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Abstract

The background field method for Ns2 super Yang-Mills theories in harmonic superspace is developed. The ghost
structure of the theory is investigated. It is shown that the ghosts include two fermionic real v-hypermultiplets
Ž . Ž .Faddeev-Popov ghosts and one bosonic real v-hypermultiplet Nielsen-Kallosh ghost , all in the adjoint representation of
the gauge group. The one-loop effective action is analysed in detail and it is found that its structure is determined only by the
ghost corrections in the pure super Yang-Mills theory. As applied to the case of Ns4 super Yang-Mills theory, realized in
terms of Ns2 superfields, the latter result leads to the remarkable conclusion that the one-loop effective action of the
theory does not contain quantum corrections depending on the Ns2 gauge superfield only. We show that the leading

Ž .low-energy contribution to the one-loop effective action in the Ns2 SU 2 super Yang-Mills theory coincides with
Seiberg’s perturbative holomorphic effective action. q 1998 Elsevier Science B.V.

The background field method is a powerful and convenient tool for studying the structure of quantum gauge
theories. Its main idea is based on the so-called background-quantum splitting of the initial gauge fields into two
parts: the background fields and the quantum fields. To quantize the theory, one imposes the gauge fixing
conditions only on the quantum fields, introduces the corresponding ghosts and considers the background fields
as the functional arguments of the effective action. The gauge fixing functions are chosen to be background field
dependent. As a result, we can find in concrete gauge models a class of gauge fixing functions with the property
that the effective action will be invariant under the initial gauge transformations. The background field method

w xwas originally suggested by De Witt 1,2 and then developed, and applied to concrete theories, by a large
number of authors. The attractive feature of the background field method is that it preserves the manifest gauge
invariance at each step of the loop calculations in quantum gauge theories.
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w xFormulation of the background field method in Ns1 super Yang-Mills theory has been given in Ref. 3 and
Ž w x w x.its applications and generalizations were developed in detail see 4–7 and also 8–10 . It turned out that the

background-quantum splitting in Ns1 superfield Yang-Mills theory and supergravity is a non-trivial procedure
as compared with the conventional Yang-Mills and gravity theories.

Construction of the background field method in extended supersymmetric gauge theories faces a fundamental
problem. The most natural and proper description of such theories should be formulated in terms of a suitable
superspace and unconstrained superfields over it. Therefore, the first step to developing the background field
method in extended supersymmetric theories is a solution of the problem of formulating these theories in terms
of unconstrained superfields.

An approach to constructing the background field method for Ns2 super Yang-Mills theories in the
w xstandard Ns2 superspace has been developed in Ref. 11 . Some applications of this approach were

w xinvestigated in Refs. 12 . However, in our opinion, the approach of these authors looks very complicated from
the technical point of view and its use for concrete problems should lead to a number of computational
obstacles.

Interest in the quantum aspects of Ns2 super Yang-Mills theories has recently been revived by the seminal
w x Ž w x .papers of Seiberg and Witten 13 see 25 for a review , where the non-perturbative contribution to the

low-energy effective action has been calculated. These calculations were based on the general structure of the
w x Ž w x.low-energy effective action found in Ref. 14 see also 15 . The problem of the effective action in the Ns2

w xsuper Yang-Mills theory with matter has recently been studied in Refs. 16–20 . However, all these computa-
tions of the effective action in Ns2 super Yang-Mills theories were given in terms of Ns1 superfields
without manifest realization of the Ns2 supersymmetry.

The aim of this paper is to construct the background field method for Ns2 super Yang-Mills theories and
investigate the problem of the effective action in terms of unconstrained Ns2 superfields 2. We consider the

w xformulation of Ns2 super Yang-Mills theory in the harmonic superspace approach 21–24 . This approach
provides a clear understanding of extended supersymmetric theories and opens opportunities to investigate both
classical and quantum aspects of such theories. As we will see, the background field method formulation of
Ns2 super Yang-Mills theory in harmonic superspace is relatively simple. In particular, the structure of
background-quantum splitting here is much more similar to the conventional Yang-Mills theory than to the
Ns1 super Yang-Mills case.

Ž .We start with a brief review of the pure Ns2 super Yang-Mills SYM theory. In standard Ns2
M m a iŽ . w xsuperspace with coordinates z ' x ,u ,u , the gauge invariant action reads 26i ȧ

1 1
4 4 2 4 4 2S s tr d xd u W s tr d xd u W 1Ž .H HSYM 2 22 g 2 g

where W and W are the covariantly chiral superfield strength and its conjugate. These strengths are associated
with the gauge covariant derivatives

i a a a˙DD ' DD , DD , DD sD q i A , A sA z T 2Ž . Ž .Ž .M m a i M M M M

w xsatisfying the algebra 26

i i i j i jDD , DD sy2id DD , DD , DD s2i´ ´ W , DD , DD s2i´ ´ W ,� 4 ˙ ˙½ 5 ½ 5a a j j a a a b a b a i b j a b i j˙ ˙ ˙ ˙

j iDD , DD s´ DD W , DD , DD s´ DD W . 3Ž .˙ ˙aa b a b a a a b i a b a i˙ ˙ ˙ ˙

i a a˙Ž .Here D ' E , D , D are the flat covariant derivatives, T are the generators of the gauge group andM m a i
Ž a b. abtr T T sd .

2 We were informed by E. Ivanov that some aspects of the background field formulation for the Ns2 super Yang-Mills theories were
Ž .considered by A. Galperin, E. Ivanov and E. Sokatchev in unpublished work private communication .
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Ž .The covariant derivatives and a matter superfield multiplet w z transform as follows

DD
X se it DD eyit , w

X se itw 4Ž .M M

a a a aŽ .under the gauge group. Here tst z T and t st are unconstrained real parameters. The set of all
Ž .transformations 4 is said to form the t-group.

To realize the Ns2 SYM theory as a theory of unconstrained dynamical superfields, we extend the original
< < .< < Ž .superspace coordinates by bosonic ones u gSU 2 . These bosonic coordinates parametrize the two-spherei

Ž . Ž . w xSU 2 rU 1 and extend the superspace to Ns2 harmonic superspace 21 . Introducing the harmonic deriva-
w xtives 21

E E E
"" " i 0 qi yi 0 "" "" qq yy 0w x w xD su , D su yu , D , D s"2 D , D , D sD 5Ž .. i qi yiE u E u E u

and defining

DD ' DD , DDqq, DDyy, DD0 , DD""sD"" , DD0 sD0 6Ž .Ž .M M

Ž .one observes that the operators DD possess the same transformation law 4 with respect to the t-group as DD .M M

If we now introduce

" " i " " iDD su DD , DD su DD 7Ž .a i a a i a˙ ˙

then the algebra of covariant derivatives takes the form

q q q q q q q y q yDD , DD s DD , DD s DD , DD s0 , DD , DD sy2i´ W , DD , DD s2i´ W ,� 4 � 4� 4˙ ˙ ˙½ 5 ½ 5a b a b a a a b a b a b a b˙ ˙ ˙

q y q y qq q qq qDD , DD sy DD , DD s2i DD , DD , DD s DD , DD s0 ,� 4 � 4a a a a a a a a˙ ˙ ˙ ˙

qq y q qq y qDD , DD sDD , DD , DD sDD . 8Ž .a a a a˙ ˙

The relations in the first line imply

q yi V q i V q yi V q i VDD se D e , DD se D e 9Ž .a a a a˙ ˙
Ka a 0 a a aŽ . Ž .for some Lie-algebra valued superfield VsV z,u T with zero U 1 -charge, D V s0, and real, V sV ,

w xwith respect to the analyticity-preserving conjugation 21 which we denote here by K . They allow one to
define covariantly analytic superfields constrained by

q Žq . q Žq .DD F sDD F s0 . 10Ž .a ȧ

Žq .Ž . Ž . 0 Žq . Žq .Here F z,u carries U 1 -charge q, D F sqF , and can be represented as follows

Žq . yi V Žq . q Žq . q Žq .F se f , D f sD f s0 11Ž .a ȧ

Žq .Ž . w xwith f z ,u being an unconstrained superfield over an analytic subspace of the harmonic superspace 21A
m qa q " m m Ž i m j. q y " " i " " i� 4parametrized by z ' x ,u ,u and u , where x sx y2iu s u u u and u su u , u su u .A A a i A i j a i a a i a˙ ˙ ˙

The V possesses a richer gauge freedom than the original t-group. Its transformation law reads

e i V
X

se i le i V eyit 12Ž .
aŽ . awith an unconstrained analytic gauge parameter lsl z ,u T being real with respect to the analyticity-pre-AKa a w xserving conjugation, l sl . The set of all l-transformations form the so-called l-group 21 . The t-group acts

on F Žq . and leaves f Žq . unchanged while the l-group acts only on w Žq . as follows

f
XŽq .se i lf Žq . . 13Ž .

The superfields F Žq . and w Žq . are said to correspond to t- and l-frames respectively.
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In the l-frame, the covariant derivatives look like

= se i V DD eyi V 14Ž .M M

In particular

q q q q 0 0 "" i V "" yi V "" ""= sD , = sD , = sD , = se D e sD q iV . 15Ž .a a a a˙ ˙
Kqq qqa a qqa qqa q qqŽ .In accordance with 8 , the connection V sV T is a real analytic superfield, V sV , D V sa

q qqD V s0, and its transformation law isȧ

V Xqqse i lVqqeyi l y i e i lDqqeyi l . 16Ž .
The analytic superfield Vqq turns out to be the single unconstrained prepotential of the pure Ns2 SYM theory

Ž . qqand all other objects are expressed in terms of it. In particular, action 1 can be rewritten via V as follows
w x24

n qq qq qq`1 yi V z ,u V z ,u . . . V z ,uŽ . Ž . Ž . Ž .1 2 n12S s tr d z du du . . . du . 17Ž .ÝH HSYM 1 2 n q q q q q q2 n u u u u . . . u ug Ž . Ž . Ž .1 2 2 3 n 1ns2

Ž . w xThe rules of integration over SU 2 as well as the properties of harmonic distributions are given in Refs. 21,22 .
To quantize the theory under consideration we split Vqq into background Vqq and quantum Õqq parts

Vqq™VqqqgÕqq . 18Ž .
Ž .Then, the original infinitesimal gauge transformations 16 can be realized in two different ways:

Ž .i background transformations
qq qq w qq x qq qq w qqxd V syD ly i V ,l sy= l , d Õ s i l,Õ 19Ž .

Ž .ii quantum transformations

1
qq qq qq qqw xd V s0 , d Õ sy = ly i Õ ,l . 20Ž .

g

Ž .It is worth pointing out that the form of the background-quantum splitting 18 and the corresponding
Ž . Ž .background and quantum transformations 19 , 20 are much more analogous to the conventional Yang-Mills

theory than to the Ns1 non-abelian SYM model. Our aim now is to construct an effective action as a
gauge-invariant functional of the background superfield Vqq.

Ž . Ž .Upon the splitting 18 , the classical action 17 can be shown to be given by

1
qq qq qq Žy4. qq q qa qq qq˙w x w x w xS V qgÕ sS V q tr dz du Õ D D W qDS Õ ,V . 21Ž .HSYM SYM a l SYM˙4 g

Žy4. 4 2 q 2 qHere dz sd x d u d u andA

ny2 qq qq qq` yi g Õ z ,u Õ z ,u . . . Õ z ,uŽ . Ž . Ž . Ž .t 1 t 2 t nqq qq 12w xDS Õ ,V sytr d z du du . . . duÝH HSYM 1 2 n q q q q q qn u u u u . . . u uŽ . Ž . Ž .1 2 2 3 n 1ns2

22Ž .
qq qqW , W and Õ denote the l- and t-frame forms of W, W and Õ respectivelyl l t

i V yi V i V yi V qq yi V qq i VW se We , W se We , Õ se Õ e . 23Ž .l l t

The superfield V corresponds to the background covariant derivatives constructed on the base of the
qq Ž . qqbackground connection V . The quantum action DS given in 22 depends on V via the dependence ofSYM

qq qq Ž .Õ on V , the latter being a complicated function of V . Each term in the action 21 is manifestly invariantt
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qq Ž .with respect to the background gauge transformations. The term linear in Õ in 21 determines the equationst

of motion. This term should be dropped when considering the effective action 3.
To construct the effective action, we will follow the Faddeev-Popov Ansatz. Within the framework of the

Ž .background field method, we should fix only the quantum transformations 20 . Let us introduce the gauge
fixing function in the form

FF Ž4.sDqqÕqq seyi V =qqÕqq e i V seyi VFF Ž4.e i V 24Ž . Ž .t t

which changes by the law

1
Ž4. yi V qq qq qq i Vw xdFF s e = = lq i g Õ ,l e 25� 4 Ž .Ž .t g

Ž . Ž .under the quantum transformations 20 . Eq. 25 leads to the Faddeev-Popov determinant

w qq qqx qq qq qqD Õ ,V sDet= = q i gÕ . 26Ž . Ž .FP

w qq qqxTo get a path-integral representation for D Õ ,V , we introduce two real analytic fermionic ghosts b andFP

c, in the adjoint representation of the gauge group, and the corresponding ghost action

w qq qqx Žy4. qq qq w qq xS b ,c ,Õ ,V s tr dz du b= = cq i g Õ ,c . 27Ž .Ž .HFP A

w qqxAs a result, we arrive at the effective action G V in the formSYM

qq qq qq qq qq qqi G wV x i S wV x qq iŽDS w Õ ,V xqS w b ,c ,Õ ,V x. Ž4. Ž4.SY M SYM SYM FPe se DDÕ DDb DDc e d FF y f 28Ž .H
Ž4.Ž . qq w Ž4.xwhere f z ,u is an external Lie-algebra valued analytic superfield independent of V , and d FF is theA

proper functional analytic delta-function.
w qqxTo transform the path integral for G V to a more useful form, we average the right hand side in Eq.SYM

Ž .28 with the weight

i uyuyŽ .1 2qq 12 Ž4. Ž4.w xD V exp tr d zdu du f z ,u f z ,u 29Ž . Ž . Ž .H 1 2 t 1 t 23q q½ 52a u uŽ .1 2

Ž .Here a is an arbitrary gauge parameter. In flat superspace, a weight function of this form has been used in
w x w qqxRefs. 22,23 . The functional D V should be chosen from the condition

i uyuyŽ .1 2qq Ž4. 12 Ž4. Ž4.w x1sD V DDf exp tr d zdu du f z ,u f z ,u 30Ž . Ž . Ž .H H 1 2 t 1 t 23q q½ 52a u uŽ .1 2

hence

i
y1 qq Ž4. Žy4. Žy4. Ž4. Ž4. y1r2w xD V s DDf exp tr dz dz du du f z ,u A 1,2 f z ,u sDet AŽ . Ž . Ž .H H 1 2 1 2 1 1 2 2½ 52a

31Ž .

for a special background-dependent operator A acting on the space of analytic superfields with values in the Lie
algebra of the gauge group.

3 w x w xAs is well known, for calculating the effective action within the loop expansion one really uses the construction DS C ,c sS C qc

w x Xw x Ž w x.yS C yS C c , where the linear term is absent see, f.e., 27 . Here C denotes the set of all fields of the theory and we split
C ™C qc , with C the background field and c the quantum one.
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To find Det A we represent it by a functional integral over analytic superfields of the form

Dety1As DDx Ž4. DDr Ž4.exp i tr dz Žy4.du dz Žy4.du x Ž4. 1 A 1,2 r Ž4. 2 32Ž . Ž . Ž . Ž .H H 1 1 2 2½ 5
and perform the following replacement of functional variables

dr Ž4.
2 2Ž4. qq qqr s = s , Det sDet = . 33Ž . Ž . Ž .ž /ds

Then we have

tr dz Žy4.du dz Žy4.du x Ž4. 1 A 1,2 r Ž4. 2Ž . Ž . Ž .H 1 1 2 2

uyuy 1Ž .1 2 2 212 Ž4. qq 12 Ž4. yys tr d zdu du x D s 2 s tr d zdu x D sŽ . Ž .Ž .H H1 2 t 2 t t t3q q 2u uŽ .1 2

LŽy4. Ž4.sytr dz du x Is 34Ž .H
where 4

1 1L 4 2 4 2q yy q yy
Isy = = sy D = . 35Ž . Ž . Ž . Ž . Ž .

2 2
L

When acting on the spaces of covariantly analytic superfields, I is equivalent to the second-order differential
operator

i i iL Lyi V i V m qa y q ya q qa yy˙ ˙
I se I e sDD DD q DD W DD q DD W DD y DD D W DDŽ . ž / ž /t m a a a˙ ˙2 2 4

i
ya qq DD DD W qWW 36Ž .Ž .a4

Ž .as a consequence of the covariant derivative algebra 8 .
Ž .On the basis of Eqs. 31–34 one obtains

1
1 L2 2qq y qqw xD V sDet = Det I . 37Ž . Ž .2

5 Ž w x.It can be proved details of the proof will be given somewhere else, see also 29
L

Det Is1 . 38Ž .
w qqxTherefore, we are able to represent D V by the following functional integral

w qqx i SNK wf ,VqqxD V s DDf eH
1

qq Žy4. qq qqw xS f ,V sy tr dz du= f= f 39Ž .HNK 2
with the integration variable f being a bosonic real analytic superfield taking its values in the Lie algebra of the

4 1q 4 q 2 q 2 " 2 " a " " 2 " " ȧŽ . Ž . Ž . Ž . Ž .We use the notation D s D D , D s D D , D s D D and similar notation for the gauge-covarianta a16 ˙
derivatives.

5 Ž .The proof of Eq. 38 is based on the use of a superfield proper-time technique and a special regularization of the harmonic
Ž Ž . w x.delta-functions. As is known, such delta-functions are given by Fourier series in harmonics see Eq. 2.13 in Ref. 22 . We regularize the

harmonic delta-functions by cutting off the series in harmonics at upper limit for a finite integer N, N™` in the end of calculations. Some
Ž . w xcalculation details leading to Eq. 38 are given in 29 .
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gauge group. The f is in fact the Nielsen-Kallosh ghost for the theory. As a result, we see that the Ns2 SYM
theory is described within the background field approach by three ghosts: the two fermionic ghosts b and c and

Ž . Ž .the third bosonic ghost f. The ghost actions S and S given by Eqs. 27 and 39 correspond to the knownFP NK
w xv-hypermultiplet 21 .

w qqx Ž .Upon averaging the effective action G V with the weight 29 , one gets the following path integralSYM

representation

e i G SY M wVqqx se i SSY M wVqqx DDÕqqDDb DDc DDf e i SQw Õqq ,b ,c ,f ,Vqqx 40Ž .H
where

w qq qqx w qq qqx w qq qqx w qq qqxS Õ ,b ,c ,f ,V sDS Õ ,V qS Õ ,V qS b ,c ,Õ ,VQ SYM GF FP

w qqxqS f ,V . 41Ž .NK

w qq qqxHere S Õ ,V is the gauge fixing contribution to the quantum actionGF

1 uyuyŽ .1 2qq qq 12 qq qq qq qqw xS Õ ,V s tr d zdu du D Õ 1 D Õ 2Ž . Ž .Ž . Ž .HGF 1 2 1 t 2 t3q q2a u uŽ .1 2

1 Õqq 1 Õqq 2 1Ž . Ž .t t 212 12 qq yy qqs tr d zdu du y tr d zdu Õ D Õ 42Ž . Ž .H H1 2 t t2q q2a 4au uŽ .1 2

qq Ž . Ž .Let us consider the sum of the quadratic part in Õ of DS 22 and S 42 . It has the formSYM GF

1 1 Õqq 1 Õqq 2 1Ž . Ž . Lt t12 Žy4. qq qq1q tr d zdu du q tr dz du Õ I Õ 43Ž .H H1 2 2ž / q q2 a 2au uŽ .1 2

Ž .where we have used Eq. 35 . To further simplify the computation, we set asy1. We can now write the final
w qqxresult for the effective action G VSYM

e i G SY M wVqqx se i SSY M wVqqx DDÕqqDDb DDc DDf e i SQw Õqq ,b ,c ,f ,Vqqx 44Ž .H
where action S is as followsQ

w qq qqx w qq qqx w qq qqxS Õ ,b ,c ,f ,V sS Õ ,b,c ,f ,V qS Õ ,b ,c ,V 45Ž .Q 2 int

1 L 2qq qq Žy4. qq qq Žy4. qqw xS Õ ,b ,c ,f ,V sy tr dz du Õ I Õ q tr dz du b = cŽ .H H2 2

1 2Žy4. qqq tr dz du f = f 46Ž . Ž .H
2

ny2 qq qq` yi g Õ z ,u . . . Õ z ,uŽ . Ž . Ž .t 1 t nqq qq 12w xS Õ ,b ,c ,V sytr d zdu . . . du ÝHint 1 n q q q qn u u . . . u uŽ . Ž .1 2 n 1ns3

Žy4. qq w qq xy i g tr dz du= b Õ ,c . 47Ž .H
Ž . Ž .Eqs. 44 – 47 completely determine the structure of the perturbation expansion for calculating the effective

w qqxaction G V of the pure Ns2 SYM theory in a manifestly supersymmetric and gauge invariant form.SYM
Ž . Ž .The generic expressions 44 – 47 open an opportunity to investigate the loop corrections to the effective

w qqxaction G V . Let us consider the one-loop approximation. In this case the effective action has theSYM
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w qqx w qqx Ž1. w qqx Ž1. w qqxstructure G V sS V qG V , where G V describes the one-loop quantum correc-SYM SYM SYM SYM
Ž . Ž . Ž .tions. The relations 44 and 45 along with Eq. 38 immediately lead to

1 i2 2 2Ž1. qq qq qq qqw xG V syi Trln = y Trln = sy Trln = . 48Ž . Ž . Ž . Ž .SYM ž /2 2
L Ž1. qqŽ . w xIt is remarkable that even if the relation 38 was not true, TrlnI would not enter G V anyway. In such a

L Ž1. qqŽ . w xcase we should start from Eq. 37 , keeping DetI intact at all stages, and would obtain for G V the
following representation

1 1 iL L 2Ž1. qq qqw xG V syi TrlnIy TrlnI y Trln = . 49Ž . Ž .ž /2 2 2

As a result, the whole contribution to the one-loop effective action is stipulated only by the ghost contribution.
Moreover, this ghost contribution differs only in sign from the contribution of a single real v-hypermultiplet, in
the adjoint representation of the gauge group, coupled to the external gauge superfield Vqq. The structure of the

w xeffective action of the v-multiplet has been investigated in our previous paper 28 for an abelian gauge group,
and that work is readily extended to the non-abelian case.

We have developed the background field method for the pure Ns2 SYM theory. In the general case, the
Ž . Ž Ž ..classical action contains not only the pure SYM part given by 1 or, what is equivalent, by 17 , but also the

w xmatter action of the general form 21

1
KŽy4. q qq q Žy4. qq T qqS sy dz duq = q y dz du= v = v 50Ž .H HMAT 2

Kq qŽ Ž . Ž .. Ž .describing the matter q-hypermultiplet q z ,u ,q z ,u and v-hypermultiplet v z ,u coupled to theA A A

SYM gauge superfield Vqq. Our previous considerations can be easily extended to the case of the general
Ns2 SYM theory. The only non-trivial new information, however, is the explicit structure of the matter

Ž .superpropagators associated with the above action 50 . They read as follows
KŽ1,1. q qG 1,2 ' i -q 1 q 2 )Ž . Ž . Ž .F

1 14 4q q 4 8 i V Ž1. yi V Ž2.sy D D d x yx d u yu e e 51Ž . Ž . Ž .Ž . Ž .L 1 2 1 2 1 2 3½ 5q q
I u uŽ .1 1 2

GŽ0,0. 1,2 ' i -v 1 vT 2 )Ž . Ž . Ž .F

1 uyuyŽ .1 24 4q q 4 8 i V Ž1. yi V Ž2.s D D d x yx d u yu e e 52Ž . Ž . Ž .Ž . Ž .L 1 2 1 2 1 2 3q q½ 5
I u uŽ .1 1 2

and satisfy the equations

=qqGŽ1,1. 1,2 sd Ž3,1. 1,2 53Ž . Ž . Ž .1 F A

2qq Ž0 ,0. Ž4 ,0.= G 1,2 syd 1,2 54Ž . Ž . Ž .Ž .1 F A
L

Ž .respectively, with I given by 36 . Switching off the gauge superfield, the Green’s functions turn into the free
w x Ž . Ž .ones obtained in 22 . The Green’s functions 51 and 52 are to be used for loop calculations in the background

field approach.
As the simplest application of the techniques developed here, we demonstrate the fact that the one-loop

quantum correction to the effective action of the Ns4 SYM theory realized in terms of Ns2 superfields does
not contain contributions depending only on the Ns2 gauge superfield. In Ns2 superspace, this theory is
described by the action

1 1
Ns4 4 4 2 Žy4. qq qqS s tr d xd u W y tr dz du= v= v 55Ž .H HSYM 2 22 g 2 g
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with v the real v-hypermultiplet taking its values in the Lie algebra of the gauge group. This action was shown
w x qq w qq xto possess Ns4 supersymmetry 23 transforming V and v into each other. We denote by G V ,v the

Ž1.w qq xeffective action of the theory and consider the one-loop correction G V ,v . The contributions to
Ž1.w qq x qq Ž .G V ,v , which depend only on V , come from 48 as well from the matter functional integral

1 iŽ1. qq Žy 4. qq qq 2i G wV x yi tr dz du= v= v Ž1. qq qqHMA T 2 w xe s DDv e , G V s Trln = . 56Ž . Ž .H 2 g MAT 2
Ž1. w qqx Ž1. w qqxBut G V and G V exactly cancel each other.SYM MAT

Finally, we would like to discuss the leading low-energy contribution to the one-loop effective action in the
Ž . Ž .Ns2 SU 2 SYM theory with the gauge group spontaneously broken to U 1 . Here the one-loop effective

Ž1. w qqxG V readsSUŽ2.

Ž1. w qqx w qqxG V syG V 57Ž .SUŽ2. f

w qqx Ž .with G V the effective action of a real v-hypermultiplet in the adjoint representation of SU 2 coupled tof

the external gauge superfield Vqq :

iqqi G wV x Žy4. qq qqfe s DDfexp y tr dz du= f= f 58Ž .H H½ 52

where

1
a a qq qq qq a a a b abc c a b ab'w x w xfsf t , = fsD fq i V ,f , t s s , t ,t s i 2 ´ t , tr t t sd .Ž .'2

59Ž .
Ž . Ž .Upon the spontaneous breakdown of SU 2 , only the U 1 gauge symmetry survives and the gauge superfield

VqqsVqqat a takes the form

VqqsVqq3t 3 'VVqqt 3 . 60Ž .
Here VVqq consists of two parts, VVqqsVVqqqVVqq, where VVqq corresponds to a constant strength0 1 0

WW sconst, and VVqq is an abelian gauge superfield. It can be proved that the presence of VVqq leads to the0 1 0
< < 2 Ž w x.appearance of mass WW for matter multiplets see 28 . Now, we have0

qq 1 qq 1 qq 2 qq 2 qq 2 qq 1 qq 3 qq 3' '= f sD f q 2 VV f , = f sD f y 2 VV f , = f sD f . 61Ž .
Thus f 3 completely decouples. Unifying f1 and f 2 in to the complex v-hypermultiplet vsf1 y if 2, we
observe

qq qq qq'= vsD vq i 2 VV v 62Ž .
'Ž . w xhence the U 1 -charge of v is es 2 . In our previous paper 28 it was shown that the effective actions of the

Ž .charged complex v-hypermultiplet and the charged q-hypermultiplet, interacting with background U 1 gauge
qq w qqx w qqx w qqxsuperfield VV , are related by G VV s2 G VV and the leading contribution to G VV in the massivev q q

theory is given by

e2 WW 2
qq 4 4 2w xG VV s d xd uFF WW qc.c. , FF WW sy WW ln . 63Ž . Ž . Ž .Hq 2 264p M

q Ž .Here e is the charge of q it coincides with the charge of v in the above correspondence , M is the
qq 'renormalization scale, and WW the chiral superfield strength associated with VV . Since in our case es 2 , and

Ž .taking into account Eq. 57 , we finally obtain

1 WW 2
Ž1. qq 4 4 2w xG VV s d xd u WW ln . 64Ž .HSUŽ2. 2 216p M
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w x Ž .This is exactly Seiberg’s low-energy effective action 14 found by integrating the U 1 global anomaly and
'Ž .using the component analysis note that Seiberg used the strength Cs 2 WW .

Let us summarize the results. We have considered Ns2 super Yang-Mills theories in harmonic superspace
and formulated the background field method for these theories. For the pure Ns2 SYM theory, the effective
action is given by a path integral over the quantum gauge superfields and the fermionic and bosonic ghosts
corresponding to v-hypermultiplets. This path integral representation allows one to carry out the perturbative
loop calculations in the theory under consideration in a manifestly Ns2 supersymmetric and gauge invariant
manner. The structure of the one-loop contributions to the effective action has been investigated and it has been
shown that the whole one-loop contribution is stipulated only by the ghosts in the form of the effective action of
the fermionic v-hypermultiplet coupled to the external super Yang-Mills field. This result has been applied to
calculating the one-loop effective action in the Ns4 super Yang-Mills theory treated as the Ns2 super
Yang-Mills theory coupled to the v-hypermultiplet in the adjoint representation of the gauge group. Taking into
account the structure of the one-loop effective action in the pure Ns2 SYM theory, we conclude that the
one-loop effective action in the Ns4 SYM theory does not contain corrections depending on the Ns2 gauge
superfield only. Finally, we have derived the well-known Seiberg’s low-energy effective action in the harmonic
superspace approach.
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