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Abstract
Acompartment epidemicmodel for infectious disease spreading is investigated, where
movement of individuals is governed by spatial diffusion. Themodel includes infection
age of the infected individuals and assumes a logistic growth of the susceptibles.Global
well-posedness of the equations within the class of nonnegative smooth solutions is
shown. Moreover, spectral properties of the linearization around a steady state are
derived. This yields the notion of linear stability which is used to determine stability
properties of the disease-free and the endemic steady state.

Keywords Age-strucutre · Spatial diffusion · Stability of steady states

Mathematics Subject Classification 35M10 · 47D06 · 92D30 · 47A10

1 Introduction

We consider a compartment epidemic model for infectious disease spreading. The
total population is divided into susceptible and infected individuals which move in
space by diffusion. Infectious individuals are structured by infective age keeping track
of the time elapsed since an individual first acquires the disease. A logistic growth is
assumed for the susceptibles.

Let S(t, x) and I (t, a, x) be the densities of susceptible and infected individuals,
respectively, at time t ≥ 0, position x ∈ �, and infection age a ∈ (0, am), where
� ⊂ R

n with n ≤ 3 is a bounded, smooth domain, and am ∈ [0,∞) is the maximal
invective age. The population of susceptible individuals is assumed to obey a logistic
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growth with intrinsic growth rate κ1 > 0 and carrying capacity κ2 > 0. Susceptible
individuals are infected at a rate b(a, x) by infected individuals of invective age a and
position x . Infectious individuals die naturally and disease-induced at a combined rate
μ(a, x) ≥ 0. They may recover and enter directly the class of susceptibles at a rate
r(a, x) ≥ 0. We shall thus focus on the equations

∂t S(t, x) = d1�S(t, x) + κ1

(
1 − 1

κ2
S(t, x)

)
S(t, x)

− S(t, x)
∫ am

0
b(a, x) I (t, a, x) da +

∫ am

0
r(a, x) I (t, a, x) da ,

(1.1a)

DI (t, a, x) = d(a)�I (t, a, x) − m(a, x)I (t, a, x) − r(a, x)I (t, a, x) , (1.1b)

I (t, 0, x) = S(t, x)
∫ am

0
b(a, x) I (t, a, x) da , (1.1c)

for t > 0, a ∈ (0, am), and x ∈ �. The differentiation operator D in (1.1b) is defined
as

DI (t, a, ·) := lim
h→0+

1

h

(
I (t + h, a + h, ·) − I (t, a, ·))

and is thus, if I is continuously differentiable with respect to t and a, given by

DI (t, a, ·) = ∂t I (t, a, ·) + ∂a I (t, a, ·).

For notational simplicity we will take a susceptible diffusion rate d1 = 1 and consider
a diffusion coefficient d = d(a) > 0 for infected individuals dependent only upon
infection age (though a space dependence does not alter the subsequent results). The
equations are supplemented by the initial conditions

S(0, x) = S0(x) , I (0, a, x) = I0(a, x) , (a, x) ∈ (0, am) × �, (1.1d)

and the boundary conditions

(1 − δ)S(t, x) + δ∂νS(t, x) = 0 , (1 − δ)I (t, a, x) + δ∂ν I (t, a, x) = 0 (1.1e)

for (t, a, x) ∈ (0,∞) × (0, am) × ∂�. Here, δ ∈ {0, 1} is fixed so that δ = 0
corresponds to Dirichlet boundary conditions, while δ = 1 yields Neumann boundary
conditions with ∂ν I = ∇ I · ν denoting the derivative in normal direction ν on the
boundary ∂� (we treat the two cases simultaneously).

Age-structured compartment epidemic models and age-structured population mod-
els in general have been investigated since many years (Thieme (2003); Webb (1985,
2008)). The particular case of equations (1.1) without spatial diffusion (and r = 0)
was studied in Cao et al. (2021). Therein, criteria for stability and instability of the
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disease-free and the endemic steady states were obtained in dependence on the cor-
responding basic reproduction number. Moreover, conditions for the occurrence of
Hopf bifurcation were presented.

The inclusion of spatial heterogeneity in age-structured populations leads to addi-
tional technical difficulties in the analysis. We refer to the monograph of Webb (2008)
for a general treatment of and a comprehensive overview on such problems. Regard-
ing SIS- and SIR-models there are various linear and nonlinear variants involving age
and spatial structure with Laplace diffusion. The list includes the pioneering works of
Webb (1980, 1981, 1982) on epidemic models including incubation periods, followed
by Fitzgibbon et al. (1995, 1996), Kubo and Langlais (1994), Langlais and Busen-
berg (1997) and, more recently, Chekroun and Kuniya (2019, 2020a, b); Di Blasio
(2010); Ducrot and Magal (2009); Ducrot et al. (2010); Ducrot and Magal (2011);
Kim (2006); Kuniya and Oizumi (2015) though these references are non-exhaustive.
The cited papers address various questions under different modeling hypotheses, for
instance related to well-posedness of the equations, existence and stability proper-
ties of disease-free and endemic steady states, disease persistence, traveling wave
solutions, or numerical simulations. We also refer to Kang and Ruan (2021) and
the references therein for age-structured epidemic models describing long-distance
spreading of diseases by nonlocal diffusion.

In this research we shall focus on the particular model (1.1). We first prove the
existence and uniqueness of positive, global, smooth solutions by using a semigroup
approach relying on results outlined in Webb (2008). We then show that the lineariza-
tion of these equations around a steady state yields a strongly continuous semigroup,
and we use the spectrum of its generator for determining linear stability properties
of steady states. Without further assumptions we prove stability or instability of the
disease-free steady state in dependence on the reproduction number. In a particular
case of (1.1) assuming spatially homogeneous rates and Neumann boundary condi-
tions we improve the local stability of this steady state to global stability. Moreover,
we investigate the stability of the endemic steady state.

In the following Sect. 2 we present our main results. Section3 is dedicated to the
proof of the well-posedness of (1.1). The details on the linearized problem in the
general case are given in Sect. 4 and then applied in Sect. 5. The application to a
simplified version of equations (1.1) with Neumann boundary conditions and spatially
homogeneous rates are presented in Sect. 6. Some technical results are postponed to
the Appendix 1.

2 Main results

We first state the result on the well-posedness of (1.1) and then investigate linearized
stability of steady states.

2.1 Well-posedness

In order to present our existence result, we set J := [0, am] and take without loss of
generality d1 = 1. We assume that

κ1 , κ2 > 0 (2.1a)

123



52 Page 4 of 46 Ch. Walker

and

d ∈ Cρ(J ) , d(a) ≥ d > 0 , a ∈ J , (2.1b)

for some ρ > 0. Moreover,

m ∈ Cρ
(
J , L∞(�)

)
, r ∈ Cρ

(
J , L∞(�)

) ∩ L∞
(
J ,C1(�̄)

)
, m, r ≥ 0 ,

(2.1c)

and

b ∈ L∞
(
J ,C1(�̄)

)
, b ≥ 0 , b 
≡ 0 . (2.1d)

Here,Cρ stands for ρ-Hölder continuous functions. The regularity assumptions on the
data are mainly imposed in order to derive smooth solutions. Denote R+ := [0,∞)

and Ṙ
+ := (0,∞).

We shall prove the following result on the existence, uniqueness, and regularity of
global, positive solutions to (1.1):

Theorem 2.1 Assume (2.1) and p ∈ (
max{3n/4, 2},∞)

. Then, given initial values
S0 ∈ L+

p (�) and I0 ∈ L1
(
J , L+

p (�)
)
, there is a unique positive global solution (S, I )

to (1.1) such that

S ∈ C
(
R

+, L+
p (�)

) ∩ C1(
Ṙ

+, L p(�)
) ∩ C

(
Ṙ

+,W 2
p(�)

)

is a strong solution to (1.1a), while

I ∈ C
(
R

+, L1(J , L+
p (�))

) ∩ C
(
Ṙ

+, L1(J ,W 2
p(�))

)

satisfies (1.1b) in the sense that

DI (t, a) = (
d(a)� − m(a, ·) − r(a, ·))I (t, a, ·) in L p(�)

for t > 0 and a.e. a ∈ (0, am). In fact, the solution map (t, (S0, I0)) �→ (S, I )(t)
defines a global semiflow on L+

p (�) × L1(J , L+
p (�)).

The proof of Theorem 2.1 is based on a semigroup representation of solutions in the
spirit of Webb (2008) and on Banach’s fixed point theorem. It is performed in several
steps in Sect. 3. In fact, it is not restricted to the particular nonlinearities in (1.1) and
may rather be a template for similar problems. That the solution map defines a global
semiflow paves the way to consider qualitative aspects of the model.

2.2 Linearization around steady states

Assume (2.1) and fix an arbitrary steady state (S∗, I∗) to (1.1), i.e. a time-independent
solution. The regularizing effects of the Laplacian implies that wemay assumewithout
loss of generality the regularity
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S∗ ∈ W 2
p(�), S∗ > 0 in �,

I∗ ∈ L1
(
J ,W 2

p(�)
) ∩ W 1

1

(
J , L p(�)

)
, I∗ ≥ 0 in J × �,

(2.2)

for some p > n. The linearization of (1.1) around the steady state (S∗, I∗) is

∂t S(t, x) =�S(t, x)+κ1S(t, x)− 2κ1S∗(x)
κ2

S(t, x)−S(t, x)
∫ am

0
b(a, x) I∗(a, x) da

− S∗(x)
∫ am

0
b(a, x) I (t, a, x) da +

∫ am

0
r(a, x) I (t, a, x) da ,

(2.3a)

DI (t, a, x) = d(a)�I (t, a, x) − (
m(a, x) + r(a, x)

)
I (t, a, x) , (2.3b)

I (t, 0, x) = S∗(x)
∫ am

0
b(a, x) I (t, a, x) da + S(t, x)

∫ am

0
b(a, x) I∗(a, x) da ,

(2.3c)

for (t, a, x) ∈ R
+ × (0, am) × �, and subject to the initial conditions

S(0, x) = S0(x) , I (0, a, x) = I0(a, x) , (a, x) ∈ (0, am) × �, (2.3d)

and boundary conditions

(1 − δ)S(t, x) + δ∂νS(t, x) = 0 , (1 − δ)I (t, a, x) + δ∂ν I (t, a, x) = 0 (2.3e)

for (t, a, x) ∈ (0,∞) × (0, am) × ∂�. We shall show that the solutions (S, I ) to the
linearized problem (2.3) are given by a strongly continuous semigroup on L p(�) ×
L1(J , L p(�)) with compact resolvent:

Theorem 2.2 Suppose (2.1) and p > (2 ∨ n). Let (S∗, I∗) be a steady state to (1.1)
satisfying (2.2). Then, the solution (S, I ) to the linearized equation (2.3) is given as

(S, I )(t) = S∗(t)(S0, I0), t ≥ 0,

where (S∗(t))t≥0 is a strongly continuous semigroup on L p(�) × L1(J , L p(�)).
Its generator has a compact resolvent and thus a pure point spectrum without finite
accumulation point.

Theorem 2.2 is a consequence of Theorem 4.2 and Corollary 4.3 from Sect. 4.
There, we also present more precise information on the semigroup and its generator.
Note that the semigroup (S∗(t))t≥0 lacks positivity and thus less information on the
spectrum of its generator is available in general. We refer to Remark 4.6 for further
details.
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2.3 Linear stability

Due to Theorem 2.2, one may characterize stability properties of steady states based
on the linearization of (1.1) around these steady states. That linearized stability indeed
determines the (asymptotic) stability of steady states in certain nonlinear popula-
tion models including age- and spatial structure has recently been shown in Walker
(2023) and Walker and Zehetbauer (2022). We refrain, however, to prove this for
problem (1.1).

Herein, we shall just call a steady state (S∗, I∗) linearly stable if the generator of
the semigroup associated with the linearization (2.3) of (1.1) (given in Theorem 2.2)
has a spectrum lying entirely in the half plane Re λ < 0 while we call the steady
state linearly unstable if there is a spectral point in the half plane Re λ > 0 (see
Definition 4.4 and Remark 4.6 below for more details in this regard).

We assume for simplicity that

r ≡ 0. (2.4)

We provide a stability analysis in L p(�)×L1(J , L p(�)) of the trivial and the disease-
free steady states. To state precise results we introduce the principal eigenvalue μ0
of the Laplacian −� on � subject to either Dirichlet boundary conditions (hence
μ0 > 0) or Neumann boundary conditions (hence μ0 = 0).

Theorem 2.3 Suppose (2.1), (2.4), and let p > (2 ∨ n).

(a) The trivial steady state (S∗, I∗) = (0, 0) to (1.1) is linearly unstable in the space
L p(�) × L1(J , L p(�)) if κ1 > μ0 and linearly stable if κ1 < μ0.

(b) There is a disease-free steady state (S∗, I∗) = (S̃∗, 0) to (1.1) with a smooth
function S̃∗ > 0 if and only if κ1 > μ0. In this case, the disease-free steady
state (S∗, I∗) = (S̃∗, 0) is unique (and given by S̃∗ = κ2 for Neumann boundary
conditions), and there is a number R0 > 0 such that it is linearly stable in the
space Lp(�) × L1(J , L p(�)) if R0 < 1 and linearly unstable if R0 > 1.

(c) Let κ1 > μ0. There is no endemic state (S∗, I∗) to (1.1) with S∗, I∗ ≥ 0 and I∗ 
≡ 0
if R0 ≤ 1.

The proof of Theorem 2.3 is presented in Sect. 5. The reproduction number R0 > 0
is defined in (5.3a) and corresponds to the spectral radius of a compact irreducible
operator (defined in (5.3b)) depending on S̃∗. It is open whether there is an endemic
state (S∗, I∗) with S∗, I∗ ≥ 0 and I∗ 
≡ 0 if R0 > 1 (see Remark 5.5 in this regard).
However, the existence of an endemic steady state in case that R0 > 1 is easily obtained
when assumingNeumann boundary conditions and spatially homogeneous ratesm and
b as shown in the next subsection.
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2.4 Linear stability in a particular model with Neumann boundary conditions

We give a more detailed account of Theorem 2.3 in the particular case of Neumann
boundary conditions

δ = 1 , (2.5a)

so that μ0 = 0, and spatially homogeneous data

d ∈ C(J ) , d(a) ≥ d > 0 , a ∈ J , (2.5b)

m ∈ C(J ) , m ≥ 0 , b ∈ L∞(J ) , b > 0 , (2.5c)

that is, data only depending on age a. In this particular situation, besides the trivial
steady state (S∗, I∗) = (0, 0) and the disease-free steady state (S∗, I∗) = (κ2, 0), there
is also an endemic steady state (S̄∗, Ī∗) provided that R0 > 1, where

R0 := κ2

∫ am

0
b(a)
(a) da (2.6)

with


(a) := exp

(
−

∫ a

0
m(σ ) dσ

)
, a ∈ J .

It is given as

S̄∗ := κ2

R0
, Ī∗(a) := 1

R0
κ1κ2

(
1 − 1

R0

)

(a), a ∈ J .

Linear stability and instability of these steady states is determined by the basic
reproduction number R0:

Theorem 2.4 Assume (2.4), (2.5), let p > (2 ∨ n), and let R0 > 0 be defined in (2.6).

(a) The trivial steady state (S∗, I∗) = (0, 0) is linearly unstable in the space L p(�)×
L1(J , L p(�)).

(b) If R0 < 1, then the disease-free steady state (S∗, I∗) = (κ2, 0) is globally linearly
stable in the space L p(�)×L1(J , L p(�)); that is, it is linearly stable and attracts
any solution starting from positive initial values. If R0 > 1, then (S∗, I∗) = (κ2, 0)
is linearly unstable in L p(�) × L1(J , L p(�)).

(c) For 1 < R0 < 3, the endemic steady state (S̄∗, Ī∗) is linearly stable in the space
L p(�) × L1(J , L p(�)).

Part (a) and the local stability statements of part (b) of Theorem 2.4 have
been observed already in Theorem 2.3. The proofs of the remaining statements of
Theorem 2.4 are given in Sect. 6. In fact, when R0 < 1 we prove that

lim
t→∞

(
S(t), I (t)

) = (κ2, 0) in L p(�) × L1(J ,C(�̄))

123



52 Page 8 of 46 Ch. Walker

for any solution (S, I ) to (1.1) corresponding to positive nontrivial initial values
(S0, I0) so that there is no further steady state in this case (in accordance with
Theorem 2.3 (c)). Clearly, one expects (S̄∗, Ī∗) to be linearly stable whenever R0 > 1.

3 Well-posedness: Proof of Theorem 2.1

We prove Theorem 2.1 in several steps. After introducing some notation we derive the
existence of a local solution and then establish further properties.

3.1 Preliminaries and notation

For two Banach spaces E and F we write L(E, F) for the Banach space of bounded
linear operators from E to F , and we set L(E) := L(E, E). Similarly, K(E, F) and
K(E) stand for compact linear operators.

For fixed δ ∈ {0, 1} and p ∈ (1,∞), we set

Bu := u on ∂� if δ = 0, Bu := ∂νu on ∂� if δ = 1,

and introduce the scale of Banach spaces

W 2θ
p,B(�) :=

{
{v ∈ W 2θ

p (�); Bw = 0 on ∂�}, δ + 1
p < 2θ ≤ 2,

W 2θ
p (�), 0 ≤ 2θ < δ + 1

p .
(3.1)

By �B we denote the Laplacian defined onW 2
p,B(�). Moreover, for fixed a ∈ J , also

the operator

A(a) := d(a)�B − m(a, ·) − r(a, ·) (3.2)

has domain W 2
p,B(�). Then �B and A(a) are generators of positive analytic contrac-

tion semigroups on L p(�) for each p ∈ (1,∞), see Amann (1983); Rothe (1984). In
fact, since

A ∈ Cρ
(
J ,L(W 2

p,B(�), L p(�))
)
,

it follows from Amann (1995, II.Corollary 4.4.2) that A generates a positive parabolic
evolution operator

UA(a, σ ), 0 ≤ σ ≤ a ≤ am,

on L p(�) in the sense of Amann (1995, II.Section 2.1). In particular,

v(a) := UA(a, σ )v0, a ∈ [σ, am],
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is, for given σ ∈ [0, am) and v0 ∈ L p(�), the unique solution

v ∈ C
([σ, am], L p(�)

) ∩ C1((σ, am], L p(�)
) ∩ C

(
(σ, am),W 2

p,B(�)
)

to the Cauchy problem

∂av(a) = A(a)v(a), a ∈ (σ, am), v(σ ) = v0.

The contraction properties

‖et�B‖L(L p(�)) ≤ 1, t ≥ 0,

‖UA(a, σ )‖L(L p(�)) ≤ e− ∫ a
σ m(r) dr , 0 ≤ σ ≤ a ∈ J ,

(3.3)

are valid, where

m(a) := ess-inf
x∈�

m(a, x) ≥ 0, a ∈ J .

Recall the interpolation relations

(
L p(�),W 2

p,B(�)
)
θ,p

.= W 2θ
p,B(�), 2θ ∈ [0, 2] \

{
1, δ + 1

p

}
,

with real interpolation functor (·, ·)θ,p and

[
L p(�),W 2

p,B(�)
]
1/2

.= W 1
p,B(�)

with complex interpolation functor [·, ·]1/2 (see Triebel (1978, 4.4.3/Theorem)). From
Amann (1995, II. Lemma 5.1.3) and the embedding W 2θ

p,B(�) ↪→ Lq(�) for θ =
n
2 ( 1p − 1

q ) we then infer parabolic regularizing properties in the sense that, given

0 ≤ ϑ ≤ θ ≤ 1 with 2ϑ, 2θ /∈ {δ + 1
p } and 1 < p ≤ q ≤ ∞, there are � ∈ R and

M ≥ 1 such that

tθ−ϑ ‖et�B‖L(W 2ϑ
p,B(�),W 2θ

p,B(�)) + t
n
2 ( 1

p − 1
q ) ‖et�B‖L(L p(�),Lq (�)) ≤ M e� t , t > 0 ,

(3.4)

and

(a − σ)θ−ϑ ‖UA(a, σ )‖L(W 2ϑ
p,B(�),W 2θ

p,B(�))
+ (a − σ)

n
2 ( 1

p − 1
q ) ‖UA(a, σ )‖L(L p(�),Lq (�))

≤ M e�(a−σ) . (3.5)

Let p ∈ (
max{ 3n4 , 2},∞)

and let S0 ∈ L p(�) and I0 ∈ L1(J , L p(�)) be fixed in
the following.
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3.2 Existence of a uniquemaximal solution

Given S ∈ L p(�) and I ∈ L1(J , L p(�)) we use the abbreviations (dropping x-
dependence for simplicity)

B[S, I ] := S
∫ am

0
b(a) I (a) da, R[I ] :=

∫ am

0
r(a) I (a) da,

and

f [S, I ] := κ1

(
1 − S

κ2

)
S − B[S, I ] + R[I ],

where as, for time-dependent functions

S : [0, T ] → L p(�) and I : [0, T ] → L1(J , L p(�)),

it is convenient to abbreviate

B[S, I ](t) := B[S(t), I (t)], f [S, I ](t) := f [S(t), I (t)], t ∈ [0, T ].

Then (1.1) can be written compactly as

∂t S(t) = �BS(t) + f [S, I ](t) , t > 0 , (3.6a)

DI (t, a) = A(a)I (t, a) , t > 0 , a ∈ J , (3.6b)

I (t, 0) = B[S, I ](t) , t > 0 , (3.6c)

subject to the initial conditions

S(0) = S0 , I (0, a) = I0(a) , a ∈ J . (3.6d)

Solutions S to (3.6a) are of the form

S[S, I ](t) := et�B S0 +
∫ t

0
e(t−τ)�B f [S, I ](τ ) dτ, t > 0,

while integrating (3.6b) subject to (3.6c) formally along characteristics (and recalling
the properties of the evolution operator UA) yields a solution I in the form

I[S, I ](t, a) :=
{
UA(a, a − t)I0(a − t), a > t, a ∈ J ,

UA(a, 0)B[S, I ](t − a), a ≤ t, a ∈ J .

Given T > 0 we introduce the Banach space

XT := C
([0, T ], L p(�) × L1(J , L p(�))

)
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and define

Y[S, I ](t) := (S[S, I ](t), I[S, I ](t, ·)), t ∈ [0, T ], (S, I ) ∈ XT .

Then, fixed points (S, I ) of Y correspond to solutions of (3.6). In order to prove that
Y has a fixed point we first note:

Lemma 3.1 For q = p/2, the mappings

B : L p(�) × L1
(
J , L p(�)

) → Lq(�),

f : L p(�) × L1
(
J , L p(�)

) → Lq(�) (3.7)

are uniformly Lipschitz continuous on bounded sets. Moreover, if 2θ > n/p, then
there is α > 0 such that

B : W 2θ
p (�) × L1

(
J ,W 2θ

p (�)
) → W 2α

p (�),

f : W 2θ
p (�) × L1

(
J ,W 2θ

p (�)
) → W 2α

p (�)

are uniformly Lipschitz continuous on bounded sets.

Proof The statements readily follow from the regularity assumptions (2.1) and the fact
that pointwise multiplications

L p(�) × L p(�) → L p/2(�) and W 2θ
p (�) × W 2θ

p (�) → W 2α
p (�) (3.8)

are continuous for some α > 0, see Amann (1991, Theorem 4.1). ��
Proposition 3.2 Given R > 0 there is T = T (R) > 0 such that, if

‖S0‖L p(�) + ‖I0‖L1(J ,L p(�)) < R,

then

Y : B̄XT (0, R) → B̄XT (0, R)

has a unique fixed point (S, I ).

Proof Let T ∈ (0, 1) and ‖S0‖L p(�) + ‖I0‖L1(J ,L p(�)) < R. Considering (S, I ),

(S̃, Ĩ ) ∈ XT both with norm less than R, we have

f [S, I ] ∈ C
([0, T ], L p/2(�)

)

by Lemma 3.1 so that we readily obtain that S[S, I ] ∈ C
([0, T ], L p(�)

)
by (3.4)

since t �→ t−n/2p is integrable on (0, T ) as 2p > n. Moreover,

‖S[S, I ](t)‖L p(�) ≤ ‖S0‖L p(�) + c(R) T 1−n/2p , t ∈ [0, T ] , (3.9)
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and

‖S[S, I ](t) − S[S̃, Ĩ ](t)‖L p(�) ≤ c(R) T 1−n/2p ‖(S, I ) − (S̃, Ĩ )‖XT , t ∈ [0, T ] .

(3.10)

From (3.3)–(3.5) and Lemma 3.1 we infer1

||I[S, I ](t)‖L1(J ,L p(�)) ≤
∫ t

0
‖UA(a, 0)‖L(L p/2(�),L p(�)) ‖B[S, I ](t − a)‖L p/2(�) da

+
∫ am

t
‖UA(a, a − t)‖L(L p(�)) ‖I0(a − t)]‖L p(�) da

≤ c(R)T 1−n/2p + ‖I0‖L1(J ,L p(�)) (3.11)

for t ∈ [0, T ], and similarly

‖I[S, I ](t) − I[S̃, Ĩ ](t)‖L1(J ,L p(�))

≤
∫ t

0
‖UA(a, 0)‖L(L p/2(�),L p(�)) ‖B[S, I ](t − a) − B[S̃, Ĩ ](t − a)‖L p/2(�) da

≤ c(R) T 1−n/2p ‖(S, I ) − (S̃, Ĩ )‖XT . (3.12)

To check continuity we use (3.3)–(3.5) together with Lemma 3.1 and write, for 0 ≤
t2 ≤ t1 ≤ T ,

||I[S, I ](t1) − I[S, I ](t2)‖L1(J ,L p(�))

≤
∫ t2

0
‖UA(a, 0)‖L(L p/2(�),L p(�)) ‖B[S, I ](t1 − a)−B[S, I ](t2 − a)‖L p/2(�) da

+
∫ t1

t2
‖UA(a, 0)‖L(L p/2(�),L p(�)) ‖B[S, I ](t1 − a)‖L p/2(�) da

+
∫ t1

t2
‖UA(a, a − t2)‖L(L p(�)) ‖I0(a − t2)‖L p(�) da

+
∫ am

t1

∥∥(
UA(a, a − t1) −UA(a, a − t2)

)
I0(a − t1)‖L p(�) da

+
∫ am

t1
‖UA(a, a − t2)‖L(L p(�)) ‖I0(a − t1) − I0(a − t2)‖L p(�) da

≤ Me�
∫ t2

0
a−n/2p ‖B[S, I ](t1 − a) − B[S, I ](t2 − a)‖L p/2(�) da

+ c(R)

∫ t1

t2
a−n/2p da +

∫ t1

t2
‖I0(a − t2)‖L p(�) da

+
∫ am

t1

∥∥(
UA(a, a − t1) −UA(a, a − t2)

)
I0(a − t1)‖L p(�) da

+
∫ am

t1
‖I0(a − t1) − I0(a − t2)‖L p(�) da .

1 Here and in the following, if t > am , then integrals
∫ t
0 da equal

∫ am
0 da and integrals

∫ am−t
0 da vanish.
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Now, as |t1 − t2| → 0, the first integral on the right-hand side goes to zero since the
function B[S, I ] ∈ C

([0, T ], L p/2(�)
)
is uniformly continuous while the second and

the third integral vanish sincea �→ a−n/2p respectively I0 are integrable. To see that the
fourth integral vanishes in the limit one may use the strong continuity of the evolution
operator UA on L p(�) (Amann 1995, Equation II. (2.1.2)) and Lebesgue’s theorem.
Finally, for the last integral one may use the strong continuity of the translations on
L1(J , L p(�)). Consequently, I[S, I ] ∈ C

([0, T ], L1(J , L p(�))
)
.

Summarizing, we have shown in (3.9)-(3.12) that, given

‖S0‖L p(�) + ‖I0‖L1(J ,L p(�)) < R,

we can choose T = T (R) ∈ (0, 1) such that

Y : B̄XT (0, R) → B̄XT (0, R)

is a contraction, and the claim follows from Banach’s fixed point theorem. ��
Since T = T (R) in the proof of Proposition 3.2 depends only upon

R > ‖S0‖L p(�) + ‖I0‖L1(J ,L p(�)),

it is standard to extend (S, I ) to a maximal solution and to show that the solution map
defines a semiflow:

Corollary 3.3 (S, I ) can be extended to a maximal interval [0, Tm) such that

(S, I ) ∈ C
([0, Tm), L p(�) × L1(J , L p(�))

)

satisfies

S(t) = et�B S0 +
∫ t

0
e(t−τ)�B f [S, I ](τ ) dτ, t ∈ [0, Tm), (3.13)

and

I (t, a) =
{
UA(a, a − t)I0(a − t), a ≥ t, (a, t) ∈ J × [0, Tm),

UA(a, 0)B[S, I ](t − a), a < t, (a, t) ∈ J × [0, Tm).
(3.14)

If Tm < ∞, then

lim
t↗Tm

(‖S(t)‖L p(�) + ‖I (t, ·)‖L1(J ,L p(�))

) = ∞. (3.15)

Moreover, the mapping
(
t, (S0, I0)

) �→ (S, I )(t) defines a semiflow on the space
L p(�) × L1(J , L p(�)).

Remark 3.4 It is worth noting that Corollary 3.3 remains valid for models that can be
recast in the form (3.6) such that f and B satisfy (3.7) with n

2 ( 1q − 1
p ) < 1 for some

1 < q ≤ p < ∞.
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3.3 Regularity

We derive further regularity properties of the solution (S, I ) (it is for this step that we
have imposed restrictive regularity assumptions on the data b and r ).

Proposition 3.5 Let 2ϑ ∈ [0, 2] \ {δ + 1
p }. If S0 ∈ W 2ϑ

p,B(�), then

S ∈ C1((0, Tm), L p(�)
) ∩ C

(
(0, Tm),W 2

p,B(�)
) ∩ C

([0, Tm),W 2ϑ
p,B(�)

)

is a strong solution to (1.1a) while, if I0 ∈ L1(J ,W 2ϑ
p,B(�)), then

I ∈ C
(
(0, Tm), L1(J ,W 2

p,B(�))
) ∩ C

([0, Tm), L1(J ,W 2ϑ
p,B(�)))

)

satisfies (1.1b) in the sense that

DI (t, a) = A(a)I (t, a) in L p(�)

for t ∈ (0, Tm) and a.e. a ∈ (0, am).

Proof Since

‖et�B‖L(L p/2,W 2θ
p,B(�)) ≤ c(T )t−n/2p−θ , 0 < t ≤ T ,

and f [S, I ] ∈ C
([0, Tm), L p/2(�)

)
, it readily follows from (3.13) that S ∈

C
(
(0, Tm),W 2θ

p,B(�)
)
for 2θ < 2 − n/p with 2θ /∈ {δ + 1/p}. Similarly, as in

the proof of Proposition 3.2 (see also the proof of Lemma 7.1 in the Appendix) one
derives from

‖UA(a, σ )‖L(L p/2(�),W 2θ
p,B(�)) ≤ M(a − σ)−n/2p−θ , 0 ≤ σ ≤ a ∈ J ,

and B[S, I ] ∈ C
([0, Tm), L1(J , L p/2(�))

)
that I ∈ C

(
(0, Tm), L1(J ,W 2θ

p,B(�))
)

for 2θ < 2 − n/p with 2θ /∈ {δ + 1/p}. Now, since n < 4p/3, we find some
2θ ∈ (n/2p, 2 − n/p) \ {δ + 1/p} so that, according to Lemma 3.1, there is α > 0
such that

f [S, I ](ε + ·) ∈ C
([0, Tm − ε),W 2α

p,B(�)
)

for each ε > 0 small. Thus, we infer from Amann (1995, II.Theorem 1.2.2) that

Sε := S(ε + ·) ∈ C1((0, Tm − ε), L p(�)
) ∩ C

(
(0, Tm − ε),W 2

p,B(�)
)

is a strong solution to

∂t Sε = �BSε + f [S, I ](ε + ·), t ∈ (0, Tm − ε), Sε(0) = S(ε) ∈ W 2θ
p,B(�).
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Letting then ε tend to zero we obtain that

S ∈ C1((0, Tm), L p(�)) ∩ C((0, Tm),W 2
p,B(�))

is a strong solution to (1.1a). Moreover, if S0 ∈ W 2ϑ
p,B(�) for some 2ϑ ∈ [0, 2]\{δ +

1/p}, then

S ∈ C
([0, Tm),W 2ϑ

p,B(�)
)
.

Similarly, setting

Iε := I (ε + ·, ·), I0,ε := Iε(0, ·) = I (ε, ·),

wededuce from (3.14) and the properties of evolution operators that, for t ∈ [0, Tm−ε)

and a ∈ J ,

Iε(t, a) =
{
UA(a, a − t − ε)I0(a − t − ε) , a > t + ε ,

UA(a, 0)B[S, I ](ε + t − a) , a ≤ t + ε ,

=
⎧⎨
⎩
UA(a, a − t)UA(a − t, a − t − ε)I0(a − t − ε) , a > t + ε ,

UA(a, a − t)UA(a − t, 0)B[S, I ](ε + t − a) , t < a ≤ t + ε ,

UA(a, 0)B[S, I ](ε + t − a) , a ≤ t ,

=
{
UA(a, a − t)I0,ε(a − t) , a > t ,
UA(a, 0)B[Sε, Iε](t − a) , a ≤ t .

Now, since

Sε ∈ C
([0, Tm − ε),W 2

p,B(�)
)
, Iε ∈ C

([0, Tm − ε), L1(J ,W 2θ
p,B(�))

)
,

I0,ε ∈ L1(J ,W 2θ
p,B(�))

for 2θ < 2 − n/p, it follows from (3.5) (see Lemma 7.1 in the Appendix) that

I ∈ C
(
(0, Tm), L1(J ,W 2

p,B(�))
)
.

In addition, if I0 ∈ L1(J ,W 2ϑ
p,B(�)) for some 2ϑ ∈ [0, 2] \ {δ + 1/p}, then

I ∈ C
([0, Tm), L1(J ,W 2ϑ

p,B(�))
)
.

Moreover, (3.14) and the differentiability properties of the evolution operator UA

stated in Amann (1995, II.Equation (2.1.6)) imply

DI (t, a) = lim
h→0+

1

h

(
I (t + h, a + h) − I (t, a)

) = A(a)I (t, a) in L p(�)

for t ∈ (0, Tm) and a.e. a ∈ (0, am) (in fact, for every a ∈ (0, am) provided I0 ∈
C

(
(0, am), L p(�)

)
is continuous). ��
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Note that taking 2ϑ = 0 in Proposition 3.5 we obtain the regularity of the solution
(S, I ) claimed in Theorem 2.1.

Remark 3.6 Assuming additionally b ∈ BC1(J ,C(�̄)) and I0 ∈ C1(J , L p(�)), one
can show analogously to Walker (2010, Proposition 1) that the partial derivatives
∂t I (t, a) and ∂a I (t, a) exist and

DI (t, a) = ∂t I (t, a) + ∂a I (t, a) = A(a)I (t, a)

in L p(�) for t ∈ (0, Tm) and a ∈ (0, am).

3.4 Positivity

Since the semigroup
(
et�B

)
t≥0 and the evolution operator

(
UA(a, σ )

)
0≤σ≤a≤am

are

positive operators on L p(�) (as well as on the spaces W 2θ
p,B(�)) and since there is

ω(R) > 0 such that

B[S, I ] ≥ 0, f [S, I ] + ω(R)S ≥ 0

provided that S, I ≥ 0 with ‖(S, I )‖L∞(�)×L1(J ,L∞(�)) ≤ R (see Sect. 3.3 for such
local bounds), it is a standard iteration argument to derive that the solution (S, I )
from Corollary 3.3 corresponding to non-negative initial values S0 ∈ L+

p (�) and
I0 ∈ L1(J , L+

p (�)) satisfies S(t) ∈ L+
p (�) and I (t) ∈ L1(J , L+

p (�)) for t ∈ [0, Tm).

3.5 Global existence

Integrating (1.1) yields for t ∈ (0, Tm) the inequality (in fact, equality for Neumann
boundary conditions, see Sect. 1 in the Appendix for a rigorous proof)

∫
�
S(t, x) dx +

∫ am

0

∫
�
I (t, a, x) dx da

≤
∫
�
S0(x) dx +

∫ am

0

∫
�
I0(a, x) dx da +

∫ t

0

∫
�

κ1

(
1 − S(τ, x)

κ2

)
S(τ, x) dx dτ

−
∫ t

0

∫ am

0

∫
�
m(a, x) I (τ, a, x) dx da dτ −

∫ am

am−t

∫
�
I0(a, x) dx da

+
∫ t

0

∫ am

am−t+τ

∫
�

(
m(a, x) + r(a, x)

)
UA(a, a − τ) I0(a − τ, x) dx da dτ .

(3.16)

Since

κ1

(
1 − S

κ2

)
S ≤ κ1κ2

4
, (3.17)
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we thus deduce from the positivity of (S, I ) the L1-estimate

‖S(t)‖L1(�) + ‖I (t)‖L1(J ,L1(�)) ≤ ‖S0‖L1(�) + ‖I0‖L1(J ,L1(�))

+ t |�|κ1κ2
4

+ ‖m + r ||L∞(J ,L∞(�))t‖I0‖L1(J ,L1(�))

(3.18)

for t ∈ (0, Tm). We shall then proceed with the following auxiliary result:

Lemma 3.7 (i) Let 1 ≤ q ≤ r ≤ ∞ with n
2 ( 1q − 1

r ) < 1. If

‖I (t)‖L1(J ,Lq (�)) ≤ c0(T ), t ∈ [0, T ],

then

‖S(t)‖Lr (�) ≤ ‖S0‖Lr (�) + c(T ), t ∈ [0, T ].

(ii) Let 1 ≤ r ≤ ∞ with n
2r < 1. If

‖S(t)‖Lr (�) ≤ c0(T ), t ∈ [0, T ],

then

‖I (t)‖L1(J ,L p(�)) ≤ c(T )
(
1 + ‖I0‖L1(J ,L p(�))

)
, t ∈ [0, T ].

Proof (i) By (3.13) we have

0 ≤ S(t) ≤ et�B S0 +
∫ t

0
e(t−τ)�Bκ1

(
1 − S(τ )

κ2

)
S(τ ) dτ

+
∫ t

0
e(t−τ)�B

∫ am

0
r(a, ·)I (τ, a) da dτ

and therefore, using (3.17) and

‖e(t−τ)�B‖L(Lq (�),Lr (�)) ≤ c(T )(t − τ)
− n

2 ( 1q − 1
r )

, 0 ≤ τ < t ≤ T ,

we deduce from ‖I (t)‖L1(J ,Lq (�)) ≤ c0(T ) for t ∈ [0, T ] that

‖S(t)‖Lr (�) ≤ ‖S0‖Lr (�) + c
∫ t

0
‖e(t−τ)�B‖L(L∞(�))

∥∥∥∥κ1

(
1 − S(τ )

κ2

)
S(τ )

∥∥∥∥
L∞(�)

dτ

+
∫ t

0
‖e(t−τ)�B‖L(Lq (�),Lr (�)) ‖r‖L∞(J ,L∞(�)) ‖I (τ )‖L1(J ,Lq (�)) dτ

≤ ‖S0‖Lr (�) + c(T )

for t ∈ [0, T ]. This proves (i).
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(ii) Set 1
q := 1

r + 1
p so that

‖B[S, I ]‖Lq (�) ≤ ‖b‖L∞(J ,L∞(�)) ‖S‖Lr (�) ‖I‖L1(J ,L p(�)).

Then we infer for t ∈ [0, T ] from (3.14), (3.3), and (3.5) that

‖I (t)‖L1(J ,L p(�)) ≤
∫ t

0
‖UA(a, 0)‖L(Lq (�),L p(�)) ‖B[S, I ](t − a)‖Lq (�) da

+
∫ am

t
‖UA(a, a − t)‖L(L p(�)) ‖I0(a − t)‖L p(�) da

≤ c(T )

∫ t

0
(t − σ)−

n
2r ‖I (σ )‖L1(J ,L p(�)) dσ + ‖I0‖L1(J ,L p(�))

with n
2r < 1 whenever ‖S(t)‖Lr (�) ≤ c0(T ) for t ∈ [0, T ]. Hence, Gronwall’s

inequality implies

‖I (t)‖L1(J ,L p(�)) ≤ c(T )
(
1 + ‖I0‖L1(J ,L p(�))

)
, t ∈ [0, T ] ,

as claimed. ��

Now, since

‖I (t)‖L1(J ,L1(�)) ≤ c(T ), t ∈ [0, T ] ∩ [0, Tm),

by (3.18), we deduce from Lemma 3.7 (i) that

‖S(t)‖Lr (�) ≤ c(T ), t ∈ [0, T ] ∩ [0, Tm),

for n/2 < r < n/(n − 2) and hence

‖I (t)‖L1(J ,L p(�)) ≤ c(T ), t ∈ [0, T ] ∩ [0, Tm),

due to Lemma 3.7 (ii). Taking r = q = p in Lemma 3.7 (i) yields now

‖S(t)‖L p(�) ≤ c(T ), t ∈ [0, T ] ∩ [0, Tm).

Consequently, Tm = ∞ according to (3.15). This completes the proof of Theorem 2.1.

4 Linearized stability of steady states

We linearize (1.1) around a steady state and then derive properties of the associated
linear semigroup. This allows us to introduce the notion of linear stability.
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Throughout this chapter we assume (2.1) and fix an arbitrary steady state (S∗, I∗)
to (1.1) with regularity

S∗ ∈ W 2
p,B(�), S∗ > 0 in �,

I∗ ∈ L1(J ,W 2
p,B(�)) ∩ W 1

1 (J , L p(�)), I∗ ≥ 0 in J × �,
(4.1)

for some p > (2 ∨ n).

4.1 Linearization around steady states

Linearizing (1.1) around the steady state (S∗, I∗) yields the problem

∂t S(t, x)=�S(t, x) + κ1S(t, x)− 2κ1S∗(x)
κ2

S(t, x)−S(t, x)
∫ am

0
b(a, x) I∗(a, x) da

− S∗(x)
∫ am

0
b(a, x) I (t, a, x) da +

∫ am

0
r(a, x) I (t, a, x) da , (4.2a)

DI (t, a, x) = d(a)�I (t, a, x) − (
m(a, x) + r(a, x)

)
I (t, a, x) , (4.2b)

I (t, 0, x) = S∗(x)
∫ am

0
b(a, x) I (t, a, x) da + S(t, x)

∫ am

0
b(a, x) I∗(a, x) da , (4.2c)

for (t, a, x) ∈ R
+ × [0, am] × �, and subject to the initial conditions

S(0, x) = S0(x) , I (0, a, x) = I0(a, x) , (a, x) ∈ (0, am) × �, (4.2d)

and boundary conditions

BS(t, x) = 0 , B I (t, a, x) = 0 , (t, a, x) ∈ R
+ × (0, am) × ∂� . (4.2e)

Introducing

q∗ : =
∫ am

0
b(a, ·) I∗(a, ·) da ∈ C1(�̄) , (4.3a)

P∗ I := S∗
∫ am

0
b(a, ·) I (a, ·) da , N I :=

∫ am

0
r(a, ·) I (a, ·) da , (4.3b)

and setting

A∗
1 := �B + κ1 − 2κ1S∗

κ2
− q∗ , (4.3c)

A(a) := d(a)�B − m(a, ·) − r(a, ·) , a ∈ J , (4.3d)

it follows

P∗ , N ∈ L(
L1(J , L p(�)), L p(�)

)
(4.3e)
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and A∗
1 with domain W 2

p,B(�) generates a positive, compact, analytic semigroup

(et A
∗
1 )t≥0 on L p(�) while the operator family A(a) with domain W 2

p,B(�) generates
a positive parabolic evolution operator (UA(a, σ ))0≤σ≤a≤am on L p(�). With this
notation we can recast the linearization (4.2) as an equation in L p(�)×L1(J , L p(�))

of the form

∂t

(
S
I

)
=

(
A∗
1 −P∗ + N
0 −∂a + A(a)

) (
S
I

)
, t > 0 ,

(
S
I

)
(0) =

(
S0
I0

)
, (4.4a)

subject to

I (t, 0) − P∗ I (t, ·) = q∗S(t) , t > 0 . (4.4b)

Following Walker (2021) we next show that the solutions to (4.4) are given by a
strongly continuous semigroup on the phase space L p(�) × L1(J , L p(�)).

4.2 The semigroup associated with the linearization (4.4)

In order to investigate the properties of the semigroup generated by the lineariza-
tion (4.4) we write

(
A∗
1 −P∗ + N
0 −∂a + A(a)

)
=

(
A∗
1 0
0 −∂a + A(a)

)
+

(
0 −P∗ + N
0 0

)

and use a perturbation argument, first focusing on the diagonal part. In the following,
we will require information on the operator family S∗Qλ with

Qλ :=
∫ am

0
b(a)Uλ

A(a, 0) da, λ ∈ C, (4.5)

where

Uλ
A(a, σ ) := e−λ(a−σ) UA(a, σ ), 0 ≤ σ ≤ a ≤ am .

It follows from (3.5) and (2.1) that

S∗Qλ ∈ L(
L p(�),W 1

p,B(�)
) ∩ K(

L p(�)
)
, (4.6)

where the compact embedding of W 1
p,B(�) into L p(�) ensures the compactness of

the operator S∗Qλ on L p(�). Moreover, for λ ∈ R, the operator S∗Qλ ∈ L(L p(�)) is
an irreducible operator for p > n (Daners and Koch Medina (1992, Corollary 13.6)).
Its spectral radius is thus characterized by the Krein-Rutman Theorem. We cite the
following result in this context:

Lemma 4.1 (Walker (2013, Lemma 2.4, Lemma 2.5)) For λ ∈ R, the spectral radius
r(S∗Qλ) is positive and a simple eigenvalue of S∗Qλ ∈ K(L p(�))with an eigenvector
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ζλ ∈ W 1
p,B(�) that is quasi-interior in L+

p (�). It is the only eigenvalue of S∗Qλ with
a positive eigenvector. The mapping

R → (0,∞), λ �→ r(S∗Qλ)

is continuous and strictly decreasing with

lim
λ→−∞ r(S∗Qλ) = ∞, lim

λ→∞ r(S∗Qλ) = 0.

Now, in order to introduce the semigroup associated with (4.4), we recall from
Walker (2021, Lemma 5.1) that there exists a mapping

B : [(S0, I0) �→ B(S0,I0)] ∈ L(
L p(�) × L1(J , L p(�)),C(R+, L p(�))

)

such that B = B(S0,I0) is for given (S0, I0) ∈ L p(�) × L1(J , L p(�)) the unique
solution to the Volterra equation2

B(t) = S∗
∫ t

0
b(a)UA(a, 0) B(t − a) da

+S∗
∫ am−t

0
b(a + t)UA(a + t, a) I0(a) da + q∗et A

∗
1 S0 , (4.7a)

for t ≥ 0. If (S0, I0) ∈ L+
p (�) × L+

1 (J , L p(�)), then B(S0,I0)(t) ∈ L+
p (�) for t ≥ 0.

Now, given (S0, I0) ∈ L p(�) × L1(J , L p(�)), define

[
I∗(t)(S0, I0)

]
(a) :=

{
UA(a, a − t) I0(a − t) , (a, t) ∈ J × R

+, t ≤ a,

UA(a, 0) B(S0,I0)(t − a) , (a, t) ∈ J × R
+, t > a ,

(4.7b)

and

T∗(t)(S0, I0) := (
et A

∗
1 S0, I∗(t)(S0, I0)

)
, t ≥ 0. (4.7c)

Then (T∗(t))t≥0 defines a strongly continuous semigroup on L p(�)× L1(J , L p(�)):

Theorem 4.2 Suppose (2.1) and let (S∗, I∗) be a steady state to (1.1) satisfying (4.1).
Define (T∗(t))t≥0 on L p(�) × L1(J , L p(�)) with p > n according to (4.7).

(a) (T∗(t))t≥0 is a strongly continuous, eventually compact, positive semigroup on
the space L p(�) × L1(J , L p(�)).

(b) Let A∗ be the infinitesimal generator of the semigroup (T∗(t))t≥0. Then
(φ,ψ) ∈ dom(A∗) if and only if (φ,ψ) ∈ W 2

p,B(�) × C(J , L p(�)) and there exists

2 We recall again that for t > am , integral
∫ t
0 da equal

∫ am
0 da and integrals

∫ am−t
0 da vanish.
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ζ ∈ L1(J , L p(�)) such that ψ is the mild solution to

∂aψ = A(a)ψ + ζ(a), a ∈ J , ψ(0) = S∗
∫ am

0
b(a)ψ(a) da + q∗φ. (4.8a)

In this case,

A∗(φ,ψ) = (
A∗
1φ,−ζ

)
. (4.8b)

(c) A∗ has compact resolvent.
(d) The spectral bound s(A∗) and the growth bound ω0(T∗) are equal.

Proof (a) Semigroup: One may follow the lines of the proof of Webb (2008, Theo-
rem 4) to show that (T∗(t))t≥0 defines a strongly continuous positive semigroup on
L p(�) × L1(J , L p(�)) (see also Walker 2013, 2021). That this semigroup is even-
tually compact follows as in Walker (2021, Theorem 1.2 (a)) invoking Kolmogorov’s
compactness criterion and using the compact embedding of W 2

p,B(�) into L p(�).
(b) Generator: The proof of the characterization of the generator A∗ is mostly along
the lines of the proof ofWalker (2021, Theorem1.4 (a)), though a bit tricky.We provide
some details here. The key is to derive a description of the resolvent (λ − A∗)−1.

(i) To this end, we fix λ > 0 large enough (in particular in the resolvent set of A∗)
and write

(λ − A∗)−1(S0, I0) = (φ,ψ) ∈ L p(�) × L1(J , L p(�))

for (S0, I0) ∈ L p(�) × L1(J , L p(�)). Then, using the Laplace transform formula

(λ − A∗)−1(S0, I0) =
∫ ∞

0
e−λt

T∗(t)(S0, I0) dt

and recalling (4.7c), we readily obtain

φ =
∫ ∞

0
e−λt et A

∗
1 S0 dt = (λ − A∗

1)
−1S0

and using (4.7b), for a ∈ J ,

ψ(a) =
∫ ∞

0
e−λt [

I∗(t)(S0, I0)
]
(a) dt

=
∫ a

0
Uλ

A(a, t) I0(t) dt +Uλ
A(a, 0)

∫ ∞

0
e−λt B(S0,I0)(t) dt . (4.9)
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Invoking (4.9), (4.7a), and (4.5) we derive in particular that

ψ(0) =
∫ ∞
0

e−λt B(S0,I0)(t) dt

=
∫ ∞
0

e−λt S∗
∫ min{t,am }
0

b(a)UA(a, 0) B(S0,I0)(t − a) da dt

+
∫ am

0
e−λt S∗

∫ am−t

0
b(a + t)UA(a + t, a) I0(a) da dt +

∫ ∞
0

e−λt q∗et A
∗
1 S0 dt

= S∗
∫ am

0
b(a)Uλ

A(a, 0) da ψ(0)

+ S∗
∫ am

0
b(a)

∫ a

0
Uλ
A(a, t) I0(t) dt da + q∗(λ − A∗

1)
−1S0

= S∗Qλψ(0) + S∗
∫ am

0
b(a)

∫ a

0
Uλ
A(a, t) I0(t) dt da + q∗φ.

Summarizing, we have shown that if (S0, I0) ∈ L p(�) × L1(J , L p(�)) and

(φ,ψ) = (λ − A∗)−1(S0, I0)

for λ > 0 large enough, then

φ = (λ − A∗
1)

−1S0 ∈ W 2
p,B(�) (4.10a)

and ψ ∈ C(J , L p(�)) is a mild solution to

∂aψ = (−λ + A(a))ψ + I0(a), a ∈ J , (4.10b)

subject to

ψ(0) = S∗
∫ am

0
b(a)ψ(a) da + q∗φ

= S∗Qλψ(0) + S∗
∫ am

0
b(a)

∫ a

0
Uλ

A(a, t) I0(t) dt da + q∗φ.

(4.10c)

(ii) Consider now an arbitrary (φ,ψ) ∈ dom(A∗) ⊂ L p(�) × L1(J , L p(�)).
Defining (for λ > 0 large enough)

(S0, I0) := (λ − A∗)(φ,ψ) ∈ L p(�) × L1(J , L p(�)),

it readily follows from (4.10) that

φ = (λ − A∗
1)

−1S0 ∈ W 2
p,B(�)

while ψ ∈ C(J , L p(�)) is a mild solution to

∂aψ = (−λ + A(a))ψ + I0(a) = A(a)ψ + ζ(a), a ∈ J ,
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with ζ := I0 − λψ ∈ L1(J , L p(�)) and subject to

ψ(0) = S∗
∫ am

0
b(a)ψ(a) da + q∗φ. (4.11)

This is (4.8a), while (4.8b) follows from

A∗(φ,ψ) = λ(φ,ψ) − (S0, I0) = (A∗
1φ,−ζ ).

(iii) Conversely, consider (φ,ψ) ∈ W 2
p,B(�) × C(J , L p(�)) with the property

that there exists ζ ∈ L1(J , L p(�)) such that ψ is the mild solution to

∂aψ = A(a)ψ + ζ(a), a ∈ J , ψ(0) = S∗
∫ am

0
b(a)ψ(a) da + q∗φ.

Thus, for λ > 0 large enough and

I0 := λψ + ζ ∈ L1(J , L p(�)),

we see that ψ ∈ C(J , L p(�)) is the mild solution to

∂aψ = (−λ + A(a))ψ + I0(a), a ∈ J , ψ(0) = S∗
∫ am

0
b(a)ψ(a) da + q∗φ,

and thus satisfies

ψ(0) = S∗Qλψ(0) + S∗
∫ am

0
b(a)

∫ a

0
Uλ

A(a, t) I0(t) dt da + q∗φ. (4.12)

Define now

S0 := (λ − A∗
1)φ ∈ L p(�)

and

(φ̄, ψ̄) := (λ − A∗)−1(S0, I0) ∈ dom(A∗).

Then, according to (4.10),

φ̄ = (λ − A∗
1)

−1S0 = φ

while ψ̄ ∈ C(J , L p(�)) is the mild solution to

∂aψ̄ = (−λ + A(a))ψ̄ + I0(a), a ∈ J ,
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subject to

ψ̄(0) = S∗Qλψ̄(0) + S∗
∫ am

0
b(a)

∫ a

0
Uλ

A(a, t) I0(t) dt da + q∗φ̄ . (4.13)

Since φ̄ = φ, it follows from (4.12) and (4.13) that

(1 − S∗Qλ)ψ̄(0) = (1 − S∗Qλ)ψ(0)

and hence ψ̄(0) = ψ(0) according to Lemma 4.1 for λ > 0 large enough (so that
r(S∗Qλ) < 1). Consequently, ψ̄ = ψ and therefore

(φ,ψ) = (φ̄, ψ̄) ∈ dom(A∗).

This proves part (b).
(c) Compact Resolvent: In order to show that A∗ has compact resolvent, let λ > 0
again be sufficiently large (i.e. λ in the resolvent set of A∗ and r(S∗Qλ) < 1). Let
(S0, j , I0, j ) j∈N be a bounded sequence in L p(�) × L1(J , L p(�)) and set

(φ j , ψ j ) := (λ − A∗)−1(S0, j , I0, j ).

Then (4.10a) yields φ j = (λ − A∗
1)

−1S0, j so that (φ j ) j∈N is a bounded sequence
in W 2

p,B(�), the latter being compactly embedded in L p(�). It remains to show
that (ψ j ) j∈N is relatively compact in L1(J , L p(�)) for which we first note from
(4.10b)-(4.10c) that

ψ j (a) = Uλ
A(a, 0)ψ j (0) +

∫ a

0
Uλ

A(a, σ )I0, j (σ ) dσ, a ∈ J , (4.14)

and

(1 − S∗Qλ)ψ j (0) = S∗
∫ am

0
b(a)

∫ a

0
Uλ

A(a, σ ) I0, j (σ ) dσ da + q∗φ j . (4.15)

In particular, since by (2.1d) and (3.5)

∥∥∥∥
∫ am

0
b(a)

∫ a

0
Uλ
A(a, σ ) I0, j (σ ) dσ da

∥∥∥∥
W 1

p,B(�)

≤ c‖b‖L∞(J ,C1(�))

∫ am

0

∫ a

0
(a − σ)−1/2 ‖I0, j (σ )‖L p(�) dσ da

≤ c1

∫ am

0
‖I0, j (σ )‖L p(�)

∫ am

σ
(a − σ)−1/2 da dσ

≤ c2‖I0, j‖L1(J ,L p(�)) ,
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the sequence

(∫ am

0
b(a)

∫ a

0
Uλ

A(a, σ ) I0, j (σ ) dσ da

)
j∈N

is bounded inW 1
p,B(�), and we thus deduce from (4.15), (4.6), and r(S∗Qλ) < 1 that

(ψ j (0)) j∈N is bounded in W 1
p,B(�). (4.16)

Setting

u j (a) :=
∫ a

0
Uλ

A(a, σ )I0, j (σ ) dσ, a ∈ J , j ∈ N,

we next show that {u j ; j ∈ N} is relatively compact in L1(J , L p(�)) adopting the
arguments from Baras et al. (1977) (there the case of semigroups was considered):

(i)We first fix μ > 0 and define

v
μ
j (a) := Uλ

A(μ + a, a)u j (a) =
∫ a

0
Uλ

A(μ + a, σ )I0, j (σ ) dσ, a ∈ J , j ∈ N.

Since

‖u j (a)‖L p(�) ≤ ‖I0, j‖L1(J ,L p(�)), a ∈ J , j ∈ N,

and

Uλ
A(μ + a, a) ∈ L(

L p(�),W 2
p,B(�)

) ⊂ K(
L p(�)

)
, a ∈ J ,

we see that, for every a ∈ J , the sequence (v
μ
j (a)) j∈N is relatively compact in

L p(�). Next, in order to check equi-integrability we recall from Amann (1995,
II. Equation (2.1.2)) that

Uλ
A ∈ C

(
�∗

J ,L(L p(�))
)
with �∗

J := {(a, σ ); 0 ≤ σ < a ≤ am},

and note for ξ > 0 that the set

Kξ := {(a, σ ) ∈ �∗
J ; σ + ξ ≤ a}

is compact in �∗
J . We thus find for every ε > 0 and ξ > 0 some η > 0 such that

‖UA(a1, σ1) −UA(a2, σ2)‖L(L p(�)) ≤ ε, (ai , σi ) ∈ Kξ , |(a1, σ1) − (a2, σ2)| ≤ η.

Taking ε > 0 arbitrary and ξ = μ > 0, we use (3.3) to derive, for h ∈ (0, η) with
0 < a ≤ a + h ≤ am ,
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‖vμ
j (a + h) − v

μ
j (a)‖L p(�)

≤
∫ a+h

a
‖Uλ

A(μ + a + h, σ )‖L(L p(�)) ‖I0, j (σ )‖L p(�) dσ

+
∫ a

0
‖Uλ

A(μ + a + h, σ ) −Uλ
A(μ + a, σ )‖L(L p(�)) ‖I0, j (σ )‖L p(�) dσ

≤
∫ a+h

a
‖I0, j (σ )‖L p(�) dσ + ε

∫ a

0
‖I0, j (σ )‖L p(�) dσ

and therefore
∫ am

0
‖ṽμ

j (a + h) − ṽ
μ
j (a)‖L p(�) da ≤ h‖I0, j‖L1(J ,L p(�)) + εam‖I0, j‖L1(J ,L p(�)) ,

where the tilde refers to the trivial extension. Hence,

lim
h→0

sup
j∈N

∫ am

0
‖ṽμ

j (a + h) − ṽ
μ
j (a)‖L p(�) da = 0

so that {vμ
j ; j ∈ N} is equi-integrable and thus

{vμ
j ; j ∈ N} is relatively compact in L1(J , L p(�)) for μ > 0 . (4.17)

(ii)We next consider the limit μ → 0. Given ε > 0, ξ > 0, and using the notation
from the previous part we have, for a ∈ J with a ≥ ξ and 0 < μ < η,

‖vμ
j (a) − u j (a)‖L p(�)

≤
∫ a−ξ

0
‖Uλ

A(μ + a, σ ) −Uλ
A(a, σ )‖L(L p(�)) ‖I0, j (σ )‖L p(�) dσ

+
∫ a

a−ξ

(‖Uλ
A(μ + a, σ )‖L(L p(�)) + ‖Uλ

A(a, σ )‖L(L p(�))

) ‖I0, j (σ )‖L p(�) dσ

≤ ε

∫ a−ξ

0
‖I0, j (σ )‖L p(�) dσ + 2

∫ a

a−ξ
‖I0, j (σ )‖L p(�) dσ ,

while for 0 ≤ a ≤ ξ we have

‖vμ
j (a) − u j (a)‖L p(�) ≤ 2

∫ ξ

0
‖I0, j (σ )‖L p(�) dσ .

Therefore,

‖vμ
j − u j‖L1(J ,L p(�)) ≤ 4ξ‖I0, j‖L1(J ,L p(�)) + εam‖I0, j‖L1(J ,L p(�))

so that

lim
μ→0

sup
j∈N

‖vμ
j − u j‖L1(J ,L p(�)) = 0 .
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Together with (4.17) we conclude that {u j ; j ∈ N} is relatively compact in
L1(J , L p(�)).

(iii) Finally, since

‖Uλ
A(a + h, 0) −Uλ

A(a, 0)‖L(W 1
p,B(�),L p(�)) ≤ ch1/2, 0 ≤ a ≤ a + h ≤ am,

according to Amann (1995, II. Equation (5.3.8)), it readily follows from (4.16)
and the Arzelà - Ascoli Theorem that (Uλ

A(·, 0)ψ j (0)) j∈N is relatively compact in
C(J , L p(�)). Consequently, we deduce from the previous step (ii) and (4.14) that
(ψ j ) j∈N is relatively compact in L1(J , L p(�)). Therefore, A∗ has indeed a compact
resolvent.
(d) Spectral Bound: SinceT∗ is eventually compact, it follows from Engel and Nagel
(2000, IV. Corollary 3.12) that s(A∗) = ω0(T∗).

��
Introducing now the perturbation

B∗ :=
(
0 −P∗ + N
0 0

)
∈ L(

L p(�) × L1(J , L p(�))
)

with P∗ and N defined in (4.3b) and observing from (4.8) that A∗ + B∗ is exactly
the linearized operator appearing in (4.4a) subject to (4.4b), we obtain the desired
generation result for the linearization:

Corollary 4.3 Let the assumptions of Theorem 4.2 be satisfied. Then, the generator
A∗ +B∗ of the strongly continuous semigroup (S∗(t))t≥0 on L p(�)× L1(J , L p(�)),
associated with the linearized problem (4.4), has compact resolvent. In particular, the
spectrum σ(A∗ + B∗) is a pure point spectrum without finite accumulation point.

Proof This follows from Theorem 4.2 and Engel and Nagel (2000, III. Proposi-
tion 1.12). ��
Definition 4.4 We call the steady state (S∗, I∗) linearly stable in the space L p(�) ×
L1(J , L p(�)), if the generator A∗ + B∗ of the linearized problem satisfies

Re σ(A∗ + B∗) < 0,

while we call (S∗, I∗) linearly unstable if

σ(A∗ + B∗) ∩ [Re λ > 0] 
= ∅.

Remark 4.5 Corollary 4.3 implies that the linear stability of the steady state (S∗, I∗)
is determined from (the real parts of) those λ ∈ C for which there is a nontrivial
(S, I ) ∈ W 2

p,B(�) × C(J , L p(�)) satisfying

(
A∗
1 −P∗ + N
0 −∂a + A(a)

) (
S
I

)
= λ

(
S
I

)
, I (0) − P∗ I = q∗S ,
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(equality for the second component in the sense of Theorem 4.2) with notation
introduced in (4.3).

Remark 4.6 Since the semigroup (etA∗)t≥0 is eventually compact and due to the partic-
ular (nonlocal) form of the perturbation B∗, one can in fact show that the perturbation
semigroup S∗ = (et(A∗+B∗))t≥0 is also eventually compact. Consequently,

ω(S∗) = s(A∗ + B∗),

that is, the growth bound of the semigroup S∗ and the spectral bound of its generator
A∗ +B∗ coincide. A steady state (S∗, I∗) is thus linearly stable in the sense of Defini-
tion 4.4 if and only if the semigroup S∗ associated with the linearization around this
steady state has an exponential decay. One can further prove that this indeed implies
the asymptotic stability of the steady state. The technical details of the proof follow
along the lines of Walker (2023) (see also Walker and Zehetbauer (2022)).

5 Linearized stability: Proof of Theorem 2.3

We shall apply the results from the previous section. In the following, we are still
imposing (2.1)with p > (2∨n) and assume for simplicity (2.4). Recall that κ1, κ2 > 0.
We consider only steady states (S∗, I∗) to (1.1) with regularity as in (4.1).

For the investigation of stability of steady states recall that the spectrum of the
Laplacian is (counted according to multiplicity)

σ(−�B) = {μ0, μ1, μ2, . . .}

with 0 ≤ μi ≤ μi+1 for i ≥ 0. In fact, μ0 > 0 in the Dirichlet case δ = 0 and μ0 = 0
in the Neumann case δ = 1.

5.1 The trivial steady state

The linear stability of the trivial steady state (S∗, I∗) = (0, 0) depends on the sign of
κ1 − μ0 (which is always positive for the Neumann case δ = 1 but may be negative
in the Dirichlet case δ = 0):

Proposition 5.1 The trivial steady state (S∗, I∗) = (0, 0) is linearly unstable if
κ1 > μ0 and linearly stable if κ1 < μ0.

Proof Using the notation introduced in (4.3) for (S∗, I∗) = (0, 0), we have

q∗ = 0, P∗ = 0, A∗
1 = �B + κ1,

so that Remark 4.5 leads to investigating the eigenvalue problem

(
�B + κ1 0

0 −∂a + A(a)

)(
S
I

)
= λ

(
S
I

)
, I (0) = 0 ,

123



52 Page 30 of 46 Ch. Walker

for a nontrivial (S, I ) ∈ W 2
p,B(�) × C(J , L p(�)); that is,

−�BS = (κ1 − λ)S ,

∂a I (a) = ( − λ + A(a)
)
I (a) , a ∈ J , I (0) = 0 ,

with mild solution I . Hence I = 0 so that S 
= 0 and thus κ1 − λ ∈ σ(−�B).
Consequently, s(A∗) = κ1 − μ0 is an eigenvalue. ��

5.2 The disease-free steady state

The existence of a disease-free steady state (S∗, I∗) = (S̃∗, 0) reduces to finding a
positive non-trivial solution S̃∗ ∈ W 2

p,B(�) to the semilinear equation

− �B S̃∗ + κ1

κ2
S̃2∗ = κ1 S̃∗. (5.1)

Clearly, in theNeumann case δ = 1, the positive (constant) solution to (5.1) is S̃∗ = κ2.
To continue let us recall the following result from Amann (2005, Theorem 12, The-

orem 16):

Lemma 5.2 Let q ∈ L∞(�). Then the eigenvalue problem

−�Bu + qu = λu

has a smallest eigenvalue λ = λ0(q) ∈ R (in the sense that Re λ > λ0(q) for every
other eigenvalue λ). This principal eigenvalue is simple and the only eigenvalue with
a positive eigenfunction u0, i.e. u0 ∈ W 2

p,B(�) for every p ∈ (1,∞) and u0 > 0 in
�. Moreover, if q1, q2 ∈ L∞(�) with q1 ≤ q2 and q1 
≡ q2, then λ0(q1) < λ0(q2). In
fact, λ0(0) = μ0.

Now, if S̃∗ ∈ W 2
p,B(�) is a positive non-trivial solution to (5.1), then necessarily

κ1 = λ0

(
κ1 S̃∗
κ2

)
> λ0(0) = μ0. (5.2)

Conversely, it follows fromBlat and Brown (1986) that if κ1 > λ0(0) = μ0, then (5.1)
admits a positive solution S̃∗ ∈ W 2

p,B(�) (see also Walker (2011)). This solution is

unique. Indeed, if there was another positive solution Ŝ∗ ∈ W 2
p,B(�) to (5.1), then

z := S̃∗ − Ŝ∗ solves the eigenvalue equation

−�Bz + κ1

κ2
(S̃∗ + Ŝ∗)z = κ1z
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so that

κ1 ≥ λ0

(
κ1

κ2
(S̃∗ + Ŝ∗)

)
.

According to (5.2) and the monotonicity of λ0(q) with respect to q this yields the
contradiction

κ1 = λ0

(
κ1 S̃∗
κ2

)
< λ0

(
κ1

κ2
(S̃∗ + Ŝ∗)

)
≤ κ1.

The linear stability of the disease-free steady state (S∗, I∗) = (S̃∗, 0) is thendetermined
from the value of

R0 := r(S̃∗Q0) > 0, (5.3a)

where the family of compact operators

Qλ =
∫ am

0
b(a) e−λa UA(a, 0) da ∈ K(L p(�)), λ ∈ C, (5.3b)

was introduced in (4.5) and properties of the spectral radius r(S̃∗Qλ) are stated
in Lemma 4.1 for λ ∈ R.

Proposition 5.3 There is a disease-free steady state (S∗, I∗) = (S̃∗, 0) with a smooth
function S̃∗ > 0 if and only if κ1 > μ0. In this case, S̃∗ is unique, (5.2) holds, and
R0 > 0 in (5.3a) is well-defined. For Neumann boundary conditions (i.e. δ = 1), we
have S̃∗ = κ2.

Moreover, (S∗, I∗) = (S̃∗, 0) is linearly stable in L p(�)× L1(J , L p(�)) if R0 < 1
and linearly unstable if R0 > 1.

Proof We have already shown that there is a (unique) disease-free steady state
(S∗, I∗) = (S̃∗, 0) with S̃∗ > 0 (satisfying (5.2)) if and only if κ1 > μ0. Thus,
let κ1 > μ0. According to Remark 4.5 we have to check the real parts of solutions λ

to the eigenvalue problem

(
A∗
1 −P∗
0 −∂a + A(a)

) (
S
I

)
= λ

(
S
I

)
, I (0) = P∗ I ,

with a nontrivial (S, I ) ∈ W 2
p,B(�) × C(J , L p(�)), where, due to (4.3),

q∗ = 0, P∗ I = S̃∗
∫ am

0
b(a, ·)I (a, ·) da,

A∗
1 = �B + κ1 − 2κ1 S̃∗

κ2
,
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A(a) = d(a)�B − m(a, ·).

That is, we have to investigate

− �BS + 2κ1 S̃∗
κ2

S = (κ1 − λ)S − S̃∗Qλ I (0) , (5.4)

∂a I = (−λ + A(a))I , a ∈ J , I (0) = S̃∗
∫ am

0
b(a, ·)I (a, ·) da , (5.5)

where (5.5) entails

I (a) = e−λaUA(a, 0)I (0) , a ∈ J , I (0) = S̃∗Qλ I (0) . (5.6)

Assume first that R0 < 1. Then either I (0) = 0 so that (5.4), the monotonicity of the
principal eigenvalue, and (5.2) imply

Re (κ1 − λ) ≥ λ0

(
2κ1 S̃∗

κ2

)
> λ0

(
κ1 S̃∗
κ2

)
= κ1,

hence Re λ < 0. Or I (0) 
= 0 so that (5.6) together with Walker (2021, Theo-
rem 2.3 (b)) imply that λ ∈ σ(A), where A is the generator of a strongly continuous,
positive, eventually compact semigroup on L1(J , L p(�)). Its spectral bound s :=
s(A) is the unique real number with r(S̃∗Qs) = 1 according to Walker (2021, Propo-
sition 5.2). Since R0 = r(S̃∗Q0) < 1, it follows from Lemma 4.1 that s = s(A) < 0
and hence again Re λ < 0. Consequently, if R0 < 1, then (S∗, I∗) = (S̃∗, 0) is linearly
stable.

Conversely, if R0 = r(S̃∗Q0) > 1, then there is λ > 0 such that r(S̃∗Qλ) = 1 by
Lemma 4.1 and there is a nontrivial I (0) ∈ W 1

p,B(�)with (1− S̃∗Qλ)I (0) = 0. Then

I (a) := e−λaUA(a, 0)I (0), a ∈ J ,

satisfies (5.5). Moreover, owing to (5.2), we have

κ1 − λ < κ1 = λ0

(
κ1 S̃∗
κ2

)
< λ0

(
2κ1 S̃∗

κ2

)
,

and thus κ1 − λ belongs to the resolvent set of −�B + 2κ1 S̃∗/κ2. Hence,

S :=
(

−�B + 2κ1 S̃∗
κ2

− κ1 + λ

)−1

I (0) ∈ W 2
p,B(�)

is a nontrivial solution to (5.4). That is, λ > 0 is an eigenvalue and the disease-free
steady state (S∗, I∗) = (S̃∗, 0) is thus linearly unstable. ��
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5.3 Non-existence of endemic steady states for R0 ≤ 1

An endemic steady state (S∗, I∗) is a steady state to (1.1) with S∗, I∗ ≥ 0 and I∗ 
≡ 0.
Note that, setting I0 := I∗(0), this is equivalent to finding a positive element (S∗, I0) ∈
W 2

p,B(�) × W 1
p,B(�) with I0 
= 0 satisfying

−�BS∗ + Q0 I0S∗ + κ1

κ2
S2∗ = κ1S∗ , (5.7a)

I0 = S∗Q0 I0 . (5.7b)

As shown next, R0 > 1 is a necessary condition for the existence of an endemic state.

Lemma 5.4 Let κ1 > μ0 and let S̃∗ be as in Proposition 5.3. If R0 = r(S̃∗Q0) ≤ 1,
then there is no positive solution (S∗, I0) ∈ W 2

p,B(�)×W 1
p,B(�) to (5.7) with I0 
= 0.

Proof Let R0 = r(S̃∗Q0) ≤ 1 and assume for contradiction that there was a positive
solution (S∗, I0) ∈ W 2

p,B(�) × W 1
p,B(�) to (5.7) with I0 
= 0. It follows from (5.1)

and (5.7a) that z := S∗ − S̃∗ solves

−�Bz + Q0 I0z + κ1

κ2
(S∗ + S̃∗)z = κ1z − I0.

Moreover, we infer from (5.7a) and Lemma 5.2 that

0 < κ1 = λ0

(
Q0 I0 + κ1

κ2
S∗

)
< λ0

(
Q0 I0 + κ1

κ2
(S∗ + S̃∗)

)
.

Hence, κ1 belongs to the resolvent set of the operator

−�B + Q0 I0 + κ1

κ2
(S∗ + S̃∗)

and consequently, since I0 > 0,

z = −
(

κ1 − �Bz + Q0 I0z + κ1

κ2
(S∗ + S̃∗)

)−1

I0 ≤ 0 in �,

where we used the maximum principle from Amann (2005, Theorem 13). That is,
S∗ ≤ S̃∗ in � and thus S∗Q0 ≤ S̃∗Q0. The Krein-Rutman Theorem now yields for
the spectral radii

r(S∗Q0) < r(S̃∗Q0) ≤ 1,

and therefore that the eigenvector equation p = S∗Q0 p has no positive nontrivial
solution in contradiction to I0 > 0 solving (5.7b). ��
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Remarks 5.5 (a) As noted in the proof of Lemma 5.4, necessary conditions for the
existence of an endemic steady state (S∗, I∗) with S∗, I∗ ≥ 0 and I∗ 
≡ 0 are (see
(5.7))

κ1 = λ0

(
Q0 I∗(0) + κ1

κ2
S∗

)
, 1 = r(S∗Q0) < r(S̃∗Q0) = R0, S∗ ≤ S̃∗,

where (S̃∗, 0) is the disease-free steady state.
(b)Whether the conditionR0 > 1 is sufficient for the existence of an endemic steady

state is, however, left open. In fact, one can show (see Blat and Brown 1986) that for
every I0 ∈ L+

p (�) with λ0(Q0 I0) < κ1 there is a unique solution S∗ = S∗(I0) ∈
W 2

p,B(�) to (5.7a) with S∗(I0) > 0 depending compactly and smoothly on I0 (by

the implicit function theorem), where S̃∗ = S∗(0). This then reduces problem (5.7)
to finding a nontrivial positive fixed point of the smooth, compact operator F defined
by F(I0) := S∗(I0)Q0 I0. Noticing that DF(0) = S̃∗Q0 has a positive eigenvector
associated with the eigenvalue R0 > 1 by the Krein-Rutman Theorem, it would remain
to find ρ > 0 such that λ0(Q0 I0) < κ1 for ‖I0‖L p ≤ ρ and r(S∗(I0)Q0) < 1 when
‖I0‖L p = ρ. This then would allow one to apply the fixed point theorem of Amann
(1976, Theorem 13.2) to derive the existence of a (unique) positive nontrivial solution
I0 = F(I0) and thus an endemic steady state (S∗(I0), I∗) with I∗(a) := UA(a, 0)I0.
However, it is open whether this is indeed possible.

Nevertheless, when considering spatially homogeneous rates and Neumann bound-
ary conditions, there exists a linearly stable endemic state if R0 > 1 as stated in
Theorem 2.4.

6 Linearized stability in a particular model: Proof of Theorem 2.4

For Neumann boundary conditions δ = 1 and spatially homogeneous rates
m = m(a) and b = b(a) we can improve the results from the previous section.
Thus assume (2.4), (2.5), and p > (2 ∨ n). Recall that the principal eigenvalue of
the Laplacian −�N subject to Neumann boundary conditions is μ0 = 0. We write
W 2

p,N (�) in the following for the domain of −�N . Since

A(a) = d(a)�N − m(a) , a ∈ J ,

and m is spatially homogeneous, the corresponding evolution operator is given by

UA(a, σ ) = exp

(
−

∫ a

σ

m(τ ) dτ

)
exp

(∫ a

σ

d(τ ) dτ �N

)
, 0 ≤ σ ≤ a ≤ am .

(6.1)

In the previous section we showed that the trivial steady state (S∗, I∗) = (0, 0) is
linearly unstable, and we have discussed the local linear stability of the disease-free
steady state (S̃∗, 0) = (κ2, 0). We next investigate the latter’s global stability.
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6.1 Global stability of the disease-free steady state (S∗, I∗) = (�2, 0)

We consider S∗ = S̃∗ = κ2. Using (6.1), the operators Qλ from (5.3b) become

Qλ =
∫ am

0
b(a) e−λa 
(a) exp

(∫ a

0
d(τ ) dτ �N

)
da, λ ∈ C,

where


(a) := exp

(
−

∫ a

0
m(σ ) dσ

)
, a ∈ J .

Noticing

S̃∗Q01 = κ2

∫ am

0
b(a)
(a) da 1 ,

it readily follows from Lemma 4.1 for the spectral radius (see (2.6)) that

R0 = r(S̃∗Q0) = κ2

∫ am

0
b(a)
(a) da. (6.2)

We have seen in Proposition 5.3 that (S∗, I∗) = (κ2, 0) is linearly stable when R0 < 1
and linearly unstable when R0 > 1. In the former case, we can prove now its global
stability. That is, if R0 < 1, then any solution to (1.1) subject to positive initial values
(S0, I0) converges to (S∗, I∗) = (κ2, 0).

Proposition 6.1 Assume (2.4) and (2.5). Let R0 < 1. Consider any non-trivial
(S0, I0) ∈ L+

p (�)× L+
1 (J , L p�)) and let (S, I ) be the corresponding positive global

solution to (1.1) provided by Theorem 2.1. Then

lim
t→∞(S(t), I (t)) = (κ2, 0) in L p(�) × L1(J ,C(�̄)).

Proof Since solutions become immediately smooth according to Theorem2.1, wemay
restrict without loss of generality to initial values

S0 ∈ W 2
p,N (�), I0 ∈ L1(J ,W 2

p,N (�)), S0, I0 ≥ 0, S0 
= 0.

(i)We first derive an upper bound on S. From (1.1a) we have

∂t S(t, x) ≤ �N S(t, x) + κ1

(
1 − 1

κ2
S(t, x)

)
S(t, x)

so that

S(t, x) ≤ z(t), (t, x) ∈ R
+ × �, (6.3)
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by the comparison principle, where

z(t) := ‖S0‖∞
e−κ1t

(
1 − κ1

κ2
‖S0‖∞

)
+ 1

κ2
‖S0‖∞

, t ≥ 0,

is the solution to

z′(t) = κ1
(
1 − 1

κ2
z(t)

)
z(t), t ≥ 0, z(0) = ‖S0‖∞.

Due to R0 < 1 and (6.2) we may choose ε0 > 0 such that

(κ2 + ε0)

∫ am

0
b(a)
(a) da < 1. (6.4)

Since limt→∞ z(t) = κ2, we find for fixed ε ∈ (0, ε0) some t0 > 0 with

S(t, x) ≤ κ2 + ε , t ≥ t0 , x ∈ � . (6.5)

(ii) Next, we derive an upper bound for I . Using (6.5) and (1.1b)-(1.1c) we obtain

DI (t + t0, a) = A(a)I (t + t0, a)

subject to

I (t + t0, 0) ≤ (κ2 + ε)

∫ am

0
b(a) I (t + t0, a) da , t ≥ 0 .

Let G solve (see Walker (2021))

DG(t, a) = A(a)G(t, a) , t ≥ 0 , a ∈ J , (6.6a)

G(t, 0) = (κ2 + ε)

∫ am

0
b(a)G(t, a) da , G(0, a) = I (t0, a) . (6.6b)

We claim that

I (t + t0, a) ≤ G(t, a) , t ≥ 0 , a ∈ J . (6.7)

Indeed, setting w(t, a) := G(t, a) − I (t + t0, a), we have, for t ≥ 0 and a ∈ J ,

Dw(t, a) = A(a)w(t, a) ,

w(t, 0) ≥ (κ2 + ε)

∫ am

0
b(a) w(t, a) da , w(0, a) = 0 ,
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and therefore

w(t, a) :=
{
0 , a > t , a ∈ J ,

UA(a, 0)B̂(t − a) , a ≤ t , a ∈ J .
(6.8)

with

B̂(t) = w(t, 0) ≥ (κ2 + ε)

∫ t

0
b(a)UA(a, 0) B̂(t − a) da, t ≥ 0.

Introducing for t ∈ [0, T ] and B ∈ C([0, T ], L p(�))

(KB)(t) := (κ2 + ε)

∫ t

0
b(a)UA(a, 0) B(t − a) da

it follows that K ∈ L(
C([0, T ], L p(�))

)
is a positive compact (Volterra) operator

with spectral radius zero (see the proof of Walker (2021, Lemma 5.1)). Therefore,

(1 − K)−1 =
∑
k≥0

Kk ≥ 0

and consequently

B̂ = (1 − K)−1h ≥ 0

for

h(t) := B̂(t) − (κ2 + ε)

∫ t

0
b(a) B̂(t − a) da ≥ 0, t ≥ 0.

Hence w ≥ 0 according to (6.8) so that (6.7) is true.
(iii) Next, we claim that

I (t) → 0 in L1(J ,C(�̄)) as t → ∞, (6.9)

which, according to (6.7), is ensured by showing that

lim
t→∞G(t) = 0 in L1(J ,C(�̄)) . (6.10)

As for (6.10) we fix α ∈ (n/2p, 1) and note that the linear problem (6.6) with birth rate
(κ2 + ε)b(a) fits exactly into the setting of problems investigated in Walker (2021).
In fact, since G(0) = I (t0) ∈ L1(J ,W 2α

p,N (�)), it follows from Walker (2021,Corol-

lary 1.3) that G(t) = etÂεG(0), t ≥ 0, where (etÂε )t≥0 is an eventually compact,
positive semigroup on L1(J ,W 2α

p,N (�)). Therefore, Engel and Nagel (2000,V. Corol-

lary 3.2) ensures that the spectrum of the generator Âε consists of eigenvalues only,
while Engel and Nagel (2000, IV. Corollary 3.12) yields that the spectral bound of Âε
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coincides with the type of the semigroup. In fact, the spectral bound s0 := s(Âε) is
the unique real number with r(Q̂s0

ε ) = 1 according to Walker (2021, Proposition 5.2),
where

Q̂λ
ε := (κ2 + ε)

∫ am

0
b(a)Uλ

A(a, 0) da, λ ∈ C.

Since as in (6.2)

r(Q̂s0
ε ) = (κ2 + ε)

∫ am

0
b(a)
(a)e−s0a da,

it follows from (6.4) that s0 = s(Âε) < 0, and since the spectral bound and the type
of the semigroup coincide, we conclude that

‖G(t)‖L1(J ,W 2α
p,N (�)) ≤ N e−s0t ‖G(0)‖L1(J ,W 2α

p,N (�)) −→ 0

as t → ∞. Consequently, since W 2α
p,N (�) ↪→ C(�̄), we deduce (6.10) and therefore,

owing to (6.7), also (6.9).
(iv) Finally, we prove that

lim
t→∞ S(t) = κ2 in L p(�).

Given ε ∈ (0, κ1) we infer from (6.9) that there is t1 ≥ t0 with

∥∥∥∥
∫ am

0
b(a)I (t, a) da

∥∥∥∥∞
≤ ε, t ≥ t1,

and hence, due to (1.1a),

∂t S(t, x) ≥ �N S(t, x) + κ1

(
1 − 1

κ2
S(t, x)

)
S(t, x) − εS(t, x) , t ≥ t1 , x ∈ � .

Since the strong maximum principle yields for every x0 ∈ � some � > 0 such that

�0 := min
B̄(x0,�)

S(t1, ·) > 0,

we obtain S(t, x) ≥ ξ(t) for t ≥ t1 and x ∈ B̄(x0, �), where ξ solves

ξ ′(t) = κ1

(
1 − ξ(t)

κ2

)
ξ(t) − εξ(t), t ≥ t1, ξ(t1) = ξ0.

Therefore,

lim inf
t→∞ S(t, x) ≥ lim

t→∞ ξ(t) = κ2(κ1 − ε)

κ1
, x ∈ �.
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Letting ε → 0 and invoking (6.5), we derive

lim
t→∞ S(t, x) = κ2, x ∈ �.

Finally, using again the L∞-bound from (6.5) and Lebesgue’s theorem we conclude
that S(t) → κ2 in L p(�) as t → ∞. Together with (6.9), this proves Proposition 6.1.

��

6.2 The endemic steady state (S̄∗, Ī∗)

In case that the basic reproduction number satisfies

R0 = κ2

∫ am

0
b(a)
(a) da > 1 ,

there is an endemic steady state (S̄∗, Ī∗) given by

S̄∗ := κ2

R0
, Ī∗(a) := 1

R0
κ1κ2

(
1 − 1

R0

)

(a), a ∈ J .

It is convenient to set r0 := 1/R0 ∈ (0, 1). Then, the endemic steady state can be
written as

S̄∗ = r0κ2, Ī∗(a) = 
(a)i∗, a ∈ J , i∗ := r0κ1κ2 (1 − r0) .

In (4.3) we have

q∗ =
∫ am

0
b(a) Ī∗(a) da = κ1 (1 − r0)

so that

A∗
1 = �N − κ1r0

and

P∗ I = r0κ2

∫ am

0
b(a)I (a) da.

In the following we still assume p > (2 ∨ n).

Proposition 6.2 Assume (2.4) and (2.5). For 1 < R0 < 3, the endemic steady state
(S̄∗, Ī∗) to (1.1) is linearly stable in L p(�) × L1(J , L p(�)).
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Proof Let λ be a spectral point of the linearization, so that, according to Remark 4.5,
there is a nontrivial (S, I ) ∈ W 2

p,N (�) × C(J , L p(�)) with

(
A∗
1 −P∗
0 −∂a + A(a)

) (
S
I

)
= λ

(
S
I

)
, I (0) = P∗ I + q∗S .

That is,

−�N S = −(λ + κ1r0)S − r0κ2

∫ am

0
b(a)I (a) da , (6.11a)

∂a I (a) = ( − λ + A(a)
)
I (a) , a ∈ J , (6.11b)

I (0) = r0κ2

∫ am

0
b(a)I (a) da + κ1 (1 − r0) S . (6.11c)

From (6.11b) we get

I (a) = Uλ
A(a, 0)I (0), a ∈ J ,

and plugged into (6.11c) this yields

I (0) = S̄∗Qλ I (0) + κ1 (1 − r0) S (6.12)

with

S̄∗Qλ = r0κ2

∫ am

0
b(a)Uλ

A(a, 0) da ∈ L(
L p(�),W 1

p,N (�)
)
. (6.13)

In order to verify that Re λ < 0, we assume for contradiction that Re λ ≥ 0. Then
λ + κ1r0 − �N is invertible and we infer from (6.11a) and (6.12) that

(1 − S̄∗Qλ)I (0) = −κ1 (1 − r0)
(
λ + κ1r0 − �N

)−1
S∗Qλ I (0) . (6.14)

Recall that the eigenfunctions (φ j ) j∈N of the Neumann-Laplacian, corresponding
to the eigenvalues counted according to multiplicity, build an orthonormal basis in
W 1

2,N (�). Then −�Nφ j = μ jφ entails et�N φ j = e−tμ j φ j for t ≥ 0, and the

operator S̄∗Qλ leaves the eigenfunctions invariant. More precisely, from (6.1) we
deduce

S̄∗Qλφ j = Rλ,μ j φ j ,

Rλ,μ j := r0κ2

∫ am

0
b(a)
(a) e−λa exp

(
−μ j

∫ a

0
d(σ ) dσ

)
da,
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for every j ∈ N. Note that I (0) ∈ W 1
p,N (�) ↪→ W 1

2,N (�) is nonzero as otherwise
also S = 0. Hence, writing I (0) = ∑

j ξ jφ j , we derive from the identity (6.14) that

(
1 − Rλ,μ j

)
ξ j = − κ1 (1 − r0)

λ + κ1r0 + μ j
Rλ,μ j ξ j , j ∈ N.

Taking any j ∈ Nwith ξ j 
= 0, the previous identity leads to the characteristic equation

1

Rλ,μ j

= 1 − 1 − r0
λ+μ j

κ1
+ r0

. (6.15)

Owing to μ j ≥ 0 we have

|Rλ,μ j | ≤ RRe λ,0 ≤ R0,0 = r0R0 = 1 , Re λ ≥ 0 . (6.16)

Clearly, (6.15) has no real solution λ ≥ 0 since in this case

0 < Rλ,μ j ≤ 1,
1 − r0

λ+μ j
κ1

+ r0
> 0.

For an arbitrary λ ∈ C with Re λ ≥ 0 we write

ζ := λ + μ j

κ1
= α + iβ, α ≥ 0, β ∈ R,

and obtain from (6.15) and (6.16) the contradiction

1 ≤ 1

|Rλ,μ j |2
=

∣∣∣∣1 − 1 − r0
ζ + r0

∣∣∣∣
2

= |ζ + 2r0 − 1|2
|ζ + r0|2

= 1 + (r0 − 1)(2α + 3r0 − 1)

(α + r0)2 + β2 < 1

since r0−1 < 0 and 2α+3r0−1 ≥ 3r0−1 > 0 by our assumption that 1/3 < r0 < 1.
Therefore, we conclude that indeed Re λ < 0. Consequently, the endemic steady state
(S̄∗, Ī∗) is linearly stable when 1 < R0 < 3. ��

Clearly, one expects (S̄∗, Ī∗) to be linearly stable for all R0 > 1.
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Appendix

Regularity of I

We provide the missing step from the proof of Proposition 3.5.

Lemma 7.1 For ε > 0 small and some n/2p < 2θ < 2 − n/p, let

Sε ∈ C
([0, Tm − ε),W 2

p,B(�)
)
, Iε ∈ C

([0, Tm − ε), L1(J ,W 2θ
p,B(�))

)
,

I0,ε ∈ L1
(
J ,W 2θ

p,B(�)
)

be as in the proof of Proposition 3.5. Then

Iε ∈ C
(
(0, Tm − ε), L1(J ,W 2

p,B(�))
)
, I ∈ C

(
(0, Tm), L1(J ,W 2

p,B(�))
)
.

Proof We proceed analogously to the proof of Proposition 3.2. According to
Lemma 3.1 there is α > 0 such that

B[Sε, Iε] ∈ C
([0, Tm − ε),W 2α

p,B(�)
)

and we obtain from (3.5), for 0 < t2 ≤ t1 ≤ T < Tm − ε,

||Iε(t1, ·) − Iε(t2, ·)‖L1(J ,W 2
p,B(�))

≤
∫ t2

0
‖UA(a, 0)‖L(W 2α

p,B(�),W 2
p,B(�))

‖B[Sε, Iε](t1 − a) − B[Sε, Iε](t2 − a)‖W 2α
p,B(�)

da

+
∫ t1

t2
‖UA(a, 0)‖L(W 2α

p,B(�),W 2
p,B(�))

‖B[Sε, Iε](t1 − a)‖W 2α
p,B(�)

da

+
∫ t1

t2
‖UA(a, a − t2)‖L(W 2θ

p,B(�),W 2
p,B(�))

‖I0,ε(a − t2)‖W 2θ
p,B(�)

da

+
∫ am

t1

∥∥(
UA(a, a − t1) −UA(a, a − t2)

)
I0,ε(a − t1)‖W 2

p,B(�)
da

+
∫ am

t1
‖UA(a, a − t2)‖L(W 2θ

p,B(�),W 2
p,B(�))

‖I0,ε(a − t1) − I0,ε(a − t2)‖W 2θ
p,B(�)

da

≤ Me�
∫ t2

0
aα−1 ‖B[Sε, Iε](t1 − a) − B[Sε, Iε](t2 − a)‖W 2α

p,B(�)
da

123

http://creativecommons.org/licenses/by/4.0/


Well-posedness and stability analysis of an epidemic… Page 43 of 46 52

+ c(R)

∫ t1

t2
aα−1 da + tθ−1

2

∫ t1

t2
‖I0,ε(a − t2)‖W 2θ

p,B(�)
da

+
∫ am

t1

∥∥(
UA(a, a − t1) −UA(a, a − t2)

)
I0,ε(a − t1)‖W 2

p,B(�)
da

+ tθ−1
2

∫ am

t1
‖I0,ε(a − t1) − I0,ε(a − t2)‖W 2θ

p,B(�)
da .

Now, as |t1 − t2| → 0, the first integral on the right-hand side goes to zero since the
function B[Sε, Iε] ∈ C([0, T ],W 2α

p,B(�)) is uniformly continuous while the second

and the third integral vanish since a �→ aα−1 respectively I0,ε are integrable. To see
that the fourth integral vanishes in the limit one may use the strong continuity (Amann
1995, Equation II. (2.1.2)) of the evolution operatorUA inL

(
W 2θ

p,B(�),W 2
p,B(�)

)
and

Lebesgue’s theorem. For the last integral onemay use the strong continuity of the trans-
lations on L1

(
J ,W 2θ

p,B(�)
)
. Consequently, Iε ∈ C

(
(0, Tm − ε), L1(J ,W 2

p,B(�))
)
.

Letting ε → 0 yields I ∈ C
(
(0, Tm), L1(J ,W 2

p,B(�))
)
. ��

Proof of the L1-inequality (3.16)

We derive inequality (3.16). To this end, note from Gauss’ theorem that

∫
�

�u dx =
∫

∂�

∂νu dσ ≤ 0, u ∈ W 2
p,B(�), u ≥ 0, (7.1)

since ∂νu = 0 on ∂� if δ = 1 and ∂νu ≤ 0 on ∂� if δ = 0. Now, for a ∈ J fixed set

w(t) := UA(a + t, a)I0(a), t ∈ [0, am − a].

Integrating then

d

dt
w(t) = A(a + t)w(t), t ∈ (0, am − a],

with A given in (2.1), we get from (7.1)

∫
�

w(t, x) dx ≤
∫
�

w(0, x) dx −
∫ t

0

∫
�

(
m(a + τ, x) + r(a + τ, x)

)
w(τ, x) dx dτ ,

and therefore

∫
�

UA(a + t, a)I0(a) dx

≤
∫

�

I0(a) dx −
∫ t

0

∫
�

(
m(a + τ) + r(a + τ)

)
UA(a + τ, a)I0(a) dx dτ .

123



52 Page 44 of 46 Ch. Walker

Similarly, one derives for t > a that

∫
�
UA(t − a, 0)I (a, 0) dx

≤
∫
�
I (a, 0) dx −

∫ t

a

∫
�

(
m(τ − a) + r(τ − a)

)
UA(τ − a, 0)I (a, 0) dx dτ .

We then recall (3.14) and use the previous two identities to obtain

∫ am

0

∫
�

I (t, a) dx da =
∫ t

0

∫
�

UA(t − a, 0)I (a, 0) dxda +
∫ am−t

0

∫
�

UA(a + t, a)I0(a) dx da

≤
∫ t

0

∫
�

I (a, 0) dx da +
∫ am−t

0

∫
�

I0(a) dx da

−
∫ t

0

∫ t

a

∫
�

(
m(τ − a) + r(τ − a)

)
UA(τ − a, 0)I (a, 0) dx dτ da

−
∫ am−t

0

∫ t

0

∫
�

(
m(a + τ) + r(a + τ)

)
UA(a + τ, a)I0(a) dx dτ da

=
∫ t

0

∫
�

I (a, 0) dx da +
∫ am

0

∫
�

I0(a) dx da

−
∫ t

0

∫ τ

0

∫
�

(
m(a) + r(a)

)
UA(a, 0)I (τ − a, 0) dx da dτ

−
∫ t

0

∫ am

τ

∫
�

(
m(a) + r(a)

)
UA(a, a − τ)I0(a − τ) dx da dτ

−
∫ am

am−t

∫
�

I0(a) dx da

+
∫ t

0

∫ am

am−t+τ

∫
�

(
m(a) + r(a)

)
UA(a, a − τ)I0(a − τ) dx da dτ .

Using (3.14) again we may rewrite the previous inequality as

∫ am

0

∫
�
I (t, a) dx da ≤

∫ am

0

∫
�
I0(a) dx da +

∫ t

0

∫
�
I (τ, 0) dx dτ

−
∫ t

0

∫ am

0

∫
�

(
m(a) + r(a)

)
I (τ, a) dx da dτ

−
∫ am

am−t

∫
�
I0(a) dx da

+
∫ t

0

∫ am

am−t+τ

∫
�

(
m(a) + r(a)

)
UA(a, a − τ)I0(a − τ) dx da dτ.

(7.2)

Integrating (1.1c) and using (7.1) yields

∫
�

S(t) dx ≤
∫

�

S0 dx +
∫ am

0

∫
�

I0(a) dx da +
∫ t

0

∫
�

κ1

(
1 − S(τ )

κ2

)
S(τ ) dx dτ

−
∫ t

0

∫
�

I (τ, 0) dx dτ +
∫ t

0

∫
�

∫ am

0
r(a)I (τ, a) da dx dτ. (7.3)
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Adding (7.2) and (7.3) yields (3.16).

Remark 7.2 When considering Neumann boundary conditions (δ = 1), then (7.2)
and (7.3) are equalities and thus also (3.16).
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