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Abstract

The background field method for N =2 super Yang-Mills theories in harmonic superspace is developed. The ghost
structure of the theory is investigated. It is shown that the ghosts include two fermionic real w-hypermultiplets
(Faddeev-Popov ghosts) and one bosonic red w-hypermultiplet (Nielsen-Kallosh ghost), al in the adjoint representation of
the gauge group. The one-loop effective action is analysed in detail and it is found that its structure is determined only by the
ghost corrections in the pure super Y ang-Mills theory. As applied to the case of N = 4 super Yang-Mills theory, realized in
terms of N = 2 superfields, the latter result leads to the remarkable conclusion that the one-loop effective action of the
theory does not contain quantum corrections depending on the N = 2 gauge superfield only. We show that the leading
low-energy contribution to the one-loop effective action in the N=2 SU(2) super Yang-Mills theory coincides with
Seiberg's perturbative holomorphic effective action. © 1998 Elsevier Science B.V.

The background field method is a powerful and convenient tool for studying the structure of quantum gauge
theories. Its main idea is based on the so-called background-quantum splitting of the initial gauge fields into two
parts. the background fields and the quantum fields. To quantize the theory, one imposes the gauge fixing
conditions only on the quantum fields, introduces the corresponding ghosts and considers the background fields
as the functional arguments of the effective action. The gauge fixing functions are chosen to be background field
dependent. As a result, we can find in concrete gauge models a class of gauge fixing functions with the property
that the effective action will be invariant under the initial gauge transformations. The background field method
was originally suggested by De Witt [1,2] and then developed, and applied to concrete theories, by a large
number of authors. The attractive feature of the background field method is that it preserves the manifest gauge
invariance at each step of the loop calculations in quantum gauge theories.
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Formulation of the background field method in N = 1 super Y ang-Mills theory has been given in Ref. [3] and
its applications and generalizations were developed in detail (see [4—7] and also [8—10)]). It turned out that the
background-quantum splitting in N = 1 superfield Y ang-Mills theory and supergravity is a non-trivial procedure
as compared with the conventional Yang-Mills and gravity theories.

Construction of the background field method in extended supersymmetric gauge theories faces a fundamental
problem. The most natural and proper description of such theories should be formulated in terms of a suitable
superspace and unconstrained superfields over it. Therefore, the first step to developing the background field
method in extended supersymmetric theories is a solution of the problem of formulating these theories in terms
of unconstrained superfields.

An approach to constructing the background field method for N= 2 super Yang-Mills theories in the
standard N =2 superspace has been developed in Ref. [11]. Some applications of this approach were
investigated in Refs. [12]. However, in our opinion, the approach of these authors looks very complicated from
the technical point of view and its use for concrete problems should lead to a number of computational
obstacles.

Interest in the quantum aspects of N = 2 super Yang-Mills theories has recently been revived by the seminal
papers of Seiberg and Witten [13] (see [25] for a review), where the non-perturbative contribution to the
low-energy effective action has been calculated. These calculations were based on the general structure of the
low-energy effective action found in Ref. [14] (see also [15]). The problem of the effective action in the N =2
super Yang-Mills theory with matter has recently been studied in Refs. [16—20]. However, all these computa-
tions of the effective action in N =2 super Yang-Mills theories were given in terms of N =1 superfields
without manifest realization of the N = 2 supersymmetry.

The aim of this paper is to construct the background field method for N = 2 super Y ang-Mills theories and
investigate the problem of the effective action in terms of unconstrained N = 2 superfields 2. We consider the
formulation of N =2 super Yang-Mills theory in the harmonic superspace approach [21-24]. This approach
provides a clear understanding of extended supersymmetric theories and opens opportunities to investigate both
classical and gquantum aspects of such theories. As we will see, the background field method formulation of
N =2 super Yang-Mills theory in harmonic superspace is relatively simple. In particular, the structure of
background-quantum splitting here is much more similar to the conventional Yang-Mills theory than to the
N = 1 super Yang-Mills case.

We start with a brief review of the pure N=2 super Yang-Mills (SYM) theory. In standard N =2
superspace with coordinates z™ = (x™,6.%,6,), the gauge invariant action reads [26]

_ 1 d4 d4 2 _ 1 d4 d4__2
%YM—Z—gztrf xd“o W —2—92”/ xd"o W (1)

where W and W are the covariantly chira superfield strength and its conjugate. These strengths are associated
with the gauge covariant derivatives

D= (Dm0, %) =Dy +iAy, Ay=Au(2)T? (2)
satisfying the algebra [26]

(2.5} = ~28/9,5., {90.9)) =256, {é-i,é,;j} = 2igy e,W,

o

(e 4] = 06 T, [ 20T | = 2. 3
Here Dy, =(4,,D},D%) are the flat covariant derivatives, T2 are the generators of the gauge group and

tr(T2T?) =562,

2 We were informed by E. Ivanov that some aspects of the background field formulation for the N = 2 super Yang-Mills theories were
considered by A. Galperin, E. lvanov and E. Sokatchev in unpublished work (private communication).
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The covariant derivatives and a matter superfield multiplet ¢(z) transform as follows
9[(/1 =ei79M e—ir’ go’=e”go (4)
under the gauge group. Here 7= 7% 2)T? and 72=72 are unconstrained real parameters. The set of all
transformations (4) is said to form the 7-group.
To redlizethe N =2 SYM theory as a theory of unconstrained dynamical superfields, we extend the original
superspace coordinates by bosonic ones ||u"|| € SU(2). These bosonic coordinates parametrize the two-sphere

SU(2) /U(D) and extend the superspace to N = 2 harmonic superspace [21]. Introducing the harmonic deriva-
tives [21]

.0 o a o0
Dii:uilaLﬁi’ DO:U+Iau+i_u7Iau—i’ [DO,Dii]=i2Dii, [D++,D—7]ZDO (5)
and defining
Duy=(2uv.2"".2 ~,2°), 2**=D**, 2°=D° (6)

one observes that the operators & |, possess the same transformation law (4) with respect to the r-group as 9,,.
If we now introduce B

D =D, D =T, (7)
then the algebra of covariant derivatives takes the form
(20,98} ={F: 5 ) = {20 .9} =0, (9.5} = ~2ie,W, (T}
(Z.9:)=-{2:.2; =29, [22/=|2".2/
l2+t2;] =2, |2¢.9;] =2} . (8)
The relations in the first line imply
9; — e““D;e‘”, g;— — e—inﬁg—em (9)

for some Lie-algebra valued superfield 02 = Q3 z,u)T? with zero U(1)-charge, D%22 =0, and real, 22 = 02,
with respect to the analyticity-preserving conjugation [21] which we denote here by . They alow one to
define covariantly analytic superfields constrained by

DOV =g P@ =0, (10)
Here @9(z,u) carries U(1)-charge g, D%® = q@¥, and can be represented as follows
P = e—iﬂd)(q) , D; ¢(q) - 5; ¢(q) =0 (11)

with ¢‘P(,,u) being an unconstrained superfield over an analytic subspace of the harmonic superspace [21]
parametrized by £, ={x},0",6;} and u*, where x' =x™ —2i6% " ufu; and 6,* =ut6,, 6,5 =u* ;.

[¢3 o

The (2 possesses a richer gauge freedom than the original m-group. Its transformation law reads
e'" (12)
with an unconstrained analytic gauge parameter A = A3({,,u)T? being real with respect to the analyticity-pre-

serving conjugation, A2 = A% The set of all A-transformations form the so-called A-group [21]. The -group acts
on @@ and leaves ¢ unchanged while the A-group acts only on ¢(@ as follows

&P = (@ (13)
The superfields @@ and ¢'¥ are said to correspond to = and A-frames respectively.

ei ' _ ei/\ei 0
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In the A-frame, the covariant derivatives look like

Vu=ez,e " (14)
In particular
Vi=DS, V:=D, V°=D° V*i=g?Dite ?=DEE+iVEE, (15)

In accordance with (8), the connection V** = V**2T? is a rea analytic superfield, V**2=V*++2 DFV*+=

D, V" *=0, and its transformation law is
V/++=eiAv++e—iA_i ei/\D++e—i/\. (16)
The analytic superfield V™ * turns out to be the single unconstrained prepotential of the pure N = 2 SYM theory

and all other objects are expressed in terms of it. In particular, action (1) can be rewritten viaV*™* as follows
[24]

VT (zZ,u)V T (zu,) ...V ' (zu,)
(uruz)(uzug) - (ugul)

The rules of integration over SU(2) as well as the properties of harmonic distributions are given in Refs. [21,22].
To quantize the theory under consideration we split V** into background V** and quantumo** parts

VSV gt (18)

Then, the original infinitesimal gauge transformations (16) can be realized in two different ways:
(i) background transformations

SVTt= =D A—i[VIT Al = =V A, Sutt=i[A,07"] (19)

(ii) quantum transformations

1 2 (=)
Soym = ?trfdlzzngz T/duldu2 ... du, (17)

1
SVHt=0, 80++=—5V++)\—i[v++,)\]. (20)

It is worth pointing out that the form of the background-quantum splitting (18) and the corresponding
background and quantum transformations (19), (20) are much more analogous to the conventional Yang-Mills
theory than to the N =1 non-abelian SYM model. Our aim now is to construct an effective action as a
gauge-invariant functional of the background superfield V**.

Upon the splitting (18), the classical action (17) can be shown to be given by

1 L

Syml VI T+t ] =Syu[ V] + 4—gtrfd§“4)dUU++D;D+“V\lA + ASyy[vTT V. (21)
Here df ¥ =d*x,d%*d%* and
(—ig) "

o n-2 ++ ++ ++
Uz (Z’ul)UT (ZYUZ)"'UT (Z'un)
A VT = —tr [d¥?z du,du, ... du
e e D O Aty rvey T v wo Py

(22)

W, W, and v+ denote the A- and ~frame forms of W, W and v** respectively
W= 2We i, W =e?We 1?, it=e i,tte?, (23)

The superfield (2 corresponds to the background covariant derivatives constructed on the base of the
background connection V**. The quantum action AS;,,, given in (22) depends on V** via the dependence of
v} on £, the latter being a complicated function of V**. Each term in the action (21) is manifestly invariant
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with respect to the background gauge transformations. The term linear in v in (21) determines the equations
of motion. This term should be dropped when considering the effective action 3.

To construct the effective action, we will follow the Faddeev-Popov Ansatz. Within the framework of the
background field method, we should fix only the quantum transformations (20). Let us introduce the gauge
fixing function in the form

577(4) — D++UT++ — efi.(l( V++U++)ei0 — efiﬂy(zl)ei.(l (24)

which changes by the law
1 _
6577(4)=Ee—|!2{ V**(V**/\Hg[u**,)\])}e'” (25)

under the quantum transformations (20). Eq. (25) leads to the Faddeev-Popov determinant

Ap[v™H V] = Det Vv (Vi +iget™). (26)
To get a path-integral representation for Agp[v**,V* "], we introduce two real analytic fermionic ghosts b and
¢, in the adjoint representation of the gauge group, and the corresponding ghost action

Selbico™ V] =tr [dg{~PdubV* (Ve +ig[vt*.c]). (27)
As aresult, we arrive at the effective action I'syy[V**]in the form

gl TsrmlV' '] = eiSSYM[V**lfgU++9bgceimsw[v** VT Selbor T VT g [ G @) (28)

where f®({,,u) is an external Lie-algebra valued analytic superfield independent of V**, and §[.7 ] is the
proper functional analytic delta-function.

To transform the path integral for I's,\,[V* "] to a more useful form, we average the right hand side in Eq.
(28) with the weight

(u
(u

Here o is an arbitrary (gauge) parameter. In flat superspace, a weight function of this form has been used in
Refs. [22,23]. The functional A[V* "] should be chosen from the condition

(L) o z,uz)} (30)

Aty )
(ufug)’”

i
A[V**]exp{ztrfdlzzduldu2 f@(zu,) i f)) f( z,u2)} (29)
1 2

i
1= A[v++]f@f(‘*)exp{—trfollzzolulolu2 f9(z,u,)
2a
hence
i
AViH] = f@f(“') exp{2—trfd§f‘4)d§2(‘4)duldu2 FO(2,u) A(L,2) FO( §z,u2)} — Det™ /27
(83

(31)

for a special background-dependent operator A acting on the space of analytic superfields with valuesin the Lie
algebra of the gauge group.

% Asiswell known, for calculating the effective action within the oop expansion one really uses the construction ASY,y]= ¥ + ]
—g¥]- S[¥]y, where the linear term is absent (see, f.e., [27]). Here ¥ denotes the set of al fields of the theory and we split
¥ >V + 4, with ¥ the background field and ¢ the quantum one.
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To find Det A we represent it by a functional integral over analytic superfields of the form

Det ‘A= [ DxPDpPexp {i tr f dZ{Pdu, dzf~Pdu, x@(1) A(1,2) p<4>(2)} (32)
and perform the following replacement of functional variables
Sp@
p@ = (Vo Det( S ) = Det(V**)?. (33)
ag

Then we have

tr [dg{™ Pdu,dzg~Odu, x(1) A(1,2) p®(2)

(upuy) 2 1 2
=tr [ d*?zdu,d @ - (DI 2) = —tr [ d¥zdu yP(D~~
r [ d2zdu; du, x| (u;u;)3( 3 0.(2) = Str [d2zdu (D),
= —tr [d{“Pdux® Do (34)
where 4
o) 1 4 2 1 4 2
o= —E(W) (Vo) = —§(D+) (V7). (35)

When acting on the spaces of covariantly analytic superfields, O is equivalent to the second-order differential
operator

[ (P

E( SW)G i (AW )9

- RS i
O =e"”De‘”=9m9m+§(9+“W)9a‘+ 2

T

i _
+ 5 (Z7 W) + W (36)

as a conseguence of the covariant derivative algebra (8).
On the basis of Eqgs. (31-34) one obtains
1

l 5 ~
A[V**]=Det"3(V**)’Det’ 0 . (37)
It can be proved ° (details of the proof will be given somewhere else, see aso [29])
DetO =1. (38)

Therefore, we are able to represent A[V**] by the following functional integral

A[V*H] :f9¢ RECA%S

1
SwloVi+]= - Etrfdg("‘)duV”qSV**qs (39)
with the integration variable ¢ being a bosonic real analytic superfield taking its values in the Lie algebra of the

4 We use the notation (D*)*=1(D*)*(D*)% (D*)?=D*°DZ*, (D*)?=D; D* ¢ and similar notation for the gauge-covariant
derivatives.

® The proof of Eq. (38) is based on the use of a superfield proper-time technique and a special regularization of the harmonic
delta-functions. As is known, such delta-functions are given by Fourier series in harmonics (see Eq. (2.13) in Ref. [22]). We regularize the
harmonic delta-functions by cutting off the series in harmonics at upper limit for afinite integer N, N — « in the end of calculations. Some
calculation details leading to Eq. (38) are given in [29].
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gauge group. The ¢ isin fact the Nielsen-Kallosh ghost for the theory. As aresult, we see that the N=2 SYM
theory is described within the background field approach by three ghosts: the two fermionic ghosts b and ¢ and
the third bosonic ghost ¢. The ghost actions S, and S« given by Egs. (27) and (39) correspond to the known
w-hypermultiplet [21].

Upon averaging the effective action I'g,[V* ] with the weight (29), one gets the following path integral
representation

eilsmlV'l = eiSSVM[VH]f;@u*t@bQCQ(ﬁ giSolv ™" b.c,g V] (40)
where
Sl 0V ] = A8 [0 VT Se[o7 TV T Selbc V]
+Sw[o V] (41)
Here S;e[v**,V**]is the gauge fixing contribution to the quantum action
1 .
Se[vtt V] = —tr[dlzzduld (Uruz) —— 22 (Do (1)) (D5 0t (2))
2 (Ul U2)
1 v (Dot (2 1
= —tr [d®zdu;du, M — —tr [d®zdup (D)% (42)
2a ( Juy ) da
Let us consider the sum of the quadratic part in v** of ASg,, (22) and S5 (42). It has the form
1 1 T(Dofr(2
1+ = trfdlzzdulduzu tr[dg( Ydup*tt Ot (43)
2 (ufuz)®

where we have used Eq. (35). To further simplify the computation, we set & = — 1. We can now write the final
result for the effective action 'y, [V* "]

e lsmlVl = eiSSYM[V++]ng++9bgcg¢ giSolv " b.c,g V] (44)

where action S is as follows
SQ[u“,b,c,(z),V**] =S[v*Tb,c,o VT + S, [vF,b,cVTT] (45)

1 .
S[v**.b,c,p V] =— Etrfdg(-“)oluu++ vt + tr[dg<-4>dub( vt )e

. -4 + 4+ 2
+ ot [drCodug(V ) (46)
n—2 ++ ++
4 T 12 - _Ig) (Zul) (zu,)
Sulv " be V] = [y du, (o) ()
—igtr [d¢ P Tb[v* c]. (47)

Egs. (44)—(47) completely determine the structure of the perturbation expansion for calculating the effective
action I's,,[V™*] of the pure N=2 SYM theory in a manifestly supersymmetric and gauge invariant form.

The generic expressions (44)—(47) open an opportunity to investigate the loop corrections to the effective
action I'syu[V**]. Let us consider the one-loop approximation. In this case the effective action has the
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structure I'gy VT 1= SV 1+ TEMIVT ], where T, [V ] describes the one-loop quantum correc-
tions. The relations (44) and (45) along with Eq. (38) immediately lead to

vl = —i(TrIn( AR R %Trln( v++)2) = - iETrIn( AR L (48)

It is remarkable that even if the relation (38) was not true, TrinO would not enter I" Y[V**] anyway. In such a
case we should start from Eq. (37), keeping DetO intact at all stages, and would obtain for I" P[V**] the
following representation

1 ~ 1 - i
o] = —i(ETrInD - ETrInD) - ETrIn( vEH)2, (49)

As aresult, the whole contribution to the one-loop effective action is stipulated only by the ghost contribution.
Moreover, this ghost contribution differs only in sign from the contribution of a single real w-hypermultiplet, in
the adjoint representation of the gauge group, coupled to the external gauge superfield V* *. The structure of the
effective action of the w-multiplet has been investigated in our previous paper [28] for an abelian gauge group,
and that work is readily extended to the non-abelian case.

We have developed the background field method for the pure N =2 SYM theory. In the genera case, the
classical action contains not only the pure SYM part given by (1) (or, what is equivalent, by (17)), but aso the
matter action of the general form [21]

Suar = — [d¢Pdug” Vg f dZCYduV @V o (50)

describing the matter g-hypermultiplet (g (£, W, g% (s, W) and w-hypermultiplet w({,,u) coupled to the
SYM gauge superfield V**. Our previous considerations can be easily extended to the case of the general
N =2 SYM theory. The only non-trivial new information, however, is the explicit structure of the matter
superpropagators associated with the above action (50). They read as follows

GEY(12) =i <q* (1) 4 (2) >

= - ﬁil( D7 )( D2+)4{64( X, — X,)88( 6, — 65) (u;—i;feiml)eim} (51)
GP9(1,2) =i < w(1) »'(2) >
- -0 D;>“{64<xl—x2>68<el— ) (( ;2)) .m)e_m)} (52
and satisfy the equations
VitGED(1,2) = 83(1.2) (53)
(Vi 7)°GEO(1,2) = —5(19(1,2) (54)

respectively, with O given by (36). Switching off the gauge superfield, the Green’s functions turn into the free
ones obtained in [22]. The Green's functions (51) and (52) are to be used for loop calculations in the background
field approach.

As the simplest application of the techniques developed here, we demonstrate the fact that the one-loop
guantum correction to the effective action of the N =4 SYM theory realized in terms of N = 2 superfields does
not contain contributions depending only on the N = 2 gauge superfield. In N = 2 superspace, this theory is
described by the action

1
Sh-a— —trfd“xd“e W2 - —— trfdg( VAUV oV (55)
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with o therea w-hypermultiplet taking its valuesin the Lie algebra of the gauge group. This action was shown
to possess N = 4 supersymmetry [23] transforming V** and  into each other. We denote by I'[V* ", w] the
effective action of the theory and consider the one-loop correction I'P[V** w]. The contributions to
' O[V** w], which depend only on V**, come from (48) as well from the matter functional integral
ir@ ++ 7-i -4 TVt T o I
el TRV ]=f9we |2g2trfdg( duv * oV , FnSll/lT[VH]:ET”n(VH)z- (56)
But I'G, [V 1and I§R:[V**] exactly cancel each other.

Finally, we would like to discuss the leading low-energy contribution to the one-loop effective action in the
N=2 SU(2) SYM theory with the gauge group spontaneously broken to U(1). Here the one-loop effective
I,V ] reads

IV = —L[Vv] (57)

with I[V* "] the effective action of area w-hypermultiplet in the adjoint representation of SU(2) coupled to
the external gauge superfield V*™ :

i ++ I
gl TulV J=/9¢exp{_5trfdg<4>duv++¢>v++¢>} (58)
where

1
b=0%2, ViTp=D""p+i[V T, ¢], Ta=ﬁa'a, [r3,7°] =iV2£2%°, tr(r%P)=6%.

(59)

Upon the spontaneous breakdown of SU(2), only the U(1) gauge symmetry survives and the gauge superfield
VHt=V**a2 takes the form

V++=V++3’735%+T3. (60)

Here 7** consists of two parts, 7" =7{"+ 77", where 7§* corresponds to a constant strength
7, =const, and 77" isan abelian gauge superfield. It can be proved that the presence of 7¢* leads to the
appearance of mass [77,|° for matter multiplets (see [28]). Now, we have

V++(,‘b1 _ D++¢)l + ‘/E%++¢2' V++¢2 _ D++¢2 _ ‘/E%-H-d)l, V++(,‘b3 _ D++(,‘b3. (61)
Thus ¢> completely decouples. Unifying ¢! and ¢2 in to the complex w-hypermultiplet w = ¢ —ip?, we
observe

Vitw=D""w+iV27" (62)
hence the U(1)-charge of w is e= V2. In our previous paper [28] it was shown that the effective actions of the
charged complex w-hypermultiplet and the charged g-hypermultiplet, interacting with background U(1) gauge
superfield 77, are related by I'[7" "] = 217" "] and the leading contribution to I,[7™ "] in the massive
theory is given by

eZ 2

7’ In— . 63
64m? n M?2 (63)
Here e is the charge of g* (it coincides with the charge of w in the above correspondence), M is the

renormalization scale, and %7~ the chiral superfield strength associated with 7 *. Since in our case e = V2, and
taking into account Eq. (57), we finaly obtain

1 4y4 2 a
167T2fd xd0 w7 IHW

r7++] =[d4xd407(W) tec., FI)=-

Fs(jzz)[wq = (64)
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This is exactly Seiberg’s low-energy effective action [14] found by integrating the U(1) globa anomaly and
using the component analysis (note that Seiberg used the strength ¥ = vV27").

Let us summarize the results. We have considered N = 2 super Yang-Mills theories in harmonic superspace
and formulated the background field method for these theories. For the pure N= 2 SYM theory, the effective
action is given by a path integral over the quantum gauge superfields and the fermionic and bosonic ghosts
corresponding to w-hypermultiplets. This path integral representation allows one to carry out the perturbative
loop calculations in the theory under consideration in a manifestly N = 2 supersymmetric and gauge invariant
manner. The structure of the one-loop contributions to the effective action has been investigated and it has been
shown that the whole one-loop contribution is stipulated only by the ghosts in the form of the effective action of
the fermionic w-hypermultiplet coupled to the externa super Yang-Mills field. This result has been applied to
calculating the one-loop effective action in the N =4 super Yang-Mills theory treated as the N =2 super
Y ang-Mills theory coupled to the w-hypermultiplet in the adjoint representation of the gauge group. Taking into
account the structure of the one-loop effective action in the pure N=2 SYM theory, we conclude that the
one-loop effective action in the N = 4 SYM theory does not contain corrections depending on the N = 2 gauge
superfield only. Finally, we have derived the well-known Seiberg’s low-energy effective action in the harmonic
superspace approach.
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