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Abstract

Using the harmonic superspace background field formulation for general Ds4, Ns2 super Yang-Mills theories, with
matter hypermultiplets in arbitrary representations of the gauge group, we present the first rigorous proof of the Ns2
non-renormalization theorem; specifically, the absence of ultraviolet divergences beyond the one-loop level. Another simple
consequence of the background field formulation is the absence of the leading non-holomorphic correction to the low-energy
effective action at two loops. q 1998 Published by Elsevier Science B.V. All rights reserved.

There are two basic formulations of the Ns2, Ds4 pure super Yang-Mills theory in terms of uncon-
Ž .strained superfields. The first conventional formulation, which was developed at the linearized level by

w x w xMezincescu 1 and then extended to the full nonlinear theory by Koller and Howe, Stelle and Townsend 2,3 ,
4 <8 M m a i i a a˙Ž .makes use of the conventional Ns2 superspace R parametrized by z ' x ,u ,u where u su . Thei a i˙

i j i j Ž i j.Ž .unconstrained prepotential of this theory, U z , is an isovector real superfield, U sU sU , taking itsi j

values in the Lie algebra of the gauge group. In this approach, the Ns2 super Yang-Mills theory possesses a
w x Ž .non-trivial gauge invariance with an infinite degree of reducibility 4 . The second harmonic formulation,

w x 4 <8 2developed by GIKOS 5 , makes use of the Ns2 harmonic superspace R =S . This approach extends the
2 Ž . Ž .conventional superspace by the two-sphere S sSU 2 rU 1 parametrized by harmonics; that is, group

elements

y q q qj qi y qi yu , u gSU 2 , u s´ u , u su , u u s1 . 1Ž . Ž .Ž .i i i i j i i

qqŽ .The unconstrained prepotential of this theory is an analytic real Lie-algebra valued superfield V z ,u . This
superfield is defined over the analytic subspace of the harmonic superspace parametrized by the variables

1 Alexander von Humboldt Research Fellow. On leave from Department of Quantum Field Theory, Tomsk State University, Tomsk
634050, Russia.
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MM m qa q q yz ' x ,u ,u , u ,u , 2Ž .ž /A a i j˙

where the analytic basis in the subspace is defined by

m m Ž i m j. q y " " i " " ix sx y2iu s u u u , u su u , u su u . 3Ž .A i j a i a a i a˙ ˙

In this approach the Ns2 super Yang-Mills theory is an irreducible gauge theory.
Because of the infinitely reducible gauge structure of Ns2 super Yang-Mills theory formulated in

conventional superspace, its quantization cannot be carried out using the Faddeev-Popov prescription and should
w x Žbe based on more powerful quantization techniques, such as the Batalin-Vilkovisky method 6 even this latter

.scheme is literally applicable to finitely reducible gauge theories only . To the best of our knowledge, the
Batalin-Vilkovisky quantization of the theory has never been utilized, in this context, to derive a consistent

w xsuperfield effective action. Instead, the two attempts to quantize this theory, undertaken in 3,7 , were based on a
modified Faddeev-Popov prescription, which has not been shown to be a consistent quantization scheme.

w xFurthermore, although the Ns2 background field method presented in 3 has played a significant role in
understanding the general structure of extended supersymmetric theories, this approach is very complicated from
the technical point of view and is not suitable for carrying out actual quantum computations. It is disturbing,

Ž w xtherefore, that the original proof of the famous Ns2 non-renormalization theorem see, for example, 8,9 and
.references therein assumes not only the existence of an unconstrained classical formulation in conventional

superspace, but also a consistent formulation of the superfield Feynman rules in this superspace which, as we
have seen, has yet to be developed. An indirect proof of the Ns2 non-renormalization theorem, based on an
explicit calculation of the one-loop Ns2 beta function and the application of anomalies considerations, was

w xpresented in 10 . A different approach to quantum calculations in Ns2 supersymmetric theories is to
w xreformulate them in terms of Ns1 superspace 11 , and then to use the usual Ns1 supergraph techniques or

instanton methods. Here, too, there are fundamental problems. To begin with, in this approach, the second
supersymmetry is hidden. More importantly, it is far from clear that the regulators used in this approach respect
the Ns2 supersymmetry. Hence, quantum corrected Greens functions may not necessarily be Ns2 supersym-
metric. It follows that, at the very least, the inherent mechanisms of the miraculous cancellations of ultraviolet
divergences are not manifest. It has also yet to be proven that this technique preserves Ns2 supersymmetry to
all loop levels in quantum corrections. We conclude that the Ns2 non-renormalization theorem requires more
careful justification than has previously appeared in the literature. Recently, the first examples of quantum
calculations with manifest Ns2 supersymmetry have been given within the context of harmonic superspace
w x12,13 . In this paper, we will use these new techniques to give a rigorous proof of the Ns2 non-renormaliza-
tion theorem, as well as to establish the absence of the leading finite non-holomorphic correction at the two-loop
level.

w xIt has been known for a long time 5,14 that the conventional superfield formulation of the Ns2 super
Yang-Mills theory is simply a gauge fixed version of that theory in the harmonic superspace. More precisely, if

qqŽ . yyŽ .one expresses the analytic prepotential V z ,u in terms of an unconstrained superfield U z,u over
4 <8 2 Ž .R =S and similarly for the analytic gauge parameter

4qq q yy yy Ž i j. y y Ž i jk l . q q y yV z ,u s D U z ,u , U z ,u sU z u u qU z u u u u q PPP 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .i j i j k l

i jŽ . yyŽ .then the original gauge freedom can be used to gauge away all but the U z components of U z,u ; the
i jŽ .remaining superfield U z being exactly Mezincescu’s prepotenial. Since the harmonic formulation of the

Ns2 super Yang-Mills theory is an irreducible gauge theory, it can, unlike the conventional formulation, be
w xproperly quantized using the standard Faddeev-Popov prescription 15 . In the harmonic formulation, we simply

have none of the quantization problems that are inevitable in the conventional superspace approach. Moreover,
harmonic superspace allows us to describe matter hypermultiplets in arbitrary representations of the gauge group

w xin terms of unconstrained analytic superfields 5,16 . The above remarkable features make the harmonic
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formulation unique and, in principle, indispensable for the study of the quantum aspects of Ns2 super
Yang-Mills theories.

w xIn a recent paper 17 , we have presented the background field method for general Ns2 super Yang-Mills
theories in harmonic superspace. The purpose of this paper is to show that this method makes it possible to

Ždevelop a covariant Ns2 diagram technique, very much like the well known Ns1 supergraph techniques see
w x .8,9,18 for a review , and, for the first time, to rigorously prove the Ns2 non-renormalization theorem. In
addition, the harmonic superspace background field method allows us to obtain some important results
concerning the finite structure of the low-energy effective action at higher loops.

The harmonic formulation is naturally compatible with two pictures used to describe the Ns2 gauge
w xsupermultiplet 5 , and they prove to be very useful both at the classical and quantum levels. In the first picture,

called the t-frame, the connection is u-independent. The gauge covariant derivatives read

qq yy 0 i a a a˙DD ' DD , D , D , D , DD ' DD , DD , DD sD q i A , A sA z T 5Ž . Ž .Ž . Ž .M M M m a i M M M M

and satisfy the algebra

i i i j i jDD , DD sy2id DD , DD , DD s2i´ ´ W , DD , DD s2i´ ´ W ,� 4 ˙ ˙½ 5 ½ 5a a j j a a a b a b a i b j a b i j˙ ˙ ˙ ˙

"" 0D , DD s D , DD s0 . 6Ž .M M

i a a˙Ž .Here D ' E , D , D are the flat covariant derivatives, T the generators of the gauge group and theM m a i
w xharmonic derivatives look like 15

E E E
"" " i 0 qi yiD su , D su yu . 7Ž .. i qi yiE u E u E u

Ž .The covariant derivatives and a matter superfield multiplet C z,u transform under the gauge group as follows:

DD
X se it , DD eyit , C

X se itC , tst a z T a 8Ž . Ž .M M

with t a being real u-independent unconstrained parameters. The existence of the second picture, called the
" " i " " iŽ .l-frame, follows from the algebra 6 . Introducing DD su DD and DD su DD , one observes that thea i a a i a˙ ˙

q qoperators DD and DD anticommute. Hencea ȧ

q yi V q i V q yi V q i V a aDD se D e , DD se D e , VsV z ,u T , 9Ž . Ž .a a a a˙ ˙
aŽ . a Ž .for some Lie-algebra valued superfield VsV z,u T , called the bridge. Superfield V has zero U 1 -charge,

K0 a a a w xD V s0, and is real, V sV , with respect to the analyticity-preserving conjugation 5 , which we denote
here by K . As a consequence, one can define new superfield types; that is, covariantly analytic superfields
constrained by

q Žq . q Žq .DD F sDD F s0 . 10Ž .a ȧ

Žq .Ž . Ž . 0 Žq . Žq .Here F z,u carries U 1 -charge q, D F sqF , and can be represented as follows:

Žq . yi V Žq . q Žq . q Žq .F se f , D f sD f s0 , 11Ž .a ȧ

Žq .Ž . Ž .with f z ,u being an unconstrained superfield over the analytic subspace 3 . The V possesses a richer
gauge freedom than the original t-group. Its transformation law reads

e i V
X

se i le i V eyit , lsla z ,u T a , 12Ž . Ž .
aŽ .where the unconstrained analytic gauge parameters l z ,u are real with respect to the analyticity-preserving

K a aconjugation, l sl . The l-frame is defined by

DD ™= se i V DD eyi V , C™C se i VC . 13Ž .M M M l
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The transformation laws of the gauge covariant derivatives and matter superfields read

X i l yi l X i l= se = e , C se C . 14Ž .M M l l

In the l-frame we have

q q q q 0 0 "" i V "" yi V "" ""= sD , = sD , = sD , = se D e sD q iV , 15Ž .a a a a˙ ˙

Ž . Žq . Žq . qq qqa aand the covariantly analytic superfield 11 turns into F sf . The connection V sV T proves to belKqqa qqa q qq q qqa real analytic superfield, V sV , D V sD V s0. This superfield turns out to be the singlea ȧ

unconstrained prepotential of the pure Ns2 SYM theory and all other objects are expressed in terms of it. In
w xparticular, the action of the theory reads 19

n qq qq`1 yi V z ,u PPP V z ,uŽ . Ž . Ž .1 n12S s tr d z du PPP du . 16Ž .ÝH HSYM 1 n q q q q q q2 n u u u u PPP u ug Ž . Ž . Ž .1 2 2 3 n 1ns2

Ž . w xThe rules of integration over SU 2 , as well as the properties of harmonic distributions, are given in Refs. 5,15 .
In general, the gauge superfield is coupled to Ns2 matter multiplets. They are described by the

Kq qŽ . Ž . Ž . w xq-hypermultiplet q z ,u ,q z ,u and the v-hypermultiplet v z ,u 5 , which are unconstrained analytic
superfields and transform in complex R and real R representations of the gauge group respectively. Theq v

massless hypermultiplet action is given by

K 1Žy4. q qq q Žy4. qq T qqS sy du dz q = q y du dz = v = v , 17Ž .H HMAT 2

Ž .where the integration is over the analytic subspace 2 . The case when some hypermultiplets are massive
corresponds to switching on an extra coupling to a covariantly constant Ns2 super Yang-Mills background
w x12,20,21 . The hypermultiplet mass terms can also be obtained via the Scherk-Schwarz dimensional reduction

w xfrom six dimensions 22,23,13 .
In the framework of the background field method, one splits the gauge superfield Vqq into background Vqq

and quantum Õqq parts

Vqq™Vqqqg Õqq . 18Ž .
Ž .The theory 16 is quantized by imposing background covariant gauge conditions in order to obtain a gauge

w xinvariant effective action. This procedure has been carried out in 17 . The theory possesses two types of
Ž . Ž .unconstrained analytic ghosts; the anticommuting Faddeev-Popov ghosts b z ,u , c z ,u and the commuting

Ž .Nielsen-Kallosh ghost f z ,u , all in the adjoint representation of the gauge group. The quantum action reads

S sS qS , 19Ž .QUANT 2 INT

where

L 2 21 1Žy4. qq qq Žy4. qq Žy4. qqS sy tr du dz Õ I Õ q tr du dz b = cq tr du dz f = f , 20Ž . Ž . Ž .H H H2 l2 2

ny2 qq qq` yi g Õ z ,u PPP Õ z ,uŽ . Ž . Ž .t 1 t n12S sytr d z du PPP duÝH HINT 1 n q q q q q qn u u u u PPP u uŽ . Ž . Ž .1 2 2 3 n 1ns3

Žy4. qq w qq xy i g tr du dz = b Õ ,c . 21Ž .H
Here Õqq denotes the background t-transform of Õqq

t

Õqqseyi V Õqqe i V , 22Ž .t



( )I.L. Buchbinder et al.rPhysics Letters B 433 1998 335–345 339

L 2and I the l-transform of the analytic d’Alembertianl

L 4 21 q yy
Isy DD D , 23Ž . Ž . Ž .2

which takes the second-order form

i i i iL m qa y q ya qa q yy qa y˙
IsDD DD q DD W DD q DD W DD y DD DD W D q DD , DD WŽ . Ž .ž /m a a a a˙2 2 4 8

1 � 4q W ,W , 24Ž .2

when acting on the covariantly analytic superfields. Using the Bianchi identities

qa q q qa qa y q ya˙ ˙DD DD WsDD DD W , DD , DD Ws DD , DD W , 25Ž .a a a a˙ ˙
L

one can present I in a slightly different form. The effective action is defined by the path integral representation
w x17

1

L 2i G i S qq i SSY M SYM QUANTe se DDÕ DDb DDc DDf Det I e , 26Ž .H ž /Ž4,0. l

L

where Det I corresponds to the following functional integral over anticommuting analytic superfieldsŽ4,0. l
Ž4.Ž . Ž .r z ,u and s z ,u :

L LŽ4. Žy4. Ž4.Det I s DDr DDs exp i tr du dz r I s . 27Ž .H HŽ4,0. l l½ 5
Ž .The background-quantum splitting 18 should be accompanied by similar splitting for the matter superfields.

Within the background field method, the effective action is described by the vacuum diagrams only, and the
propagators and vertices are background dependent. The ghost superfields originate in the internal lines. In

Ž .accordance with 20 , the Nielsen-Kallosh ghost contributes to the one-loop effective action only. For the
general Ns2 SYM theory with classical action S qS , our strategy will consist of inserting all termsSYM MAT

from S with the matter background superfields into S .QUANT INT

The one-loop correction should be investigated separately, since it is given in terms of functional
Ž1.w qqxdeterminants of special differential operators. The purely Yang-Mills part G V of the one-loop effective

action G Ž1. is given by

i i i L2 2Ž1. qq qq qq qqw xG V sS q i Tr ln = q Tr ln = y Tr ln = q Tr lnIŽ . Ž . Ž .SYM R R ad Ž2 ,2. lq v2 2 2

i L

y Tr lnI . 28Ž .Ž4,0. l2

Here the second line includes the contributions from the matter hypermultiplets and the ghost superfields,
respectively. The first term in the third line comes from the functional integral

1
y iL L2 qq Žy4. qq qqDet I s DDÕ exp y tr du dz Õ I Õ . 29Ž .H Hž /Ž2,2. l l½ 52

Ž .One possible prescription for calculating the functional determinants in the second line of 28 has been given in
w xour paper 12 . These one-loop contributions to the effective action contain all information about the ultraviolet

2 1q 4 q 2 q 2 " 2 " a " " 2 " " ȧŽ . Ž . Ž . Ž . Ž .We use the notation DD s DD DD , DD s DD DD , DD s DD DD and similar notation for the flat deriva-a a16 ˙
tives.
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divergences of the general Ns2 SYM theory, since the one-loop supergraphs with matter external lines, as
well as all the higher loop supergraphs, will be shown to be ultravioletly finite. The functional determinants in

Ž .the third line of 28 can produce only ultravioletly finite corrections to the effective action. Therefore we are
not going to discuss here the one-loop effective action and concentrate our attention only on higher-loop
corrections to effective action.

Ž . Ž . Ž .From Eqs. 17 and 20 , one can derive the superfield propagators in the l-frame all indices are suppressed

6

i 4qq qq q 12 Žy2,2.² :Õ 1 Õ 2 sy D d z yz d u ,uŽ . Ž . Ž . Ž .� 4Ž .L 1 1 2 1 2
I l

6i 412 Žy2,2. qsy d z yz d u ,u D ,Ž . Ž .� 4 Ž .L 1 2 1 2 1
I l

6

6i 14 4Kq q q i V Ž1. 12 yi V Ž2. q² :q 1 q 2 s D e d z yz e D ,Ž . Ž . Ž .Ž . Ž .L 1 1 2 23½ 5q q
I u uŽ .l 1 2

6

6y yi u uŽ .1 24 4T q i V Ž1. 12 yi V Ž2. q² :v 1 v 2 sy D e d z yz e D ,Ž . Ž . Ž .Ž . Ž .L 1 1 2 23q q½ 5
I u uŽ .l 1 2

6

6y yi u uŽ .1 24 4q i V Ž1. 12 yi V Ž2. q² :c 1 b 2 sy D e d z yz e D . 30Ž . Ž . Ž . Ž .Ž . Ž .L 1 1 2 23q q½ 5
I u uŽ .l 1 2

Here the propagators involve the background bridge V , which is a non-local function of the gauge superfield
Vqq. Their structure becomes much simpler in the t-frame

6

i 4qq qq q 12 Žy2,2.² :Õ 1 Õ 2 sy DD d z yz d u ,u ,Ž . Ž . Ž . Ž .� 4Ž .Lt t 1 1 2 1 2
I

6

6i 14 4Kq q q 12 q² :q 1 q 2 s DD d z yz DD ,Ž . Ž . Ž .Ž . Ž .Lt t 1 1 2 23½ 5q q
I u uŽ .1 2

6

6y yi u uŽ .1 24 4T q 12 q² :v 1 v 2 sy DD d z yz DD ,Ž . Ž . Ž .Ž . Ž .Lt t 1 1 2 23q q½ 5
I u uŽ .1 2

6

6y yi u uŽ .1 24 4q 12 q² :c 1 b 2 sy DD d z yz DD . 31Ž . Ž . Ž . Ž .Ž . Ž .Lt t 1 1 2 23q q½ 5
I u uŽ .1 2

It is seen that in the t-frame, the propagators depend on the gauge superfield Vqq only via the u-independent
Ž .connection A specifying the gauge-covariant derivatives 5 . This property of the propagators in the t-frameM

turns out to be very useful for the investigation of the divergence structure.
We now present the proof of the Ns2 non-renormalization theorem. Consider the loop expansion of the

effective action within the context of the background field method. As is well known, the effective action in this
Ž .framework is given by vacuum diagrams that is, diagrams without external lines with background field

Ž w x.dependent propagators and vertices see, for example 30 . In our case, the corresponding propagators are
Ž . Ž . Ž . Ž .defined by Eqs. 30 and 31 , and the vertices can be read off from Eqs. 21 and 17 . It is evident that any
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such diagram can be expanded in terms of background fields, and leads to a set of conventional diagrams with
an arbitrary number of external legs. To obtain the propagators and vertices for these conventional diagrams, we

Ž . Ž . Ž . Ž .should switch off the background fields in Eqs. 30 , 31 , 21 and 17 . As a result, we arrive at conventional
w xharmonic supergraphs, the fundamentals of which were formulated in Ref. 15 . The third ghost f completely

decouples. We now discuss some useful features of the above supergraphs.
Ž . Ž .As follows from Eqs. 17 and 21 , the gauge superfield vertices are given by integrals over the full

superspace, while the matter vertices and the Faddeev-Popov ghosts vertices are given by integrals over the
Ž . Ž . Ž q. 4analytic subspace. Note, however, that propagators 30 and 31 contain factors of D , which can be used to

transform integrals over the analytic subspace into integrals over the full superspace if we make use of the
identity

4Žy4. q 12du dz D LLs d z du LL . 32Ž . Ž .H H
Ž q. 4The cost of doing this is, as a rule, the removal of one of the two D -factors entering each matter and ghost

Ž .propagator 30 . There is, however, one special case. Let us consider a vertex with two external v-legs, and
start to transform the corresponding integral over the analytic subspace into an integral over the full superspace.

Ž q. 4 Ž .To do this, we should remove the factor D from one of the two gauge superfield propagators 30
associated with this vertex. As a result of transforming all integrals over the analytic subspace into integrals over

Ž q. 4the full superspace, each of the remaining propagators will contain, at most, one factor of D . Some
applications of this procedure to the calculation of concrete harmonic supergraphs were considered in Refs.
w x15,12 . Thus, any supergraph contributing to the effective action is given in terms of the integrals over the full
Ns2 harmonic superspace. Since this conclusion is true for each conventional supergraph in the expansion of a
given background field supergraph, we see that an arbitrary background field supergraph is also given by
integrals over the full Ns2 harmonic superspace. This is in complete analogy with Ns1 supersymmetric field
theories, where an arbitrary supergraph contributing to the effective action in the background field method

Žcontains only integrals over the full Ns1 superspace, but not over the chiral subspace see, for example
w x.31,8,9,18 .

Once we have constructed the supergraphs with all vertices integrated over the full Ns2 harmonic
superspace, we can perform all but one of the integrals over the u ’s, step by step and loop by loop, due to the

8Ž . Ž . Ž q. 4spinor delta-functions d u yu contained in the propagators 30 . To do this, we remove the D -factorsi j

acting on the spinor delta-functions in the propagators by making an integration by parts. This allows one to
Ž q. 4obtain spinor delta-functions without D -factors. One can then perform the integrals over the u ’s. We note

Ž q. 4that in the process of integration by parts, some of the D -factors can act on the external legs of the
supergraph. To obtain a non-zero result in the case of an L-loop supergraph, we should remove 2 L factors of
Ž q. 4 w xD attached to some of the propagators using the identity 15

4 4 48 q q 8 q q 8d u yu D D d u yu s u u d u yu . 33Ž . Ž . Ž . Ž .Ž . Ž . Ž .1 2 1 2 1 2 1 2 1 2

Ž w x.explicit examples of this procedure can be found in Refs. 15,12 . Thus, any supergraph contributing to the
effective action is given by a single integral over d8u . We see again the complete analogy, at each step, with

Ž w x.Ns1 supersymmetric field theories see, for example 31,8,9,18 .
The next step in our investigation is the calculation of the superficial degree of divergence for the theory

under consideration. Let us consider an L-loop supergraph G with P propagators, N external matter legsM AT

and an arbitrary number of gauge superfield external legs. We denote by N the number of spinor covariantD

derivatives acting on the external legs as a result of integration by parts in the process of transformating the
8 Ž .contributions to a single integral over d u . The superficial degree of divergence v G of the supergraph G can

readily be found
1 1

v G s4Ly2 Pq 2 PyN y4L y N syN y N . 34Ž . Ž . Ž .MAT D MAT D2 2
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Here 4L is the contribution of the integrals over momenta, y2 P comes from the factors I

y1 contained in the
Ž q. 4propagators and 2 PyN is the contribution of the factors D associated with the propagators. We shouldM AT

Ž q. 4 Ž .note that, at least, one of the two D -factors in each matter and ghost superfield propagator 30 was used to
12 Ž .restore the full Ns2 harmonic superspace measure d zdu. It follows that each of the propagators 30

Ž q. 4 Ž .effectively has, at most, one factor of D , leading to the contribution 2 P in Eq. 34 . The contribution y4L
Ž q. 4Ž q. 4 Ž .arises from the fact that the factors D D in the propagators were removed using equation Eqs. 33 in1 2

Ž q. 4each of the L loops. However, if the supergraph has external matter legs, the actual number of D factors in
the propagator will be less then we counted above. Let us start with two examples given in Fig. 1 and Fig. 2.

Here the encircled v means a vertex corresponding to the integral over the analytic subspace and v means
the same vertex transformed into an integral over the full superspace. The solid line corresponds to a matter

Ž q. 4superfield propagator. Fig. 1 shows that, in the process of the transformation, we removed all D -factors
Ž q. 4from the gauge propagators. Fig. 2 shows that, in process of transformation, we removed two factors of D

from the matter propagator. These examples illustrate the general situation that each two external matter legs
Ž q. 4take away one D -factor from the integrand. Indeed, let us consider a chain of propagators which ends at

two external qq- or v-legs. Taking into account that any interaction in the theory under consideration
necessarily includes gauge superfields, one observes that each of the above chains contains a number of vertices
which is larger than the number of matter propagators by one. As a result, after restoring the full measure, we

Ž q. 4get the number of remaining D -factors to be equal to the number of propagators minus one. This means that
Ž q. 4the two external matter legs take away one factor of D from the integrand. This result explains the term

Ž .yN in Eq. 34 . In the process of integration by parts in order to restore the full measure, some of the spinorM AT

derivatives can act on the external legs. Hence, they can not influence the power of momentum in the integrand.
1 Ž .This leads to the contribution y N in Eq. 34 . We see immediately that all supergraphs with external matterD2

legs are automatically finite. As to supergraphs with pure gauge superfield legs, they are clearly finite only if
some non-zero number of spinor covariant derivatives acts on the external legs. We will now show that this is
always the case beyond one loop.

The Feynman rules for Ns2 supersymmetric field theories in the harmonic superspace approach have been
Ž .formulated in the l-frame, where the propagators are given by 30 . As we have noted, all vertices in the

background field supergraphs, including the vertices of matter and Faddeev-Popov ghosts superfields, can be
given in a form containing integrals over the full Ns2 harmonic superspace only. To be more precise, this
property is stipulated by the identity in l-frame

L L4 4q qD I sI D . 35Ž . Ž . Ž .l l

Ž q. 4This identity allows one to operate with factors D as in case without background field, and use them to
transform the integrals over the analytic subspace into integrals over the full superspace directly in background

Ž .field supergraphs. Let us consider the structure of the propagators in the l-frame 30 . The background field
Lqq Ž .V enters these propagators via both I and the background bridge V . The form of the propagators 30 hasl

one drawback: if we use this form, we can not say how many spinor derivatives act on the external legs since
the explicit dependence of V on the background field is rather complicated. To clarify the situation when a

Fig. 1.
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Fig. 2.

Žnumber of spinor derivatives act on external legs, we use a completely new in comparison with conventional
w x. Žharmonic supergraph approach 15 step and transform the supergraph to the t-frame after restoring the full

. Ž .superspace measure at the matter and ghost vertices . The propagators in the t-frame are given by 31 ; they
Ž q. 4contain, at most, one factor of DD after restoring the full superspace measure at the matter and ghost

Lqqvertices. The essential feature of these propagators is that they contain the background field V only via the I

q Ž . Ž Ž . Ž ..and DD -factors; that is, only via the u-independent connections A 5 see Eqs. 23 , 24 . But allM
qq w xconnections A contain at least one spinor covariant derivative acting on the background superfield V 5 .M

Therefore, if we expand any background field supergraph in the background superfield Vqq, we see that each
Ž .external leg must contain at least one spinor covariant derivative. Thus, the number N in Eq. 34 must beD

Ž .greater than or equal to one. As a consequence v G <0 and, hence, all supergraphs are ultravioletly finite
beyond the one-loop level. This completes the proof of the non-renormalization theorem.

The background field formulation allows us to prove some important properties of the quantum corrections to
those parts of the effective action which depend on the pure Ns2 Yang-Mills superfield Vqq. As in

w qqxconventional quantum field theory, we can suppose that G V is described in terms of effective Lagrangians.
That is

w qqx 4 4 Žc. 4 8G V s d xd u LL qc.c. q d xd u LL , 36Ž .H Heff effž /
where LL Žc. can be called the chiral effective Lagrangian and LL can be called the general effectiveeff eff

Lagrangian. If the theory under consideration is formulated within the background field method, the effective
Žc.Lagrangians LL and LL should be constructed only from field strengths W and W and their covarianteff eff

Ž .derivatives. Therefore, the effective Lagrangians can be written as follows: LL sH W,W q terms dependingeff
Žc. Ž .on covariant derivatives of W and W and LL sF W q terms depending on covariant derivatives of theeff

Ž . Ž .strengths and preserving chirality, with holomorphic F W and hermitian H W,W functions of the superfield
Žc. Ž .strengths. The chiral effective Lagrangian of the form LL sF W is associated with the leading low-energyeff

w xbehaviour of the effective action and defines the vacuum structure of the theory 24–26,11 . We note that the
Žc. w xeffective holomorphic Lagrangian LL is analogous to the chiral effective Lagrangian in Ns1 theories 27 .

Ž .The general effective Lagrangian of the form LL sH W,W defines the first non-leading corrections to theeff
w xeffective dynamics 28,11,12,29 .

A simple consequence of the background field formulation is that there are no quantum corrections to
Ž .H W,W at two loops in the pure Ns2 super Yang-Mills theory without matter. All two-loop supergraphs

contributing to the effective action within the background field method are given in Fig. 3. Here the wavy line

Fig. 3.
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corresponds to the super Yang-Mills propagator and the dotted line to the ghost propagator. These propagators
Ž . Ž .are given by Eqs. 30 and 31 .

Ž .As we have noted, in order to get a non-zero result in two-loop supergraphs, we should use Eq. 33 twice.
This implies that we should have 16 spinor covariant derivatives to reduce the u-integrals over the full

Ž . Ž .superspace to a single one. All these spinor derivatives come from the propagators 30 and 31 . After we use
Ž q. 4one D -factor from the ghost propagator to restore the full superspace measure, we see that the propagators

Ž q. 4of both gauge and ghost superfields have at most a single factor D . It is evident that the number of these
D-factors is not sufficient to form all 16 D-factors we need in two-loop supergraphs. However, there is another
source of D-factors in supergraphs. Extra D-factors can come from the expansion of the inverse analytic

Ž . Ž .d’Alembertian 24 in a power series of the field-strengths W and W. As can be seen from 24 , the spinor
covariant derivatives enter the analytic d’Alembertian always multiplied by the derivatives of W and W. If we

L L 1mŽ . � 4omit these derivatives, the operator I in 24 takes the form IsDD DD q W,W , and does not contain them 2

spinor covariant derivatives. Therefore, the two-loop supergraphs given in Fig. 3 do not contribute to the
effective action if the covariant derivatives of W and W are switched off. Thus, there are no two-loop quantum

Ž .corrections to the non-holomorphic effective Lagrangian H W,W . It is worth pointing out that this result is
simply a consequence of the Ns2 background field method and does not demand any direct calculation of the
supergraphs. Moreover, this result will be true even if we take into account the two-loop matter contribution to
the effective action depending only on Vqq. This is almost obvious since, after restoring the full superspace
measure, the matter superfield propagators have effectively the same structure as the gauge and ghost superfield
propagators. Another consequence of the Ns2 background field method is a very simple proof of the known

Ž .result concerning the absence of corrections to F W beyond one loop. We will consider this last statement in a
forthcoming paper.

To conclude, we have presented a rigorous and simple proof of the Ns2 non-renormalization theorem
according to which the divergences in Ns2 super Yang-Mills theory with matter are absent beyond one loop.
Our proof was based on two key details. The first is the formulation of the theory in harmonic superspace in
terms of unconstrained superfields. As a result, we have no quantization problems, as compared to the
formulations in conventional Ns2 superspace. The Feynman rules have a simple structure analogous to those

w xin Ns1 supersymmetric theories. Second, the background field method 17 allows one to formulate a
manifestly Ns2 supersymmetric and gauge invariant perturbation procedure for calculating the effective
action. The most important point of our proof was the transformation to the t-frame, where the entire
dependence of the propagators on the background gauge superfield was contained in the covariant derivatives.

The background field method gives the possibility to investigate the structure of the effective action in a very
clear and simple manner. In particular, we have shown, without the necessity of a direct calculation, that there

Ž .are no two-loop corrections to the effective Lagrangian H W,W .
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