be divided into
two kinds of uncertainty: aleatory and epistemic uncertainty. If both types of uncertainty
occur, this is called polymorphic uncertainty. According to the state of the art, for met-
ocean conditions, mainly aleatory uncertainty is considered or both types of uncertainty are
modelled using a single probability density function. This leads to a simplification of the actual
uncertainty, whose effect on the lifetime estimation has not been analysed so far. In that
sense, in this work, the influence of various uncertainty models for met-ocean conditions on
long-term damage equivalent loads (DELs) – representing the wind turbine fatigue lifetime – is
investigated. For this purpose, different uncertainty models for met-ocean conditions are derived
using real measurement data. Not only purely probabilistic models are applied, but imprecise
probabilities - here interval random variables - as well. It is shown that the uncertainty models
have a considerable influence on the fatigue life of offshore wind turbines. Especially, the large
fatigue load intervals, which are determined, clarify the importance of a well-founded decisions
regarding uncertainty modelling of met-ocean conditions.

1. Introduction
Although the share of offshore wind energy in the overall energy production has been steadily
growing over the last years, the cost of offshore wind energy is still high compared to other
renewable energies [1]. To drive the cost of offshore wind energy further down, an increase
or at least a better knowledge of the reliability of the turbine is beneficial. Since the design
of offshore wind turbines - especially of steel components - is mainly governed by the fatigue
lifetime [2], an accurate and reliable estimation of fatigue loads is required. The uncertainty
of fatigue loads is mostly influenced by uncertain met-ocean conditions, like the wind speed
or the wave height [3, 4]. However, it is not straightforward to determine the uncertainty of
these reliability-determining met-ocean conditions. First, they feature some amount of inherent,
physical randomness. This uncertainty is called aleatory uncertainty. It is not reducible. Usually,
it is modelled using probabilistic approaches, i.e. probability density functions [5]. Second, to
determine these probability distributions, measurements are required. These measurements
feature their own uncertainty (measurement uncertainty). They are limited (uncertainty due
to a lack of data). Moreover, statistical distributions are used to fit the empirical ones. This
leads to uncertainty of the statistical model. Hence, another type of uncertainty should be
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included in an accurate uncertainty model for met-ocean conditions. It is called epistemic
uncertainty. Epistemic uncertainty is reducible, e.g. by gathering more data. It can, for
example, be modelled by interval or fuzzy variables [6]. If both types of uncertainty occur,
this is called polymorphic uncertainty [5]. Polymorphic uncertainty can be modelled using
imprecise probabilities. However, according to the state of the art, for met-ocean conditions,
mainly aleatory uncertainty is considered [7, 9]. If polymorphic uncertainty is taken into account,
purely probabilistic approaches are used, for example, by averaging different distributions [10].
However, using purely probabilistic approaches, a separated analysis of both types of uncertainty
is not possible. Both approaches are simplifications of the actual uncertainty, whose effects on
fatigue loads has not been analysed so far.
More accurate uncertainty models for polymorphic uncertainty are based on imprecise
probabilities [6]. Here, for example, interval random variables, also called p-boxes, or fuzzy
random variables are adequate models. For interval random variables, the determination
of probability distributions and the corresponding intervals using real measurement data is
described, for example, by Zhang et al. [11]. In that sense, in this work, the influence of more
accurate uncertainty models for met-ocean conditions on fatigue loads is investigated. Here,
interval random variables are used to represent the uncertainty.
For this purpose, first, different uncertainty models are derived to represent the most relevant
met-ocean conditions (wind speed, wave height, and wave period). For example, pure
probabilistic representations using theoretical and empirical distributions are applied. To be
more accurate, in addition, polymorphic uncertainty is modelled using interval random variables
based on confidence intervals. Second, lifetime damage equivalent loads (DELs; c.f. Dimitrov
et al. [12]), representing the fatigue lifetime of a turbine, are calculated for all uncertainty
models. Since the calculation of lifetime DELs is computational demanding, a meta-model-
based approach is applied [12, 13]. Finally, resulting DELs for different uncertainty models are
compared. Conclusions are drawn.

2. Uncertainty models
2.1. Met-ocean data
In this study, uncertainty models for three relevant met-ocean conditions - namely wind speed,
wave height and wave period - are derived directly from offshore measurement data. The
prominent relevance of these three conditions was identified within previous studies [3, 4]. The
raw data is taken from the FINO3 platform [14]. Distributions (including correlations and
interval definitions) are determined. The FINO3 measurement mast is located in the North
Sea. Inter alia, maximum, minimum, mean, and standard deviation values of the wind speed,
measured at different heights between 30 m and 100 m above mean sea level, are available for
10-minute intervals. Wind speeds are measured with cup and ultrasonic anemometers. In
this study, cup anemometers are used. Three anemometers are installed around the mast to
minimise shadow effects. A buoy in the immediate vicinity of the research platform (about
150 m) measures wave conditions. For example, mean values of significant wave heights and
wave peak periods are recorded every 30 minutes. The FINO3 platform has been measuring
continuously since 2009. Here, a measurement period of 8 years (1st Dec. 2010 to 30th Nov.
2018) is considered. More detailed information regarding the measurements at FINO3 can be
found, for example, on the website [14]. The post-processing of the raw data, e.g. the reduction
of tower shadow effects, is described in Hübler et al. [7].
Since met-ocean conditions are not independent of each other, correlations between inputs have
to be considered. In this work, wind speed is regarded as an independent input. Wave heights
depend on wind speeds. For example, during a storm, not only high wind speeds occur, but
the probability for a rough sea with high waves is increased as well. Moreover, wave periods
depend on the wave height. A trend of longer periods for higher waves can be observed. Both
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dependencies can be seen in Figure 1. It shows scatter plots of measured mean values at FINO3
within the eight year period. This description of the dependencies of the three environmental
conditions is fairly simplified. Different physical reasons for sea states are not considered.
For example, there is no differentiation between wind sea waves (created by local wind) and
swell waves (created by distant storms). As indicated by colour highlighting in Figure 1 and
the illustration of the dependencies between the environmental conditions in Figure 2, a more
sophisticated description could be beneficial. Nonetheless, since the following analyses are based
on statistical methods, even using a highly simplified description, an accurate representation of
the real sea conditions is possible. This is demonstrated later on in Figure 4 and 5 and by the
small differences of the approaches Emp and Theo in Table 1. Therefore, this simplification of
the sea state modelling is justified for the present case.

Figure 1. Scatter plots of the measured mean values at FINO3 within the eight year period
to illustrate dependencies. Differentiation between swell and wind sea according to the wave age
[8]. Left: wind speed vs. wave height. Right: wave height vs. wave period.

Figure 2. Development of mean values (crosses) and standard deviations (error bars) of
depending environmental conditions in different bins and different conditions (swell and wind
sea). Left: wind speed vs. wave height. Right: wave height vs. wave period.

To cover the described dependencies within the uncertainty models, the data is divided into
bins. This means: For the wind speed, the entire wind speed data is utilised to determine
the uncertainty model. However, for the wave height, the data is divided into bins of 2 m s−1

wind speed (marked in Figure 1). For each bin, an individual uncertainty model is constructed.
Similarly, for the wave period, the data is split up into bins of 0.5 m wave height. This approach
of including dependencies between met-ocean conditions, was already successfully applied in
Hübler et al. [7]. There, additional explanations can be found.
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2.2. Theory
In general, there are various methods to model input uncertainty. Examples are random
variables, interval variables, fuzzy probability-based random variables, etc. [5]. In this work, the
focus is on random variables and interval random variables (i.e. p-boxes). The first approach is
the standard method for aleatory uncertainty. It is applied, for example, by Stewart et al. [10]
or Fischer et al. [9]. The latter one enables to model - in addition to the aleatory uncertainty
- epistemic uncertainty explicitly. This is helpful, if, for example, probability density functions
cannot be determined precisely. In this case, the additional interval definition can cover the
uncertainty due to incomplete or imprecise data. Fuzzy random variables - not considered
in this work - would be an alternative [15]. Overall, five different methods are compared
in this work. The first two are based on random variables. Either empirical cumulative
density functions (CDFs) are applied (approach 1: Emp) or the best fitting theoretical CDF
is determined (approach 2: Theo). Approaches three to five are p-boxes, i.e. intervals of
CDFs are used. Again, there is an empirical interval approach (approach 3: EmpInt) that
is based on Kolmogorov-Smirnov confidence intervals. For the last two concepts, theoretical
CDFs are determined. However, the determination of theoretical CDFs cannot be completely
exact. The resulting epistemic uncertainty can either be represented by applying intervals for the
distribution parameters (approach 4: ParamInt) or by creating an envelope of various potentially
suitable CDFs, i.e. using different theoretical distributions (approach 5: DistrInt). All p-box
approaches are described in more detail by Zhang et al. [11]. The theory of all five methods is
briefly summarised in the following. The resulting distributions and illustrations of them can
be found in the next section.
Emp: The empirical CDF can be determined by relating the number of data points (xi) that
exceeds x to the overall number of data points n:

FEmp(x) =
1

n

n∑
i=1

1xi≤x(x), (1)

where 1xi≤x is the indicator function that is equal to one for xi ≤ x and equal to zero in all
other cases.
Theo: For the best fitting theoretical CDF, first, several theoretical probability functions are
fitted to the empirical CDF. In the present case, for example, normal distributions, Gumbel
distributions, etc. are fitted. Distribution parameters (e.g. µ and σ for the normal distribution)
are determined using a maximum likelihood estimation. Since several distributions are fitted,
in a second step, X 2 tests are conducted to determine which theoretical probability function
resembles the empirical one most. For more details, it is referred to Hübler et al. [7], where
this procedure was already applied to similar data. For the wind speed, this procedure yields a
Weibull distribution with λ = 0.0920 and k = 2.2747:

FTheo(x) = 1− e−(λx)k . (2)

For the wave height, Gumbel and gamma distributions are found to be best suitable depending
on the wind speed bin. For the wave period, bi-modal Gumbel distributions are selected
independent of the wave height bin (cf. Hübler et al. [7]).
EmpInt : Since empirical CDFs are uncertain, for example, due to a limited number of data

points, a lower (
¯
FEmp(x)) and an upper (F̄Emp(x)) empirical CDF can be defined as follows:

¯
FEmp(x) = min(1,max(0, FEmp(x)−Dα

n)) and (3)

F̄Emp(x) = min(1,max(0, FEmp(x) +Dα
n)), (4)

where Dα
n is the critical value in a Kolmogorov-Smirnov test at the significance level α and a

sample size n. In this work, a standard value of α = 0.05 is used. Lower values for α yield
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higher uncertainties and therefore wider intervals.
ParamInt : Similar to the interval definition for the empirical CDF, intervals can be defined
for the theoretical distribution as well. Here, the approach is that the determined distribution
parameters θ, e.g. θ = (λ, k) for the Weibull distribution, are uncertain themselves. Hence, it is
convenient to define intervals for them:

[
¯
θ, θ̄
]
. Using these interval definitions, lower and upper

CDFs can be defined:

¯
FTheo(x) = min(FTheo(x|θ)) with

¯
θ ≤ θ ≤ θ̄ and (5)

F̄Theo(x) = max(FTheo(x|θ)) with
¯
θ ≤ θ ≤ θ̄. (6)

To be in line with the empirical interval CDF, intervals of the distribution parameters correspond
to the 95 % confidence interval.
It should be noted that the minimising and maximising problem can be greatly simplified by just
using the limits of θ, i.e.

¯
θ and θ̄, since they lead to the extreme values for a given probability

function.
DistrInt : Alternatively, the uncertainty in determining the theoretical distribution can be
attributed to the distribution itself instead of to its parameters. In this case, not only the best
fitting distribution according to the X 2 tests is selected, but m different types of distributions
FTheo,i. For each type of distribution, the distribution parameters are determined. Here, we
abstain from assuming an additional uncertainty of distribution parameters. Nevertheless, a
combination of parameter uncertainty with distribution uncertainty could be subject of future
work. Lower and upper CDFs are constructed by finding the minimum and maximum CDF for
each point x:

¯
FDistr(x) = min(FTheo,i(x)) for i = 1, . . . ,m and (7)

F̄Distr(x) = max(FTheo,i(x)) for i = 1, . . . ,m. (8)

2.3. Resulting uncertainty models
The approaches presented in the previous section are applied to determine different uncertainty
models for wind speed, wave height, and wave period based on FINO3 measurement data (c.f.
Section 2.1). As stated before, wind speed is considered to be the independent variable. Hence,
all wind speed data is taken into account. For wave inputs, different uncertainty models are built
up for different bins. Apart from that the procedure is the same for all three inputs. Exemplary,
the identified wind speed CDFs are shown in Figure 3. In addition, a detailed view of theses
CDFs is given to see the differences more clearly. Lastly, the wave height CDFs for the wind
speed bin 16 m s−1 to 18 m s−1 are presented as well.
Several facts become clear when analysing the results presented in Figure 3. First, for the wind
speed, the uncertainty models are quite similar. A detailed view is needed to spot differences.
Only the use of different distributions (DistrInt) leads to a more widely spread interval. The
reason for this good match of all models is the well fitting representation of the real data by
theoretical distributions. In addition, the large amount of data reduces statistical uncertainties.
For the dependent variable - here the wave height, less data is available, since the data is split
up into bins. Hence, statistical uncertainty increases. Differences between uncertainty models
become more obvious. For the empirical interval, it should be noted that the definition in
equations (3) and (4) lead to a “vertical” distance of the upper (F̄Emp(x)) and lower limit
(
¯
FEmp(x)) to the empirical one (FEmp(x)), e.g. F̄Emp(x) = FEmp(x)+Dα

n . Hence, for x→∞ or
x→ −∞, this results in limits that do not converge to 0 or 1, but to 1−Dα

n or Dα
n , respectively.

This fact would be problematic in the following, as, for example,
¯
F−1
Emp(1) = ∞. To resolve

this fact, maximum distances to the empirical distribution in “horizontal” direction of 5 m s−1,
2 m, and 3 s for wind speed, wave height and period, respectively, are defined. This yields, for
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Figure 3. Illustration of different uncertainty models: Left: wind speed. Middle: detailed
view for wind speed. Right: wave height for the wind speed bin 16 m s−1 to 18 m s−1.

example,
¯
F−1
Emp(1) = F−1

Emp(1) + 2 m for the wave height. This extra criterion can be spotted in

Figure 3 (right) as a kinking point of the EmpInt curve just above 6 m. In general, the choice
of the specific values for the maximum distances is arbitrary. For this work, several maximum
values were tested in advance. Too high values lead to pronounced kinking points. Such non-
smooth distributions are normally not physical. Too low values narrow the interval. Hence, the
actual epistemic uncertainty would be underestimated. In any case, the choice of these values
affects mainly the lower and upper tails of the CDFs. Since fatigue is determined by the large
amount of data points close to the mean, the effect on the overall uncertainty model is not
critical.
To demonstrate the performance of the uncertainty models, especially of the input dependencies,
in Figure 4 and 5, the scatter of the original data is compared to the scatter of realisations
based on the theoretical uncertainty model (Theo). Clearly, the general trend is represented
well (c.f. Figure 5). Some differences can be spotted for “extreme values”. For those extremes,
theoretical distributions might predict too high values. This limited accordance for the tails
of the distributions is well-known. It can be explained by the higher weighting of the region
close to the mean value for the fitting. However, as explained before, this deviation is fairly
unproblematic for fatigue loads.

Figure 4. Comparison of the scatter of the
original wind-wave data to the prediction by
the theoretical uncertainty model (Theo).

Figure 5. Wave height mean values
(crosses) and standard deviations (error bars)
in different 1 m s−1 wind speed bins.
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3. Fatigue load calculation
To efficiently determine the influence of uncertainty models on wind turbine fatigue loads, three
aspects have to be considered. First, a procedure to calculate fatigue loads or at least a measure
for fatigue is needed. Here, lifetime DELs [12] are utilised. Second, a suitable wind turbine
model is required. Such a turbine is the NREL 5 MW reference wind turbine [16]. And last,
to ensure an efficient computation, a meta-model, which correlates polymorphic uncertain met-
ocean conditions to short-term DELs, is helpful. All three aspects are explained in more detail
in the following.

3.1. Damage equivalent load
A short-term DEL represents a load signal with a constant frequency and amplitude (Seq)
yielding the same damage according to the Palmgren-Miner rule as an investigated (realistic)
short-term load signal with various frequencies and amplitudes (Si):

Seq =

(∑ niS
m
i

Nref

)−m
, (9)

where Nref = 600 to set the frequency of the DEL to 1 Hz for a 10-minute period. Si and ni
are the different amplitudes and the corresponding number of cycles in the original load signal,
when applying a rainflow counting. The material exponent is chosen as m = 3 for steel.
For long-term fatigue loads, a lifetime DEL [12] can be defined:

Seq,LT =

(∫
Seq(x)mf(x)dx

)−m
, (10)

where x is the input vector and f(x) is the joint probability density function of x. Since this
integral cannot be solved analytically, normally, a finite number of random realisations of x is
used to estimate Seq,LT, i.e. Monte Carlo integration.
For uncertainty models with interval random variables [

¯
x, x̄], the lifetime DEL is also an interval[

¯
Seq,LT, S̄eq,LT

]
. Due to the fact that

¯
x does not necessarily yield

¯
Seq,LT, for each realisation of

x, the minimum and the maximum value of Seq has to be found, e.g.:

¯
Seq(x) = min (Seq(x)|x ∈ [

¯
x, x̄]) . (11)

In this work, the minimisation problem is solved by applying a global pattern search approach
[17]. A track number of T = 2 is chosen. A low track number results in a fairly local version of
the global pattern search approach. This is reasonable, since there is only a low number of local
minima in the “truncated” objective spaces, i.e. the objective spaces resulting from the interval
definitions.
Descriptively, for interval random variables, this means that each realisation x is no longer
represented by a single point, but by a (set of) multi-dimensional rectangle(s). For ten
exemplary realisations and the distribution interval (DistrInt), the corresponding search spaces
are illustrated in Figure 6. The shown rectangles represent the limits of the input variables [

¯
x, x̄],

in which we search for maximum and minimum lifetime DELs (
¯
Seq,LT and S̄eq,LT). Just a point

of clarification, in Figure 6, only ten realisations are shown. This is only for illustration purposes.
For the calculation, thousands of representative realisations are used. This corresponds to the
thousands of points (Theo) in Figure 4. Each point for a probabilistic approach (e.g. Theo)
corresponds to a (set of) multi-dimensional rectangle(s) for an interval random approach (e.g.
DistrInt). This feature is illustrated in Figure 7. It shows for five exemplary realisations the
values for the theoretical uncertainty model (Theo) and the corresponding rectangles for the
interval approach (DistrInt). The five realisations are highlighted in different colours. In Figure
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Figure 6. Illustration of the
search space for the distribu-
tion interval (DistrInt) for 10
exemplary realisations of x.

Figure 7. Illustration of cor-
responding search space (Dis-
trInt) for point realisations
(Theo) for 5 realisations.

Figure 8. Visual validation
of the Kriging model: Kriging
prediction vs. aero-elastic sim-
ulation results.

6, thousands of rectangle would not be illustrative. Hence, we abstained from showing all
realisations for the interval approach.
It might be apparent that more than ten (five) rectangles can be spotted in Figure 6 (Figure
7). This is due to the fact that the wave height definitions differ within the corresponding wind
speed bins. For example, the two adjacent rectangles at a wind speed of approximately 20 m s−1

and a wave height of around 1.5 m (marked in blue in Figure 6) represent only a single search
space, i.e. one realisation of x. In general, the limits are wider in case of “extreme” events,
where less data is available.

3.2. Wind turbine model
To determine the short-term DELs in equation (9), load signals are required. According to
the state of the art, these are determined by conducting time-domain simulations using aero-
elastic simulation codes. In this work, the NREL 5 MW reference wind turbine with the
OC3 monopile as substructure [18] is simulated using the aero-hydro-servo-elastic simulation
framework FASTv8 [19] of the “National Renewable Energy Laboratory” (NREL). A soil
model that applies soil-structure interaction matrices [20, 21] enhances the FASTv8 code. Soil
conditions of the OC3 phase II model [18] are assumed. For all simulations, the simulation
length is set to 10 minutes according to Hübler et al. [7]. The “run-in” time (i.e. the time that
has to be removed from each time series to exclude initial transients) is set to 240 seconds.
According to Hübler et al. [7], this “run-in” time should be sufficient, if initial conditions -
e.g. for the rotor speed - are used, which is done in this study. The turbulent wind field is
calculated using the Kaimal model. The JONSWAP spectrum is applied to compute irregular
waves. These spectra might not be consistent with the derived long-term distributions (c.f.
Section 2.3). However, they follow the state of the art and the recommendations in current
standards [23]. Moreover, the accuracy of the aero-elastic simulations is not focus of this work.
Only one load is considered exemplary: the overturning moment in wind direction at mudline.
For future work, it is definitely necessary to consider all design-driving loads. However, in this
work, the intension is a more exemplary illustration of the effects of polymorphic uncertainty
modelling.
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3.3. Meta-modelling
For the determination of long-term DELs, according to equation (10), a multi-dimensional
integration is required. As stated before, this integral is normally approximated by a finite
number of random realisation of x. Ideally, the number of realisations is 1.3149 × 106. This is
the number of 10-minute periods in the entire lifetime of 25 years. If this number of realisations is
used, no load extrapolation techniques - adding additional uncertainties - are required. Moreover,
for interval random variables, for each realisation, an optimisation has to be conducted (cf.
Section 3.1). This leads to approximately 108 to 109 overall model evaluations. Considering the
fact that one model evaluation (one realisation of Seq(x)), i.e. one time domain simulation,
has a computing time of approximately 10 minutes, this procedure becomes inappropriate.
Therefore, a meta-model, which approximates Seq(x), is used in this work. This procedure
yielded promising results in the past [12, 24]. Based on results of Müller et al. [13], a Kriging
meta-model with a linear basis function and a squared exponential covariance function is set up.
The Kriging model is fitted based on ntraining = 5000 random realisations of x as training data
points. It is validated based on another ntest = 5000 test data points. A visual validation can
be seen in Figure 8. Moreover, the normalised root-mean-square error for the test data is:

NRMSE =
1

E(Seq(x))

√∑ntest
i=1 (Ŝeq(xi)− Seq(xi))2

ntest
= 0.075, (12)

where Ŝeq(x) is the predicted short-term DEL by the Kriging model. Clearly, there are possible
improvements regarding the meta-modelling (see for example Dimitrov et al. [12]). Moreover,
in any case, meta-modelling adds an additional uncertainty to the lifetime DEL calculation.
However, both is not focus of this work. Therefore, both is not further investigated.

4. Resulting fatigue loads
For each of the five uncertainty models, lifetime DELs (or lifetime DEL intervals) are calculated.
Lifetime DELs are based on 1.3149 × 106 realisations of met-ocean conditions. Hence, the full
turbine lifetime is calculated. Results are summarised in Table 1. For non-interval methods
(Emp and Theo), the lifetime DEL is calculated ten times to show the low uncertainty of
the lifetime DEL due to different met-ocean realisations over the entire turbine life. Hence,
differences between uncertainty models are actually a result of the model and not of different
random realisations.

On the one hand, the results in Table 1 demonstrate that pure probabilistic uncertainty models
lead to quite similar results. This means that neither different met-ocean realisations over the
entire turbine lifetime lead to significant differences (cf. σSeq,LT

in Table 1) nor does the change
of the uncertainty model result in pronounced variations of the lifetime DEL (cf. Emp and Theo

Table 1. Resulting lifetime DELs for different uncertainty models. For non-interval models,
mean values µSeq,LT

and standard deviations σSeq,LT
of ten realisations are given.

Uncertainty model µSeq,LT in MNm σSeq,LT in (MNm)2
¯
Seq,LT in MNm S̄eq,LT in MNm

Emp 5.286 0.0018 – –
Theo 5.287 0.0019 – –
EmpInt – – 4.924 5.839
ParamInt – – 4.775 5.995
DistrInt – – 4.494 6.238
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in Table 1). To be more precise, the differences of the two models are even within the range that
can be explained by different realisations (i.e. |µSeq,LT,Emp

− µSeq,LT,Theo
| < σSeq,LT,Emp

). Hence,
it is possible to represent the probabilistic behaviour with theoretical distributions with a good
agreement. As a result, the choice of the probabilistic uncertainty model is of minor importance.
However, on the other hand, the consideration of polymorphic uncertainty - being the focus of the
work - yields wide ranges of lifetime DELs. Hence, it can be suspected that lifetime DELs exhibit
a relevant amount of uncertainty, which is not detected by pure probabilistic approaches. As a
result, pure probabilistic approaches can under- and overestimate real lifetime DELs. However,
it has to be noted that the resulting interval of the lifetime DEL is significantly influenced by the
interval method. That is why intervals for polymorphic uncertainty models have to be chosen
with care. So far, it is not clear which interval random variable model is the most realistic
one. Though, it can be assumed that DistrInt might overestimate the range of Seq,LT due to
the consideration of non-optimal distributions. DistrInt yields large intervals even for the wind
speed (cf. Figure 3).

5. Conclusion and outlook
In this work, the influence of different uncertainty models - including polymorphic uncertainty
- for met-ocean conditions on the fatigue loads (lifetime DELs) of offshore wind turbines was
investigated. It was demonstrated that purely probabilistic approaches lead to quite similar
results. However, the consideration of statistical uncertainty by applying interval random
variables yields large ranges of lifetime DELs. This clarifies the existing uncertainty in fatigue
loads that is neglected by using pure probabilistic approaches. Hence, probabilistic approaches
can under- and overestimate the real fatigue lifetime of offshore wind turbines.
It has to be mentioned that several assumptions were made for this first study regarding
polymorphic uncertain met-ocean conditions in wind turbine modelling. In that sense, it also
has its limitations. For example, the uncertainty of the meta-model is not considered at all.
Moreover, only three met-ocean conditions based on the data of one site are analysed. Similarly,
regarding the outputs, the focus is on a single fatigue load and location: the overturning moment
in wind direction at mudline. For other DELs, effects of the uncertainty modelling might be
different. For example, for blade loads, wave loads - exhibiting high statistical uncertainty - are
less relevant. This might result in more narrow intervals for blade fatigue loads.
This work represents only a first step towards the application of polymorphic uncertainty in wind
turbine modelling. Since the relevance of polymorphic uncertainty modelling was successfully
demonstrated, future work should address, inter alia, the inclusion of the meta-model uncertainty
(cf. Figure 8). Moreover, fuzzy random uncertainty models might be interesting. Finally, it might
be useful to improve the efficiency of the present approach. This can be achieved by having a
closer look on the optimisation process for interval variables. This becomes especially relevant,
if fuzzy random variables are used. In this case, optimisations have to be repeated for different
α levels.
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