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Abstract: With the growing interest in the field of artificial
materials, more advanced and sophisticated functional-
ities are required from phononic crystals and acoustic
metamaterials. This implies a high computational effort
and cost, and still the efficiency of the designs may be not
sufficient.With the help of third-wave artificial intelligence
technologies, the design schemes of these materials are
undergoing a new revolution. As an important branch of
artificial intelligence, machine learning paves the way to
new technological innovations by stimulating the explo-
ration of structural design. Machine learning provides a
powerful means of achieving an efficient and accurate
design process by exploring nonlinear physical patterns in

high-dimensional space, based on data sets of candidate
structures. Many advanced machine learning algorithms,
such as deep neural networks, unsupervised manifold
clustering, reinforcement learning and so forth, have been
widely anddeeply investigated for structural design. In this
review,we summarize the recentworks on the combination
of phononic metamaterials and machine learning. We
provide an overview of machine learning on structural
design. Then discuss machine learning driven on-demand
design of phononic metamaterials for acoustic and elastic
waves functions, topological phases and atomic-scale
phonon properties. Finally, we summarize the current
state of the art and provide a prospective of the future
development directions.

Keywords: 2D materials; hierarchical structure; inverse
design; machine learning; metamaterials; phononic
crystals.

1 Introduction

In recent decades, the revolutionary development of
functional materials has provided the ability tomanipulate
photons and phonons [1–5]. These functional materials are
usually composed of artificial periodic or non-periodic
arrangements of units and various ingenious structural
designs oftenmakes their properties surpass that of natural
materials [6–12]. The in-depth study of (nano)photonic
structures, taking advantage of the progress in nano-
fabrication techniques, has led a series of fascinating
applications based on photonic crystals [13], meta-
materials/metasurfaces [14–16], plasmonic nanostructures
[17, 18] and so forth. These typicalmaterials have the ability
of manipulating the propagation of electromagnetic or
light waves for various functionalities. Similar concepts
have been further extended to the field of acoustic/elastic
waves. The emergence of phononic crystals and acoustic
metamaterials have triggered an upsurge in the on-
demand design of acoustic/mechanical devices [19–29]
with specific responses.
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Forward and inverse design methods are the two main
schemes [30–32] for the realization of these structures. In
the forward scheme, the structural responses are directly
obtained through theoretical analyses, simulations and
possibly experimental approaches [30, 31]. However, to
achieve the required objectives or at least approach the
expectation, it could be necessary to repeatedly adjust the
structural or material parameters and recalculate the
response. This trial-and-error process may become very
expensive in view of the increase in the design complexity
requirements. Therefore, there is an increasing interest in
the alternative scheme of inverse design [32] where the
appropriate structures are built through the optimization
algorithms in the huge parameter space.

The rapid development of artificial intelligence (AI)
has made the inverse design ideas a reality. As part of AI,
the main optimization algorithms include simulated
annealing [33–35], genetic algorithm [36], particle swarm-
ing optimization [37], and topology optimization [38–41].
These algorithms are quite mature and have been widely
reported for achieving on-demand inverse designs. All of
them usually rely on the intermediate results obtained by
iterative forward design scheme. Due to the limitation of a
fully randomsearch, it is still amajor challenge to complete
the inverse design under multiple constraints. Since the
1980s, machine learning (ML) has gradually become a
dominant paradigm in AI community [42, 43]. The basic
unit of the artificial neural network, calledM-Pneuron,was
proposed in 1943 [44]. In 1949, Hebb’s rule was put for-
ward, revealing that the basis of neurons learning and
memory is the variable connection strength between neu-
rons [45]. In 1958, Rosenblatt proposed the perceptron
modelwhich gave for the first time the learningmechanism
of neural networks [46]. However, this model does not
contain hidden layers and can only deal with linear sepa-
rable problems. Multilayer neural network (MNN) was
widely improved by the proposition of back-propagation
algorithm for neural network training in 1980s [47], but
they still remained limited by the amount of data and
computing power. During the new century, the deep
learning technology grew rapidly after 2006 [48, 49], and a
series of algorithmswere derived from the deepening of the
structure of artificial neural network model, also called
deep neural networks (DNN). This was supported by the
development of big data science and the improvement of
computer performance that provided hardware support.
Meanwhile, the development of open source and flexible
software platforms, such as TensorFlow [50], PyTorch [51],
and Keras [52], made it easy for beginners to build generic
deep architectures. The third-wave of AI started to bring
profound industrial changes in various aspects of modern

society, such as computer vision [53], natural language
processing [54], speech recognition [55], AlphaGo [56],
robotic controls [57], etc. As one of the most important
branches of machine learning, deep learning has become
the fundamental route in complex hierarchical feature
learning.

Inspired by the development of AI technology, the
intelligent design of materials and prediction of their
properties have attracted extensive attention of researchers
[58, 59]. The deep integration of deep learning and (nano)
photonics has been widely reported in the literature
[60–66]. In this field, DNN can be used to predict the
electromagnetic response for a given structure, which is
called forward prediction. For example, Peurifoy et al.
trained a neural network to approximate light scattering by
multilayer nanoparticles [67]. But it is more common to use
DNN to inverse design (nano)photonic devices with given
electromagnetic responses. However, due to the data
inconsistency in the inverse design of photonic devices,
that is, one electromagnetic response may correspond to a
variety of real structures (one-to-many problem), DNN
usually needs to be improved in practical applications. Liu
et al. deeply discussed the problem of data inconsistency,
and, to overcome it, proposed a tandemarchitecture neural
network combining forward prediction and inverse design
[68]. For the tandem architecture neural network, many
works have been carried out, such as Objective-Driven all-
dielectric metasurface, transmittedmetasurface cloak, and
so forth [69–73]. Meanwhile, Malkiel et al. reported a
bidirectional DNN to realize both the design and charac-
terization of plasmonic metasurfaces [74]. The bidirec-
tional DNN model was also used by Ma et al. to design and
optimize three-dimensional chiral metamaterials that
possess strong chiroptical responses with predesignated
wavelengths [75]. Excepted the above training modes,
some advanced neural networks are also applied in (nano)
photonics, such as auto-encoders [76–78] and generative
adversarial networks (GANs) [79, 80]. Different from the
direct application of neural network, another application is
relying on the training mechanisms of neural network in
analogy to physical mechanisms. For example, Lin et al.
established an all-optical diffractive DNN architecture [81].
The mature application of ML in the fields of electromag-
netic and light waves naturally stimulates researchers’
interest in usingML in acoustic and elastic waves. It should
be noted that, from a mathematical point of view, there is
no fundamental difference between the two types of waves
which are described by similar differential equations.
Therefore, many ML algorithms can be successfully
extended to the design of phononic crystals and acoustic/
elastic metamaterials. As an advanced technology, ML is a
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powerful tool in the field of artificial material properties
characterization and structural design. This is schemati-
cally sketched in Figure 1.

In the present review, we discuss the recent advance-
ments in the design of phononic crystals and acoustic/
elastic metamaterials based on ML. In Section 2, we intro-
duce the basic principles of the mainstream algorithms
for the design of phononicmetamaterials. Section 3 focuses
on advanced works in the literature to merge ML into
acoustic and elastic wave systems. In Section 4, we briefly
summarize the ML applied to atomic-scale phononic met-
amaterials. Finally, we illustrate the prospects and chal-
lenges of merging ML and phononic metamaterials in
Section 5.

2 Principles of ML for phononic
metamaterials

ML became an autonomous field of research in the 1980s,
and entered an era of maturity and large-scale develop-
ment in the 1990s and early 21st century. During this
period, many algorithms and theories have been devel-
oped and applied to a certain extent. Almost at the same

time, the concept of phononic crystals was proposed in
analogy to photonic crystals and started to grow rapidly
[82, 83]. One basic characteristic of phononic crystals is the
existence of band gaps caused by Bragg scattering mech-
anism, which is based on the destructive interference of
waves by periodically arranged scatters in space. Different
from thismechanism, Liu et al. proposed the local resonant
band gap mechanism in 2000, which is a low-frequency
hybrid band gap formed from the avoided crossing of two
bands with the same symmetry [84]. The mechanism of
local resonant band gap led to the development of acoustic
metamaterials. Although the development timelines of ML
and phononic metamaterials almost overlap, the merger of
these two areas occurred with a certain time lag. In this
section, we introduce the mainstream ML algorithms that
have been applied to the field of phononic metamaterials.

2.1 Supervised learning

According to the learning mode, most ML algorithms can
be classified as supervised learning, unsupervised learning
and reinforcement learning [85]. The most common form is
the former one presented in this section [48]. For the arti-
ficial neural network [86] in Figure 2, the model is based on
the simulation of brain mechanisms and is the product of
connectionism in AI [87]. In this model, many artificial
neurons map the input layer data to the output layer by
layer connection; there are connections between any two
neurons in adjacent layers, so the process is also called
fully connected neural network. The training samples of
supervised learning are composed of eigenvectors (x) and
labels (y). Supervised learning can be generally divided
into two types of problems: classification and regression.
The mechanism is to approximate an unknown function
f with neural networks y = f (x; θ), where θ represents the
connectionweight and biases between layers, which needs
to be determined through continuous training.

In 1986, Rumelhart et al. [47] proposed the famous
back-propagation algorithm, which solved the problem of
hard training for MNNs, and began to be widely used for
practical problems. During training, a cost function is
defined to quantify the discrepancy between the network
output and the desired output. The goal of training is to
minimize the cost function by using the gradient descent
method, and update all weights and biases layer by layer.
The learning progress of the model is controlled by some
hyperparameters. For example, the learning rate is the
update step of the weights in each iteration of the algo-
rithm. The traditional gradient descent algorithm is very
sensitive to the learning rate, and the problem is more

Figure 1: Diagrammatic sketch of machine learning for properties
characterization and structural design of artificial materials. The
machine learning algorithms are applied to connect the structure
(such as phononic crystal, metamaterial, metasurface, photonic
crystal and plasmonic) information with the response information
(for example, band gap, transmission etc.).
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prominent in high-dimensional space and MNN. Specif-
ically, if the learning rate is too low, the search speed is
slow, and if it is too high, it may skip the extreme point.
Meanwhile, the algorithm can easily get stuck at the saddle
point in the iterative process due to the fixed learning rate.
Therefore, some adaptive optimization algorithms, such as
AdGrad, RMSProp and Adam, have been developed to
overcome this problem. In these optimizers, the learning
rate is no longer afixed value, but is automatically adjusted
as the iteration progresses according to some specific rules.

After training, the unseen test samples in the training
are usually used for model evaluation. Finally, the well-
trained model can be applied for predictive modeling.
From the mathematical point of view, neural network is a
composite function, and its nonlinear information pro-
cessing ability is provided by the nonlinear activation
function of neurons. The universal approximation theorem
shows that if the activation function is properly selected
and the number of neurons is sufficient, the neural network
with one hidden layer can be used to approximate any
continuous mapping function from input vector to output
vector [88]. The ability of neural network to capture the
nonlinear characteristics of high-dimensional spacemakes
it powerful to capture the complex nonlinear relationship
of structures–properties (or properties–structures).

In addition to fully connected neural network, con-
volutional neural network (CNN) [89] is also widely used in

artificial material design. The hidden layers of CNN include
convolution layers, pooling layers, full connected layers
and normalization layers. Convolution operation is per-
formed on the input data to extract features, and then the
feature selection and information filtering are carried out
through the pooling layer. After repeating extraction and
selection filtering, the output is obtained through the full
connected layer or global average pooling layer. CNN
possesses advantages in capturing image information,
which can efficiently map the field images information to
the corresponding structures, or the 2D structure images to
the responses. As the internal connections of CNN are
much fewer than those of the standard model with the
same depth, it can not only reduce the difficulty of training,
but also ensure that more complex mappings can be
realized.

2.2 Unsupervised learning

Theunsupervised learning analyzes the unlabeled samples
and finds the structure or distribution lawof the sample set.
Clustering and data dimensionality reduction are typical
representativemethods. The goal of clustering is to directly
divide the sample set intomultiple classes without training
process. Clustering is essentially a set partition problem.
Because there is no manually defined category standard,

Figure 2: Working principle of artificial
neural networks. The neural networkmodel
is inspired by the nervous system of the
brain and consists of an input layer, a
hidden layer and an output layer. The
model is trained and evaluated with the
previously obtained dataset. Once the
model is trained and evaluated, it can be
employed to properties characterization
and structural design of artificial material.
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the key issue of clustering is how to define different classes.
Therefore, many clustering algorithms have been derived
from different class definitions, such as those based on
centroid, probability distribution and density, etc. High
dimensional data can bemapped to lowdimensional space
through linear or nonlinear dimensionality reduction
techniques such as principal component analysis (PCA)
and manifold learning, which can be easier for analysis
and clustering.

Auto-encoders (AE) is a special DNN structure, which
can extract features and reduce data dimension with the
help of the powerful nonlinear processing ability of neural
network. The first part of AE is the encoder, which is used to
extract features from the original input data, and the sec-
ond part is the decoder, which reconstructs the original
data according to the extracted features, as shown in
Figure 3(a). The input data successively passes through the
encoder and decoder to obtain the output vector, and then
calculate the reconstruction error from the comparison of
the output vector and the original input vector. The
reconstruction error is defined as the cost function, and
employ back propagation algorithm tominimize it. Tracing
to the source, the AE uses the original input data as labels
instead of the sample labels in the dataset, so it belongs to
unsupervised learning. The latent space vector contains
the featured information of the reduced dimension of the
input data, which can be used for further visualization or
analysis.

The tandem neural network (TNN), which is widely
used in the design of artificial materials, is developed
based on the idea of AE. TNN is composed of an inverse
network connected to a pre-trained forward network, as
shown in Figure 3(b). The forward networkwhich is trained
in advance takes the design parameters as the input and
the responses as the output. Therefore, the training for
forward network is under supervised conditions, and
because one structure corresponds to only one response
(one-to-one problem), the training process is easily
converged. In the training of thewhole network, theweight
and bias of the forward network are fixed, and the weight
and bias of the inverse network are adjusted to reduce the
cost. The cost function consists of the discrepancy between
the predicted responses and the target responses. When
using TNN for inverse design, the desired responses are
taken as input, and the corresponding design structures
obtained from the output of the intermediate layer. In the
training process of the whole network, the input responses
are also used as labels, so this step can be regarded as
unsupervised training. Compared with AE, the training
process of TNN is more cumbersome, but the model can
directly connect the responses and structures instead of

extracting features. More importantly, it overcomes the
one-to-many problem in inverse design, as discussed in
Section 1. To process image data, the fully connected
network in AE or TNN can be replaced by CNN, which is
only a computational replacement without changing the
basic principle.

GAN [90] is another promising algorithm for unsu-
pervised learning in material design. GAN consists of a
generator and a discriminator, as shown in Figure 3(c).
The generator takes the random noise as input, which is
usually realized by MNN, and provides generated samples
at the output. These generated samples will be fed into the
discriminator together with the real samples. The
discriminator is a binary classifier and judges whether
these samples are real or generated samples, and feeds
back the judgment results to guide the model update.
Therefore, the task of the generator is to learn the proba-
bility distribution of the real samples and make the
generated samples as similar as possible to the real sam-
ples to deceive the discriminator. While the task of the
discriminator is to distinguish real and fake samples as
accurately as possible. During training, the two models
are optimized alternately and compete continuously until
the classification accuracy of the discriminator is 0.5,
which indicates that the discriminator cannot distinguish
whether the samples are real or fake, and the system ach-
ieves balance. For application, the generator in the well-
trained GAN can be taken out separately to generate sam-
ples. However, this conventional GAN model can only
generate samples similar to the real samples according to
the distribution, and cannot generate the corresponding
samples according to the expectation. Therefore, to be
applied to the inverse design of materials with desired
response, a variant of GAN model is usually used, which is
called condition generative adversarial networks (CGAN)
[91, 92]. In addition to inputting random noise into the
generator, CGAN can also attach the characteristics of
samples as conditions. Thus, the CGAN generates the
desired generated samples more accurately. In this model,
we can combine responses and random noise as input.
Meanwhile, the real samples should include the structures
and corresponding responses. The training process is
consistent with the conventional GAN model. When using
the generator, we can generate the corresponding struc-
tures by inputting the desired responses and randomnoise,
which is an inverse design process. It should be noted that,
due to the use of both structure and response in CGAN
training samples, there is a fuzzy classification of whether
CGAN belongs to supervised learning or unsupervised
learning. But it is undeniable that CGAN is an elegant
scheme ofmaterial inverse design. Furthermore, themodel
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is not limited to fully connected networks, but can also use
CNN and even other ML models, as long as it conforms to
the framework of GAN [93, 94].

2.3 Reinforcement learning

Reinforcement learning [95] is a kind of ML algorithm
based on environment interaction inspired by behaviorism
psychology. Different from supervised and unsupervised
learning, reinforcement learning does not need to prepare
training samples in advance. Its goal is to learn how
agent executes actions in the environment to obtain the
maximum cumulative reward. The agent selects and exe-
cutes an action in the current state, and then enters to the
next state, and the environment will feed back a reward for
the current action, as shown in Figure 3(d). The system
updates and stores the value function of the current state
according to the reward, to force the agent to execute
correct action in the same state in the future. SARSA [96]

and Q-learning [97] are typical representative algorithms.
Their state value function is called Q function, and stored
inQ table, which is a two-dimensional table. The difference
between the two algorithms is the way they update the Q
table, namely the former updates the Q value corre-
sponding to the next action, which is called on-policy
learning, while the latter only updates it by choosing the
current action, which is called off-policy learning.

When reinforcement learning is used in material in-
verse design, it only needs to clearly assign what the agent
and environment are. One reasonable case is to extract the
optimization objective from the response and define it as
the environment, while the structural or material parame-
ters are defined as the agent. The parameters execute
actions to increase or decrease themselves to achieve
the optimization goal by changing the response. In this
way, the trained model can determine the structures cor-
responding to the optimization goal. In the practical
applications of designing complex structures, we may
encounter the problem that the number of state value

Figure 3: Schematic diagrams of unsupervised learning and reinforcement learning.
(a) AE. The encoder maps the high-dimensional data to the low-dimensional latent space, and the decoder can reconstruct the high-
dimensional data according to the features. (b) TNNs. An inverse design network connected to a forward modeling network. The forward
modeling network is trained in advance, then train the whole network under the condition of freezing the weights in the forward modeling
network. The design results are output from the intermediate layer. (c) Generative adversarial networks. The generator and discriminator
compete with each other, so that the generator has the ability to output close to the real samples. (d) Reinforcement learning. The agents
execute appropriate actions in the environment to obtain the maximum cumulative reward.
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functions is too large to be stored in arrays. This problem
can be solved by deep reinforcement learning, which is an
algorithm combining DNN and reinforcement learning. For
instance, employ the neural network to approximate the
state value function, with the states as the input and the
output are the function values of various actions, this
algorithm is called Deep Q networks (DQN) [98]. DQN
greatly promotes the storage capacity of the system and is
an effective means to enforce the on-demand design of
more complex structures.

When selecting the above algorithms, we usually pay
great attention to the two factors of computational accuracy
and computational cost. Both supervised learning and
unsupervised learning belong to data-driven methods, and
their computational accuracy largely depends on the size
and distribution of data. Meanwhile, the reasonable
selectionofhyperparameterswill alsohavea certain impact.
Therefore,when aiming at a specific problem, it is necessary
to obtain the dataset according to the complexity of the
problem, and check the distribution of the data before it is
used for model training. In the training process, the cross-
validation method is usually used to select the optimal
hyperparameters. As for the calculation cost, it depends on
the amount of data, the structural complexity of neural
network model, the selection of activation function and so
on. Reinforcement learning does not need data training, but
gradually approaches the preset goal through iteration. The
accuracy of its calculation also depends on the selection of
hyperparameters to a certain extent. The key to improve the
accuracy is to avoid falling into local optimum through
appropriate exploration step length selection. The compu-
tational cost usually depends on the degree of discrepancy
between the initial state and the target state.

3 Design of phononic
metamaterials enabled by ML

The solid foundation achieved in the flexible design and
application of MLs in (nano)photonics provides a valuable
framework for developing the understanding of MLs in
acoustics and mechanics. Applying ML algorithms to the
property’s characterization and inverse design of phononic
metamaterials is an efficient means to precisely control
acoustic and elastic waves toward the achievement of
singular properties. We have introduced the basic princi-
ples of ML in the design of phononic metamaterials in the
previous section. Here, we focus on the recent advances of
the specific applications of these algorithms.

3.1 ML for acoustic metamaterials

It is well known that the imaging enables us to observe and
recognize objects by analyzing light and sound waves
transmitted or radiated by them. But the existence of
diffraction limitmakes it difficult to restore all details of the
image in the far-field. This is because the evanescentwaves
scattered from the subwavelength regions of the object
cannot propagate to the far-field, resulting in a loss of
information. More recently the progress in metalens
structures has greatly promoted the development of super-
resolution imaging technology. However, the absorption
loss of metalens is often large, which greatly limits their
application. Orazbayev et al. combined deep learning with
metalens technology to efficiently realize far-field sub-
wavelength acoustic imaging [99]. More importantly, the
absorption loss greatly improves the imaging effect in this
method rather than inhibiting it. The scheme of sub-
wavelength far-field acoustic imaging based on deep
learning is shown in Figure 4(a). Ametalens composed of a
cluster of randomly placed subwavelength Helmholtz res-
onators is inserted in the near field of subwavelength
acoustic source to couple the evanescent field components
and reradiate the waves into the far-field patterns. The
amplitude and phase of the far-field acoustic waves are
measured by a microphone array. Then a “U-net-type”
convolutional neural network (UCNN) is trained to connect
the far-field amplitude and phase patterns with the sub-
wavelength images. Tracing to the source, the proposed
UCNN model is an AE with convolutional layers, which
realizes the function of reconstructing images from far-field
acoustic information. The reconstructed images are clas-
sified using a standard CNN to identify the numbers in the
images. Because the resonance effect of the metalens near
a given frequency enhances with the increase of loss, the
effective mode density will increase, which can increase
the efficiency of the neural network to extract high-
resolution imaging information from the resonance mode.

The algorithm of the above framework reconstructs the
structure from the amplitude and phase information of the
radiated acoustic waves. To be usable in a variety of cases,
it is necessary to design the structure from the complex
response spectra. In what follows, we introduce a case of
designing structures according to the sound transmission
loss spectra (STL). A Helmholtz resonator is an easy-to-
design acoustic structure with the functionality of manip-
ulating low-frequency acoustic waves. Multi-order Helm-
holtz resonators can provide multi-order resonances and
realize richer airborne applications. In practical applica-
tions, it is a great challenge to inverse design the structures
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according to the desired STL. The study of Sun et al. shows
that this difficulty comes from the process of inferring
equivalent electrical parameters (EEPs) from the desired
STL spectrumwhich requires solving a six-degree equation
for the resonant frequencies [100]. Indeed, the knowledge
of EEPs allows easily accessing the geometrical parameters
(GPs) by using lumped-parameter techniques (LPT). To
solve this issue, they trained the DNN to realize the map-
ping between STL and EEPs, to avoid solving higher-order
equations. It is worth noting that the forward process from
GPs to EEPs and STL is easy to implement, so the dataset
can be obtained by analysis. In general, this ingenious
inverse design process is divided into two steps (see
Figure 4(b)): (1) obtain the EEPs by DNN with the desired
STL spectrum. (2) Obtain the GPs by LPT with EEPs.

Different from inverse design, forward properties pre-
diction can usually be realized by analytical or numerical
methods, the latter being often necessary for some complex
structures. In this case, the role of ML is not to solve the
impossible or difficult tasks, but to surpass the efficiency of
numerical methods by reducing the time-consuming

calculations. Donda et al. applied CNN to accurately pre-
dict the absorption spectrum of a given metasurface [101].
In this work, the metasurface consists of randomly curled
patterns inside the cavity, as shown in Figure 4(c). The total
lattice is encoded into a matrix where 0 and 1 represent air
and polylactic acid (PLA) respectively. To obtain dataset
for neural networks training, they calculated the absorp-
tion spectra of some randomly generated coding modes by
finite element method (FEM). Under the training and
testing of these small amounts of data, CNN can accurately
and generically predict the absorption response of all
coding modes (see Figure 4(d)). Their work shows that this
absorption spectrum prediction scheme is more than four
orders of magnitude faster than conventional FEM, saving
considerable time and computational cost.

Due to the one-to-many problem between response
and structure, the conventional neural network usually
cannot design the structure correctly. A very intuitive way
is to introduce a probabilistic approach to select the most
appropriate structure among the candidates. One of the
representative work is done by Luo et al. [102], who

Figure 4: Properties characterization and inverse design of acoustic structure based on deep learning.
(a) Breaking the diffraction limit and realizing far-field subwavelength acoustic imaging [99]. (b) Inverse design of multi-order Helmholtz
resonators using DNN and LPT [100]. (c) The metasurface absorber and matrix coding [101]. (d) Predicting absorption spectra according to
coding matrix by CNN [101].
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proposed a hybrid architecture combining deep learning
with mixture Gaussian sampling, as shown in Figure 5(a).
The front end of the model is a DNN that maps the target
transmission spectrum to individual Gaussian distribution
parameters. The Gaussian distribution parameters include
mixing coefficient (π), mean (μ), and standard deviation
(σ), which are combined with input x and target label y to
form a special loss function for neural network training.
The rear end receives parameters output by neural network
and linearly overlays all the individual Gaussian distribu-
tions to form amixture of Gaussian distributions. The local
maxima of themixture Gaussian distribution correspond to
suitable candidate structures. Experiments show that the
transmission spectra of these candidate structures are
basically consistent with the target. This method starts
from a fuzzy design idea, which can provide several suit-
able candidates close to the target, rather than a single
solution.

Another example of probabilistic deep learning model
is reported by Ahmed et al. [103], their design goal being a
cloakwith amultilayered core–shell configuration. In their
probabilistic model based on TNN model, the front end
transforms the input spectral response into a mean vector
and a variance vector in order to approximate the standard
Gaussian distribution of the latent variables corresponding
to the design space instead of mapping directly to design
space, while the rear end is still a forward pre-training
network (see Figure 5(b)). The design parameters of the
structure are obtained by sampling from the Gaussian

distribution. The probabilistic model has good tolerance
for design faults and enhances the generalization ability.

The two cases above provide a variety of options for
structure selection, which is in line with reality, but often
select the structure with the highest degree of matching
with the desired response, and the other candidates are
rejected. Achieving local enhancement or attenuation
through sound field regulation is one of the important
topics in acoustics research. The degree of enhancement or
attenuation should generally be determined on the basis of
actual engineering or environmental needs, which allows
all candidates designed by ML to have the actual working
conditions. Zhao et al. proposed an ML optimization
method to design the phase gradient of the acoustic met-
asurface for control of the local sound field [104]. The phase
gradient of metasurface is digitized into 0/1 bit sequence,
and the sound field is calculated by FEM to generate
dataset. CNN1 is trained to realize themapping between the
absolute sound field and the metasurface sequence, while
CNN2 is trained to realize the mapping between the meta-
surface sequence and the average sound field. A group of
adaptive sound fields are input into CNN1 to obtain a series
of metasurface sequences, and then the average value of
sound pressure field in the target region can be obtained
through CNN2 (Figure 5(c)). By sorting the average values,
the best sequence to realize the desired sound field inten-
sification or weakening can be found.

For the inverse design of structures with complex
desired responses, the idea of deep generative model has

Figure 5: Probabilistic machine learning inverse design scheme.
(a) Fuzzy design for acoustic structures combining deep learning andGaussianmixture sampling [102]. (b) Design of core–shell acoustic cloak
based on probabilistic TNN architecture [103]. (c) Machine learning for controlling regional sound field [104].

Y. Jin et al.: Intelligent on-demand design 447



been proposed which is completely different from all of
the previous frameworks. Some applications have been
reported in thefield of acoustics. For example, Gurbuz et al.
developed a method to design acoustic metamaterials
based on CGAN [105], in the frame shown in Figure 6(a).
They used a randomalgorithm to generate binary images of
the unit cells, which is composed of fluid elements and
solid elements, and obtain the transmission loss spectra
through FEM. The generator generates images based on
random noise and transmission loss spectrum. The
generated images and the real images are mixed together
and input into the discriminator for judgment. Complete
training is achieved through competition between gener-
ator and discriminator. This work successfully used CGAN
to find the underlying relation between transmission loss
and cell geometries, and achieved the inverse design of the
structural unit cells for the desired sound insulation pur-
pose. It deepens the understanding of the application of
generative model in the field of acoustics, and is of some
pioneering significance.

The works we introduced above are the direct appli-
cation of ML algorithms. As discussed in the introduction,
another application of ML in the field of artificial materials
is training mechanism simulation and extension of neural
networks, which is an indirect application. More specif-
ically, by constructing real physical structural units and

imitating the training method of neural networks, one can
train real units to realize waves control in reality. The
indirect application is based on the fact that wave propa-
gation in phononic metamaterials is similar to data prop-
agation in neural networks, which gives them similar
mathematical expressions. Hughes et al. confirmed that
the dynamics equation of wave physics is similar to the
computation in recurrent neural network (RNN) after
certain mathematical processing [106]. This means that
standard training techniques of neural networks can be
used to train wave systems to learn complex features in
temporal data, the physical analog model being shown in
Figure 6(b). To prove the equivalence, they discretized the
second-order partial differential governing equation of
scalar wave field in time, and obtained expressions similar
to the data propagation in RNN. As a demonstration, they
showed that the inverse designed inhomogeneousmedium
can classify the original audio signals with vowels,
achieving performance comparable to the standard digital
implementation of RNN. Another novel mechanism simu-
lation is reported by Weng et al. [107]; they first proposed
and verified the acoustic meta-neural-network through the
theoretical derivation and experiments. The units of this
neural network are constructed of metamaterials, called
meta-neurons. Their theoretical derivation shows that the
relationship of scatteringwave propagationbetween layers

Figure 6: Advanced generative models frameworks in acoustic metamaterials and simulation of wave physical mechanism with neural
network model.
(a) Designing acoustic metamaterials based on generative adversarial networks [105]. (b) The analogy of acoustic wave physics system and
RNN [106]. (c) The analogy of acoustic meta-neural-networks and CNN [107].
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of meta-neural-network is similar to that of conventional
neural networks. Therefore, the training of meta-neural-
network can be realized by iteratively adjusting the whole
phase profile of meta-neurons in each layer. Furthermore,
they experimentally verified the application of meta-
neural-network in handwritten digit recognition and the
recognition of orbital angular momentum beams. Due to
the subwavelength characteristics of metamaterials, meta-
neural-networks can be miniaturized and compact in
design, and thus having certain advantages in acoustic
applications. The conceptual connection between physics
and ML will pave the way for a new simulation hardware
platform.

3.2 ML for elastic metamaterials

Theworks reviewed above represent the fusion ofML in the
field of acoustic metamaterials. In this section, we review
some recent attempts to make a fusion of ML in the field of
elastic metamaterials. Dispersion relations which result
from the periodicity of the structure are the main theoret-
ical basis for the study of phononic crystals. Finol et al.
proposed using neural network to approximate the input
and output of eigenequations for simulating the nonlinear
relationship [108]. They studied the eigenequations of
1D and 2D phononic crystals, and used CNN to map
the mechanism between material property parameters and
eigenvalues. Their work shows that the nonlinear
modeling ability of neural network can be used to solve
mechanical eigenvalue problems. Inspired by this, Liu
et al. employed neural network to predict the dispersion
relationship of 1D layered phononic crystals [109]. Based
on the above basis, they further proposed to use supervised
neural network (S-NN) and unsupervised neural network
(U-NN) to inverse design this structure [110]. Actually, the
U-NN is TNN, which is discussed in Section 2 and is more
accurate than the conventional S-NN in the case of multi
parameters inverse design.

The mechanical beam is another 1D system, which is a
basic structural platform of mechanics and has rich prac-
tical application scenarios. Compared with traditional
straight beams, curved beamswith variable thickness have
richer characteristics, such as the bistability, but the design
process is more difficult. Liu et al. demonstrated a new
method to realize the design and optimization of variable
thickness curved beams via ML [111]. The mechanical
properties of curved beams such as stiffness (E), forward
(S) and backward (B) snapping force can be adjusted by
changing the thickness distribution of the beam. They
randomly generated the thickness distribution of the

curved beam and obtained the corresponding mechanical
properties through FEM, Figure 7(a). Through the above
steps, they generate a dataset for DNN training to capture
the complex nonlinear relationship between the variable
thickness curved beam and its mechanical properties.
According to the requirements of different mechanical
properties, an optimization step is implemented to obtain a
high-property curved beam. Their work applied ML algo-
rithms to efficiently and accurately design curved beams,
which shows the suitability of ML for mechanical meta-
material structure design.

Digitally coded metamaterials achieve different prop-
erties by changing the coding order of representative vol-
ume element (RVE) rather than the geometric structure.
Generally, the RVEhas two differentmaterials, represented
by 0/1 bits, which introduces a new degree of freedom and
contains a large number of possible combinations. Because
the encoding order and the response cannot be linked by
an analytical expression, and the numerical method is
quite time-consuming, it is a challenge to determine the
coding order according to the required properties. A nat-
ural idea of building a huge digital structured genomewith
all possible sequences has been proposed by Zhang et al.
[112]. Their digital materials have a total of 225 kinds of 5 × 5
layout composed of 0/1 bits. The dispersion curves of
specific structures are obtained by FEM, from which the
wave velocity properties could be extracted. They used
FEM to produce a certain number of samples as the training
set, and trained the CNN to find the mechanism between
the digital material structures and the wave velocity
properties. The well-trained neural network model can
replace FEM, take all possible structures as inputs in turn,
and efficiently find the corresponding wave properties. In
this way, a huge genome containing 225 samples can be
established. The digital structural genome provides an
efficient way to find digital materials in genome with the
most suitable orderings based on target properties, see
Figure 7(b).

Similar to digital coded metamaterials, modular met-
amaterials also realize the properties of the overall struc-
ture through different combinations of internal units. Wu
et al. proposed a design scheme formodular metamaterials
based on ML [113]. In this scheme (see Figure 7(c)), some
basic components are selected from the existing studies to
construct an initial configuration of meta-atoms. Then, the
structure evolution is realized by genetic algorithm (GA) or
neural network until the meta-atoms conforming to the
specific properties are found. For the GA, a few iterations
are often sufficient to find the best configuration.
Compared with traversing all possible configurations, the
computational cost of FEM is significantly reduced. For the
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neural network, the dataset for training is obtained by FEM
according to a certain number of configurations. With a
well-trained neural network, the best configuration that
meets the specific properties can also be found among all
configurations. The authors provide four cases to illustrate
the implementation of the scheme. The results show that
the scheme can make full use of the existing knowledge of
metamaterial design and realize themodular metamaterial
design with specific target properties with the help of ML.

Different from the mechanical properties realized in
the above work, the development of non-Hermitian acous-
tics and topological acoustics has greatly enriched the
physical properties of phononic metamaterials [114–119]. In
particular, the existence of topological edge states at the
interface of two topologically different phases is demon-
strated such states show high robustness against disorder
and imperfections in the structure. However, the search of
mechanical wave state at a specific frequency and band-
width depends on the accurate inverse design of the struc-
ture. Some of the authors employedML algorithm to inverse
design topological metaplates with resonators and realized
strongly robust topological edge states [120]; the design
process is illustrated in Figure 7(d). In our design, the
dataset is obtainedbyplanewave expansion (PWE)method,

and the trained neural network can predict two different
geometric structures for the same bandgapwidth, which are
shrunk type and expansion type. The edge state can be
obtained in this common bandgap frequency range. For the
interface formed by two structures, we confirm that the edge
state localization of the wide common bandgap structure is
higher than the narrow common bandgap. Moreover, the
spin excited edge state showsdirectional propagation and is
able to turn around sharp corner without back scattering
effect. Our work shows that the structure design based on
ML allows the realization of advanced properties such as
topological states.

Some recent works have also shown the ability of AE
in mechanical structure design. For example, Hanakata
et al. [121] demonstrated the ability of AE to forward and
inverse design graphene structure. A more typical work is
reported by Li et al. [122], where AE is employed to design
phononic crystals with anticipated bandgaps, as shown in
Figure 8(a). The RVE of 2D phononic crystals studied in this
work are composed of irregular scattering inclusions in the
matrix. The shape of the scattering inclusions can be
randomly generated by the analytical function. They first
trained an AE based on CNNwith a large amount of data to
extract the features of the topological structures. Then,

Figure 7: Applying neural networks for elastic metamaterials design.
(a) Design of curved beamswith variable thickness [111]. (b) Constructing structural genome of digital codingmetamaterials by neural network
to realize rapid structural screening for specific wave velocity properties [112]. (c) Optimizing configuration of meta-atom to obtain modular
metamaterialswith specific properties [113]. (d) Designof phononic thin platewith specific bandgapwidth to realize highly robust elasticwave
transmission [120].
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they used FEM to calculate the dispersion relations corre-
sponding to the topological structures. On the premise of
discretizing the dispersion relations, a multilayer percep-
tron (MLP) is trained to build the mapping from the
bandgap distribution to the topological features (the label
obtained from the output of the encoder). Therefore, after
training the AE and MLP, the design process can be
described such as to obtain the feature byMLP according to
the anticipated bandgap, and then restore its topological
structure through the decoder. This design scheme is very
ingenious, where the encoder is replaced byMLP,while the
decoder is retained to complete the feature reconstruction
from bandgap information to structure.

Further, this team creatively proposed the application
of reinforcement learning in the design of 1D layered
phononic crystals [123]. They considered the two thickness
parameters of the layered phononic crystals as an agent.
The agent gradually explores the influence of increasing or
decreasing structural parameters on the band structures
during training, and updates experience through

environmental feedback to force it to make correct action
choices in subsequent training; the process is illustrated in
Figure 8(b). By applying Q-learning (one of the reinforce-
ment learning algorithms), they realized the design of
phononic crystalswith the goal ofmaximizing the bandgap
width and customizing the bandgap range. This work
demonstrates the powerful ability of reinforcement
learning in target mechanical design.

Inspired by this work, our team recently proposed us-
ing reinforcement learning to design phononic beams with
periodic variable cross-section [124]. We derived the
dispersion relation by transfer matrix method (TMM), so
that we can analytically obtain the bandgap width. We
employ this process as the environment part of the rein-
forcement learning framework, while the agent includes
the three length parameters in the unit cell. In this frame-
work, the agent executes an action to increase or decrease
the three length parameters, and calculates the bandgap
width before and after the action through environment.
Compare the change of bandgap width. If the width

Figure 8: Elastic metamaterials design enabled by advanced neural network model and reinforcement learning.
(a) Design of phononic crystals by AE and MLP. The MLP link the band information and geometric characteristics of structures, while the
decoder is employed to reconstruct the structures [122]. (b) Design of layered phononic crystalswith specific band structures by reinforcement
learning [123]. (c) Designof phononic beamswith specific bandgapwidth and topological properties by reinforcement learningand TNNs [124].
(d) Simulation of the structural units using neural networks [125].
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increases, it will be rewarded, otherwise it will be pun-
ished. During the training, the agent will continuously
adjust the three length parameters, and the bandgap width
will gradually increase to the maximum. The training tests
were repeated many times, while choosing different paths
of the parameters evolution and all of them finally
converged to the region where the bandgap width is
maximized. In addition to this work, we also discussed the
topological properties of phononic beams, and realized the
structural inverse design with specified topological prop-
erties by using TNN (see Figure 8(c)). We discretized the
frequency domain according to the different topological
properties of the bandgaps and obtained the dataset
analytically. Through data training, TNN can map the
structures obeyed by the specific topological properties,
which allows us to design the topological interfacemode at
the end.

Another attractive work on mechanical beams was
done by Wu et al. [125]. The highlight of this work is that
they used neural networks to replace the element concept
in the conventional discretization methods for non-
periodic system, see Figure 8(d). They train neural
network to connect the input and output response of an
individual material unit. In addition to the first unit, the
other units take the output response of the previous unit as

the input response. By simply defining the boundary con-
ditions and frequency requirements, the cross-sectional
area of each unit can be adjusted by the minimisation
condition between the overall output response and the
target output response, thus achieving the overall design.

We have already discussed the ability of generative
models in the section devoted to acoustic metamaterials.
The generative models are indispensable direction for
future development, so it is natural for researchers to apply
them to study elastic metamaterials. Tan et al. reported a
deep learning model based on deep convolutional GAN for
the design of 2D porous microstructures with specified
compliance tensors [126]. Unlike ordinary GAN or CGAN,
they connected the tail of the trained GAN generator to a
CNN, see Figure 9(a). The generator is responsible for
generating the microstructure that meets the geometric
constraints according to the latent vector, while the CNN is
responsible for obtaining the mechanical properties of the
structure. By reasonably defining the cost function using
the desired and the predicted compliance tensor, and
performing back-propagation on the model, the best latent
vector can be found, then the corresponding microstruc-
ture can be obtained from the intermediate layer. The
flowchart of inverse design process is shown in Figure 9(b).
Based on the conventional GAN, this process has designed

Figure 9: Application cases of generative model and unsupervised manifold clustering for elastic metamaterials.
(a) and (b) is the process for the design of 2D porous microstructures [126]. (c) Classification of topological phononic crystals based on
unsupervised manifold clustering [133].
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a variant network structure so that the model can be opti-
mized to obtain a structure with target mechanical prop-
erties, which is evenmore goal-oriented than CGAN. Due to
the superiority of GAN and its variant combination models
in constructing complex topological structures, some
researchers have also used them to design architecture
materials [127], lightweight metamaterials [128], and so
forth.

Topological invariants which provide an elegant
framework for classifying topological properties have
different expressions in different spatial dimensions. With
the discovery of new materials, topological invariants are
becoming more and more important in modern physics.
Since topological invariants are an abstract concept, they
are often difficult to be properly defined and measured,
which has become a major challenge. But actually, the
topological properties are embedded in the overall struc-
ture feature, so it can be extracted effectively by means of
some algorithms. As a powerful tool for solving classifi-
cation problems, unsupervised manifold clustering algo-
rithm has some basis for identifying topological phase
transitions in quantum physics [129–132]. Inspired by the
above works, Long et al. demonstrated a method of topo-
logical phononic crystals classification using unsupervised
manifold clustering [133]. They use the real space projec-
tion operator of the finite phonon lattice to describe the
correlation between oscillators, and employed diffusion
map method to extract feature and successfully classify
phononic crystals according to different topological prop-
erties (see Figure 9(c)). On this basis, the approach has
been applied to a 1D Su–Schrieffer–Heeger-type phononic
chain with random couplings, amorphous phononic to-
pological insulators, higher-order phononic topological
states, and a non-Hermitian phononic chain with random
dissipations. This work shows that the nonlinear dimen-
sionality reduction ability of unsupervised manifold clus-
tering provides an effective topological phononic crystals
classification scheme without a priori knowledge of topo-
logical families and more especially the need of defining
topological invariants.

4 ML on atomic-scale phononic
metamaterials

2D materials with atomically thick structures have attrac-
ted wide attention due to their advantages such as easy
preparation, excellent performance, and abundant raw
materials. Different from the macro-scale phononic meta-
materials introduced in the previous sections, it is a very

complex and expensive experimental process to establish
the effective relationship between structural information
andmechanical properties for atomic-scalemetamaterials,
although it seems to be just a forward process. Therefore,
developing efficient methods to study the mechanical
properties of atomic-scale phononic metamaterials is very
important to reduce the expensive and time-consuming
experimental cost. We now focus on the efforts of machine
learning in the study of atomic-scale phononic meta-
materials properties in this section.

Thermal conductivity is among the most important
properties of a material. For the majority of applications,
materials with high thermal conductivities are preferable
to enhance the heat transfer and avoid overheating issues.
On the other hand, for the thermal insulating and ther-
moelectric applications, materials with lower thermal
conductivities are more desirable in order to reduce the
thermal energy loss and improve thermoelectric figure of
merit, respectively. By taking a glance on the extensive
theoretical studies available in the literature, it can be
concluded that the classical molecular dynamics (MD)
simulations and density functional theory (DFT) plus
Boltzmann transportation equation (BTE) are the currently
the most popular methods to predict the thermal conduc-
tivity [134–136]. Modeling of the thermal conductivity by
the molecular dynamics simulations are mostly conducted
either by the non-equilibriummolecular dynamics (NEMD)
or equilibrium molecular dynamics (EMD) methods [137].
The accuracy of MD results however strongly depends on
the accuracy of the interatomic potentials that are used to
describe the energies and interatomic forces. Moreover,
depending on the applied loading and boundary condi-
tions the predictions by MD method may change. In this
way, when employing the NEMD method, limited to fixed
boundary conditions, the length effect on the thermal
conductivity must be elaborately examined. With the EMD
technique where periodic boundary conditions are applied
the size effect is less problematic, but the formula that is
employed to calculate the heat-current may substantially
affect the predicted thermal conductivity [138]. These
technical issues can justify the large dispersion in the
MD-based estimates of the thermal conductivity of 2D
materials. Nonetheless, the most critical bottleneck of MD
simulations on the basis of empirical interatomic poten-
tials is that for novel materials and structures, an accurate
interatomic potential may not exist, which can make the
results of the simulations unreliable.

First-principles DFT-based results are well-known to
yield highly accurate predictions for the intrinsic proper-
ties. Nevertheless, depending on the use of different
exchange–correlation functionals combined with ultrasoft
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or projector augmented wave pseudopotentials, the
calculated phonon dispersions may change. When using
the DFT–BTE method for the evaluation of the lattice
thermal conductivity, the final predictions may change
depending on the plane waves cut-off energy, K-point
mesh size, the size of supercells in the calculation of har-
monic and anharmonic force-constants,Q-grid size and the
cut-off distance in the evaluation of anharmonic force-
constants. Various choices for the aforementioned setups
of DFT + BTE method may lead to differences in the
calculated thermal conductivities, which further highlights
the complexity of the problem even when using the first-
principles based methods.

To address the thermal transport in 2D materials,
machine-learning interatomic potentials (MLIPs) show the
greatest potentials. MLIPs are a type of nonparametric
designed interatomic potentials with the aim of providing
accuracy in the order of quantum mechanics computa-
tions, while their computational costs are in the order of
empirical interatomic potentials. Neural network poten-
tials (NNP) [139, 140], spectral neighbor analysis potential
(SNAP), moment tensor potentials (MTPs) [141] and
Gaussian approximation potentials (GAP) [142] are four
conventional approaches in creating nonparametric po-
tentials. MLIPs are trained over the DFT datasets, and thus
exhibit the same order of accuracy and inherent flexibility
to study novel materials. MLIP-based MD calculations can
be also conducted using the same platform as that of the
common MD calculations on the basis of empirical inter-
atomic potentials.

In order to briefly explain how MLIPs can address the
critical challenges in the evaluation of lattice thermal
conductivity of a given material, we would like to catego-
rize materials as those with high and low symmetrical
lattices. For highly symmetrical structures like graphene,
the BTE solution is more efficient than classical MD simu-
lations. Themain computational bottleneck of BTEmethod
is to acquire the anharmonic interatomic force constants.
In a recent study for the thermal conductivity of several
bulk and 2D structures, it has been confirmed that MLIPs
can substantially accelerate the evaluation of anharmonic
interatomic force constants while they show close agree-
ment with DFT-based estimations [143]. According to full
DFT-BTE based studies [144, 145], it has been suggested
that the type of exchange–correlation functional can yield
substantial effects on the estimated thermal conductivity of
graphene. In a sharp contrast with earlier theoretical
studies [144, 145], the estimations by the MLIP-based BTE
confirmed the effects of exchange–correlation functional is
negligible for the examination of lattice thermal conduc-
tivity of graphene [143]. Interestingly, a latest theoretical

study [146] confirmed the findings by MLIP-based BTE
estimation for the thermal conductivity of graphene and
discussed that the scattering in the earlier full-DFT pre-
dictions can be associated with not accurately capturing
the quadratic dispersion of ZA acoustic branch of gra-
phene. In a recent theoretical work by Liy et al. [146] they
extended the earlier work by Mortazavi et al. [143] and
included the four phonon scattering in the evaluation of
lattice thermal conductivity and they reported excellent
agreements between MTP-based and full-DFT estimations
for the complex phononic properties. It seems that, MLIPs
not only can provide accurate estimations and substan-
tially accelerate calculations, but they can also yield
smoother phonon dispersions [147] than computationally
demanding DFT calculations and thus reduce the
complexity of thermal conductivity examination. Although
the BTE solution of lattice thermal conductivity offers a
comprehensive and in-depth understanding of phononic
heat transport in amaterial, for low-symmetrical structures
it becomes exceedingly computational demanding. More-
over, for the analysis of heat transport of complex struc-
tures as those in heterostructures and defective systems,
thismethod becomes computationally infeasible. For these
cases, MLIP-based MD simulations can offer unique op-
portunities, as it has been confirmed in recent studies [148,
149]. One advantage of MLIP-basedMD in comparisonwith
BTE solution of thermal conductivity is that with MD sim-
ulationsmulti-phonon scattering canbe considered.MLIPs
have been also shown to offer the possibility of first-
principles multiscale modeling [148, 150], and they can
enable a straightforward route to bridge ab-initio level
accuracy and flexibility to explore not only the complex
heat transport but also the mechanical/failure response of
nanostructures at continuum scale [148, 150]. The steps for
such a robust possibility are schematically shown in
Figure 10, for the analysis of heat transport in graphene/
borophene coplanar heterostructures.

5 Summary and prospective

In this review, we have introduced the basic principles of
the mainstream algorithms of ML and how they are com-
bined with phononic metamaterials. We have highlighted
some representative works in this field within the past few
years, and the algorithms involved include a series of su-
pervised and unsupervised neural network models, unsu-
pervised manifold clustering, reinforcement learning.
These techniques can keenly grasp the laws underlying
physical relationships and present them in another form to
help us predict properties or inverse design the structures.
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On the one hand, with the continuous development of
acoustics and mechanics, the properties characterization
and structural design of metamaterials is not only a key
objective of fundamental research, but also a premise for
important applications. On the other hand, ML is in a
period of vigorous development. Numerous algorithms are
constantly innovating and penetrating various disciplines.
Meanwhile, advances in computer science provide hard-
ware support. This emerging field of intersection between
several disciplines offers researchers a wide range of
openings and perspectives, and is expected to have further
revolutionary developments in the near future. With the
deepening of scientific content and increasing research
investment, we anticipate that the next stage will have the
following development directions.
– Some high-property implementations, such as strong

localization, high robust transmission, low broadband
vibration and noise reduction, need intelligent design
urgently. The complex relationship between structure
and response, such as acoustic-structure interaction in
underwater metastructures, also needs the help of
data-driven method. Applying ML algorithms to the
design of corresponding requirements may take an
important step for the practical applications of high-
property equipments.

– A series of variant models based on neural network,
such as GAN, TNN, etc., whether supervised or

unsupervised, can construct the model required by a
specific problem after some reasonable combination.
We expect future work on these models for the design
of acoustic, mechanical and/or hierarchical structures
to emerge in abundance.

– Reinforcement learning, as an algorithm developed
from behaviorism psychology, is very consistent with
the process of human learning and understanding of
theworld. At present, there are a few reports in thefield
of acoustic and elastic metamaterial design. It is
believed that reinforcement learning, including deep
reinforcement learning, will have a trend of further
penetration and development in the future.

– Some mature physical mechanisms have similar
characteristics toML algorithms, so it is a new research
field to use some internal mechanisms of ML algo-
rithms to understand and realize the simulation of
physical mechanisms.

– There is no doubt thatMLIP is an effective and accurate
tool for atomic-scale modeling and accelerating the
evaluation of materials’ properties. However, there are
still some challenges in the currentmethods.Worthy to
note that the computational costs of MLIP-based mo-
lecular dynamics simulations are by a few orders of
magnitude higher than commonly used empirical-
based counterparts. In this regard, capturing the Van
derWaals and electrostatic long-range interactions are

Figure 10: First-principles multiscale modeling of lattice thermal conductivity [148].
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another critical challenge of current MLIP models. The
next challenge is the limited transferability of MLIP
based models. These bottlenecks of current MLIP
models reveal that despite highly promising achieve-
ments, there still exists some room for additional
extensive research in the field.

Since the development of phononic metamaterials and the
demand for various acoustic/mechanical devices will
continue to increase, we anticipate that the addition of ML
may have very promising prospects.
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