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Abstract 

Enhancing structural components by implementing sensors offers great potential regarding condition monitoring for lifetime 
analysis, predictive maintenance and automatic adaptation to environmental conditions. This article describes an approach to 
determining the operational forces applied to the front suspension arm of a car using strain gauges. Since suspension arms are 
components with free-form surfaces, an analytical calculation of applied forces by means of measured strains is not feasible. Hence, 
artificial neural networks are applied to approximate the functional relationship. The results reveal how artificial neural networks 
can be applied to identify load conditions on structural components and, therefore, deliver essential data for condition monitoring. 
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Nomenclature 

ANN  Artificial neural network 
BP  Back propagation 
bij           Threshold of i-th layer pointing to j-th layer 
GA         Genetic algorithm 
LM  Levenberg-Marquardt 
Logsig  Log-sigmoid function 
MSE  Mean square error 
Q_O Strain data collected by the upper sensor 
Q_R Strain data collected by the right sensor 
Q_U  Strain data collected by the lower sensor 
Q_L  Strain data collected by the left sensor 
R2           Decisive factor 
RBF  Radial basis function 
ReLU Rectified Linear Unit 

Ti                 The i-th actual output 
Tansig  Tanh-sigmoid function 
Trainlm Training function according to Levenberg-Marquardt 
wij           Weight of i-th layer pointing to j-th layer 
Δi           Error between i-th predicted and i-th actual output 

1. Introduction 

Condition monitoring of components for lifetime analysis, 
predictive maintenance, automatic adaptation to environmental 
conditions and the initiation of further actions is a current topic 
in research and development of intelligent systems. To realize 
condition monitoring for components in a system, these have 
to be equipped with sensors for data collection. Additionally, 
data processing, analysis and knowledge generation are 
required [1][2]. However, automotive components with 
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integrated sensors are not state of the art, but they offer a great 
potential with regard to increasing reliability and cost 
reduction. In addition, information from the use phase of a 
product can be used for the development of product 
generations. In the technical inheritance paradigm, these 
benefits from data feedback are discussed in detail [3].  

Since a suspension arm is a component with free-form 
surfaces, an analytical calculation of the combined applied 
forces by means of measured strains is not feasible. Hence, 
artificial neural networks (ANN) are applied to approximate 
the functional relationship. In a first step, FE-simulations were 
carried out to identify suitable sensor positions. For this 
purpose, various load cases acting on a suspension arm during 
operation were computed. The most critical points were then 
defined as sensors positions (Figure 1(a)). Next, in order to 
physically test the operating conditions, a flexible multi-axial 
dynamic test bench for high loads based on a delta-robot 
configuration was used (Figure 1(b)). This test bench has been 
developed especially for the testing of smart products and is 
well suited with regard to the flexibility of testable components 
[4]. The suspension arm was equipped with four strain gauges 
in different directions and, based on the results of the design of 
experiment, subjected to dynamic loads. In the following, the 
recorded strain data of the component were used as input data 
in different artificial neural networks (RBF, BP and Elman). 
Predefined sinusoidal force curves were used as output data to 
train and test the neural network. These two types of data sets 
are first discretized and different input/output combinations are 
slightly modified for certain operating points. 

The sinusoidal load was applied in x and y-direction 
according to Figure 2 and Figure 4. In reality, no sinusoidal 
loads would occur on the suspension arm. This is an 
idealization in this first step of the investigation. However, it is 
clear that both the force in the x-direction and in the y-direction 
is not constant while driving. In the x-direction, the road 
conditions define the load curve and in the y-direction the 
acceleration and braking operations. 

Fig. 1. (a) Sensors positions; (b) Suspension arm in the dynamic multi-axial 
test bench. 

Fig. 2. Load application and directions. 

So the aim of this work is to develop an ANN for load 
identification based on experimental data for the specific 
application of the used suspension arm, which in future 
applications in a car should be able to identify the existing loads 
in unknown real environments.  

2. State of the art regarding application areas of artificial 
neural networks 

After nearly half a century of development, artificial neural 
network theory has achieved widespread success in many 
research areas such as pattern recognition, automatic control, 
signal processing and assisted decision making. As one of the 
main directions for the research and development of ANNs, the 
application of ANN models and optimization algorithms has 
received increasing attention [5][6]. As one of the most widely 
used ANN, BP-ANN (Back propagation-ANN) is often used in 
pattern recognition and classification, system simulation, 
intelligent fault diagnosis, image processing, and function 
simulation due to its advantages such as simple structure, stable 
working state, and easy hardware implementation and optimal 
prediction [7][8][9]. In addition, there is RBF-ANN (Radial 
basis function-ANN). This model has simple training and fast 
learning convergence, and can approximate any non-linear 
function. Therefore, it has been widely used in the fields of time 
series analysis, pattern recognition, non-linear control, and 
graphic processing. Elman-ANN adds a support layer to the 
hidden layer of the feedforward network as a one-step delay 
operator to achieve the purpose of memory, so that the system 
has the ability to adapt to time-varying characteristics and can 
directly reflect the characteristics of dynamic process systems 
[10][11]. In order to optimize ANNs, many optimization 
algorithms have been proposed. As an intelligent global search 
algorithm, the genetic algorithm (GA) simulates the rules of 
survival and survival of the fittest, uses the parameters of the 
ANN, and searches parallel along multiple routes without 
falling into the trap of local superiority. The global optimum 
can be found in many local optimizations. [12][13] 

3. Development process of the artificial neural network 

Establishing a satisfactory load model has become the key to 
the technique of strain measurement of load. However, due to 
the complex structural design of automobile structural parts, 
multiple force transmission paths, and structural non-linearity 
caused by large loads, multiple linear regression cannot 
properly solve the errors caused by nonlinear problems [12]. 
Therefore, the ANN provides a new method for establishing the 
load model. This work compares different ANNs with regard 
to the chosen structural component and subsequently optimizes 
the parameters of the ANN by using the GA. 
 
3.1. Procedure for identifying a suitable artificial neural 
network 

In this paper, the following process is used to identify the 
right ANN for identifying loads on automobile structural parts 
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by the usage of strain gauges. There is a need to simulate the 
non-linear mapping relationship between strain and load 
through the collected data. Therefore, in this paper BP-ANN, 
RBF-ANN and Elman-ANN, which are suitable for nonlinear 
data prediction, will be compared. Subsequently the optimal 
suitable network for this study has to be selected and further 
optimization must be carried out, including parameter 
optimization and weights optimization through the GA. 

 

 
Fig. 3. Research plan. 

3.2. Comparison of artificial neural networks 

The four data sets measured experimentally by the strain 
gauges are used as input variables, and the forces in the x and 
y-directions are used as output variables. All data have been 
randomized and 80% of them have been used as the training set 
and 20% as the test set. The experimental collected data are 
sufficient, there are enough training data sets while also having 
enough test data sets (about 65000 data series). Because the 
sample data are often large and the range is scattered, in order 
to ensure that the network converges during the training 
process, and to avoid large network prediction errors due to the 
large difference in the magnitude of the input and output data, 
first the data have to be normalized before training [14]. After 
the ANN is trained, it is simulated and verified. The simulation 
verification results of each network are shown in Figure 4. 
Because of the accurate measurement of Fx related data, they 
are regular, so the differences shown in the three different 
ANNs are not obvious. The decisive factors of Fx in BP-ANN, 
Elman-ANN and RBF-ANN are respectively 0.99564, 0.98278 
and 0.99134. The performance of Fy in the three different 
ANNs is more different, and it is consistent with the trend of 
Fx. It can be seen from the prediction results that the decisive 
factors of Fy in the BP-ANN are 0.99564 and 0.96614, 
respectively, which are higher than the decisive factor of the 
RBF-ANN and the Elman-ANN. The errors of BP-ANN and 
Elman-ANN are generally smaller than those of RBF-ANN, 
but there are several special cases that exceed 30%. The 
training speed of the three ANNs are also different. In order to 
achieve the desired training goal, the RBF-ANN requires more 
neurons than the BP-ANN, so the training speed is also slower. 
The training of the BP-ANN is usually completed in one 
minute, while the average training time of the RBF-ANN is ten 
minutes. For the Elman-ANN, an additional layer in the 

network structure is used as a delay operator, so that the system 
has the ability to adapt to time-varying characteristics and can 
dynamically reflect the characteristics of dynamic systems. 
[15]  

However, based on the load prediction through the strain 
method, the operating speed of the Elman-ANN is slower than 
that of the BP-ANN, it takes an average of twenty-one minutes. 
Generally speaking, the BP-ANN has good fitting degree, high 
prediction accuracy, small relative error, the most stable 
prediction result and is faster.  

 

 

 
Fig. 4. Prediction results of three different ANN (a) BP; (b) Elman; (c) RBF. 

 
RBF-ANN parameter adjustment is simple, the topology is 
compact, the convergence speed is fast and there is no local 
minimum problem, but it is not suitable for the problem of a 
large number of training samples [9][10]. Elman-ANN adds a 
bearer layer to the hidden layer, so that the system is adapt to 
the time-varying characteristics and enhance the global 
stability of the network, but the structure is more complicated 
[11][15]. BP-ANN has a simple topology, a high degree of 
nonlinearity and strong generalization ability, but it is relatively 
easy to fall into the local optima problem [7]. When solving the 
function approximation problem with the same accuracy 
requirements and training samples discussed in this article, the 
number of hidden layer neurons required by the RBF-ANN is 
higher than that of BP-ANN, making the structure of the RBF-
ANN too large, resulting in an increased training time and no 
guarantee of accuracy. Elman-ANN also has the same 

(c) 
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problems as RBF-ANN due to its own computing 
characteristics and complex structure. BP-ANN neural network 
shows higher classification accuracy and convergence speed 
than RBF-ANN and Elman-ANN. Using GA for optimization 
avoids the local optima problem and enables the BP-ANN to 
obtain the global optima solution. [8][12][15] 

3.3. Optimization and flowchart of back propagation artificial 
neural network 

 After comparing a first application of the three ANNs the 
faster and more accurate BP-ANN has been chosen and the 
optimization starts. The BP-ANN can contain one or more 
hidden layers. One disadvantage of single-layer perceptrons is 
that they can only classify linearly separable data sets. For this 
article, each non-linear output is determined by four non-linear 
inputs. It is a non-linear regression problem and uses an ANN 
with hidden layers. The hidden layer can abstract the features 
of the input data to a higher dimension, so that these originally 
non-linear features can be better linearized. Multiple hidden 
layers are actually multi-level abstractions of the input features, 
and the goal is to better divide the data of different features 
linearly. If there are enough neurons in a single hidden layer, 
the non-linear activation function can fit any function [16]. 
Therefore, an ANN with three layers, the input layer, the output 
layer and the hidden layer has been chosen. However, it has 
been theoretically proven that a network with a single hidden 
layer can achieve arbitrary non-linear mapping by 
appropriately increasing the number of neuronal nodes. Thus, 
this work uses a single hidden layer feedforward BP-ANN, 
which has strong non-linear mapping capabilities. This 
network consists of an input layer, a hidden layer and an output 
layer. The topology of the BP-ANN is shown in Figure 5. As 
mentioned in section 3.2 four strain data sets (Q_O，Q_U, 
Q_L, Q_R) are defined as the input and two data sets of the 
loads (Fx, Fy) as output. Accordingly, there are four neurons in 
the input layer and two neurons in the output layer. The number 
of neurons in the input layer, output layer and in the hidden 
layer jointly determine the number of weights and thresholds. 
As shown in Figure 5, the weights and thresholds in the BP-
ANN have an important role. 

Fig. 5. The topology of the BP-ANN. 

They are directly related to the accuracy of network prediction. 
So the number of hidden layer neurons is directly related to the 
convergence speed and accuracy of the ANN. For other 

parameters of the input layer and the output layer, the format 
and quality of the input and output have been varied. While 
ensuring that the input data are accurate and complete, due to 
the large data range, the data have been normalized to increase 
the convergence speed of the ANN and reduce the training 
time. Because the BP-ANN uses serial search, there is the 
possibility to fall into the local optima problem. The 
parallelism of the GA can make it easier to converge to the 
global best for the weights and thresholds. Each individual in 
the population contains the networks ownership and threshold. 
The individual calculates the individual fitness value through 
the fitness function. The GA is applied through the selection, 
crossover and mutation operations to find the optimal fitness 
value corresponding to the individual [17]. The BP-ANN uses 
GAs to get the optimal individual to assign the initial weight 
and threshold of the network, that is, to obtain the optimal 
weight and threshold. The optimization process of BP-ANN is 
shown in Figure 6.  

Fig. 6. The optimization process of BP-ANN. 

3.3.1 Process of building back propagation artificial neural 
network and parameter optimization 

The first thing to do is the blue highlighted part of the 
process in Figure 6, which is the parameter optimization of the 
BP-ANN. It mainly includes the selection and optimization of 
parameters such as the number of nodes in the hidden layer, 
transfer function, training function, and expected error value. 



	 Osman Altun  et al. / Procedia Manufacturing 52 (2020) 181–186� 185
4  Osman Altun et al. / Procedia Manufacturing 00 (2019) 000–000 

 

problems as RBF-ANN due to its own computing 
characteristics and complex structure. BP-ANN neural network 
shows higher classification accuracy and convergence speed 
than RBF-ANN and Elman-ANN. Using GA for optimization 
avoids the local optima problem and enables the BP-ANN to 
obtain the global optima solution. [8][12][15] 

3.3. Optimization and flowchart of back propagation artificial 
neural network 

 After comparing a first application of the three ANNs the 
faster and more accurate BP-ANN has been chosen and the 
optimization starts. The BP-ANN can contain one or more 
hidden layers. One disadvantage of single-layer perceptrons is 
that they can only classify linearly separable data sets. For this 
article, each non-linear output is determined by four non-linear 
inputs. It is a non-linear regression problem and uses an ANN 
with hidden layers. The hidden layer can abstract the features 
of the input data to a higher dimension, so that these originally 
non-linear features can be better linearized. Multiple hidden 
layers are actually multi-level abstractions of the input features, 
and the goal is to better divide the data of different features 
linearly. If there are enough neurons in a single hidden layer, 
the non-linear activation function can fit any function [16]. 
Therefore, an ANN with three layers, the input layer, the output 
layer and the hidden layer has been chosen. However, it has 
been theoretically proven that a network with a single hidden 
layer can achieve arbitrary non-linear mapping by 
appropriately increasing the number of neuronal nodes. Thus, 
this work uses a single hidden layer feedforward BP-ANN, 
which has strong non-linear mapping capabilities. This 
network consists of an input layer, a hidden layer and an output 
layer. The topology of the BP-ANN is shown in Figure 5. As 
mentioned in section 3.2 four strain data sets (Q_O，Q_U, 
Q_L, Q_R) are defined as the input and two data sets of the 
loads (Fx, Fy) as output. Accordingly, there are four neurons in 
the input layer and two neurons in the output layer. The number 
of neurons in the input layer, output layer and in the hidden 
layer jointly determine the number of weights and thresholds. 
As shown in Figure 5, the weights and thresholds in the BP-
ANN have an important role. 

Fig. 5. The topology of the BP-ANN. 

They are directly related to the accuracy of network prediction. 
So the number of hidden layer neurons is directly related to the 
convergence speed and accuracy of the ANN. For other 

parameters of the input layer and the output layer, the format 
and quality of the input and output have been varied. While 
ensuring that the input data are accurate and complete, due to 
the large data range, the data have been normalized to increase 
the convergence speed of the ANN and reduce the training 
time. Because the BP-ANN uses serial search, there is the 
possibility to fall into the local optima problem. The 
parallelism of the GA can make it easier to converge to the 
global best for the weights and thresholds. Each individual in 
the population contains the networks ownership and threshold. 
The individual calculates the individual fitness value through 
the fitness function. The GA is applied through the selection, 
crossover and mutation operations to find the optimal fitness 
value corresponding to the individual [17]. The BP-ANN uses 
GAs to get the optimal individual to assign the initial weight 
and threshold of the network, that is, to obtain the optimal 
weight and threshold. The optimization process of BP-ANN is 
shown in Figure 6.  

Fig. 6. The optimization process of BP-ANN. 

3.3.1 Process of building back propagation artificial neural 
network and parameter optimization 

The first thing to do is the blue highlighted part of the 
process in Figure 6, which is the parameter optimization of the 
BP-ANN. It mainly includes the selection and optimization of 
parameters such as the number of nodes in the hidden layer, 
transfer function, training function, and expected error value. 

 Osman Altun et al./ Procedia Manufacturing 00 (2019) 000–000  5 

 

The number of hidden layer nodes has an impact on the 
performance of BP-ANN. Generally, a larger number of hidden 
layer nodes can bring better performance, but it may lead to 
excessive training time or overfitting. Here the number is 
estimated by using the following empirical formula [18][19]: 

                             𝑐𝑐 𝑐 √𝑚𝑚 𝑚 𝑚𝑚 + 𝑎𝑎                                 (1) 

 

                            𝑐𝑐 𝑐 𝑐�(𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝑚                               (2) 

Among them, c is the number of hidden layer nodes, m and 
n are the number of neurons in the output and the input layer, 
and a is a constant between [0, 10]. After several trainings and 
tests of the BP-ANN, the optimal number of hidden layer nodes 
was finally determined to be six. 

Subsequently there is a need to choose an appropriate 
transfer function and training method. The value of the sample 
itself has positive and negative values, so it is normalized to  
[-1, 1]. Matlab commonly used transfer functions are logsig 
(log-sigmoid), tansig (tanh-sigmoid) and ReLU (Rectified 
Linear Unit). Only the range of the tansig function is [-1, 1], 
the other two ranges from 0 to 1. In addition to the method of 
standard steepest descent, the BP-ANN has several improved 
training algorithms. The choice of training algorithm is related 
to the problem itself and the number of training samples. In 
general, for function approximation networks, the Levenberg-
Marquardt (LM) algorithm has the fastest convergence speed 
and the mean square error is small. The Bayesian function has 
been used to modify the LM algorithm to make the networks 
generalization ability better and avoid overfitting. The 
disadvantages are a slow training speed and a large mean 
square error (MSE). As one of the termination conditions, 
limiting the maximum number of times that MSE of the 
verification sample does not fall, can avoid overfitting, so the 
training function is selected as TrainLM. It is also needed to set 
other training termination conditions, such as the maximum 
number of cycles, the expected MSE value etc., and satisfy any 
of them to end the training. 

3.3.2 Process of genetic algorithm optimization with regard to 
weight optimization 

The topology of the BP-ANN is defined by the parameters 
that have been determined before. From this, the GA is used to 
optimize the ANN to obtain the optimal weights and thresholds. 
The BP-ANN is retrained with the optimal value to obtain a 
new network. The elements of GA to optimize BP ANN 
include population initialization, fitness function, selection 
operation, cross operation and mutation operation. 

As one of the main control parameters of the GA, the size of 
the population directly affects the final result and 
computational efficiency of the GA. The size of the group is 
too small, making the search space limited, which may lead to 
immature convergence. The size of the group is too large, and 
the number of fitness evaluations increases, which directly 
affects the evaluation efficiency of the algorithm. For a specific 

optimization problem, no theoretical result can tell us the 
specific population size. However, according to a large number 
of literature reports, the population size in practical 
applications is generally between ten and one hundred. In 
general, this value can fit the requirements of the problem [17]. 
The design of the fitness function is directly related to the 
selection operation in the GA. The calculation formula of the 
individual fitness value F is [17]: 

                       𝐹𝐹 𝐹 𝐹𝐹𝐹� 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� − 𝑜𝑜�)
�
��� )                       (3) 

Among them, n is the number of output nodes of the network, 
y is the expected output of the i-th node of the BP ANN, o is 
the predicted output of the i-th node, and k is a coefficient. 
There are many methods of GA selection operation, such as 
roulette and tournament. In this case, roulette is selected. This 
is a strategy based on fitness ratio selection. The selection 
probability of each individual i is pi [17]: 

                                𝑓𝑓� =𝑘𝑘𝑘𝑘𝑘 �                                           (4) 

 

                               𝑝𝑝� = ��
∑ ��

�
���

                                         (5) 

In the formula, Fi is the fitness value of the individual i. 
Since the smaller the fitness value, the better, so the inverse of 
the fitness value is calculated before the individual selection. N 
is the number of individuals in the population and k is the 
coefficient. Because individuals use real number coding, the 
crossover operation method uses the real number crossover 
method. The k-th chromosome ak and the l-th chromosome al 
have the following cross-operation method at the j position: 

𝑎𝑎�� = 𝑎𝑎��(1 − 𝑏𝑏) + 𝑎𝑎��𝑏𝑏                       (6) 

 

 𝑎𝑎�� = 𝑎𝑎��(1 − 𝑏𝑏) + 𝑎𝑎��𝑏𝑏                       (7) 

In these formula b is a random number between [0, 1]. In 
mutation operation we use the non-uniform mutation in the GA 
toolbox in Matlab. The non-uniform mutation changes one of 
the parameters of the parent based on a non-uniform probability 
distribution, selects the j-th gene of the i-th individual to mutate. 
After the GA optimization is over, we can get new prediction 
results, as shown in Figure 7. 

 
Fig. 7. Prediction results of BP-ANN after GA. 
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    Because the amount of raw data is sufficient and relatively 
regular, there is not much room for improvement in the results 
of optimization. However, comparing with Figure 4, it can be 
seen that the BP-ANN optimized by the GA is more accurate 
in prediction, and the relative error is also improved. Although 
the prediction accuracy is very high. Figure 8 shows that the 
MSE of the validation and test sets not only does not increase, 
but is lower than the training set. This shows that the BP-ANN 
which is obtained does not appear to overfit in the training set. 
The best validation performance is at epoch 427, and at this 
time MSE is 0.0030465. In the following 6 epochs, the MSE of 
the test set does not continue to decline, and one of the 
termination conditions is satisfied, so the training ends. 

Fig. 8. Mean square error of each data set. 

4. Conclusion and future work 

The aim of this work was to evaluate the possibility of using 
ANNs to determine an analytically undetectable relationship 
between load and strain on structural components. For this 
purpose, a suspension arm has been equipped with strain 
gauges and subjected to load cases in a dynamic test bench, 
similar to the operating condition. The strain information was 
used as input and the force information as output data for three 
different ANNs. From first non-optimized networks, the one 
with the highest decisive factor and the lowest relative error 
was selected. This has been a BP-ANN. In a further step this 
network has been optimized with respect to its topology using 
Matlab and the GA. The final architecture of the BP-ANN 
provided a decisive factor of 0.979 and a maximum relative 
error of approximately 20%. The integration of sensor 
technology on structural components of a vehicle and 
generation of knowledge from sensor data is a method that is 
not state of the art. This article provides a flow chart for the 
development of a BP-ANN for structural components, which 
can be used to make load predictions. In future research work 
the authors will deal with further optimization measures. Data 
preparation plays a major role in this context. In the context of 
this work, it has not been checked whether there might have 
been double correlation to different force information due to 
missing decimal places of the strain information. Deleting this 
data or realizing a higher resolution of the sensor system could 

further improve the results. Furthermore, it is still an open 
question how far the developed BP-ANN can be used in real 
operating environments. For this purpose, in further steps the 
sensor technology and the ANN will be integrated into a car 
and the prediction accuracy of the ANN will be tested. 
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