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ABSTRACT: The use of sophisticated machine learning (ML)
models, such as graph neural networks (GNNs), to predict
complex molecular properties or all kinds of spectra has grown
rapidly. However, ensuring the interpretability of these models’
predictions remains a challenge. For example, a rigorous under-
standing of the predicted X-ray absorption spectrum (XAS)
generated by such ML models requires an in-depth investigation of
the respective black-box ML model used. Here, this is done for
different GNNs based on a comprehensive, custom-generated XAS
data set for small organic molecules. We show that a thorough
analysis of the different ML models with respect to the local and
global environments considered in each ML model is essential for
the selection of an appropriate ML model that allows a robust XAS
prediction. Moreover, we employ feature attribution to determine the respective contributions of various atoms in the molecules to
the peaks observed in the XAS spectrum. By comparing this peak assignment to the core and virtual orbitals from the quantum
chemical calculations underlying our data set, we demonstrate that it is possible to relate the atomic contributions via these orbitals
to the XAS spectrum.

■ INTRODUCTION
X-ray absorption spectroscopy (XAS) is an important
characterization technique in chemical analysis to unveil the
atomic structure of matter, having a broad range of
applications in material science,1 biomedical research,2 and
identification of metals and solids.3 XAS is particularly useful in
the investigation of the electronic and geometric structure of
biomolecules, nanoparticles, and metal complexes.4−6 The
interpretation of experimentally obtained XAS spectra is,
however, complicated due to the intricate interplay between
the complex electronic structure of the material and the
adsorption of X-ray photons. Several factors, including the
chemical environment of the atom, the presence of solvents,
and the energy of the incident X-rays, influence this
complexity.7 Therefore, sophisticated�but computationally
also expensive�theoretical methods from ab initio quantum
chemistry can accurately predict XAS and are a necessary
complement to interpret experimental results.8

Machine learning (ML) techniques are being increasingly
applied to various areas of theoretical and computational
chemistry given their ability to infer structure−property
relationships on the basis of large amounts of data.9−11

Among those ML techniques, graph neural networks (GNN)
and deep neural networks (DNN) are promising candidates to
predict the properties of matter, such as the electronic
structure,12 at a higher computational speed, already making

them favorable for high-throughput calculations in materials
design and drug discovery.13,14 Thus, the ability to perform
efficient computations with high accuracy has demonstrated
that ML techniques are advantageous in domains such as
various types of spectroscopy, including vibrational and
optical.12,15−24

Several studies have focused on X-ray spectroscopy using
ML methods with the additional aim to improve the
understanding of the contribution of different atomic environ-
ments to the peaks occurring in the spectra.22−24 Accurate
prediction of XAS spectra has been accomplished by
employing some of the more sophisticated ML models, such
as GNNs and DNNs.17,25,26 However, a large number of layers
in the underlying neural network, as well as a high parameter
count, implies such models are black-box,27 which means
understanding the rationale behind predictions is a challenging
task. On the other hand, ML models designed to predict XAS
spectra must provide clear peak assignments, as this option for

Received: July 17, 2023
Published: October 9, 2023

Articlepubs.acs.org/JACS

© 2023 The Authors. Published by
American Chemical Society

22584
https://doi.org/10.1021/jacs.3c07513

J. Am. Chem. Soc. 2023, 145, 22584−22598

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

89
.2

45
.2

2.
22

9 
on

 F
eb

ru
ar

y 
1,

 2
02

4 
at

 0
5:

22
:2

6 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amir+Kotobi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kanishka+Singh"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+Ho%CC%88che"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sadia+Bari"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robert+H.+Mei%C3%9Fner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Annika+Bande"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.3c07513&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c07513?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c07513?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c07513?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c07513?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jacsat/145/41?ref=pdf
https://pubs.acs.org/toc/jacsat/145/41?ref=pdf
https://pubs.acs.org/toc/jacsat/145/41?ref=pdf
https://pubs.acs.org/toc/jacsat/145/41?ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacs.3c07513?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


interpretation is typically required in spectroscopy experiments
and often necessitates theoretical calculations. The compre-
hensibility of why ML models can achieve this peak assignment
capability must be transparent to users to ensure trust in the
predictions, given the diverse range of applications of XAS in
material and biochemical sciences.7,28,29 It is therefore
imperative to develop an understanding of the XAS predictions
made by complex ML models and ascertain whether the
predictions align with human logic and decision-making, as
incorporated in the quantum-mechanical equations. This can
be achieved using explainable artificial intelligence (XAI)
methods, which provide a window into the ML model’s
decision-making process and correlations uncovered by the
model through data analysis.30 Justification and interpretability
offered by XAI methods not only provide evidence defending
why a prediction is trustworthy with quantitative metrics but
also refer to the degree of human understanding intrinsic
within the model.10,31,32

Numerous techniques are available to incorporate explain-
ability in GNN and DNN models.33,34 Our emphasis in this
work lies in using a method known as attribution.35 Attribution
methods have found widespread use in applications where the
input data consists of images or text, composed of features
such as pixels, characters, and words.36,37 In these cases,
attribution scores highlight particular regions via pixels of the
image or certain characters or words in a text that affect, in this
case, the decision-making of the ML model used in the task.
Therefore, it is relatively easy to validate such explanations in
image- or text-based tasks. However, validating explanations
for chemical property prediction is challenging since a property
is often the result of a complex interplay between the
geometric and electronic structure of the atoms in a molecule.
This gives rise to intricate structure−property connections
within molecules, especially complex properties such as X-ray
absorption spectra, which only find interpretation by the
examination of each individual peak detected through a
combination of experiments and simulations.21 Therefore,
the validation of explanations generated using attributions also
requires the creation of a robust “ground-truth” benchmark
using such domain-specific knowledge, which is often a
challenging task in molecular-property prediction. Examining
the robustness of GNN models to predictions on unseen data,
being possibly biased toward specific chemical structures, is yet
another challenge in understanding the overall performance of
different models.38,39

In this study, we introduce a framework that uses a
combination of graph attributions and ground-truth data
generated from linear-response time-dependent density func-
tional theory (TDDFT),40 to provide explainability on GNN
models trained to predict carbon K-edge XAS spectra of
organic molecules. Carbon K-edge spectroscopy was used for
XAS for various reasons. First, carbon atoms play a central role
in the structure and function of a wide range of organic
molecules as well as inorganic materials. Second, carbon K-
edge XAS offers a unique perspective, providing valuable
insights into the structure, function, and reactivity of these
molecules.41,42 Finally, among the XAS calculations, K-edge
spectroscopy on a main group element is less complicated
than, for example, the spectroscopy on the transition metal L
edge, and can be computed via TDDFT on a time scale that
allows the creation of a large data set. To train the different
GNN architectures, an in-house QM9-XAS data set, based on a
subset of the QM9 data set or organic molecules,43 was set up

(see Data Availability Statement). We compare the perform-
ance of the trained models in predicting XAS spectra on the
test data set. In order to evaluate the explainability of GNN
models, we analyze the ability of these models to identify the
contribution of atoms and their surrounding environment
toward the distinct peaks in the XAS spectrum. For creating
the “chemical” ground truth pertaining to XAS, we created a
data pipeline that inputs the output of TDDFT calculations
and renders the labels to atoms, indicating whether or not an
atom contributes to a specific excited state in XAS. These
ground-truth values are then finally quantitatively compared
with the attribution scores obtained from GNNs. Applying this
method to different GNN models, we find that specific GNN
architectures, which incorporate both global and local
information on atoms, offer superior explanations for the
peaks observed in the carbon K-edge XAS spectra. Addition-
ally, we investigate the robustness of the GNN models by
randomly perturbing molecules in the test data set, to
rationalize the difference in the explainability power of various
used GNN architectures.

■ METHODS
The QM9-XAS Data Set. While X-ray absorption spectroscopy is

a popular technique in chemistry, to the best of our knowledge there
is no organic molecule XAS data set that is large enough and available
for training ML models. Therefore, we used the QM9 data set43

containing 132,531 organic molecules composed of the first and
second row of main group elements H, C, N, O, and F. We choose a
random subset of the QM9 data set, containing 56,000 molecules,
which we term QM9-XAS for the purpose of our data set. We use
these structures to calculate carbon K-edge XAS spectra with the
time-dependent density functional theory (TDDFT)44 method, which
is in general a useful complement to experiments and allows for the
interpretation of spectral peaks. More specifically we used the ORCA
electronic structure package45 to calculate TDDFT at the B3LYP/
TZVP46,47 level of theory. All calculated XAS spectra were obtained in
the energy ranges Emin = 270 eV and Emax = 300 eV and peaks
broadened using Gaussians of widths 0.8 eV. The resulting curves
were discretized into Ngrid = 100 points between. This step ensures
that the length of the target output to be learned for ML applications
is consistent across all spectra. Further processing is then performed
to generate tuples of molecular graphs and their spectra to convert
them into a format optimal for training GNN models. Molecular
graphs were generated from the SMILES strings of the molecules,
which were available in the original QM9 data set using the RDKit48

python library. Since our models are implemented using the Pytorch
Geometric49 library, the graph and spectrum tuples were converted
into the native data set class of this library.
Graph Neural Networks. GNNs are neural networks specifically

designed to treat unstructured molecular data.50 A graph is formally
defined as a tuple of G = (V, E) of a set of nodes v ∈ V and a set of
edges ev,w = (v, w) ∈ E, which defines the connection between nodes.
It is intuitive to represent molecules as graphs, in which atoms and the
bonds between them are represented as nodes and edges, respectively.
Further information about each atom and bond in a molecular graph
is incorporated in the form of node and edge feature vectors added to
the tuple G of each graph in the data set. A node (atomic) feature
vector represents information such as the atom type (e.g., C, H, N, O,
or F) or the number of hydrogen atoms attached to it. Similarly, edge
(bond) feature vectors are representatives of properties such as the
bond lengths between two atoms or the bond multiplicity. We employ
one-hot encoding to convert most of the node and edge features,
including categorical attributes, such as atom type, into numeric
vectors. All encodings used in this work are summarized in Table 1.
A GNN layer takes as input a graph with node and edge features

and outputs a graph with the same topology where the node, edge,
and global graph information is updated. To achieve this, the node
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and edge information represented as feature vectors are first converted
into vectors in higher dimensional space (feature space) referred to as
node and edge states, respectively, using a transformation function.
Transformation functions can be fully connected layers, convolutional
layers, or recurrent layers depending on the GNN architecture. A
fundamental part of GNNs is the so-called propagation (or message-
passing) process used to update these node (or edge) states. Message
passing occurs in two steps: The first step involves gathering the
information on the nodes (or edges) surrounding a target node by
collecting their node states. In the second step, these states, along with
the state of the target node, are aggregated using an aggregation
function such as sum or average. If the final task is to predict the
property of a graph, then these updated node states are further
aggregated using a graph-level aggregation function, termed readout.
Different GNN architectures have different message propagation

and readout functions that affect the node, edge, and graph states
obtained at the end of a message-passing process. In this work, we
trained ML models on three GNN algorithms. The first architecture is
the graph convolutional neural network (GCN),51 which employs
only node states to aggregate information in the message-passing
process. The second GNN model is GraphNet,52 in which a global
state vector, including node and edge states, is used in the message
function. The third is the multihead graph attention network
(GATv2)53 in which an attention mechanism54 is used to aggregate
node information. The attention mechanism in GATv2 allows for the
calculation of edge weights to each node in the neighborhood of a
target node, which assigns an importance value to the message passed
from each node to the target node. Training a multihead GATv2
converges faster at a moderately higher computational cost, while also
increasing the robustness of the final model since it is in principle
trained on multiple attention instances in parallel.
Training. In order to assess various trained models, the QM9-XAS

data set was shuffled and divided into a training set of 50k samples
and a test set of 6k samples, with the training data further partitioned
into an 80:20 ratio for training and validation. The GNNs and all fully
connected layers were trained for 1000 epochs, at a learning rate of 1
× 10−3, and a batch size of 100 samples. A learning rate scheduler was
implemented to reduce the learning rate by a factor of 0.8 every 100
epochs. For all the models, three GNN hidden layers with sizes of
128, 256, and 512 were used for node updates, and a fully connected
layer was used as the output layer for predictions. We used the
AdamW optimizer55 and the root mean squared error (RMSE) as the
loss function to train the models. In order to keep track of overfitting,
we monitor the RMSE loss on the validation set after every 50 epochs.
All models were trained on a single NVIDIA Tesla A100 64GB GPU.
We select the model which has the best RMSE loss and relative
spectral error (RSE)19 on the validation data set.
RSE is obtained by dividing the RMSE among the target ytar and

the predicted ypred intensities of the signal at energy E, by the total
spectral energy of the target. In the discretized spectrum in steps of
ΔE = (Emax − Emin)/Ngrid, the RSE is approximated as

y y E

y E
RSE

( )i
N

i i

i
N

i

tar pred 2

tar

grid

grid
=

·

· (1)

A small relative spectral error indicates that the predicted spectrum is
a good prediction of the original spectrum. The quality of XAS spectra
predictions made by different GNN architectures was compared by
calculating the average RSE on the test data set.
Graph Attribution. Attributions or feature attributions are one of

the most popular techniques used to explain the model’s
predictions.56 The attribution method assigns scores to each input
feature that reflects the contribution of that feature to an ML model’s
prediction, thereby explaining the role played by that feature in the
prediction.38,57,58 In the case of GNNs, attribution methods assign
attribution scores to graph nodes and edges based on their
contributions to the final prediction of the model. One way to
visualize the attribution scores obtained is by overlaying a heat map
on top of a graph, highlighting the importance of individual atoms to
the target property in the case of a molecular graph. From these
heatmaps, one can deduce structural correlations between the model’s
rationale for good or bad predictions and compare them to existing
knowledge of why the prediction should be so. GradInput (GI),59

class activation map (CAM),60 and gradient class activation map
(GradCAM)61 have been shown to successfully explain predictions
made by GNNs for molecular structure−property prediction
models;35 that is, they can reveal the contribution of individual
atoms or atom pairs to the model’s decision. Although GNNs and
their interpretation through attribution techniques have proven
successful in decoding binding mechanisms and performing materials
discovery,38,58,62 to the best of our knowledge, these explainability
techniques have not been employed in XAS analysis. The scoring
attribution of atoms arising from CAM is intuitively well-suited to the
phenomenon of XAS, where peaks in the spectrum arise from the
local and global environments of atoms in a molecule.63,64

We, therefore, use CAM to obtain atomic contributions to the XAS
spectra of molecules in the QM9-XAS data set to explain the spectrum
predictions of GNN models. CAM attributions calculate the node
weights vi for highlighting the contribution of various nodes of the
graph to the prediction. As discussed above, GNNs that perform
property prediction on graphs use a global aggregation layer or a
readout layer prior to the output layer. In our case, the model
generates 100 values for the final spectrum by utilizing a layer
consisting of 100 units (neurons). For the purpose of evaluating the
attributions, each of these values can be treated as an independent
class. CAM operates on the aggregation layer prior to this final layer
and obtains attributions for these different “classes”, giving an insight
into atomic contributions at each point in the spectrum. To compute
CAM weights of a node for each class, let Fk(i) be the activation of a
unit k in the last GNN convolutional layer, preceding the output layer,
at node i. The CAM score at a node for a class c then is defined as65,66

v Fc i
k

k
c

k i( ) ( )=
(2)

where ωk
c denotes the weight of unit k for class c. Using this

formulation, one can obtain CAM scores for each point in the
spectrum of a given input molecular graph.
Ground-Truth Evaluation. In addition to the evaluation of

attributions, it is crucial to establish a ground-truth logic that enables
the assessment of attribution quality. Hence, the agreement between
CAM weights of the model’s prediction and ground-truth logic should
be quantified. To this end, a definition for a numerically measurable
ground truth for the excitations underlying the spectra is needed. In
other instances of XAI in chemistry, a suitable ground truth was
developed by directly considering the molecular fragments or
functional moieties that experts knew to be important for decision
making,67 such as binding mechanism learned by DNNs.38 Never-
theless, when it comes to predicting XAS, comparing attribution
scores to ground truth becomes more complex, since it necessitates
careful examination of all atoms in the molecule and a comprehensive
understanding of the quantum mechanics behind X-ray excitations.
Furthermore, delocalized molecular orbitals present yet another
challenge for understanding the precise contribution of atoms to
virtual orbitals in excitation states of XAS.68 Therefore, we have
developed a method that assigns the ground-truth contributions of

Table 1. Features of Nodes and Edges (Atoms and Bonds)
as Represented in the Encoded Vector in Conjunction with
Their Respective Type of Encoding

Node feature Encoding

Atomic number One hot
Hybridization One hot
Aromaticity One hot
Number of H atoms Integer
Edge feature Encoding

Bond distance Real
Bond type One hot
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various atoms in a molecule to a peak in the TDDFT spectrum. It
uses a combination of orbital populations of all of the initial and final
states underlying the respective X-ray excitations and their oscillator
strengths to obtain the contribution of each atom to a specific peak in
the XAS spectrum. To derive atomic contributions in the ground
truth, we first compute the core excitations within this energy range
and then determine the atoms contributing to both the core and
virtual orbitals of a certain excitation state. The atom contributions
were weighted according to the oscillator strength of the
corresponding excited state as well as the atom population per

molecular orbital. In cases where the calculated weights in the ground
truth necessitate the presence of particular atoms in a peak of the XAS
spectrum, we label those atoms as 1 and all other atoms as 0. Figure 1
depicts the process of obtaining ground-truth labels for atoms. Given
the fact that the optical transitions obtained from TDDFT are discrete
lines and that the ML spectra are distributed on a grid and have wide
peaks, for the comparison it is necessary to unify all CAM scores of a
given peak to a given line from TDDFT spectrum. Hence, we
summed up the CAM scores of all atoms in the molecule for all

Figure 1. Ground-truth evaluation is based on TDDFT data. The process of evaluating the TDDFT data starts with selecting a specific peak in the
XAS spectrum. The oscillator strength and orbital contributions for each excitation state in the peak are used to determine the final atomic
contributions to the peak. Atoms in the molecule are then labeled based on the calculated weights, i.e., 1 for atoms contributing to the peak and 0
otherwise.

Figure 2.Workflow of the ML and explainability of the XAS spectrum. This process consists of converting a molecule to a molecular graph, training
a GNN, comparison of the ML predicted and TDDFT spectra for obtaining the RSE, and finally applying the XAI technique to obtain here the
CAM weights (green). In this example, the CAM weights are compared to ground-truth attributions for core (red) and virtual (blue) orbitals at the
highlighted 277 eV peak of the spectrum, using a heatmap70 on the molecular structure. These ground-truth labels are then compared to CAM
weights, giving the AUC values for the core and virtual contributions.
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energy points in a range equivalent to the full width at half-maximum
of a peak.
Model Explainability. Explaining a model’s predictions involves

comparing the ground truth to the attributions obtained from the
model by using an XAI method. To measure to what extent our ML
models learn the correct atomic contributions to the XAS spectra, we
use the area under the curve (AUC) of the receiver operating
characteristic (ROC).38,69 The ROC itself is a curve formed by
plotting the rate of true positive outcomes and that of false positive
ones at various classification thresholds that divide the assignments
between the true and false classes. A true positive outcome occurs
when a model tasked with distinguishing two or more classes correctly
predicts the class to which an instance belongs. In our case, the CAM
weight assigned to an atom at a certain peak matches the ground truth
of the atoms belonging to an orbital. Similarly, a false positive occurs
when the class under investigation is incorrectly predicted by the
model, i.e., when atom contribution in ground truth and CAM
disagree. The AUC thus quantifies the performance of a classification
model into a single value between 0 and 1, where an area of 0.5 means
that a model works only as good as a random classifier. A value of 1.0
means that the model has the ability to perfectly discriminate among
different classes. In this particular case, the AUC is indicative of
whether the model can correctly identify whether an atom contributes
to a peak in the spectrum or not.
Figure 2 illustrates the workflow to make a GNN prediction of a

spectrum, determine the CAM attribution, and compare it in the last
step to the ground truth, i.e. the contribution of atoms to core and
virtual orbitals obtained from TDDFT, here shown for a prediction

made by the multihead GATv2 model. More explicitly, a model with a
large AUC close to 1.0 would perfectly assign labels 0 and 1 to each
atom in the spectrum for all of the molecules in the test set. Moreover,
we identify the baseline of AUC as 0.5, which is basically a model
classifier that randomly assigns these labels to the atoms in a
molecule.
We compute attribution AUC values at each peak in a TDDFT

spectrum and average them over all of the peaks to arrive at a final
score that explains the degree of agreement between ground-truth
logic and CAM attribution scores. The AUC is determined for
different model architectures. To demonstrate that the explainability
method is stable, we perturb a randomly chosen set of molecules from
the test data set and evaluate the change in attribution AUC.

■ RESULTS AND DISCUSSION
Model Performance. To first visualize the predictions

made by these GNN models, the best, average, and worst
predictions of the XAS spectrum are demonstrated for each
model based on RSE values in Figure 3b. While the best
prediction across all models is a near-perfect replica of the
TDDFT spectrum, the average and worse ones predict general
features of the spectrum correctly, but miss out on the finer
peak structure or incorrectly predict peak intensities. In Figure
3a, all RSE values for one model are plotted in a histogram and
the average RSE is determined. The GATv2 model has a
slightly lower average RSE value of 0.031 compared to 0.042

Figure 3. Evaluating the performance of various GNNs on the test data set. RSE histogram for all GNN models (a). While average RSE
performances are close, GATv2 has a more left-skewed histogram distribution, indicating better performance over large portions of the data. Best,
worst, and average predictions of the three GNN models with their respective RSE values (b).
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for GraphNet and 0.047 for GCN. The distributions look
similar. They have their onset with a small slope at RSE = 0.0
and then quickly grow to their maximum around the average
RSE. The decline is slow following the shape of a skewed
distribution with a long tail leading to a low number of
structures with RSE values above 0.1. Such structures are fewer
for models with the GATv2 and the GraphNet GNN
architectures, demonstrating their superiority for XAS
predictions compared to GCN.
The above results are consistent with the findings of earlier

research, which suggest that integrating an attention
mechanism54 and applying combinatorial generalization,52 i.e.
enabling the network to reason about the global structure of a
graph, while learning the graph representation, as done in the
GATv2 and GraphNet models, help enhance the learning of
target properties related to both local and global structures of
the graph.71,72 In the case of the GATv2 model, computing the
importance of the neighboring atoms for a target atom in a
molecule using the weighted attention mechanism assigns
relevance to a local region of the molecule to a specific
excitation energy in the spectrum, which differs from that of
traditional GCN layers with fixed weights for connections
between atoms. On the other hand, by incorporating
relationships and interactions among nodes, edges, and global
graph attributes, GraphNet significantly improves the acquis-
ition of structure-properties relationships in XAS spectra.52

Explainability of XAS Predictions. While comparing the
prediction performance of different ML models is crucial, the
similarity observed in the RSE distributions in the previous
section motivates exploration of the interpretability of these
models. Figure 4 illustrates the peak assignment via core and

virtual orbitals from the TD-DFT calculation as red and blue
spheres on participating atoms and via the CAM scores given
as green spheres. The AUC values for the respective orbitals
quantify this assignment. We compare an accurate GATv2
prediction at about 288 eV, in which the intensities of both
curves lie on top of each other, with one with a larger deviation
from the TD-DFT data at about 292 eV. In both cases, the
core orbitals are accurately matched by the CAM score giving
AUC values of above 0.9, significant quality differences occur
for the virtual orbitals. Those contribute the most to an XAS
spectrum in general. Hence, a good prediction comes with a
good assignment of the peak with a large AUC of 0.88 eV. By
contrast, the poorer XAS prediction with about 10% peak
intensity differences also leads to a much reduced AUC of 0.52
only. In this case, one can already visually see that the CAM is
much more significantly spread over the entire molecule, while
the orbitals contributing are based only on two atoms, of which
one is not a part of the CAM at all. Figure 5 gives a close-up
visualization of the derivation of the CAM and the core and
virtual orbital ground truth, by relating both to local excitations
and the latter also to orbitals relevant to the respective
excitation. This is done for the first three excitation states of
the TDDFT calculation underlying the first signal of the
broadened spectrum. Note that later signals are composed of a
much larger number of transitions, making the visual
comparison very cumbersome. We observe that the first two
peaks originate from a transition of an electron on the cyano
carbon atom to one of the π* orbitals of the CN group. This is
exactly reflected in the CAM weights obtained at exactly the
transition energy. The CAM weights show a low contribution
at other atoms, which is insignificant. The third peak belongs

Figure 4. Attributions (green) are compared with the ground truth of core (red) and virtual (blue) orbitals via AUC values for two peaks of an XAS
spectrum predicted by the GATv2 model. The model has higher AUC values when a peak in the predicted spectrum follows the TDDFT result.
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to the s → π* transition on the amide group at the other end of
the molecules, which is likewise highlighted by the local CAM.
The total CAM overlays both transitions, and likewise does the
ground truth of the contributing core (red) and virtual (blue)
orbitals highlight the two C atoms or multiple bonds,
respectively.
To further analyze the explainability of our best GNN model

(i.e., GATv2), we performed TDDFT calculation of local atom
XAS spectra of individual carbon atoms of a sample molecule
in the test data set with the CAM attribution weights assigned
to these carbon atoms for which the comparison is displayed in
Figure 6. The CAM attribution weights, which are energy-
dependent and hence appear as spectra in themselves, exhibit a
reasonably accurate alignment with the main features of
localized XAS spectra, although they do not entirely replicate
all the peaks. In particular, CAM attribution weights of the
carbon C1 next to the hydroxy group appear to show
discrepancies, which can be due to the attribution technique
or weaknesses in the model’s explainability concerning this
specific atom. Although training a GNN model using localized
XAS spectra to predict the spectra of individual carbon atoms
is achievable and could potentially enhance the alignment
between TDDFT and ML in terms of spectral shape and CAM
attribution, generating a data set with atom-localized spectra
through various methods requires more computational
resources. CAM attributions of atoms from a complete
molecular spectrum can provide an opportunity for creating

a data set of localized spectra based on arbitrary XAS methods.
Moreover, since the ultimate goal is to compare the predicted
XAS to experimental spectra, training a model based on entire
XAS spectra in certain energy ranges is more favorable.
With this rationalization, the next step is to evaluate the

attribution quality overall over the entire data set. Figure 7
shows box plots of the attribution AUC for core and virtual
orbitals of the three GNNs evaluated over the full test data set.
As seen from the figure, the GCN model gives an average
attribution AUC close to 0.5, which means that the model
barely outperforms a random classifier. This combination of
good spectra predictions on the test data, as shown in Figure 3,
and low average attribution AUC value by the GCN model is
in line with a previous study, suggesting that the combination
of near-perfect model performance and low attribution AUC
indicates that the model fails to learn the ground-truth logic.38

In contrast to this, the GNN models with multihead GATv2
and GraphNet layers have a superior agreement with our
developed ground-truth logic, with median values greater than
0.7 for both virtual and core orbitals. As a general trend, we
also observe that the spread of core AUC values is lower across
all models, while the AUC values for virtual orbitals are more
widely spread out, as indicated by the high variances in the
figure. Nevertheless, it should be noted that within the
presented approach we are not able to learn to distinguish
between the more localized core orbitals and the more
delocalized virtual orbitals, which could be useful information

Figure 5. Exploring the correlation between CAM attributions of atoms and transition densities of a peak in the XAS spectrum. CAM attributions
(green) and transition densities of three excitation states are visualized for a sample molecule in the test data set in the bottom part of the figure.
The transition densities highlight the starting C core orbital, which is encircled for better visibility, in the bottom, and above the virtual orbital on
the cyanide group for the two lower-energy peaks and the amide group for the third peak. The overlay of the three transition densities for the core
(red) and the virtual (blue) states are shown on the left side of the close-up spectrum, while on the right side, the CAM of the entire peak is shown.
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for the model to be included. Models that have higher
attribution AUC values for core and virtual orbitals, i.e.,
GraphNet and GATv2, demonstrate a greater ability to
comprehend the contribution of atoms to the excitation
energies of the XAS spectrum. GraphNet models associate and
encode global graph context in addition to the message-passing
on node and edge level, and this perhaps positively influences
CAM attributions, giving them information beyond the local
environment. Given that the peaks in XAS analysis are highly
dependent on the local geometric and electronic structures of
atoms,73,74 incorporating the interdependence of nodes and
the global information on the molecular graph in GNNs, as
done in these models, can facilitate capturing complex
relationships between atomic coordination and specific
excitation states in the XAS spectrum within its ML prediction.
We expect that using multihead GATv2 and GraphNet

architectures as GNNs for learning XAS spectra aligns with
the essential understanding of the delocalized nature of
molecular orbitals, which is crucial for accurate XAS
prediction. Vaswani et al.54 have shown previously that
multihead attention, incorporated in the multihead GATv2
model, can improve the performance of models by enabling
them to attend to different parts of the input molecular graph
simultaneously. Wiegreffe and Pinter75 have additionally
shown that models that use the attention mechanism can
provide better interpretability compared to nonattention
frameworks, since they allow the visualization of which parts
of the input are being attended by each head, making it easier
to understand how the model is making predictions.
Thus, when it comes to XAS analysis, we can infer that the

attention framework, which dynamically assigns importance
weights to nodes surrounding a target node, yields superior

Figure 6. TDDFT (black) and GATv2 (red) predicted C K edge XAS spectra for an entire sample molecule (a). Calculated local XAS spectra
(black) and CAM attribution weights (multiple colors) of individual carbon atoms in the molecule (b).

Figure 7. Attribution AUC score boxplots for the core and virtual orbitals of the three GNN models. The vertical line within the box indicates the
median AUC value on the test data, while the length of the horizontal lines indicates the variance in AUC values for each model. Points beyond this
range are considered outliers.
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attribution values compared to those of the static node-
weighting scheme employed by the GCN framework. More-
over, combinatorial generalization in GraphNets, which
enhances their ability to generalize and perform well on new,
unseen graph structures and tasks, is crucial to their
applicability to XAS predictions in diverse molecular
structures. On the other hand, robustness and generalization
in GraphNet models, which incorporate relational inductive
biases, have achieved improvement compared to traditional

GNNs such as GCNs, over a range of graph classification and
regression tasks.76−78

Robustness of the Explainability Performance of the
GNN Models. Having shown that CAM attributions allow the
explanation of the individual peaks in predicted XAS, the next
task is to determine how robust this explainability is with
respect to the prediction accuracy itself and to the changes in
the data set. To address the influence of prediction quality on
interpretability, we first explored how the attribution AUC

Figure 8. Variation of attribution AUC values for virtual (a) and core (b) orbitals with RSE decile values for three GNN models: GraphNet (green
triangles), GATv2 (red squares), and GCN (blue points).

Figure 9. Impact of a perturbation through the replacement of functional groups. The left side of each row displays alterations in the RSE
distribution for all GNN models when predicting the spectra for unperturbed structures selected from the data set (blue) and the perturbations of
these structures (orange). Additionally, XAS spectra for different exemplary perturbations are shown (right), where a methyl group (highlighted in
the gray circle) is added at different positions. The changed TDDFT spectra are shown in black, and their ML predictions are shown in red.
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scores vary across different RSE values for the three GNN
models. This is performed for each model by first distributing
the molecules of the test data set into ten evenly large groups
based on their RSE values. For these RSE deciles the average
attribution AUC scores are computed and plotted in Figure 8
for both the virtual (a) and the core (b) orbitals. For the
multihead GATv2 (red line) and the GraphNet (green line)
models, the attribution AUC scores decline with increasing
RSE values. The GATv2 sets on at the overall largest AUC of
0.83 (0.70) for the virtual (core) orbitals and then drops
slightly below the GraphNet prediction to a value of about 0.6
(for both models). With the understanding that a larger
counter of the RSE decile means a poorer prediction of the
XAS spectrum, it becomes apparent that large AUC values are
obtained when the overall spectrum prediction itself is reliable
as well. Aligning this observation with the broader knowledge
of quantum chemistry, we can infer that if ML predicts the
spectrum more accurately, its understanding of orbital
contributions improves correspondingly. In contrast, the
GCN model’s average attribution AUC exhibits no variation
across RSE deciles, staying close to the random baseline value
of 0.5. This suggests that the model has a similar level of
understanding of the ground truth for both strong and weak
performances in XAS prediction, which was already explained
by the ML quality of the GCN model in the last section.
The robustness of model predictions (and their interpreta-

tions) usually decreases when there are biases in the training
data set that the model erroneously learns.38 The QM9 data set
is only a small representation of the vast chemical space of
organic molecules and as such is biased toward molecules with
certain functional groups. Furthermore, choosing a random
subset of structures from this data set means that the resulting
structures in the smaller QM9-XAS data set could also be
further biased toward one or several types of functional groups.
To identify whether such biases are learned by the model, one
approach is to analyze the attributions of the model’s
predictions and inspect whether CAM attributions are
allocated to incorrect features of the input.39 In this case, the
robustness of model predictions is tested by looking at how the
model performance varies for predictions across similar

chemical environments. The simplest way of doing so is by
perturbing the chemical space around a molecule, e.g., by
adding one or several functional groups at different places. We
investigate the impact of the addition of one methyl group on
randomly selected molecules from the test data set on both the
attribution AUC and the RSE value obtained with the GNN
models. For these novel 40 perturbed structures, XAS spectra
were calculated as a reference for RSE determination using the
same TDDFT method as above. Adding a methyl group at
different positions in a molecule leads to changes in the
TDDFT spectrum, as well as in the ML predictions as
illustrated in the three right panels of Figure 9. The three GNN
architectures respond differently to this change and give vastly
varying predictions of the new spectrum, as indicated by their
increased RSE values as well. Overall, the ML spectra deviate
significantly from the TDDFT spectra. This difference in
predictions across all molecules is summarized in the left panel
of Figure 9, which illustrates the change in the RSE
performance of the models for the 40 selected structures
before and after perturbation. The RSE distributions of the
unperturbed set of molecules have slightly different shapes for
the different models, but all give mostly the same average RSE
value of approximately 0.03. With the perturbation, the RSE of
the GCN and the GATv2 both shift to an RSE average of 0.18,
while the GraphNet model gives about 0.13. The altered RSE
distributions of the perturbations of these structures clearly
indicate a decrease in model performance for perturbed
molecules, with the GraphNet model demonstrating a superior
performance compared to the others. This difference indicates
that the GraphNet model can generalize better to chemical
environments that are rarely encountered in the data set and
are less susceptible to biases.
The changes in the RSE are significant, even for the

GraphNet model. This change can be attributed to the fact that
when a methyl group is included and replaces a hydrogen
atom, the size of the molecule increases. The largest molecules
within the original QM9-XAS data set consist of a maximum of
nine heavy atoms (C, N, O, F), while the perturbed structures,
on average, contain more than nine heavy atoms. This increase
in molecular size potentially represents outliers to the trained

Figure 10. Attribution accuracy measured after perturbing random structures. (a) One specific molecular example to demonstrate the addition of
−CH3 groups as perturbation along with the change of AUC values according to the GraphNet model. (b) Δ-AUC plots for the perturbed set of
test molecules across the three GNNs.
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model, thereby leading to a decline in performance when
predicting spectra.
Previous studies have demonstrated35,38 that when a model

fails to learn the ground-truth logic, it can result in misplaced
attributions and the misclassification of atoms within the
molecule after perturbations. We therefore now look at how
attribution AUC changes for the spectra of the perturbed
structures when compared with the AUC values of the original
molecules. Figure 10 shows the Δ-attribution AUC across all
the models for the perturbed structures, where the Δ-
attribution AUC is the percentage-difference in the attributions
of the 40 perturbed structures compared to the AUC values of
the unperturbed molecules. While the multihead GATv2
model shows a 30% decline in the attribution AUC of core
orbitals after perturbation, GCN and GraphNet models
experience over 40% change. In the case of virtual orbitals,
GraphNet and multihead GATv2 models decrease by 25% and
30%, respectively, while the GCN model shows a 35% drop.

The drop in relative attributions uniformly across all of the
models aligns with the increase in RSE values for these
molecules, discussed in Figure 9. Such large changes in both
core and virtual orbitals in all GNN models can originate from
the effects of changes in both local and global molecular
features on the spectrum after perturbations which results in
changes in atomic contributions to the peaks in the spectrum.
Hence, while the local environment of an atom, which refers to
the atoms in close proximity to the absorbing atom, strongly
affects the spectral features in the XAS spectrum, the global
environment of that atom and changes caused by perturbations
can also play a significant role in determining the electronic
structure and thus the final XAS spectrum. This is also in line
with previous research which showed that the presence of
long-range interactions between atoms, as well as the
coordination number, chemical nature, and distance of these
neighboring atoms, can have strong influences on the spectral
features, such as the position and width of the XAS peaks.8,79

Figure 11. Evaluating the performance of the GATv2 model with structural distortions for four example molecules of the test set. The panels on the
left give the TDDFT spectra (black) and the predicted spectra (red) for the undistorted case, while distortion is increasing for the three spectra on
the right.
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These findings demonstrate the importance of incorporating
the local and global environment of nodes while learning
structure−property relationships using GNNs.80
In addition, we examine whether the GNN model with best

performance (i.e., GATv2) mimics the changes expected with
structural distortions. To obtain distorted molecules, we
choose a distortion parameter σ ∈ {0.02, 0.05, 0.1} Å to
perturb randomly the atomic coordinates, i.e. in x-, y- and z-
directions, in the respective molecule.81 Figure 11 demon-
strates how the TDDFT calculation and model prediction
changes with respect to different distortion values. Already for
the smallest distortion of only 0.02 Å, the TDDFT spectra
change mostly in peak intensities and slightly in peak positions.
These changes become more pronounced with stronger
distortion. The model’s prediction of small distortions looks
similar to the undistorted one, i.e., predicting the general
features of the spectrum, which, however, results in an
increasing RSE with increasing distortion. For the largest
distortion of 0.1 Å, the model mimics more closely the changes
of the TD-DFT spectra, while the RSE values increase again.
Such changes in XAS spectrum prediction suggest that the
representation of small molecular conformation changes would
require more structural information in node and edge feature
vectors beyond the bond lengths. This could be the atomic
pairwise distances, dihedral angles, etc.

■ CONCLUSION AND DISCUSSION
The aim of this work is to assist in the interpretation of peaks
in X-ray absorption spectra (XAS) using a black-box machine
learning (ML) method, i.e., graph neural networks (GNNs), as
opposed to obtaining such information from purely conven-
tional quantum chemical calculations. Yet, the underlying
ground truth is based on the latter. In order to achieve this, we
implement an explainability technique on various architectures
of GNNs trained on a custom-developed carbon K-edge XAS
data set of 65,000 small organic molecules, denoted as QM9-
XAS, in which the molecules are a subset of the original QM9
data set.
The main difficulty in explaining properties with GNN

models, as complex as the physical origin of peaks in XAS
spectra already is, is the inherent lack of knowledge about the
internal mechanisms of the model and how to correlate the
properties of the model with the knowledge gained from
quantum chemical calculations. We devised an approach that
reflects a chemist’s understanding of the XAS phenomenon as
electronic excitations originating from individual atoms, which
treats the underlying excitations of XAS peaks as a linear
combination of core-to-valence orbital transitions and
calculates the contribution of an individual atom to the
participating core and valence orbitals. This produces atom
labels denoting whether a particular atom contributes to an
XAS peak within a specified energy range, allowing for the
acquisition of the chemical ground truth and assessment of the
extent to which an ML model comprehends the XAS spectra.
The rationale behind peaks observed in ML-predicted XAS

spectra is unraveled via the so-called class activation map
(CAM) attributions, highlighting the importance of individual
nodes (atoms) in a molecular graph to the target peak of the
spectrum. For a quantitative assessment of the graph
attributions, we characterize the true and false positive rates
of CAM attributions by calculating the area under the curve of
the receiver operating characteristic (AUC-ROC), which is
effectively a measure of how well the node attributions match

the atomic contributions from the ground truth. Through this
comparison between the chemical ground truth, i.e., here the
core-to-valence orbital transitions, and CAM attributions, we
demonstrate that while it is important to consider the overall
performance of the GNN model in accurately predicting XAS
features, the degree of explainability of the different
architectures of GNN models differentiates them. We find
that GNN models such as GraphNet and multihead GAT
layers, which are in principle able to capture both the local and
the more global chemical environment of an atom in a
molecule, not only perform well in their spectra predictions but
also the explanations obtained from these models are
consistent with the quantum chemical interpretation of XAS.
To examine model robustness, we add a methyl group as a

perturbation to a random set of molecules of the test data set
of QM9-XAS. A decrease in performance is observed for all
GNN models, with the GraphNet model showing the least
decrease in performance, as assessed by the increase in relative
spectral error (RSE). We suspect that the differences in the
learning mechanisms between the three GNN architectures
used have a significant effect on the changes in the RSE
distribution and AUC attributions. The observed changes in
attribution AUC highlight the limitations of relying only on the
prediction accuracy obtained on a test data set to evaluate the
performance of a model.
In conclusion, the approach presented here provides a recipe

for incorporating explainability into GNN models using
custom-generated data, which provides insight into the
physical origin of spectroscopic predictions. Although the
GNN models in this work are trained to predict the entire XAS
spectrum, the model’s attributions provide an opportunity to
obtain some insights into local XAS spectra, i.e., for individual
carbon atoms, with cost-effective computational resources.
While our framework was demonstrated for carbon K-edge
XAS prediction, the approach can be easily extended to other
energy regimes, such as nitrogen and oxygen edges of
molecules and metal complexes or even other spectroscopic
techniques. Further, since this approach relies on theoretical
data obtained from quantum chemical calculations, it can also
be used to obtain ground-truth data for models trained on
experimental data.
Direct comparison of predictions made in this approach to

experimental spectra is challenging due to several factors
influencing the experimental observations including solvent
effects, experimental conditions like temperature and pressure,
and structure-determining factors such as coexistence of
multiple metastable conformers contributing to the exper-
imental spectra. Incorporating these effects is often not so
trivial using the existing theoretical approaches, and thus,
corrections to theoretical spectra are necessary, often done on
a case-by-case basis, depending on the molecular system and its
environment. Considering the configurational phase space of
the molecule in data set generation for training the model is
one of the ways one can improve the discrepancy between a
model’s prediction and experimental spectra. For large
molecular structures such as proteins and nanoparticles,
computation of spectra at ab initio level of theory is often a
challenge, although their XAS spectra can give insights into
their different local environments.
While traditionally these have been tackled by the use of

fingerprints determined on an ad-hoc basis, we believe that the
development of more sophisticated and efficient machine
learning frameworks, while maintaining explainability, offers a
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promising avenue for predicting spectra at low costs as well as
getting insights into local molecular environments.
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