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Abstract. We study reduced density matrices of the integrable critical restric-
ted solid-on-solid (RSOS) model in a particular topological sector containing the
ground state. Similar as in the spin-1/2 Heisenberg model it has been observed
that correlation functions of this model on short segments can be ‘factorized’:
they are completely determined by a single nearest-neighbour two-point func-
tion ω and a set of structure functions. While ω captures the dependence on the
system size and the state of the system the structure functions can be expressed
in terms of the possible operators on the segment, in the present case represent-
ations of the Temperley–Lieb algebra TLn, and are independent of the model
parameters. We present explicit results for the function ω in the infinite system
ground state of the model and compute multi-point local height probabilities
for up to four adjacent sites for the RSOS model and the related three-point
correlation functions of non-Abelian su(2)k anyons.
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1. Introduction

The essential step from a theoretical model for a quantum many-body system to the
description of experimental observations is the computation of correlation functions.
Already the information about the energy levels of a system with two-body interactions
is encoded in the two-particle reduced density matrix (RDM) in a given eigenstate.
Similarly, knowing the RDMs for a few particles in a given N -particle state gives access
to many properties of this system. In general, however, correlations due to interactions
and the statistics of the constituents of the system lead to restrictions on RDMs which
pose a challenge to perturbative approaches for their calculation [1].

On the other hand, for certain integrable models constructed from an R-matrix
satisfying a Yang–Baxter equation—in particular the six-vertex model and the related
spin-1/2 chains—a growing number of exact results for correlation functions and RDMs
has been obtained by making use of the underlying mathematical structures [2–5]:
multiple integral formulations following from the representation of vertex operators
realizing quantum affine symmetries or from the algebraic Bethe ansatz and functional
equations of q-Knizhnik–Zamolodchikov (qKZ) type provide explicit expressions. Their
efficient evaluation using numerical methods, however, remained to be an obstacle.
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This situation has improved significantly when it was shown that the multiple integral
representations of density matrices on short segments can be factorized into single ones
[6] and that N -point correlation functions (as well as RDMs) of an inhomogeneous
generalization of the isotropic Heisenberg spin chain can be written in terms of a nearest
neighbour two-point function ω (the ‘physical part’) and a set of recursively defined
‘structure functions’ (or ‘algebraic part’) fN ;I,J of the spectral parameters λj [7]:

DN (λ1, . . . ,λN ) =

[N/2]∑
m=0

∑
I,J

(
m∏
p=1

ω(λip,λjp)

)
fN ;I,J(λ1, . . . ,λN ) (1.1)

where I = (i1, . . . , im) and J = (j1, . . . , jm) such that I ∩ J =∅, 1⩽ ip < jp ⩽N and i1 <
.. . < im. Similar expressions have been proven for a general inhomogeneous six-vertex
model (including the finite temperature and the finite length Heisenberg chain as special
cases) using the fermionic structure in the space of operators of this model [8, 9]. Based
on (1.1) it has been argued that correlation functions in excited states of the Heisenberg
model factorize if the physical part is changed appropriately [10].

With equation (1.1) and its extension using the fermionic basis approach there exists
a powerful tool to compute correlation functions in integrable vertex models, see e.g.
[11, 12]. Another class of Yang–Baxter integrable models, so-called interaction-round-
a-face (or face) models, has attracted considerable interest recently as such models can
be used to describe the collective behaviour of interacting non-Abelian anyons in topo-
logical quantum liquids, see e.g. [13–17]. For such models the development of a similar
framework for the computation of RDMs is only at its beginning: for the restricted solid-
on-solid (RSOS) models one-point functions such as local height probabilities (LHPs)
have been computed in the thermodynamic limit using Baxter’s corner transfer matrix
[18]. Moreover, qKZ equations for correlation functions of vertex operators related to
quantum group symmetries and multiple integral representations for multi-point LHPs
have been constructed in the massive phases of the RSOS models [19, 20]. Further res-
ults have been obtained for face models with a dynamical R-matrix allowing for the
transfer of concepts such as the algebraic Bethe ansatz or separation of variables from
vertex models [21–23].

Recently, we have expressed reduced density matrices in general face models in
terms of their local Boltzmann weights [24]. Following a similar construction for the
Heisenberg spin chain [25] this allows us to derive discrete functional equations called
‘reduced’ qKZ equations satisfied by the RDMs. A study of these equations for the
critical RSOS models has been initiated in [24]: based on finite size studies of these
models with a small number of allowed local heights we found that their two- and
three-site RDMs can be written in factorized form similar to (1.1) for all states from a
particular topological sector. In this paper we continue this work: after a short review
of the definition of the models we propose the functional equations satisfied by the
RDMs of the RSOS models. Complementing the restricted qKZ equation with a set
of recurrence and reduction relations resulting from the properties of the Boltzmann
weights together with an identity for the asymptotics of the RDMs observed to hold in
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a particular topological sector allows us to compute the algebraic part of the two- and
three-site density matrices which then can be expressed in terms of the generators of the
Temperley–Lieb algebra underlying the RSOS model. For the physical part we solve the
restricted qKZ equation for the nearest-neighbour two-site RDM for the ground state
of the model in the thermodynamic limit and compare our result to those for finite
systems. Finally, we apply our expressions to compute multi-point LHPs for the critical
RSOS models.

2. The critical RSOS models

The RSOS models are defined on a square lattice where the spins (or heights) lying on
the vertices take values from the set S= {1,2, . . . , r− 1} [18]. Spins a and b on neigh-
bouring sites are constrained by the adjacency condition |a− b|= 1. The Boltzmann
weights for an elementary face where this constraint is satisfied on all four edges are
defined as

with the crossing parameter λ= π/r and

ρ(u) =
sin(u−λ)

sinλ , gx =
sinλx
sinλ . (2.2)

They satisfy the unitarity condition (dotted lines in the graphical notation indicate that
the connected heights are taken to be equal, heights at nodes marked by a solid circle
are summed over)

crossing symmetry

W

(
a b
c d

∣∣∣∣u)=

√
gb gc
ga gd

W

(
b d
a c

∣∣∣∣λ−u

)
, (2.4)

and the initial condition

W

(
a b
c d

∣∣∣∣0)= δb,c. (2.5)

With these local weights we define single row operators

https://doi.org/10.1088/1742-5468/aceeef 4
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acting on the space HL = span{|a0 . . .aL⟩ : |aj+1− aj|= 1}. Imposing periodic boundary
conditions in the horizontal direction and performing the trace over the spins α= β and
γ = δ one obtains the transfer matrix of the inhomogeneous RSOS model

t(u) =
∑
αγ

T αα
γγ (u). (2.7)

where the inhomogeneities uk ∈ C parameterize local variations in the interactions of
the model.

The RSOS models are exactly solvable: the transfer matrix (2.7) commutes for dif-
ferent values of the spectral parameter u as a consequence of the Boltzmann weights
satisfying the Yang–Baxter equation∑

g∈S

W

(
f g
a b

∣∣∣∣u− v

)
W

(
f e
g d

∣∣∣∣v)W

(
g d
b c

∣∣∣∣u)
=
∑
g∈S

W

(
f e
a g

∣∣∣∣u)W

(
a g
b c

∣∣∣∣v)W

(
e d
g c

∣∣∣∣u− v

)
.

(2.8)

Alternatively this equation can be expressed as

Wj(u)Wj+1(u+ v)Wj(v) =Wj+1(v)Wj(u+ v)Wj+1(u), (2.9)

in terms of the Yang–Baxter operators Wj(u) acting on HL as

⟨a0 . . .aL|Wj(u)|b0 . . . bL⟩ ≡
∏
k ̸=j

δakbk W

(
aj−1 aj
bj aj+1

∣∣∣∣u) . (2.10)

With (2.1) these operators can be expanded as

Wj(u) = ρ(u)1+ ρ(u+λ)ej, (2.11)

where {1,e1, . . . ,en−1} is a representation of the generating elements of the Temperley–
Lieb algebra TLn(β)

e2j = β ej, ej = ej ej±1 ej,

ejej ′ = ej ′ej for |j− j ′|> 1,
(2.12)

with β = 2cosλ.
By construction the transfer matrix t(u) and its eigenvalues Λ(u) are Fourier poly-

nomials of degree L

https://doi.org/10.1088/1742-5468/aceeef 5
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Λ(u) =

L/2∑
n=−L/2

Λ2nei2nu, (2.13)

where the leading Fourier coefficients are known to take values [26]

Λ±L =

(
L∏

k=1

exp(∓i(uk +λ/2))

)
2cos((2j+1)λ)

(2sinλ)L , j ∈
{
0,
1

2
,1, . . . ,

r− 2

2

}
. (2.14)

This allows us to decompose the spectrum of the RSOS model into topological
sectors with a ‘quantum dimension’ labelled by the quantum number j

dq(j) =
sin(π(2j+1)/r)

sin(π/r) . (2.15)

In view of applications we will be particularly interested in the RSOS model in the
Hamiltonian limit: expanding the homogeneous transfer matrix, i.e. uk ≡ 0, around the
shift point u =0 to first order one obtains the periodic Temperley–Lieb Hamiltonian of
the one-dimensional quantum RSOS model [27]:

H=
λ

4π sinλ

L∑
j=1

ej. (2.16)

Note that this model has recently been used to study the collective excitations in a
linear chain of interacting su(2)k non-Abelian anyons with spin-1/2 for k = r− 2 [13].
Here the adjacency conditions for neighbouring heights are enforced by anyonic fusion
rules.

In [24] we have shown that reduced density matrices in an eigenstate |Φ⟩ corres-
ponding to the eigenvalue Λ(u) of the transfer matrix (2.7) can be expressed in terms
of the single row operators (2.6): define local operators acting on sequences of adjacent
sites n1, . . . ,n2 through their matrix elements in the basis of HL as

⟨a|Eαn1 ...αn2

βn1 ...βn2
|b⟩=

n2∏
k=n1

δak,αk
δbk,βk

∏
j /∈{n1...n2}

δajbj , (2.17)

and generalized RDMs DN depending on a set of auxiliary spectral parameters λj ,
j = 1, . . . ,N ,

DN (λ1, . . . ,λN )
{α}{β} =

⟨Φ|
∏N

k=1T
αk−1βk−1

αkβk
(λk)|Φ⟩

⟨Φ|Φ⟩
N∏
k=1

Λ(λk)

, (2.18)

https://doi.org/10.1088/1742-5468/aceeef 6
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where α= (α0, . . . ,αN ) and β = (β0, . . . ,βN ) are sequences of heights labelling the basis

of the space VN = span{|α0 . . .αN ⟩ : |αj+1−αj|= 1} (for a graphical representation of
this object see the appendix). With these definitions one can show that

1

⟨Φ|Φ⟩
⟨Φ|Eα0...αN

β0...βN
|Φ⟩=DN (λ1, . . . ,λN )

{α}{β}
∣∣∣
λk=uk,k=1,...,N

. (2.19)

In view of this relation we can complement (2.18) by

Dα,α
0 =

1

⟨Φ|Φ⟩
⟨Φ|Eα0

α0
|Φ⟩ ≡ Pα (2.20)

being the local height probability (LHP) of the critical RSOS model [18]

Pα =
2λ

π
sin2αλ. (2.21)

As a consequence of the state |Φ⟩ satisfying periodic boundary conditions the mat-
rix elements DN (λ1, . . . ,λN )

{α}{β} vanish for α0 ̸= β0, αN ̸= βN . Therefore DN can be
decomposed into blocks labelled [α0,αN ], i.e.

DN (λ1, . . . ,λN )
{α}{β} =

(
D

[α0,αN ]
N (λ1, . . . ,λN )

)α1...αN−1

β1...βN−1

. (2.22)

Note that the same is true for representations of the Temperley–Lieb algebra TLN as
operators on VN .

3. Properties of the RDM

In [24] a factorization of correlation functions similar to (1.1) has been observed to hold
for the generalized two- and three-site density matrices of RSOS models with r =4 and
5 in the topological sectors with quantum dimension dq(j) = 1:

D1(λ1) = F1;∅,∅, D2(λ1,λ2) = F2;∅,∅+F2;(1)(2)ω(λ1,λ2),

D3(λ1,λ2,λ3) = F3;∅,∅+F3;(1)(2)(λ1,λ2,λ3)ω(λ1,λ2)

+F3;(2)(3)(λ1,λ2,λ3)ω(λ2,λ3)+F3;(1)(3)(λ1,λ2,λ3)ω(λ1,λ3), (3.1)

with a single symmetric two-point function ω(u,v) = ω(v,u). For states from these sec-
tors the algebraic part, given in terms of the ‘structure functions’ FN ;I,J(λ1, . . . ,λN ), is
independent of the specific model, i.e. of the system size and of the inhomogeneities
uk. The FN ;I,J(λ1, . . . ,λN ) are matrices acting on the space VN . Because of this particu-
larly simple form of the RDMs we restrict ourselves to consider states from these sectors
only. Note that this includes the ground state of the RSOS model in the thermodynamic
limit.

Among the elements of the single-site density matrix D1(λ1) of the critical RSOS
models only the diagonal ones are non-zero (the D1-blocks [a,a+1] allowed by the adja-
cency rules are one-dimensional). Moreover, D1(λ1) has been shown to be independent

https://doi.org/10.1088/1742-5468/aceeef 7
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of the spectral parameter λ1 and can be obtained from the LHP (2.21), see [24]: using
the symmetry Pa,a+1 = Pa+1,a of the two-site LHPs (i.e. the probabilities that the heights
at two adjacent sites are equal to a and a +1) and the identity

∑
bPa,b = Pa the non-zero

elements of D1 = F1;∅,∅ are found to be (1⩽ a⩽ r− 2)

Pa,a+1 = ⟨a,a+1|D1(λ1)|a,a+1⟩= ⟨a+1,a|D1(λ1)|a+1,a⟩

=
λsinaλ sin((a+1)λ)

π cosλ . (3.2)

In the following we collect several properties of the reduced density matrices con-
structed in the previous section and relations satisfied by them which will be used below
for their computation:

(a) By construction (2.18) Λ(λj)DN (λ1, . . . ,λN ) is a Fourier polynomial of the spectral
parameter λj . Hence, the poles of DN correspond to zeroes of the transfer matrix
eigenvalues Λ(u).

(b) As a consequence of the YBE (2.8) the arguments of DN (λ1, . . .λN ) can be reordered
by application of the Yang–Baxter operators:

Wj(λj+1−λj)DN (λ1, . . . ,λj,λj+1, . . . ,λN )

=DN (λ1, . . . ,λj+1,λj, . . . ,λN )Wj(λj+1−λj). (3.3)

(c) The N -site generalized RDM can be restricted to the subspace diagonal in one of
the spins, e.g. with matrix elements with αj = βj for the j th index, by inserting the
projector Pper onto states in HL obeying periodic boundary conditions in (2.18) as

D
(j)
N (λ1, . . . ,λN )

{α}{β}

=
⟨Φ|
(∏j

k=1T
αk−1βk−1

αkβk
(λk)

)
Pper

(∏N
k=j+1T

αk−1βk−1

αkβk
(λk)

)
|Φ⟩

⟨Φ|Φ⟩
N∏
k=1

Λ(λk)

. (3.4)

Performing partial traces of D
(1)
N (D

(N−1)
N ) over the spin α0 (αN ) one obtains the

following relations between RDMs of different order:

tr0
(
D

(1)
N (λ1, . . . ,λN )

)
=
∑
α0

δα0β0 δα1β1 [DN (λ1, . . . ,λN )]
α0...αN ,β0...βN

=DN−1(λ2, . . . ,λN ), (3.5)

trN
(
D

(N−1)
N (λ1, . . . ,λN )

)
= · · ·=DN−1(λ1, . . . ,λN−1).

To prove these relations one uses the fact that
∑

αT
αα
γγ ′(u)PperT

γγ ′
... (v) =

δγγ ′ t(u)T γγ
... (v).

https://doi.org/10.1088/1742-5468/aceeef 8
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(d) For another functional equation we introduce a linear operator AN (λ1, . . . ,λN ) :
End(VN )→ End(VN ) [24] (see [25] for a similar construction for the six-vertex
model): the action of AN on an operator B ∈ End(VN ) is

with the operator P−, related to the Boltzmann weight at the crossing parameter:

Acting with AN on the N -site RDM one obtains a discrete difference equation of
reduced qKZ type [24]: The density operator DN (λ1, . . . ,λN ) is a solution of the
functional equation

AN (λ1, . . . ,λN )[DN (λ1, . . . ,λN−1,λN )] =DN (λ1, . . . ,λN−1,λN +λ) (3.7)

if λN is equal to one of the inhomogeneities, i.e. λN ∈ {uk}Lk=1. For the proof one
considers the action of AN on DN+1(λ1, . . . ,λN ,λN +λ). Performing partial traces
over αN = βN and αN+1 = βN+1, respectively, and using the YBE, unitarity and
initial condition for the Boltzmann weights (3.7) is obtained. For the RSOS models
it is straightforward to show that the restriction on λN can be dropped for matrix
elements of the RDM where αN−1 = 1, r− 1.

https://doi.org/10.1088/1742-5468/aceeef 9
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(e) Based on numerical results for small r and N we have proposed an identity relating
the asymptotics of DN to DN−1 in the topological sectors with dq(j) = 1 when λN

is sent to i∞ [24]:

lim
λN→i∞

[DN (λ1, . . . ,λN )]
α0...αN ,β0...βN

= [DN−1(λ1, . . . ,λN−1)]
α0...αN−1,β0...βN−1

[D1]
αN−1αN ,βN−1βN∑

α [D1]
αN−1α,βN−1α

.
(3.8)

(Recall that D1 is independent of the spectral parameter λ1, see (3.2).)

(f) Finally, using Wj(λ) = ej together with crossing and unitary one can prove that the
density operator (2.18) satisfies the reduction relation (see also [28])

⟨α|eN−1DN (λ1, . . . ,λN−2,u,u+λ)|β⟩

=

∏L
k=1ρ(u−uk)ρ(uk −u)

Λ(u)Λ(u+λ)
×⟨α0 . . .αN−2|DN−2(λ1, . . . ,λN−2)|β0 . . .βN−2⟩

× ⟨αN−2 . . .αN |eN−1|βN−2 . . .βN ⟩, (3.9)

for arbitrary u.

Assuming that the factorization (3.1) holds for general λ= π/r we can apply (3.7) to the
two-site density matrix D2 of the RSOS model. This gives rise to a discrete difference
equation satisfied by the scalar function ω(u,v) for a given value of r. Based on explicit
results for r ⩽ 7 we propose the following functional equation for ω(u,v) for v ∈ {uk}
and general values of λ= π/r

ω(u,v+λ) =
sin2λ

cos2(u− v)− cos2λ − cos(2(u− v−λ))− cos(2λ)
cos(2(u− v))− cos(2λ) ω(u,v). (3.10)

We have checked (3.10) for values of r up to 12. Note that, as a consequence of (3.8),
the function ω(u,v) vanishes for v → i∞.

4. N-site density matrices—the algebraic part

To begin our analysis of the algebraic part we note that, using the asymptotic rela-
tion (3.8), the elements of FN ;∅,∅ for N ⩾ 2 can be obtained recursively

[FN ;∅,∅]
α0...αN ,α0...αN = [FN−1;∅,∅]

α0...αN−1,α0...αN−1
D

[αN−1αN ]
1∑

αD
[αN−1α]
1

=
1

2cosλ [FN−1;∅,∅]
α0...αN−1,α0...αN−1

sinαNλ

sinαN−1λ
,

(4.1)
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giving

[FN ;∅,∅]
α0...αN ,β0...βN =

2λ

π

 N∏
j=0

δαjβj

 sinα0λ sinαNλ

(2cosλ)N . (4.2)

Note that FN ;∅,∅ is proportional to the identity in each of the [α0,αN ]-blocks of the
N -site density matrix DN.

4.1. The two-site density matrix

The two-site density matrices in the topological sectors with dq = 1 can be written as

D2(λ1,λ2) = F2;∅,∅+F2;(1)(2)ω(λ1,λ2)≡ F2;∅,∅ (1+B2ω(λ1,λ2)) , (4.3)

with F2;∅,∅ given in (4.2). Numerically we find that the matrix F2;(1),(2) = F2;∅,∅B2 is
also constant (i.e. independent of the spectral parameters). Therefore it can be obtained
by utilizing (3.7): since all matrix elements of D2 are given in terms of the unknown
elements of B2 and the single function ω(λ1,λ2) this equation determines the former.
Based on this process we have computed B2 for r = 4, . . . ,12. In terms of the operators 1
and e1 forming the basis of the Temperley–Lieb algebra TL2 the result can be expressed
as

B2 = 2(2cosλe1−1) , (4.4)

Explicitely, the non-zero blocks of B2 are

B
[1,1]
2 =B

[r−1,r−1]
2 = 2

sin3λ
sinλ ,

B
[aa]
2 =

2

sinaλ

(
sin(a− 2)λ 2cosλ

√
sin(a− 1)λ sin(a+1)λ

2cosλ
√

sin(a− 1)λ sin(a+1)λ sin(a+2)λ

)
,

B
[a−1,a+1]
2 =B

[a+1,a−1]
2 =−2,

(4.5)

for 2⩽ a⩽ r− 2.

4.2. The three-site RDM

According to (3.1) the three-site density matrix factorizes as

D3(λ1,λ2,λ3) =F3;∅,∅
(
1+B3;(1)(2)(λ1,λ2,λ3)ω(λ1,λ2)

+B3;(2)(3)(λ1,λ2,λ3)ω(λ2,λ3)+B3;(1)(3)(λ1,λ2,λ3)ω(λ1,λ3)
)
.

(4.6)

Here F3;∅,∅ has been obtained in (4.2) before. Using the explicit construction (2.18)
of D3 for a system of size L=2 we have analysed the dependence of the coefficient
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matrices B3;I,J on the spectral parameters λj using the algorithm presented in [24]. As
a result they are found to be of the form1

B3;(1)(2)(λ1,λ2,λ3) = f 1
12+(cotλ13− cotλ23)f

2+(1+ cotλ13 cotλ23)f
4,

B3;(2)(3)(λ1,λ2,λ3) = f 1
23+(cotλ12− cotλ13)f

2+(1+ cotλ12 cotλ13)f
4,

B3;(1)(3)(λ1,λ2,λ3) = f 1
13+(cotλ23− cotλ12)f

2+(1− cotλ23 cotλ12)f
4,

(4.7)

with constant matrices f 1
ij =

(
f 1
ij

)⊤
, f 2 =−

(
f 2
)⊤

and f 4 =
(
f 4
)⊤

. f 1
ij and f 2 can

be computed using equation (3.8) together with the YB relation (3.3): since cotx→−i
and ω(y,x)→ 0 in the limit x→ i∞ one can express f 1

12 in terms of B2:

[
f 1
12

]α0...α2α3,α0...β2α3
=

1

[F2;∅,∅]
α0...α3,α0...α3

δα2β2 [F2;∅,∅B2]
α0...α2,α0...α2

D
[α2α3]
1∑

αD
[α2α]
1

= δα2β2 [B2]
α0...α2,α0...α2 .

(4.8)

Similar relations determining f 1
23, f

1
13, and f 2 follow after using the YB-relation (3.3):

lim
λ3→i∞

D3(λ1,λ3,λ2) = lim
λ3→i∞

W2(λ3−λ2) ·D3(λ1,λ2,λ3) · [W2(λ3−λ2)]
−1 ,

lim
λ3→i∞

D3(λ3,λ1,λ2) = lim
λ3→i∞

W1(λ3−λ1) ·D3(λ1,λ3,λ2) · [W1(λ3−λ1)]
−1 .

Note that in the limit we have

lim
u→i∞

eiuWj(u) =
1

2isinλ
(
e−iλ1− ej

)
, lim

u→i∞

[
eiuWj(u)

]−1 → 2isinλ
(
eiλ1− ej

)
,

where ej is the Temperley–Lieb operator acting on the spins αj−1,αj,αj+1. The remain-
ing coefficients in f 4 are determined by the reduced qKZ equation (3.7) forD3. Collecting
the results for r up to 9 we find that, similar as for D2 above, B3;I,J can be expanded
in the basis {1,e1,e2,e1e2,e2e1} of the Temperley–Lieb algebra TL3 :

f 1
12 = 2(2cosλe1−1) ,

f 1
23 = 2(2cosλe2−1) ,

f 1
13 = 2

(
2cosλ (e1+ e2)− 2cos2λ (e1e2+ e2e1)−1

)
,

f 2 = sin2λ (e1e2− e2e1) ,

f 4 = 2
1− cos2λ
1− 2cos2λ

(
1− 2cosλ(e1+ e2)+ 2cos2λ(e1e2+ e2e1)

)
.

(4.9)

1 The factorization of DN>2 for r =4 is not unique due to the identity

sin2λ12ω(λ1,λ2) + sin2λ23ω(λ2,λ3) = sin2λ13ω(λ1,λ3),

satisfied by the two-site function ω [24]. This implies that f 4 does not enter (4.6) and therefore may be chosen to be zero.
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4.3. The four-site RDM

Similar as in (1.1) for the Heisenberg model we expect that the 4-site RDM D4 factorizes
as (see also [29, 30])

D4(λ1, . . . ,λ4)

= F4;∅,∅+F4;(1)(2)({λj})ω(λ1,λ2)+F4;(1)(3)({λj})ω(λ1,λ3)+F4;(1)(4)({λj})ω(λ1,λ4)

+F4;(2)(3)({λj})ω(λ2,λ3)+F4;(2)(4)({λj})ω(λ2,λ4)+F4;(3)(4)({λj})ω(λ3,λ4)

+F4;(1,2)(3,4)({λj})ω(λ1,λ3)ω(λ2,λ4)+F4;(1,2)(4,3)({λj})ω(λ1,λ4)ω(λ2,λ3)

+F4;(1,3)(2,4)({λj})ω(λ1,λ2)ω(λ3,λ4),

(4.10)

with the nearest neighbour two-site function ω(λk,λℓ) introduced in equation (3.1) and
F4;∅,∅ given in (4.2). To verify such a decomposition we have computed the structure
functions F4;I,J for a single matrix element of D4 in the r =5 RSOS model with L=4
sites and found that they are elementary functions of the differences λkℓ = λk −λℓ. For
an expansion of the structure functions in the basis of the Temperley–Lieb algebra TL4

(similar as for D2 and D3) one needs these data for all matrix elements in blocks [a,a],
[a,a± 2] of D4 as input. We leave this to a future publication.

5. The nearest neighbour function ω(u,v)

It remains to determine the nearest neighbour function ω(u,v) which depends on the
model specific parameters, i.e. system size and inhomogeneities uk, and the state of
the system. From its definition (4.3) in terms of the two-site density matrix and our
observations above ω has the following properties:

(a) periodicity: ω(u,v) = ω(u+π,v) = ω(u,v+π),

(b) asymptotics: limv→i∞ω(u,v) = 0,

(c) analyticity: as a consequence of (2.18) poles of ω(u,v) correspond to zeroes of the
transfer matrix eigenvalues Λ(u), Λ(v).

Restricting ourselves to the ground state of the quantum RSOS model (2.16) our
numerical studies of the finite-size expressions show that ω(u,v) is an analytical function
of both u and v in the strips S0 = {z ∈ C :−λ/2≲ Re(z)≲ 3λ/2} (the physical strip
for the RSOS models in regime III/IV) and S1 = {z ∈ C :−π+3λ/2≲ Re(z)≲−λ/2}.
Within these strips we find that ω(u,v) depends on x= u− v only when L→∞.

With these data as input we can now solve the functional equation (3.10) for ω(u,v)
derived in section 3.2

2 It is straightforward to extend this procedure to other eigenstates of the RSOS transfer matrix in this topological sector by taking
into account the additional poles of ω(u,v) in the strips S0,1.
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The RSOS model for r =4 can be mapped to the Ising model. In this case we have
an explicit expression for the product Λ(u)Λ(u+λ) [31]

Λ(u)Λ(u+λ) =
L∏

k=1

ρ(u−uk)ρ(uk −u)+ y
L∏

k=1

ρ(u+λ−uk)ρ(uk −u−λ) (5.1)

where y =±1 is the eigenvalue of the height reflection operator mapping heights a→
r− a. In the ground state of the RSOS Hamiltonian y = (−1)L/2. Therefore we can use
the reduction relation (3.9) to compute the function ωr=4(u,v): using the factorized
form (4.6) of the three-site density matrix together with the explicit form D1(u) =

1
41

(for r =4) we obtain the difference equation

sin2(u− v)ω4(u,v)+ cos2(u− v)ω4(u,v+λ) = rL(v)≡
1(

1+ y tanL 2v
) − 1

2
, (5.2)

for the homogeneous model, uk ≡ 0. Note that, unlike the reduced qKZ equation (3.10),
this equation holds for arbitrary values of u and v. In addition we find an explicit
expression for

ω4(u,u+λ) = rL(u). (5.3)

This allows for a computation of the nearest neighbour functions for arbitrary finite
chain lengths. To this end, we need to solve (5.2). We consider y =+1 for the ground
state of the RSOS model with L ∈ 4N and define h(u,v)≡ sin(2(u− v))ω(u,v). Setting
a(u,z)≡ h(u,iz+π/8) we arrive at the difference equation

a
(
u,z+ i

π

8

)
− a

(
u,z− i

π

8

)
= rL(iz). (5.4)

Numerical studies of small system sizes reveal that a has non-zero asymptotics,
limz→∞a(u,z) ̸= 0. Hence, we take the derivative of (5.4) and use Fourier methods to
obtain a(u,z) up to a u-dependent term

a(u,z) =−
∞̂

−∞

rL(iy)K(z− y)dy+Ψ(u), (5.5)

with a kernel given by

K(z) =

∞+i0ˆ

−∞+i0

eikz

4π sinh
(
πk
8

) dk. (5.6)

Using (5.3) we can determine Ψ(u) and finally find
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h(u,v) =
2

π

∞̂

−∞

rL(iy) sin(4(v−u))

sinh(4(y+ iu))sinh(4(y+ iv))
dy (5.7)

for u,v ∈ (0,π/4) (outside of these intervals h(u,v) is obtained by analytical continu-
ation). Note that the chain length L only enters (5.7) as a parameter in the function
rL(iy). In the thermodynamic limit r∞(iy)≡+1/2 for |Im(y)|< π/8 and we find

ω4(u,v) =
2(u− v)−π(k− ℓ)

π sin(u− v)
for u− kπ

2
, v− ℓπ

2
∈
(
−π

8
,
3π

8

)
, k,ℓ ∈ Z. (5.8)

For r ⩾ 5 the two-site function ω can be obtained from the explicit form of
D2 in terms of the operators T αβ

γδ (for small systems) or by solving the functional

equation (3.10). Assuming that (3.10) holds throughout the analyticity strips S0 and
S1 in the thermodynamic limit one can solve the functional equation using Fourier
methods. Based on our results for small r for x ∈ S0 we conjecture

ωr(x) =
cos2x− cos2λ

sinrx


(

cosλ
λ sin3λ x+

∑(r−4)/2
j=1 aj sin2jx

)
for r ⩾ 4 even(∑(r−5)/2

j=0 aj sin(2j+1)x
)

for r ⩾ 5 odd
. (5.9)

Note that this branch of the two-site function is continuous in the interval −2λ <
x < 2λ. Plugging this expression into (3.10) it is straightforward to solve for the coef-
ficients aj, see table 1 for r ⩽ 10. Comparing (5.9) with finite size data for the two-site
function one finds rapid convergence in the interval λ/2< x < 3λ/2, see figure 1. At
the boundaries of this interval we observe a transition of ω (smooth for L mod 4 = 0,
singular for L mod 4 = 2) to different solutions of the functional equation. For r =4 we
have explicit expressions ω̃4,k(x) for these solutions in the thermodynamic limit from
equation (5.8) for r =4 in the intervals around x− kπ ∈ S1, i.e.

ω̃4,k(x) =
2x− (2k− 1)π

π sin2x , (5.10a)

Solving the functional equation (3.10) for r =5 for x− kπ ∈ S1 we obtain:

ω̃5,k(x) =
√
5
(cos2x− cos2λ)

(
sinx+(−1)k sin2λ

)
sin5x . (5.10b)

Note that the functions ω̃r,k(x) are regular in the intervals (k− 1)π < x < kπ.

6. Multi-point local-height probabilities

Given the ‘factorized’ expressions (3.2), (4.3), (4.6), . . . one obtains the physical correl-
ation functions of the (homogeneous) RSOS models in the limit λj → 0, j = 1, . . . ,N .
In that limit the elements of the density matrices can be expressed in terms of the
nearest neighbour correlation function ω(u,v) and its derivatives at (u,v) = (0,0) which
we denote as ωk,ℓ ≡ ∂k

u ∂
ℓ
vω(u,v)|u=v=0 in the following.
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Table 1. Coefficents aj in the conjectures for the two-site function f (5.9).

r aj

5 a0 =
√
5

6 a1 = 1
7 a0 = 2cos(π/7)+2, a1 = 4cos(π/7)− 3

8 a1 = 2, a2 =
√
2− 1

9 a0 = (10cos(π/9)+7)/(4cos(π/9)− 1), a1 = 2(cos(π/9)+1)/(2cos(π/9)+1),
a2 = (2cos(π/9)− 1)/(2cos(π/9)+1)

10 a1 =
√
5+1, a2 = 1, a3 =

√
5− 2

Figure 1. The two-site function ωr(x,0) for the ground state of the quantum RSOS
model (2.16) with r = 4,5,10,11 in the thermodynamic limit. Solid lines are solu-
tions based on the conjectures (5.9) in the thermodynamic limit, dotted lines and
symbols (▽) are numerical values for L=8. Broken lines are the solutions ω̃r,k(x)
(5.10) to the functional equation (3.10) for r = 4,5 in the thermodynamic limit.

The single-site density matrix in the topological sectors with dq = 1 is diagonal and
independent of the spectral parameters, hence the two-point LHP for heights a, a +1
on adjacent sites is given by the matrix elements of D1 (3.2).

Similarly, the two-site density matrix in these sectors depends on the spectral para-
meters through the nearest-neighbour function ω(u,v) only. Therefore the three-point
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LHP for heights a,b,c on three neighbouring sites is given by the diagonal elements of
D2(0,0), (4.3) with equations (4.2) and (4.4), i.e.

Pa,b,c = ⟨a,b,c|D2(0,0)|a,b,c⟩=
2λ

π

sinaλ sincλ
4cos2λ (1+ ⟨a,b,c|B2|a,b,c⟩ω0,0) , (6.1)

if |a− b|= |b− c|= 1. Note that apart from equation (5.9) ω0,0 can also be determined
from the eigenvalues of the one-dimensional quantum RSOS model (2.16). The ground
state energy density of this model in the thermodynamic limit is known to be [27]

ϵ0 =
λ

2π
cotλ− 1

2π

ˆ ∞

−∞
dx sinhx sinh(r− 3)x

sinh2x sinhrx . (6.2)

On the other hand, the energy of a given state in terms of the corresponding two-site
density matrix is

E

L
=

λ

4π sinλtrace(D2(0,0)ej) =
λ

4π sin2λ

(
1+2

sin3λ
sinλ ω0,0

)
. (6.3)

We have verified that these expressions coincide for the nearest-neighbour functions for
the ground state in the thermodynamic limit (5.9). In principle, an additional check
of (6.1) would be possible by comparison with the trigonometric limit of the corres-
ponding expression for the massive regimes III and IV of the RSOS model from [20]
which are given in terms of a two-fold integral. While we have not tried this it might also
lead to insights on how to factorize the multiple integral representations of n > 3-point
LHPs.

Particularly simple multi-point LHPs are obtained from the diagonal elements of
DN in the states |a,a+1, . . . ,a+N⟩, i.e. the probability for the presence of a segment of
length N where the heights are increasing from a to a +N : in this case there is no con-
tribution from the Temperley–Lieb operators appearing in the structure functions (4.4)
or (4.9). Performing the limit λj → 0 one obtains

Pa,a+1,a+2 =
2λ

π

sinaλ sin(a+2)λ

4cos2λ (1− 2ω0,0) ,

Pa,a+1,a+2,a+3 =
2λ

π

sinaλ sin(a+3)λ

8cos3λ

(
1− 1

1− 2cos2λ

(
2(1− 4cos2λ)ω0,0

+ sin2λ (2ω1,1−ω2,0)
))

.

(6.4)

Using (5.9) with the coefficients given in table 1 one obtains analytical expressions
for these multi-point LHPs for r up to 10. In figure 2 the λ= π/r-dependence of P123
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Figure 2. Probabilities for the presence of a string of increasing heights in the
ground state of the RSOS model (2.16) as a function of λ= π/r: displayed are P123

and P (2) =
∑

aPa,a+1,a+2 (left) and P1234 and P (3) =
∑

aPa,a+1,a+2,a+3 (right). For
λ→ 0 the P(n) approach the emptiness formation probabilities in the antiferro-
magnetic Heisenberg XXX chain (6.6, indicated by the dash-dotted lines.

and P1234 is shown for r up to 100 based on the numerical solution of the reduced
qKZ equation (3.10). While these quantities vanish as a power law as λ= π/r→ 0 the
probability for any increasing sequence of heights in the corresponding state, obtained
by summation of Pa,a+1,...,a+n over a:

P (n)≡
r−n−1∑
a=1

Pa,a+1,...,a+n =
1

4sin2λ

(
2+ (r−n− 1)

(
1− sin(n− 1)λ

sin(n+1)λ

))
P1,2,...,n+1, (6.5)

approaches a finite value in this limit. Note that this quantity corresponds to the empti-
ness formation probability (EFPn) of finding n adjacent spins up in the vacuum state
of the dynamical vertex model corresponding to the RSOS model [32]. As mentioned
above the quantum RSOS model (2.16) has also been interpreted as a ferromagnetic
chain of interacting non-Abelian su(2)k anyons with spin 1/2 for k = r− 2 [13–15]. In
this context P(n) is the probability that n⩽ k neighbouring spin-1/2 anyons fuse into
a spin-n/2 anyon.

With (3.2) one obtains P (1)≡ 1
2 as expected from the symmetry of the RSOS

model under height reflection a→ r− a. Surprisingly, there appears a relation between
the ferromagnetic model considered here and the isotropic spin-1/2 Heisenberg anti-
ferromagnet: we find that the limiting values of P(2) and P(3) for λ→ 0 are the EFP
for the latter [33], see figure 2:

P (2)→ EFP2 =
1

3
− 1

3
ln2≈ 0.102284273,

P (3)→ EFP3 =
1

4
− ln2+ 3

8
ζ(3)≈ 0.007624158.

(6.6)

Here ζ(s) =
∑∞

n=1n
−s is the Riemann zeta function.
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7. Conclusion

We have studied reduced density matrices of the critical RSOS models for segments of
up to four adjacent sites in finite and infinite chains based on their factorization in terms
of a nearest-neighbour two-point function and a set of structure functions. The latter are
independent of the states in the topological sector with quantum dimension dq = 1 of the
models and can be expressed in terms of the generators of the underlying Temperley–
Lieb algebra with prefactors depending on the representation. For the ground state of
the quantum RSOS model (2.16) in the thermodynamic limit an explicit expression for
the two-point function has been obtained which solves the reduced qKZ equation (3.10).
As an application of our results we have obtained compact expressions for several multi-
point local height probabilities in this state.

An essential prerequisite for this work—apart from the construction of the functional
equation (3.7) for the N -site density matrices in general face models [24]—has been a
suitable ansatz for their factorization: here we have concentrated ourselves on states
from the dq = 1 topological sector of the RSOS model where the factorized expressions
were of a similar form as (1.1) known from the isotropic Heisenberg model. For the
other sectors our previous work [24] strongly indicates that the main difference is that
the physical part of the RDMs is described in terms of two nearest neighbour functions
rather than the single function ω—similar as for the XXZ spin chain. It appears to be
worthwhile to study this along the lines used here, i.e. assuming that the algebraic part
can again be expanded in terms of Temperley–Lieb operators. Going beyond the critical
phases of the RSOS models a further step towards a better understanding the role of
integrable structures for correlation functions in face models is the identification of the
factorization of the RDMs for the massive regimes. This will provide an alternative to
the description of multi-point local height probabilities in terms of multiple integrals
[20].
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Appendix. The generalized RDM

Using the graphical notation introduced in equations (2.1) and (2.6) the generalized
RDM (2.18) can be depicted as:
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where the projection onto the eigenstate |Φ⟩ of the transfer matrix is indicated by

sandwiching of
∏N

k=1T
αk−1βk−1

αkβk
.
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