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1 Introduction

The study of duality-invariant (or self-dual) models of nonlinear electrodynamics [1, 2]–[11]

remains an active subject closely related to various issues of current interest. Recently, the

attention increased further, due to the hypothetical crucial role of duality symmetries in

the possible ultraviolet finiteness of N= 8 supergravity and some of its descendants (see,

e.g., [12]–[15]).

Some time ago, two of us [16, 17] developed a new general formulation of U(1) duality-

invariant models of nonlinear electrodynamics. This formulation involves, besides the

Maxwell gauge-field strength, some auxiliary bispinor fields. The interaction in the full
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Lagrangian is constructed solely from these auxiliary fields. The standard nonlinear La-

grangian of any particular duality-invariant system is recovered by eliminating these fields

via their equations of motion. The main advantage of the auxiliary bispinor formulation

is a linearization of the renowned self-duality condition [1–3] in this setting. Self-duality

becomes simply the requirement of off-shell U(1) invariance of the interaction Lagrangian,

and the U(1) duality group gets realized by linear transformations of the auxiliary fields.

The auxiliary bispinor approach admits an extension to U(N) duality with N copies of the

Maxwell field strength [18] as well as to the inclusion of additional scalar coset fields [19].

It was demonstrated in [20] that the so called “deformed twisted self-duality condition”

recently proposed and exploited in [15, 21, 22] is in fact equivalent to the basic algebraic

equation for the bispinor auxiliary fields in the formulation of [16, 17].

As suggested in [16, 17, 20], an obvious next step was to supersymmetrize the auxiliary

bispinor formulation, i.e. to extend it to self-dual nonlinear N=1 and N=2 supergauge

theories, e.g. starting from the by now standard approach of [9, 10]. This step was recently

accomplished by Kuzenko [23], who showed, in particular, that the auxiliary bispinor field

gets enhanced to a chiral fermionic N=1 superfield. In this language, the U(1) duality

amounts to manifest U(1) invariance of the auxiliary superfield interaction.

The purpose of the present paper is to introduce a framework which is more general

than the one given in [23], concentrating on the rigid N=1 case. Our invariant superfield

density E is a function of three U(1) invariant scalar superfield variables composed of

auxiliary chiral superfields Uα. By analogy with [17, 20] we also construct alternative

formulations of N=1 self-dual theories which in addition make use of auxiliary scalar

superfields. Another novelty of our paper is a generalization of theN=1 duality formulation

with auxiliary superfields from the abelian situation to the case of U(N) duality.

The structure of the paper is as follows. Section 2 recapitulates the basic features

of self-dual N=1 nonlinear electrodynamics in the standard formulation. In section 3

we outline the general formulation of N=1 supersymmetric U(1) self-dual gauge theories,

employing the auxiliary chiral (but otherwise unconstrained) spinor superfield Uα in parallel

with the ordinary chiral superfield strength Wα . We analyze the equation of motion for

Uα(W, W̄ ) using a three-parametric U(1) invariant superfield density E which is most

general in the case without higher derivatives. This equation is just N=1 counterpart of

the equation for the auxiliary bispinor fields of the bosonic self-dual case, which was recently

rediscovered as the deformed twisted self-duality condition. By eliminating the auxiliary

superfield by a recursive procedure in terms of the ordinary covariant superfield strengths

Wα, W̄α̇ we recover the standard representation of the general supersymmetric U(1) self-

dual theory. In some particular parametrization, the interaction E depends only on a single

real variable, in a more direct analogy with the bosonic U(1) self-dual theories [17] (this case

was treated in [23]). In section 4 we present an alternative self-dual “M representation”

which makes use of an additional scalar superfield M . It is a supersymmetric extension of

the so called “µ representation” of the bosonic case [17, 20]. Like its bosonic prototype, the

M representation is capable of essentially simplifying the calculations. Examples of U(1)

self-dual theories are studied in section 5. We translate to our formulations the renowned

N=1 Born-Infeld theory as well as construct a new self-dual model specified by a simple
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quartic interaction of the auxiliary superfields. It is the N=1 extension of the quartic

auxiliary bosonic interaction considered firstly in [16, 17] and recently discussed in [15, 21].

We present, as a perturbative expansion, the relevant superfield actions in terms of the

ordinary superfield strengths. We also show how to adjust our approach for constructing

supersymmetric self-dual models containing higher derivatives and give a few examples

of such models. The bosonic limit of the formulation with auxiliary spinor superfields is

discussed in section 6. We give the bosonic component actions for a few examples, including

those with higher derivatives. A brief account of the generalization of the new self-duality

setting to the U(N) case is the subject of section 7. We present several examples of U(N)

self-dual models which correspond to some particular choices of the invariant auxiliary

interaction.

2 Nonlinear N=1 electrodynamics

Here we fix our notations and sketch the superfield formalism of the N=1 self-dual theo-

ries [6, 7, 9, 10].

Our conventions are the same as, e.g., in the book [24] and in refs. [9, 10]. We

parametrize the N=1, D=4 superspace by the coordinates

z = (xm, θα, θ̄α̇), θ2 = θαθα, θ̄2 = θ̄α̇θ̄
α̇ (2.1)

and define the covariant spinor derivatives as

Dα = ∂α + iθ̄α̇(σm)αα̇∂m, D2 = DαDα,

D̄α̇ = −∂̄α̇ − iθα(σm)αα̇∂m, D̄2 = D̄α̇D̄
α̇ . (2.2)

Here α and α̇ are the doublet SL(2, C) indices and m = 0, 1, 2, 3 (we use the flat Minkowski

metric ηmn = diag(1,−1,−1,−1) ).

The Grassmann integrals are normalized as∫
d2θθ2 = −1

4
D2θ2 = 1 ,

∫
d2θ̄θ̄2 = −1

4
D̄2θ̄2 = 1 , (2.3)∫

d4xd2θ ≡
∫
d6ζ ,

∫
d4xd2θd2θ̄ ≡

∫
d8z. (2.4)

The (anti)chiral Abelian superfield strengths are defined by

Wα = −1

4
D̄2Aα = −1

4
D̄2DαV , W̄α̇ = −1

4
D2Āα̇ = −1

4
D2D̄α̇V , (2.5)

where V is the gauge prepotential and Aα = DαV , Āα̇ = D̄α̇V are spinor gauge connec-

tions. The superfield strengths satisfy, besides the chirality conditions

D̄α̇Wβ = 0 , DαW̄α̇ = 0 , (2.6)

also the Bianchi identity:

B(W, W̄ ) ≡ DαWα − D̄α̇W̄
α̇ = 0 . (2.7)

– 3 –



J
H
E
P
0
5
(
2
0
1
3
)
1
3
3

For what follows, it will be useful to tabulate the R invariance properties of various

N=1 quantities:

R(θα) = 1, R(θ̄α̇) = −1, R(Dα) = −1, R(D̄α̇) = 1,

R(Wα) = 1, R(W̄α̇) = −1. (2.8)

The “engineering” dimensions of the basic objects of the N=1 gauge theory are (in

the mass units):

[V ] = 0 , [Wα] = 3/2 , [DβWα] = 2 , (2.9)

and the free superfield action is written as

S2(W, W̄ ) =
1

4

∫
d6ζW 2 +

1

4

∫
d6ζ̄W̄ 2 , (2.10)

where W 2 ≡WαWα and W̄ 2 ≡ W̄α̇W̄
α̇.

In the nonlinear theory with one dimensionful constant f ([f ] = −2), it is convenient

to ascribe nonstandard dimensions to the basic objects,

[V ] = −2 , [Wα] = −1/2 , [DαWβ] = 0 , (2.11)

and to construct the nonlinear action as

S = f−2[S2(W, W̄ ) + Sint(W, W̄ )] ,

where

Sint(W, W̄ ) =
1

4

∫
d8z Lint(W, W̄ ) . (2.12)

For convenience, we will put f = 1 altogether.

We consider the following form of the arbitrary nonlinear interaction in the W repre-

sentation:

Lint = W 2W̄ 2Λ(w, w̄, y, ȳ) , (2.13)

where the superfield density Λ depends on the dimensionless R-invariant variables

w =
1

8
D̄2W̄ 2 , w̄ =

1

8
D2W 2 , y ≡ DαWα . (2.14)

A wide subclass of nonlinear models (includingN=1 super Born-Infeld theory) is associated

with the y-independent densities Λ(w, w̄) . In [9, 10] just this set of models was mainly

addressed.

Let us define

Mα ≡ −2i
δS

δWα
, M̄α̇ ≡ 2i

δS

δW̄ α̇
. (2.15)

Then the nonlinear equations of motion can be written in the form1

N(W, W̄ ) ≡ DαMα − D̄α̇M̄
α̇ = 0 . (2.16)

1While computing the variations of the action, one should treat Wα, W̄α̇ as unconstrained chiral su-

perfields which are not subjected to the Bianchi identity (2.7). Correspondingly, the variables y and ȳ

are considered as independent. The Bianchi identity y = ȳ is imposed à posteriori. The equations of

motion (2.16) expressed through the so defined Mα and M̄α̇ coincide with those derived by varying S with

respect to the prepotential V .
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It is straightforward to find the explicit expression for the chiral superfield Mα

Mα = −iWα

[
1− 1

4
D̄2

{
W̄ 2

[
Λ +

1

8
D2(W 2Λw̄)

]}]
− i

8
D̄2
[
W̄ 2Dα(W 2Λy)

]
. (2.17)

The O(2) duality transformations defined as

δWα = ωMα(W, W̄ ) , δMα = −ωWα , (2.18)

mix the equation of motion (2.16) with the Bianchi identity (2.7), leaving their set co-

variant. The O(2) self-duality constraint ensuring the compatibility of (2.18) with the

expression (2.21) for Mα and generalizing the bosonic Gaillard-Zumino condition has, in

the present case, the integral form [9, 10]:

ImK(W, W̄ ) = 0 , (2.19)

K(W, W̄ ) := −
∫
d6ζ (W 2 +M2) . (2.20)

The funcitonal K(W, W̄ ) in itself is invariant under (2.18). In view of the nilpotency

property WαWβWγ = 0, for calculating K(W, W̄ ) it is sufficient to know Mα in (2.21) only

up to terms linear in Wα:

Mα| = −iWα

[
1− 1

4
D̄2
(
W̄ 2 Γ

)]
+
i

4
W βD̄2

(
W̄ 2DαWβΛy

)
, (2.21)

where

Γ = Λ + w̄Λw̄ =
∂(w̄Λ)

∂w̄
. (2.22)

Then, using once more the nilpotency property, this time for W̄α̇, we can write the func-

tional K(W, W̄ ) as an integral over the full N = 1 superspace

K(W, W̄ ) = 2

∫
d8zW 2W̄ 2

[
Γ− wΓ2 + 2ww̄ (Λy)

2
]
. (2.23)

All relations are simplified if Λy = 0. In this case

K(W, W̄ ) = 2

∫
d8zW 2W̄ 2 (Γ− wΓ2) . (2.24)

The notorious example of the N=1 self-dual system with Λy = 0 is the N=1 general-

ization of the BI theory [6, 7]. The function Λ in this case is known in a closed form:

ΛBI =

[
1 +

1

2
(w + w̄) +

√
1 + (w + w̄) +

1

4
(w − w̄)2

]−1

(2.25)

=
1

2
− 1

4
(w + w̄) +

1

8
(w + w̄)2 +

1

8
ww̄ + . . .

By some rather tedious work one can check the validity of the self-duality condition (2.19)

for ΛBI .
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The N=1 BI action can be also written in the concise form as

SBI =
1

4

∫
d6ζX + c.c. , (2.26)

where the auxiliary chiral superfield X satisfies the quadratic constraint [7]

X +
1

16
XD̄2X̄ = W 2. (2.27)

The action SBI is also distinguished in that it is invariant under the nonlinearly realized

second N=1 supersymmetry which extends the manifest N=1 supersymmetry to N=2 [7,

8].

Another possible parametrization of the interaction density in (2.13) is through the

variables

w′ = w +
1

8
ȳ2 , w̄′ = w̄ +

1

8
y2 , y, ȳ , (2.28)

so that

Λ(w, w̄, y, ȳ) = Λ′(w′, w̄′, y, ȳ) . (2.29)

The invariant functional (2.23) and the self-duality condition can be rewritten in the new

parametrization with the help of the relations

∂Λ

∂w
=
∂Λ′

∂w′
,

∂Λ

∂y
=
∂Λ′

∂y
+

1

4
y
∂Λ′

∂w̄′
. (2.30)

3 N = 1 self-duality with auxiliary chiral spinors

3.1 New representation for nonlinear N = 1 electrodynamics: general setting

We introduce the auxiliary chiral spinor superfield Uα and construct the following quadratic

action:

S2(W,U) =

∫
d6ζ

(
UW − 1

2
U2 − 1

4
W 2

)
+ c.c. , (3.1)

where U2 = UαUα , Ū
2 = Ūα̇Ū

α̇. Integrating out the auxiliary superfield,

Uα = Wα , (3.2)

we reproduce the standard N=1 quadratic action (2.10). The action (3.1) is N=1 analog

of the free Maxwell action rewritten through the auxiliary bispinor fields [16, 17]. This

modified Maxwell action is just the bosonic core of (3.1) (modulo auxiliary fields vanishing

on shell, see section 6).

The full set of equations of motion associated with (3.1) (including (3.2)), together with

the Bianchi identity (2.7), is covariant under the following U(1) duality transformations

δUα = −iωUα , δWα = iω(Wα − 2Uα) ≡ ωMα(U,W ), and c.c. , (3.3)

δ(Wα − Uα) = iω(Wα − Uα), and c.c. . (3.4)
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Though in the free case, after substituting (3.2), Mα(U,W ) becomes just iWα , we will

assume that the same U(1) transformations (3.3) act as the duality ones in the general

interaction case too, when (3.2) is replaced by a nonlinear equation and Mα(U,W ) =

i(Wα − 2Uα) becomes a nontrivial functional of Wα, W̄α̇ .

The most general interaction of the auxiliary superfield, before imposing any self-

duality constraint, can be chosen as

SE(U) =
1

4

∫
d8z U2Ū2E(u, ū, g, ḡ) , (3.5)

where E is an arbitrary real function of the dimensionless Lorentz invariant superfield

variables

u =
1

8
D̄2Ū2, ū =

1

8
D2U2, g = DαUα, ḡ = D̄α̇Ū

α̇. (3.6)

So the total action is

Stot = S2(W,U) + SE(U) . (3.7)

The counterpart of the free auxiliary equation (3.2) is obtained by varying (3.7) with

respect to Uα

Wα − Uα = − δSE
δUα

=
1

8
UαD̄

2

{
Ū2

[
E +

1

8
D2(U2Eū)

]}
− 1

16
D̄2[Ū2Dα(U2Eg)] . (3.8)

Varying the full action with respect to the prepotential V , we obtain the dynamical equation

Dα(Wα − 2Uα) + D̄α̇(W̄ α̇ − 2Ū α̇) = 0 . (3.9)

Comparing it with (2.16), we identify, as in the free case,

Wα − 2Uα = −iMα(W,U) , W̄α̇ − 2Ūα̇ = iM̄α̇(W,U) . (3.10)

Using the algebraic equation (3.8) and substituting its solution Uα = Uα(W, W̄ ) into (3.9),

we reproduce the initial form of the nonlinear equation of motion (2.16).

Note that in practice, while solving (3.8) to restore the W, W̄ representation of the

total superfield action Stot , it is enough to consider an effective form of (3.8), in which

only terms linear in Uα are kept

Wα| = Uα +
1

8
UαD̄

2 [Ū2(E + ūEū)] +
1

8
UβD̄2(Ū2DαUβEg). (3.11)

This is due to the property that in (3.1) all interaction terms appear at least with the factor

W 2 (or with W̄ 2 in the complex conjugated part), while in (3.5) with the factor W 2W̄ 2 .

It will be also useful to rewrite (3.11) as

Wα| = Uα + Cβα Uβ , Cβα =
1

8
D̄2(Ū2Rβα) , Rβα := [δβα(E + ūEū)−DαU

β Eg] . (3.12)

Note that, up to the nilpotent terms ∼ Ūα̇,

Cβα = uRβα +O(Ū) , (3.13)

so the matrix Cβα , when multiplied by Ū2, is reduced to its “effective” form uRβα .
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3.2 Relation to the original formulation

The general representation for the perturbative solution of the eq. (3.11), under the as-

sumption that all nilpotent terms can be ignored, has the form

Uα(W, W̄ ) ≈ [δβα + Bβα(W, W̄ )]Wβ . (3.14)

The chiral dimensionless matrix function Bβα(W, W̄ ) satisfies the relation

(δβα + Bβα)(δγβ + Cγβ ) = δγα. (3.15)

It can be parametrized by two superfields G(W, W̄ ) and P (W, W̄ )

Bβα ≈ u[Gδβα + P DαW
β] . (3.16)

This representation is analogous to the one used in the bosonic case [17]

Vαβ = G(F 2)Fαβ, G(F 2) =
1

2
− ∂L

∂(F 2)
=

[
1 +

∂E

∂(V 2)

]−1

, (3.17)

where L(F ) is the nonlinear Maxwell Lagrangian, and E(V 2, V̄ 2) is the auxiliary interac-

tion.

Expressing Uα through Mα from (3.10), we can directly compare the solution (3.14)

with the formula (2.21) in the original W representation

Uα =
1

2
Wα +

i

2
Mα = Wα

[
1− 1

8
D̄2[W̄ 2(Λ + w̄Λw̄)]

]
+

1

8
WβD̄

2(W̄ 2DαW
βΛy) . (3.18)

Thus derivatives of the interaction density Λ in the W representation can be found di-

rectly from the solution (3.14) in analogy with the bosonic formalism. Examples of such

calculations are considered in section 4.

Now let us derive the relation between the interaction functions in the W and W,U

representations, i.e. between Λ(w, w̄, y, ȳ) and E(u, ū, g, ḡ).

As the first step, we use eqs. (3.13) to find the effective relation between W 2 and U2,

W 2| = U2

[
1 + Cσσ −

1

2
CσρC

ρ
σ +

1

2
CσσC

ρ
ρ

]
= U2

{
1 +

1

8
D̄2

[
Ū2

(
Rσσ −

1

2
Cσρ R

ρ
σ +

1

2
Cσσ R

ρ
ρ

)]}
. (3.19)

This expression, modulo the nilpotent terms ∼ Ūα̇ , can be rewritten as

W 2| = U2H , H = [1 + u(E + ūEū)]2 + [1 + u(E + ūEū)]ugEg − 2ūu2E2
g . (3.20)

It allows to find the exact relation between the 4-th order nilpotent terms

W 2W̄ 2 = U2Ū2H(u, ū, g, ḡ)H̄(u, ū, g, ḡ) . (3.21)

As the next step, we represent S2(W,U) (3.1) as

S2(W,U) =

∫
d6ζ

[
1

4
W 2 − 1

2
(U −W )2

]
+ c.c. .
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Using eq. (3.8) and the relations

DαU
β DαUβ U

2 = 4ū U2 , DαU
β DβU

α U2 = (4ū+ g2)U2 , (3.22)

we find

(W − U)2 =
1

2
U2(CσσC

ρ
ρ − CσρCρσ), (3.23)

and ∫
d6ζ (U −W )2 = −1

2

∫
d8zU2Ū2T (u, ū, g, ḡ), (3.24)

where

T (u, ū, g, ḡ) = u(E + ūEū)2 + ugEg(E + ūEū)− 2uūE2
g . (3.25)

Finally, we equate the actions Stot in the W and W,U representations and obtain

Λ =
1

HH̄

(
E + T + T̄

)
, (3.26)

whereH and T are the nonlinear combinations of E,Eu, Eū, Eg and Eḡ defined in eqs. (3.20)

and (3.25).

To find the explicit form of Λ we also need to express the superfield arguments u, ū, d, d̄

in the r.h.s. of (3.26) in terms of the original variables w, w̄, y, ȳ . Because Λ appears in

the action with the factor W 2W̄ 2, we can use the effective version of the equations relating

these two sets of variables

w| = u H̄ , w̄| = ūH , (3.27)

DβWα| = DβUρ(δ
ρ
α + uRρα),

y| = g + uDαUρR
ρ
α = g + 2ug(E + ūEū)− 4uūEg . (3.28)

When solving these effective equations, one can exploit the relations analogous to (3.22)

DαW
βDαWβW

2 = 4w̄W 2 , DαW
β DβW

αW 2 = (4w̄ + y2)W 2 . (3.29)

3.3 N = 1 self-duality condition in the (W,U) representation

Now we assume that the U(1) duality transformations (3.3), (3.4) retain their form in

the case with interaction (by analogy with the bosonic case) and wish to learn how the

supersymmetric U(1) duality constraint (2.19), (2.20) looks in the formulation with the

auxiliary spinor superfields.

The U(1) invariant (2.20) in the formulation considered becomes

K = −
∫
d6ζ(WαWα +MαMα) = −4

∫
d6ζ[Uα(Wα − Uα)] = −4

∫
d6ζUα

δSE
δUα

. (3.30)

Thus the supersymmetric U(1) self-duality constraint (2.19) in this formulation is none

other than the condition of U(1) invariance of the auxiliary interaction (3.5):

K − K̄ = 0 → δωSE = 0 . (3.31)
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Now it is easy to check that, for such U(1) invariant self-interactions SE , the equation (3.10),

together with the dynamical equation (3.9) and the Bianchi identities (2.7), are covariant

under the transformations (3.3), (3.4).

We conclude that the whole family of self-dual models of the nonlinear N=1 supersym-

metric electrodynamics is parametrized by U(1) invariant superfunction Einv(u, ū, g, ḡ) .

From the variables u, ū, g, ḡ one can construct four U(1) invariants,

A := uū , C := gḡ , B := ug2 , B̄ := ūḡ2 , (3.32)

which are connected by the relation

BB̄ = AC2 . (3.33)

We are interested in such interactions which are analytic at the point A = C = B = 0 and

so admit power series expansion in these U(1) invariant variables. With making use of the

relation (3.33), it is easy to show that the most general U(1) invariant self-interaction of

this type is given by the following ansatz

Einv = F(B,A,C) + F̄(B̄, A,C) , (3.34)

where F(B,A,C) is an arbitrary analytic function. This is in contrast with the pure

bosonic U(1) self-dual systems which are parametrized by a real function E which depends

on only one real variable a = V 2V̄ 2 , V 2 := V αβVαβ , V̄
2 := V̄ α̇β̇Vα̇β̇ [16]. The expansions

of F(B,A,C) and F̄(B̄, A,C) as formal series with constant coefficients look like

F = e1 + e2A+ f1C + f2C
2 + h1B +O(U6) ,

F̄ = e1 + e2A+ f1C + f2C
2 + h̄1B̄ +O(U6) . (3.35)

The derivatives of Einv can be rewritten through the independent ones as follows2

Eū = uFA + uF̄A + ḡ2F̄B̄, ūEū = AEA + B̄F̄B̄,
Eg = ḡFC + ḡF̄C + 2ugFB, gEg = CEC + 2BFB. (3.36)

Using these formulas, all the general relations and quantities, including the matrices Cβα
and Rβα defined in (3.12), can be easily specialized to the U(1) invariant case. In particular,

the relation (3.26) for the duality-invariant case is obtained by replacing there E → Einv =

F + F̄ and expressing the derivatives with respect to u, ū, g, ḡ in terms of FA,FC , FB (and

their complex-conjugates) according to the formulas (3.36).

We also note that sometimes it is more convenient to use the equivalent set of the

superfield variables (cf. eq. (2.28))

u′ = u+
1

8
ḡ2 , ū′ = ū+

1

8
g2 , g , ḡ , (3.37)

and, respectively,

E(u, g) = E′(u′, g),
∂E

∂u
=
∂E′

∂u′
,

∂E

∂g
=
∂E′

∂g
+

1

4
g
∂E′

∂ū′
. (3.38)

2For brevity, we omit the index ‘inv’ on E.
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The new invariant variables in the self-dual theories have the form

A′ = u′ū′ , C = gḡ , B′ = u′g2 , B̄′ = ū′ḡ2 . (3.39)

They have an advantage of possessing a simpler component expansion.

3.4 A particular subclass of N = 1 self-dual interactions

Now we consider the particular choice of the U(1) invariant interaction E(A) involving only

one real superfield variable

A = uū =
1

64
(D2U2)(D̄2Ū2). (3.40)

Just this case was treated in [23]. The auxiliary equation (3.8) is reduced to

Wα − Uα =
1

8
UαD̄

2

{
Ū2

[
E +

1

8
D2
(
U2uEA

)]}
(3.41)

and the effective equations take the form

Wα| = Uα[1 + uP(A)], P(A) =
d

dA
(AE) = E +AEA, (3.42)

w̄| = ū[1 + uP(A)]2 , w| = u[1 + ūP(A)]2 . (3.43)

These effective equations are analogous to the bosonic equations of ref. [17]

Fαβ = Vαβ(1 + V̄ 2Ea), F 2 = V 2(1 + V̄ 2Ea)2 , (3.44)

where E = E(a) , a = V 2V̄ 2 . The similarity is based on the formal correspondence

u ↔ V̄ 2, A ↔ a, P(A) ↔ Ea, (3.45)

which can in fact be trusted by the component consideration (see section 6).

The relation (3.26) in the present case reads

Λ =
E + (u+ ū)P2(A)

[1 + uP(A)]2[1 + ūP(A)]2
. (3.46)

It is instructive to give few first terms in the power series expansion of Λ in the W

representation, starting from P(A) = e1 + e2A+ . . . , E(A) = e1 + 1
2e2A+ . . . .

For Uα we obtain the recursive equation

Uα = Wα
1

1 + uP
= WαG(w, w̄)

= Wα[1− e1u− e2u
2ū+ e2

1u
2 − e3

1u
3 +O(U8)], (3.47)

which implies

Uα = Wα

[
1− e1w + e2

1(w2 + 2ww̄)− e3
1(w3 + 3ww̄2 + 8w2w̄)− e2w

2w̄ +O(W 8)
]

(3.48)
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and

u = w − 2e1ww̄ + e2
1ww̄(4w + 3w̄) +O(W 8) . (3.49)

For Λ we have the following (u, ū) expansion

Λ = e1 − e2
1(u+ ū) +

[
e3

1(u2 + ū2) +
1

2
e2uū

]
+ (e4

1 − e1e2)(uū2 + u2ū)

− e4
1(u3 + ū3) +O(U8) , (3.50)

which, after substituting (3.49), yields

Λ = e1 − e2
1(w + w̄) +

(
4e3

1 +
1

2
e2

)
ww̄ + e3

1(w2 + w̄2)

− 2(e1e2 + 5e4
1)(ww̄2 + w2w̄)− e4

1(w3 + w̄3) +O(W 8) . (3.51)

This perturbative solution for Λ, together with the expression (3.48), nicely agree with the

effective form of eq. (3.18) for the considered case,

Uα| = Wα [1− w(Λ + w̄Λw̄)] . (3.52)

4 Alternative auxiliary superfield representation

Here we construct N=1 analog of the so called µ representation of the bosonic case. We

term it “M representation”. It seemingly exists only for the subclass of self-dual theories

considered in [23].

Besides the chiral spinor superfields Wα and Uα we introduce a complex general scalar

N = 1 superfield M and construct the following “master” action

Smast = S2(W,U) + Sint(W,U,M) , (4.1)

where S2(W,U) is the same as in (3.1) and

Sint(W,U,M) =
1

4

∫
d8z

[
(U2M̄ + Ū2M) +MM̄ J (m, m̄)

]
, (4.2)

with

m =
1

8
D̄2M̄ , m̄ =

1

8
D2M . (4.3)

The interaction function J(m, m̄) is real. For the special choice of the interaction func-

tion, Jinv = Jinv(B) , B := mm̄ , the action (4.2) is invariant under the duality U(1)

transformations realized on the newly introduced superfield M as

δM = 2iωM , δM̄ = −2iωM̄ , δm̄ = 2iωm̄ , δm = 2iωm . (4.4)
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4.1 From master action to the (W,U) formulation

Let us firstly show that, eliminating the auxiliary superfields M ,M̄ , we will recover the

particular case of the action (3.5) with E = E(u, ū) . We assume that J starts with a

constant, so the function J−1 is well defined at the origin.

The corresponding equations of motion are

M = −J−1
[
U2 + D̄2(MN̄Jm)

]
, M̄ = −J−1

[
Ū2 +D2(MM̄Jm̄)

]
. (4.5)

A simple analysis show that the general solution of these equations has the form

M = U2f, M̄ = Ū2f̄ , (4.6)

where f is some composite superfunction.3 Thus the integrand in (4.2) contains the nilpo-

tent factor U2Ū2 and in the subsequent manipulations we can use the effective form of

various equations and relations. For f we obtain in this way the equation

f = −J−1
(
1 + uff̄Jm

)
and c.c. , (4.7)

and also the relation between the variables u, ū and m, m̄

m = uf̄ , m̄ = ūf . (4.8)

Substituting this into (4.7), we find the simple representation for f

f = − 1

J +mJm
, f̄ = − 1

J + m̄Jm̄
. (4.9)

Now the integrand in (4.2) takes the same form as in (3.5), with

E(u, ū) = f(u, ū) + f̄(u, ū) + f(u, ū)f̄(u, ū) J(u, ū) , (4.10)

where m and m̄ are expressed in terms of u, ū by eqs. (4.8), (4.9).

If we define

Ẽ = uūE , J̃ = mm̄J (4.11)

it is straightforward to show that

Ẽ = J̃ −mJ̃m − m̄J̃m̄ , J̃ = Ẽ − uẼu − ūẼū , (4.12)

and

u = −J̃m̄ , ū = −J̃m , m = Ẽū , m̄ = Ẽu . (4.13)

These relations are recognized as the basic relations of the µ representation (Legendre

transformation), the only difference being superfields in place of fields. Some their useful

corollaries directly relating the functions J and E are

J +mJm = − 1

E + uEu
, and c.c. , (4.14)

J = − E + uEu + ūEū
(E + uEu)(E + ūEū)

, E = − J +mJm + m̄Jm̄
(J +mJm)(J + m̄Jm̄)

. (4.15)

We would like to point out once more that all these algebraic relations are valid up to

nilpotent terms vanishing under U2Ū2 .

3This can be proved, e.g., by introducing a small parameter before the second terms in the square

brackets in (4.5) and representing the solution as a perturbative series in this parameter. One can show

that each term of this series contains U2 as a factor.
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4.2 New representation for the N = 1 self-dual systems

Now we will obtain a new representation for the Lagrangians of nonlinear electrodynamics

in terms of the superfields Wα and M , eliminating from the master action (4.1) the spinor

superfield Uα instead of M .

For Uα we obtain the expression

Uα(1 +m) = Wα , UW = W 2(1 +m)−1 , U2 = W 2(1 +m)−2 , (4.16)

which, after substitution into (4.1), yields the chiral representation for the action in the

(W,M) representation

S(W,M) =
1

4

∫
d6ζ

[
W 2 1−m

1 +m
− 1

8
D̄2(MM̄J)

]
+ c.c. . (4.17)

Another form of the same action is

S(W,M) = S2(W ) + Sint(W,M) ,

Sint(W,M) =
1

4

∫
d8z

[(
1

1 +m
W 2M̄ +

1

1 + m̄
W̄ 2M

)
+MM̄ J

]
. (4.18)

In what follows we will be interested in the self-dual systems, with

J = J(B), B = mm̄ .

The equation of motion for M is

M = −J−1

[
1

(1 +m)2
W 2 +

1

8
D̄2(MM̄ m̄JB)

]
. (4.19)

Like in the case of eq. (4.5), the solution of (4.19) has the form

M = W 2 B , (4.20)

where B is some composite superfield. Due to the appearance of the maximal nilpotent

factor W 2W̄ 2 in (4.18), we can use the fully reduced effective relations, i.e. make the change

B → B(w, w̄) in (4.20) and pass to the effective equation

m̄ = B(w, w̄)w̄. (4.21)

Now from (4.19) we obtain

m̄ = −w̄ 1

(1 +m)2(J +BJB)
, m = −w 1

(1 + m̄)2(J +BJB)
. (4.22)

These equations are analogous to the basic equations in the bosonic µ representation [17,

20],

F 2 = −µ̄(1 + µ)2 Ib , F̄ 2 = −µ(1 + µ̄)2 Ib , b = µµ̄ , (4.23)

with the obvious correspondence

(w, w̄) ↔ (F̄ 2, F 2) , (m, m̄) ↔ (µ, µ̄) , (J +BJB) ↔ Ib . (4.24)
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Solving eqs. (4.22) form and m̄ in terms of w, w̄ and substituting the solution into (4.18),

we can find the relevant self-dual N = 1 action in terms of the superfield strengths Wα, W̄α̇.

Like in the bosonic case, only for some special superfunctions J these equations have the

solution in a closed form, while in other cases one manages to obtain the action only as

a power series in w, w̄. Nevertheless, the way to the final W, W̄ action in the (W,M)

representation in some cases turns out to be easier than in the original (W,U) representa-

tion, which deals with the variables u, ū instead of m, m̄ . Despite this technical difference,

both representations (at least for the considered particular set of self-dual systems, with

Λ = Λ(w, w̄)) are equivalent to each other. The basic objects in both representations are

related to each other by the relations (4.8), (4.9), (4.14) and (4.15) specialized to the U(1)

invariant case, e.g.,

d

dA
(AE) = −

[
d

dB
(BJ)

]−1

, A = B

[
d

dB
(BJ)

]2

, B = A

[
d

dA
(AE)

]2

, (4.25)

with A = uū , B = mm̄ .

5 Examples of the N = 1 self-dual models

5.1 N = 1 Born-Infeld

The superfield action for the N=1 BI theory can be rewritten in the polynomial form by

making use of the auxiliary complex superfields X and R

S(W,X,R) = S2(W, W̄ ) + Sint(W,X,R), (5.1)

Sint(W,X,R) =
1

8

∫
d6z

{
XX̄ − R̄

[
X +

1

16
D̄2(XX̄)−W 2

]

−R
[
X̄ +

1

16
D2(XX̄)− W̄ 2

]}
. (5.2)

Varying it with respect to R , we obtain the constraint

W 2 = X +
1

16
D̄2(XX̄) ∼ X +

1

16
XD̄2X̄ , (5.3)

which guarantees chirality of the solution, D̄α̇X = 0. Note that this constraint yields the

dimensionless effective relation

w = x+
1

2
xx̄, x =

1

8
D̄2X̄, x̄ =

1

8
D2X , (5.4)

which is equivalent to the algebraic equation in the bosonic BI theory.

The superfield action (5.2) becomes

S(W,X) = S2(W, W̄ ) +
1

8

∫
d6zXX̄ , (5.5)

which can be shown to be equivalent to (2.26).
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On the other hand, the superfield X can be eliminated via its equation of motion

X −R− 1

16
XD̄2R̄− 1

16
XD2R = X −R− 1

2
X(r + r̄) = 0 , (5.6)

where r = 1
8D̄

2R̄ , r̄ = 1
8D

2R . Now we wish to solve this equation for X in terms of

R, R̄ and to finally get the R,W form of the action (5.2). The exact solution of (5.6) is as

follows

X =
R(

1− 1
2r −

1
2 r̄
) . (5.7)

Substituting this solution for X in the action (5.2) we obtain

Sint(W,R) =
1

8

∫
d6z

[
(R̄W 2 +RW̄ 2)− RR̄(

1− 1
2r −

1
2 r̄
)] . (5.8)

This action is recognized as a particular case of our representation (4.18) after redefining

the auxiliary variables as

2M

1 + m̄
= R , r̄ =

2m̄

1 + m̄
. (5.9)

The inverse relation involves the differential operator V

M =
1

2(1− V )
R , V :=

1

16
RD2, m̄ =

r̄

2− r̄
. (5.10)

The transformation law for the superfield R follows from the U(1) transformation (4.4) of

M and m̄ = 1
8D

2M :

δR = iωR(2− r̄) , δr̄ = iωr̄(2− r̄) . (5.11)

The action (5.8) yields the auxiliary equation

W 2 − R

1− 1
2r −

1
2 r̄
− D̄2

[
RR̄

16
(
1− 1

2r −
1
2 r̄
)2
]

= 0 , (5.12)

which is a particular case of (4.19). Using (5.7), we can bring this relation to the form of

the constraint (5.3).

The N=1 BI model in our (W,m) formalism corresponds to the choice of the invariant

density

JBI =
2

B − 1
, JBI +BJBIB = − 2

(B − 1)2
, (5.13)

w̄ =
2m̄(1 +m)2

(mm̄− 1)2
. (5.14)

The effective equation for w̄ is similar to the bosonic relation for F 2 in the µ representation

of the BI theory [17, 20].
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Eq. (5.14) and its conjugate can be solved for m, m̄ in terms of w, w̄, which finally

reproduces the N = 1 BI action (2.25)

m̄ =
Q− 1 + 1

2(w − w̄)

Q+ 1− 1
2(w − w̄)

, (5.15)

Q(w, w̄) =
√

1 + w + w̄ + (1/4)(w − w̄)2 , (5.16)

G = 1− wΛ− ww̄Λw̄ =
1

1 + m̄
=

1

2Q

[
Q+ 1− 1

2
(w − w̄)

]
. (5.17)

The N = 1 BI theory in the original (W,U) representation corresponds to the choice

P(A) =
d

dA
(AEBI) =

1

2
(B − 1)2, A =

4B

(1−B)4
, (5.18)

2P = [1−AP2]2 , (5.19)

whence EBI(A) = 1
2 −

1
8A+ 3

32A
2 +O(A3) .

5.2 Other examples

The N=1 analog of the bosonic simplest interaction model [16, 20] corresponds to the

choice J = −2 or E = 1
2 . The corresponding algebraic equations read

Wα = Uα +
1

16
UαD̄

2Ū2 = Uα

(
1 +

1

2
u

)
, (5.20)

W 2 = U2

(
1 +

1

2
u

)2

, w̄| = ū

(
1 +

1

2
u

)2

. (5.21)

The perturbative solution for u(w, w̄) is completely similar to the corresponding bosonic

solution in the simplest interaction model [20]

ΛSI =
1

2
− 1

4
(w + w̄) +

1

2
ww̄ +

1

8
(w2 + w̄2) (5.22)

−5

8
ww̄(w + w̄)− 1

16
(w3 + w̄3) +O(W 8) . (5.23)

By analogy with bosonic invariant interaction Ib = 2
b−1 [20] we can obtain the exact

formula for Λ(w, w̄) for the choice

J +BJB =
2

B − 1
. (5.24)

In this case the effective equation (4.22) is reduced to the solvable cubic equation for the

real superfield r̂

m = r̂ − 1

4
(w − w̄) . (5.25)

We can also study the simple example of the invariant interaction with the additional

variable g

E =
1

2
+ f1 gḡ , (5.26)
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where f1 is a real constant. The basic recursive auxiliary equation in this case is

Uα = Wα −
1

16
UαD̄

2 Ū2 +
f1

8
UβD̄

2 (Ū2DαU
β ḡ) . (5.27)

The 5-th order term in its perturbative solution has the form

U (5)
α =

1

2
Wα

(
ww̄ +

1

2
w2

)
+ f1wȳWβDαW

β. (5.28)

Using eq. (3.18), we obtain the corresponding term in Λ:

Λ(2)
y = f1ȳ, Λ(2) = −1

4
(w + w̄) + f1yȳ . (5.29)

Thereby we restore the nonlinear superfield action up to the 6-th order in Wα, W̄α̇ .

5.3 N = 1 self-dual models with higher derivatives

In supersymmetric self-dual models with higher derivatives we still can use our basic bilinear

action S2(W,U) (3.1), which corresponds to the usual free equations without additional

derivatives. This choice guarantees the U(1) duality of the entire equations of motion,

if we construct the U(1) invariant interaction with higher derivatives solely in terms of

auxiliary superfields. In the W representation the action will involve powers of some basic

coupling constant c of dimension −2, as well as plenty of additional dimensionless coupling

constants.

Thus the self-dual interactions with higher derivatives can be naturally introduced via

the modification of the auxiliary invariant interaction. The possible bilinear interaction

ca1

∫
d8zŪ α̇∂αα̇U

α , (5.30)

drastically changes the status of the superfield Uα which will become propagating. In

components, this would mean, in particular, that the scalar component field v(x) of Uα
(and, respectively, D(x) in the W representation) will propagate. This effect disappears

in the limit a1 → 0. Such self-dual deformations of the bilinear bosonic action were

considered, e.g., in [15, 22], and the interactions of the type (5.30) would give N = 1 self-

dual superextensions of these deformed actions. Further in this subsection we will focus

on the deformations which do not change the free action.

As an example, let us consider the U(1) invariant quartic interaction of the auxiliary

superfields with higher derivatives

1

4
c

∫
d8z b1 ∂

mU2∂mŪ
2 , (5.31)

where b1 is a dimensionless coupling constant. The auxiliary equation has the form

Wα = Uα +
1

8
cb1Uα�D̄

2Ū2 = Uα (1 + cb1 �u) , (5.32)

w̄| = ū (1 + cb1�u)2 . (5.33)
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Its perturbative solution is as follows

Uα| = Wα

[
1− cb1�w + c2b21(�w)2 + 2c2b21�(w�w̄) + . . .

]
, (5.34)

where � = ∂m∂m. Using this solution, we can construct the corresponding self-dual non-

linear action with higher derivatives in the W representation.

We can also study an example of the 6-th order invariant interaction with higher

derivatives

1

4
cb2

∫
d8zU2Ū2∂mg∂

mḡ (5.35)

and find the power-series solution of the corresponding auxiliary equation.

Further generalizations involve U(1) invariant interactions with derivatives multiplied

by some polynomials in the dimensionless variables u, ū, g, ḡ .

Using the invariant interactions of the type

1

4
c2

∫
d8z b4(�U2)(�Ū2) , (5.36)

we arrive at the self-dual theories with the growing powers of higher derivatives. In this

case, the auxiliary equation has the form

Wα = Uα +
1

8
c2b4Uα�

2D̄2Ū2 = Uα(1 + c2b4�
2u) . (5.37)

To summarize, the principle that the higher-derivative actions in the N=1 electrody-

namics models are generated by some higher-derivative U(1) invariant interactions of the

auxiliary spinor superfields automatically yields the self-dual nonlinear actions in the W

representation.

6 Bosonic limit

In this section we consider the bosonic component Lagrangians corresponding to some

superfield ones considered above. Our conventions on the bosonic component fields are

Wα = 2iF β
α θβ − θαD +

i

2
θ2(σmθ̄)β(δβα∂mD − 2i∂mF

β
α ) , F β

α =
1

4
(σmσ̄n)βαFmn ,

Uα = 2iV β
α θβ − θαv +

i

2
θ2(σmθ̄)β(δβα∂mv − 2i∂mV

β
α ) . (6.1)

Here, the symmetric complex bispinor field Vαβ(x) = Vβα(x) and the complex scalar field

v(x) are not subject to any constraints off shell. We also have Fmn = ∂mAn − ∂nAm and

D = D̄ in virtue of the superfield Bianchi identity (2.7).

Various superfield objects constructed from Wα and Uα have the following bosonic

limits

W 2 → (−2ϕ+D2)θ2 , U2 → (−2ν + v2)θ2 , UW → (−2V F + vD)θ2 ,

w → (ϕ̄− 1

2
D2) , y, ȳ → 2D , u → (ν̄ − 1

2
v̄2) , g → 2v , (6.2)
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where

ϕ = FαβFαβ =
1

4
FmnFmn +

i

4
FmnF̃mn , ν = V αβVαβ

as in [20]. In the second line of (6.2) we took into account that the relevant superfield

arguments appear in the superfield actions always with the nilpotent factors W 2W̄ 2 or

U2Ū2 and so, after integration over θ, θ̄ and taking the bosonic limit, are reduced to

their lowest θ = θ̄ = 0 components. The study of the component bosonic equations can

give us a further insight into the properties of the superfield equations for U2(W ) and

DαUα(W ) (3.27), (3.28).

The free actions (2.10) and (3.1) are reduced to

S2(W ) →
∫
d4x

[
−1

2
(ϕ+ ϕ̄) +

1

2
D2

]
=

∫
d4x

(
−1

4
FmnFmn +

1

2
D2

)
, (6.3)

S2(W,U) →
∫
d4x

(
−2V F + ν +

1

2
ϕ+ vD − 1

2
v2 − 1

4
D2 + c.c.

)
. (6.4)

After integrating out the auxiliary fields Vαβ, v from (6.4) we recover (6.3).

The interaction (3.5) is reduced to

Sint(W,U) ⇒
∫
d4x

(
ν − 1

2
v2

)(
ν̄ − 1

2
v̄2

)
E

[(
ν − 1

2
v2

)
,

(
ν̄ − 1

2
v̄2

)
, 2v, 2v̄

]
. (6.5)

Now it becomes clear why using of the alternative superfield variables (3.37), (3.39) looks

more preferable: these quantities have a simpler bosonic limit

u′ → ν̄ , ū′ → ν , (6.6)

E → E′(ν, ν̄, v, v̄) , Λ → Λ′(ϕ, ϕ̄,D) . (6.7)

Correspondingly, for the invariant interactions we have

A′ → a := νν̄ , B′ → ν̄v2 , B̄′ → νv̄2 , (6.8)

F(A,B,C) → F ′(νν̄, v2ν̄, vv̄) . (6.9)

Just this choice of E is most convenient for examining the role of the scalar auxiliary

fields v, v̄,D . For these fields we obtain the following equations of motion:

δD : D = v + v̄ , (6.10)

δv : D − v − v(ν̄ − 1

2
v̄2)E′ + (ν − 1

2
v2)(ν̄ − 1

2
v̄2)E′v = 0 . (6.11)

For the self-dual case E′v is proportional to v or v̄, so eq. (6.11) and its conjugate, after

eliminating D by eq. (6.10), are reduced to a system of two homogeneous equations for

v, v̄ , such that the determinant of the 2×2 matrix of the coefficients is non-vanishing at the

origin. This means that the main perturbative solution of (6.11) in the duality-invariant

case is

v = v̄ = 0 ⇒ D = 0 . (6.12)
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To make sure, we analyzed the nonlinear equation (6.11) for the simple interaction E′ = e1+

f1 gḡ ⇒ e1 + 4f1 vv̄ and did not find any nontrivial analytic solution v 6= 0 . Nevertheless,

the existence of some non-perturbative non-trivial solutions for v, v̄ (and D) under some

special choices of E (or E′) cannot be excluded.

For the basic solution (6.12), Sint(W,U) in the bosonic limit becomes

Sint(W,U) →
∫
d4x aE(a) . (6.13)

Comparing it with the general auxiliary self-interaction in the tensorial auxiliary field

formulation of the bosonic self-dual Maxwell models [18, 20], we identify

aE(a) = E(a) . (6.14)

Interactions with higher derivatives change eq. (6.11). In particular, the superfield

interaction (5.35) yields the component term

4cb2

∫
d4x

(
ν − 1

2
v2

)(
ν̄ − 1

2
v̄2

)
∂mv∂mv̄ (6.15)

in addition to the bosonic action (6.4). Once again, solving recursively the equations for

v, v̄, we find the trivial perturbative solution (6.12) as the unique one.

The Fayet-Iliopoulos (FI) term ξD softly breaks the U(1) duality and deforms the δD

equation to ξ +D = v + v̄ . The models with this term added provide nontrivial solutions

for the auxiliary fields v and D, depending on the parametrization of E′.4

The bilinear invariant interaction (5.30) gives the bosonic Lagrangian ∼ ca1∂
mv∂mv̄

and so radically affects the component equation (6.11), yet preserving self-duality. The

former auxiliary fields v, v̄ become propagating in this case, while elimination of D produces

“mass terms” for these fields.

It is natural to treat both this bilinear interaction and the FI term as a kind of non-

perturbative effects generating nontrivial solutions for the auxiliary fields. So in the pres-

ence of such terms the dependence of the auxiliary interaction E on the additional superfield

variables (g, ḡ) ∼ (v, v̄) can prove very essential.

7 U(N) duality for N = 1

7.1 Auxiliary chiral U(N) superfields

Let us consider N Abelian superfield strengths

W i
α = −1

4
D̄2Aiα = −1

4
D̄2DαV

i , W̄ i
α̇ = −1

4
D2Āiα̇ = −1

4
D2D̄α̇V

i , i = 1, . . . N , (7.1)

with V i being N real gauge prepotentials. By definition, all superfields are transformed by

the vector representation of the group O(N):

δW i
α = ξikW k

α , δW̄ i
α̇ = ξikW̄ k

α̇ , (7.2)

4A nontrivial FI-term deformed solution for the field D was considered in [25] for the case of N=1 BI

theory.
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where ξik = −ξki are real group parameters. The free action of this set of superfields is

S2(W i, W̄ i) =
1

4

∫
d6ζ(W iW i) + c.c. , (7.3)

where (W iW i) := W iαW i
α .

Further, we introduce the notation

W kl = (W kαW l
α), W̄ kl = (W̄ k

α̇W̄
lα̇) (7.4)

and consider the particular parametrization of the nonlinear O(N) and R invariant super-

field interaction

SΛ(W kl, W̄ kl) =
1

4

∫
d8zW klW̄ rsΛkl,rs(w, w̄) , (7.5)

where Λkl,rs(w, w̄) is a function of the dimensionless Lorentz invariant matrix variables

wkl =
1

8
D̄2W̄ kl, w̄kl =

1

8
D2W kl . (7.6)

The integral conditions of U(N) duality have the following form:

Im

∫
d6ζ

[
(W iMk)− (W kM i)

]
= 0 , (7.7)

Im

∫
d6ζ

[
(W iW k) + (M iMk)

]
= 0 , (7.8)

where

Mk
α ≡ −2i

δS

δW kα
, (7.9)

and (W iW k), (W iMk) and (M iMk) are defined similarly to (7.4). The antisymmetric in i

and k condition (7.7) means the off-shell O(N) symmetry, so the nontrivial constraint in

the general case is the nonlinear condition (7.8).

Consider the following transformations

δηW
i
α = ηikMk

α , δηM
i
α = −ηikW k

α , (7.10)

where ηik = ηki are real parameters. The complex combination

Ukα =
1

2
(W k

α + iMk
α) (7.11)

transform linearly in the group U(N) according to the fundamental representation of the

latter:

δUkα = (ξkl − iηkl)U lα . (7.12)

The covariance of the set of Bianchi identities for W i
α together with the superfield equa-

tions of motion following from the action S2 + SΛ under the coset U(N)/O(N) trans-

formations (7.10) is the correct generalization of the notion of U(1) self-duality to the
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considered case. The condition (7.8) ensures compatibility of this duality covariance with

the definition (7.9).

The basic steps in generalizing the U(1) self-duality setting with the single auxiliary

superfield Uα to the U(N) case is to interpret Ukα defined in (7.11) as auxiliary chiral

superfields (R(U iα) = 1) and to replace (7.3) by the following bilinear action:

S2(W k, Uk) =

∫
d6ζ

[
(W kUk)− 1

4
(W kW k)− 1

2
(UkUk)

]
+ c.c. . (7.13)

The corresponding auxiliary interaction SE(U) is chosen as an arbitrary O(N) and R in-

variant functional of the auxiliary superfields Uk and Ūk (and perhaps of their derivatives).

The basic equation for the superfield Ukα is

W k
α = Ukα −

δSE(U)

δUkα
. (7.14)

Like in the U(1) case, it is straightforward to show that the U(N) duality conditions (7.8)

amount to the U(N)-invariance of SE(U) :∫
d6ζUkα

δSE(U)

δU lα
−
∫
d6ζ̄Ūkα̇

δSE(U)

δŪ lα̇
= 0 . (7.15)

A particular parametrization of SE is through independent dimensionless R-invariant

Lorentz scalars

ukl =
1

8
D̄2Ūkl , ūkl =

1

8
D2Ukl , (7.16)

δηu
kl = −iηkrurl − iηlrurk, δηū

kl = iηkrūrl + iηlrūrk (7.17)

(these are analogs of the variables u and ū of the U(1) case). Then in the self-dual theory

we can consider the following particular R- and U(N) invariant interaction of the auxiliary

superfields

SE =
1

4

∫
d8z(U lUk)(Ū rŪ s)Ekl,rs , (7.18)

where Ekl,rs is the U(N) covariant dimensionless superfield density composed out of the

variables (7.16).

A simple example of the action functional of this type contains the matrix Elk(A),

which depends on the matrix argument Akl = ūkrurl:

SE =
1

4

∫
d8z(ŪkŪ s)(U sU l)Elk(A) . (7.19)

We can also consider the interaction with a scalar invariant density,

SE =
1

4

∫
d8z(UkU l)(Ū lŪk)E(An) , (7.20)

where the dimensionless invariant variables An are defined as follows

An =
1

n
TrAn . (7.21)
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Using the relations

δAn =
1

4
D2(δUkU r)(uAn−1)rk , (uAn−1)rk = (uAn−1)kr , (7.22)

we derive the equation of motion for the auxiliary spinor superfield in this case

W k
α − Ukα =

1

8
U lαD̄

2
{

(Ū lŪk)E(An) +
1

8
(ŪpŪ t)D2[(U tUp)Enu

ls(An−1)sk]
}
, (7.23)

where En = ∂E/∂An . This U(N) covariant superfield equation describes the particular

class of self-dual models.

7.2 U(N) analog of the M representation

An alternative representation for the supersymmetric U(N) self-dual theories deals with

W k
α , Ukα and, in addition, with the auxiliary general scalar superfields Mkl = M lk and their

dimensionless derivatives m̄kl = 1
8D

2Mkl (as well as with the corresponding conjugated

superfields). Under the duality group U(N) the new auxiliary superfields are transformed

as

δηM̄
kl = iηkrM̄ rl + iηlrM̄kr , δMkl = −iηkrM rl − iηlrMkr , (7.24)

δηm
kl = iηkrmrl + iηlrmkr, δηm̄

kl = −iηkrm̄rl − iηlrm̄kr . (7.25)

The general “master” action is a sum of the bilinear action S2(W,U) (7.13) and the

U(N) invariant interaction

Sint(U,M) =
1

4

∫
d8z[(UkU l)M̄kl + (ŪkŪ l)Mkl] + Sint(M) , (7.26)

Sint(M) =
1

4

∫
d8zM̄klM rs Jkl,rs (m, m̄) , (7.27)

where Jkl,rs is a dimensionless covariant density. So, the master action is

S(W,U,M) = S2(W,U) + Sint(U,M) . (7.28)

For the density Jkl,rs we can choose, e.g., the following particular parametrization:

Jkl,rs =
1

4
(δksJrl + δlsJrk + δkrJsl + δlrJsk) , (7.29)

δηJ
lk(B) = iηlsJsk − iJ lsηsk ,

where J lk(B) is a matrix function of Bij = mism̄sj , for instance,

J lk = −2δlk +
1

2
i2B

lk + . . . . (7.30)

Varying (7.28) with respect to Ukα , we obtain the equation

W k
α = U lα(δkl +mkl) . (7.31)
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Then, eliminating the variables Ukα , we come to the U(N) analog of the representa-

tion (4.18)

S(W kl,Mkl) = S2(W, W̄ ) + Sint(M)

+
1

4

∫
d8zTr

[
W

(
1

1 +m

)
M̄ + W̄

(
1

1 + m̄

)
M

]
(7.32)

where 1 denotes the unit matrix. Varying (7.28) with respect to the superfields M̄kl, we

obtain the U(N) analog of the equations (4.19). This equation can be solved perturbatively.

The matrix solutionM(W, W̄ ) yields the self-dual superfield action in theW representation.

The parametrization of Jkl,rs, which is yet simpler than (7.29), involves only one in-

variant function J

Jkl,rs =
1

2
(δkrδls + δksδlr)J(m, m̄), Sint(M) =

1

4

∫
d8zM̄krM rkJ(Bn) . (7.33)

The variables Bn on which the invariant function J depends are defined as

Bn =
1

n
TrBn . (7.34)

The simplest possible interaction is J(B1), and it corresponds to the special choice of the

invariant density in (7.20) as E(A1) .

7.3 Examples of the U(N) self-dual theories

As an example of the U(N) self-dual action, we may consider the following simplest inter-

action:

SSI =
1

8

∫
d8z (UkU l)(ŪkŪ l) , (7.35)

which gives us the basic algebraic spinor equations in the form

W k
α = Ukα +

1

16
U lαD̄

2(ŪkŪ l) . (7.36)

Using the perturbative solution Ukα(W, W̄ ), we obtain an U(N) analog of our model (5.23)

SΛ =
1

8

∫
d8zTr

[
WW̄ − 1

2
(Ww̄W̄ +WwW̄ ) +O(W 4)

]
. (7.37)

The U(N) supersymmetric generalization of the BI model is based on the following

matrix algebraic relation [4, 5, 9, 10]

Xkl +
1

16
XkjD̄2X̄ lj = W kl , (7.38)

where Xkl 6= X lk are the auxiliary chiral superfields, and X̄jl are the conjugated antichiral

superfields. The nonsymmetric matrix W kl corresponds to the so-called U(N) × U(N)

duality.

In our formulation this model corresponds to the U(N) invariant representation (7.29)

with

J lk = 2

(
1

B − 1

)lk
. (7.39)
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The equivalence of the two formulations can be checked by comparing the perturbative

expansions of the relevant actions SΛ(W, W̄ ) .

In our formalism we can also consider alternative U(N) self-dual generalizations of the

supersymmetric U(1) BI model. For instance, we can use (7.33) with the one-parameter

invariant interaction

J(B1) =
2

B1 − 1
, B1 = mklm̄lk . (7.40)

8 Conclusions

In this paper, we constructed the most generalN=1 superextension of the auxiliary bispinor

field formulation of the U(1) duality-invariant nonlinear electrodynamics models which was

proposed in [17, 20]. The auxiliary bispinor fields are accommodated by the auxiliary

spinor superfield and the full set of self-dual N=1 models is parametrized by U(1) duality-

invariant self-interactions of this superfield. The conventional nonlinear action in terms of

the Maxwell superfield strengths is reproduced as a result of elimination of the auxiliary

superfield by its equation of motion.

As compared with the recent paper [23] devoted to the same issue of N=1 supersym-

metrizing of the formulation with bispinor fields, we allow for the most general dependence

of the auxiliary superfield Lagrangians on the U(1) duality-invariant superfield arguments.

Though the dependence on the extra U(1) invariant superfield variables gets seemingly

inessential on shell, when considering the “pure” N=1 self-dual systems which deal with

the Maxwell superfield strengths only, it can become essential and capable to provide new

models in the cases of various deformations of such systems, e.g., through adding the Fayet-

Iliopoulos term to the action [25] or turning on the couplings to the charged chiral matter.

Other new results of our study is the construction of N=1 generalization of the so called

µ version of the approach of [17, 20] (which significantly simplify various computations),

and finding out how to generate self-dual N=1 systems with higher derivatives from the

appropriate modifications of the U(1) invariant auxiliary interaction. In the latter case

the extra superfield variables we have introduced can play an essential role: they indeed

considerably enlarge the set of possible U(1) invariant interactions, and these additional

interactions are not trivialized on shell in some conceivable cases.

We also presented a few explicit examples of generating duality-invariant N=1 super-

field systems in the approach with auxiliary spinor superfield, as well as gave the bosonic

component Lagrangians for the general case, with the auxiliary fields being kept, and

compared these Lagrangians with those derived in [17, 20] within the non-supersymmetric

setting.

We gave a brief account of the formalism of auxiliary superfields for the N = 1 su-

persymmetric models with the U(N) duality, generalizing the similar formulation of the

bosonic case [18]. A few examples of the U(N) self-dual models were presented.

As for further perspectives, it seems important to extend the formulation with auxil-

iary superfields to the more general case with the Sp(2N,R) duality symmetry supported

by the additional scalar chiral superfields living in the coset Sp(2N,R)/U(N) . Also it

would be interesting to elaborate on the N = 1 version of the proposal of ref. [20] about
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the possibility to deal, at all steps including quantization, with the off-shell auxiliary (su-

per)field representation of self-dual (super)electrodynamics without explicitly eliminating

these auxiliary objects.
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