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Abstract

Electromagnetics (EM) can be described, together with the constitutive laws, by four
PDEs, called Maxwell’s equations. “Quasi-static” approximations emerge from neglect-
ing particular couplings of electric and magnetic field related quantities. In case of slowly
time varying fields, if inductive and resistive effects have to be considered, whereas capac-
itive effects can be neglected, the magneto quasi-static (MQS) approximation applies. The
solution of the MQS Maxwell’s equations, traditionally obtained with finite differences and
elements methods, is crucial in modelling EM devices. In this paper, the applicability of an
unsupervised deep learning model is studied in order to solve MQS Maxwell’s equations,
in both frequency and time domain. In this framework, a straightforward way to model
hysteretic and anhysteretic non-linearity is shown. The introduced technique is used for
the field analysis in the place of the classical finite elements in two applications: on the one
hand, the B–H curve inverse determination of AISI 4140, on the other, the simulation of
an induction heating process. Finally, since many of the commercial FEM packages do not
allow modelling hysteresis, it is shown how the present approach could be further adopted
for the inverse magnetic properties identification of new magnetic flux concentrators for
induction applications.

1 INTRODUCTION

The solution of partial differential equations (PDEs) plays an
essential role in engineering and scientific applications. Tradi-
tional methods, such as finite elements (FEs), finite volumes
(FVs), and finite differences (FDs), rely on discretizing the
domain into a set of mesh points in which the solution is
calculated [1]. Interest of solving PDEs using neural network
(NN)-based methods has a relatively long history that started
in the 90s [2, 3]. Lagaris et al. [3] used trial functions, based
on a single layer perceptron, to approximate the solutions of
ODEs and PDEs. So doing the NN is treated as a continuous
function, whose inputs are the variables the solution depends
on. This approach greatly benefits from the differentiability of
NNs via backpropagation [4]. Training is performed in order
to minimize the solution residuals inside the domain and on
the boundaries.

Recently, deep learning emerges as a powerful technique in
many applications, including computer vision, speech recog-
nition, natural language process, and bioinformatics. There is
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an increasing new interest in the literature for the application
of deep learning methods for scientific computation, including
solving partial differential equations [5–7]. This is mainly due to
substantial improvements in the hardware used to run NNs, and
to the discovery of better practices of training [8]. In last years,
with an analogous approach to that already presented in [3],
training multilayer perceptron-style NNs have been successful
in tackling a much greater variety of PDEs, also with complex
domains and BCs. For instance, Berg et al. [6] showed that, in
contrast to most numerical PDE techniques, NNs are suitable
for high-dimensional problems and complicated domains. In
[9], Raissi et al. introduced ‘physics informed neural networks
(PINNs)” successfully solving Schrödinger’s and Burgers’ equa-
tions. Furthermore, PINNs were extended to fractional PINNs
(fPINNs) to solve fractional advection-diffusion equations [11]
and, based on this paradigm, Lu et al. [10] developed the Deep-
XDE library, capable of solving a wide range of differential
equations. Dwivedi et al. in [12, 13] proposed ‘physics informed
extreme learning machine (PIELM)”, a rapid version of PINNs
that can be applied to stationary and time dependent linear
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partial differential equations. They also discussed the limitations
of PIELM, namely the difficulty in solving differential equa-
tions where the solution has sharp gradients or discontinuity.
The suggested DPIELM (Distributed PIELM) takes inspiration
from the finite volumes method in which the whole computa-
tional domain is partitioned into multiple cells and governing
equations are solved at each cell. Despite very good results have
been achieved by DPIELM [12], in contrast to PINNs, this
method requires a discretization of the domain. Furthermore,
Meng et al. [14] proposed MPINNs (Multi-fidelity PINNs) in
order to solve PDEs in case where a combination of abundant
but less accurate “low-fidelity”, and sparse but more accurate
“high-fidelity” data are available. In alternative to the pre-
sented approaches, recently, also convolutional neural networks
(CNNs) have begun to gain interest. Using common techniques
in computer vision, treating the known terms and solutions
of PDEs on rectangular meshes as though they were images
approaches the task of solving a PDE. In this case, CNNs end
up solving large linear systems. Tompson et al. [15] employed a
CNN in order to accelerate Eulerian fluid simulations, and pre-
sented a data-driven approach for approximate inference of the
linear system used to ensure the Navier–Stokes incompressibil-
ity condition. Also Xiao et al. [16] introduced a CNN with the
capability of solving a Poisson equation in order to predict the
pressure, given the discretization structure and the intermediate
velocities as input. The applicability of CNNs for the solution
of the Poisson equation has been recently widened in ref. [8] to
arbitrary Dirichlet boundary conditions and grid parameters.

The use of NNs and CNNs for solving PDEs in engineer-
ing applications has been mainly focused to fluid dynamics [9,
15–18]. However, few works dealing with electromagnetism do
exist [19–22]. However, almost all of them are limited to elec-
trostatics. Rumuhalli et al. [19] proposed a finite element neu-
ral network (FENN) that embeds finite element models into a
neural network format. FENN was successfully used to solve
inverse problem based on Poisson’s equation. Also the works
presented in [20, 22] concern electrostatic problems, here by
making use of CNNs. Tang et al. [20] highlighted the flexibility
of CNNs in case of complex distributions of excitation sources
and dielectric constants. Zhang et al. [22] could decrease, in
comparison to FD method, the calculation time of factor 10 in
determining the I–V curve for a PN junction. Finally, Bartlett
[21] solved Maxwell’s equations in frequency domain in case
of a non-magnetic, linear material. The structure of his model
is similar to a generative adversarial network: the first part
of the model reminds a “generator” since it maps the space-
distribution of permittivity to the electric field distribution. The
second part, i.e. the “discriminator”, evaluates how physically
realistic the generators’ outputs are. Despite this approach out-
performs, in terms of calculation time, of factor 10 a finite dif-
ference solution, it neglects the imaginary part of all phasors.
Moreover, the implementation of the magnetic non-linearity has
not been investigated. The solution in time domain has been
to not analysed too. To authors’ best knowledge, the solution
of Maxwell’s equations using deep learning, in non-static condi-
tions, has actually not been studied so far. This work attempts
to bridge this gap.

Magnetic flux concentrators (MFCs) are materials, other than
copper coil, that are used in induction systems to alter the flow
of the magnetic field. The benefits of using magnetic flux con-
centrators include improvement of induction coil and process
efficiency, increase of power factor, reduction of coil current,
precise control of the magnetic field and resulting heat pattern
[23, 24]. There are three families of MFCs: ferrites, steel lam-
inations, and soft magnetic composites (SMCs). Soft magnetic
composites are the most widely used, since they can work in
a large range of frequencies with acceptable losses. However,
temperatures higher than 200 ◦C can lead to irreparable dam-
ages, which worsen the material performances. Therefore, in
designing an induction heating system equipped with SMCs, it
is fundamental to know their properties to correctly estimate
their working temperature. SMCs are made from ferrous par-
ticles covered with a thin insulation layer, mixed with organic
or inorganic binder, and pressed at high pressure. Recently, the
possibility of using generative manufacturing for the production
of MFCs has been investigated [25]. There is a growing inter-
est in the production of new MFCs, using different mixtures
and combinations of ferrous particles with binder materials, and
with it the necessity of their properties identification. Generally,
SMCs have a high electrical resistivity and a middle magnetic
permeability. Therefore, hysteretic losses play a non-negligible
role, which must be modelled by an inverse properties identifi-
cation or, more in general, whenever the temperature distribu-
tion within the SMC is needed.

The paper is organized as followed. In Section 2, making use
of NNs, Maxwell’s equations are solved in frequency domain
firstly considering linear materials, and then taking ferromag-
netic behaviours into account (non-linear B–H relationship
and hysteresis losses). Section 3 is dedicated to the solution of
Maxwell’s equations in time domain instead. A straightforward
approach for modelling hysteresis is described. Finally, in
Section 4, employing the models presented in Sections 2 and
3, we will show that the proposed approach can replace the
FDs and FEs simulations in two exemplary cases. In the first
case the B–H curve of AISI 4140 is determined inverting the
induced voltage at the secondary coil. Second, still using only
neural networks, coupling the solution of the Maxwell’s and
Fourier’s equations allows to find the distribution of temper-
ature within a steel work-piece. Results of simulations have
been validated on the base of real experiments. In the end, it
is discussed how the approach could be used for the inverse
magnetic properties identification of new flux guiding materials
for induction heating.

2 SOLVING MAXWELL’S EQUATIONS
IN FREQUENCY DOMAIN

2.1 Linear Maxwell’s equations

Maxwell’s four equations are as follow [26]:

∇ × H = J +
𝜕D

𝜕t
(1)
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∇ ⋅ B = 0 (2)

∇ × E = −
𝜕B

𝜕t
(3)

∇ ⋅ D = 𝜌 (4)

In addition there are the constitutive laws: J = 𝜎E, B =

𝜇H = 𝜇0(H + M), and D = 𝜖E. The electromagnetic quanti-
ties involved in the equations are the electric field intensity E,
the electric flux density D, the magnetic field intensity H, the
magnetic flux density B, the magnetization field M, the surface
current density J, the volume charge density 𝜌. We also define
the magnetic permeability 𝜇, the dielectric permittivity 𝜖, and
the electric conductivity 𝜎. Since we will deal with ferromagnetic
materials (mostly metals), frequencies not higher than a hundred
of kHz, and small size setups (∼ 10−1 m), the last term of Equa-
tion (1) could be neglected (magneto quasi-static—MQS—
approximation of the Maxwell’s equations) [27–30]. This for-
mulation, just to name a few examples, is broadly used in the
field analysis of induction heating [31, 32], inverse B–H identi-
fication [33], power transmission lines [34], electrical machines
[35]. Combining Equation (3) with the first constitutive law and
Equation (1) leads to:

∇ ×
1
𝜎
∇ × H = −

𝜕B

𝜕t
(5)

If the material is uniform, isotropic, and linear, thanks to
Equation (2) and the second constitutive law, Equation (5)
becomes:

1
𝜇𝜎

∇2B =
𝜕B

𝜕t
(6)

In a steady-state frequency domain solution, B(t ) is a phasor
B = BRe + jBIm = |B| exp j𝜙B , where B(t ) = ℜ(|B| e j𝜔t+𝜙B ),
and 𝜔 = 2𝜋 f , with f the frequency. Equation (6) transforms
into:

1
𝜇𝜎

∇2B = j𝜔B (7)

The solution of Equation (7) occurs employing NNs, simi-
larly to what done in [3, 9]. That is, the neural network itself
or a priori defined trial function, which in turn depends on the
neural network, describe the PDE’s solution within the domain.
In this framework, backpropagation [4] makes the differentia-
tion of the NN’s outputs with respect to inputs straightforward.
The number of inputs in the NN equals the number of vari-
ables of the PDE. In this particular case the NN has two out-
puts (1(x ), 2(x )), describing the real and the imaginary part
of the magnetic flux density, respectively. In order to automat-
ically satisfy the Dirichlet boundary conditions, trial functions
(Tf) are adopted. This means that trial functions, which depend
on the NN, will provide the PDE’s solution. Nothing prevents
different outputs to use different trial functions. Indeed, trial
functions take Dirichlet boundary conditions into account that,
in the case of the real and imaginary part of B, can be different.
We will analyse a 1D case (i.e. there is a single space coordinate,

x, physical variables are scalars) with a solution domain (0; 1) m.
The first case is an explanatory instance, in which the Dirichlet
boundary conditions are assumed to be:

BCs =

{
ℜ(B(0)) = 1, ℜ(B(1)) = 0

ℑ(B(0)) = 0, ℑ(B(1)) = 0
(8)

In order to automatically satisfy Equation (8), the trial func-
tions for the real (Tf, Re) and imaginary (Tf, Im) parts value:

Tf, Re(x ) = 1(x ) mRe x (1 − x ) + (1 − x )

Tf, Im(x ) = 2(x ) mIm x (1 − x )
(9)

In fact, regardless of the outputs of the neural network
1,2(x ), Tf, Re(0) = 1 and Tf, Re(1) = 0, while Tf, Im(0) = 0 and
Tf, Im(1) = 0, as defined in Equation (8). Here mRe and mIm
are constants set to 10. They are user-defined parameters that
allow a better functioning of the neural network, since its out-
puts (1(x ),2(x ),…) are typically not higher than 1. Training
points are uniformly distributed inside the domain where the
PDE needs to be solved. The loss function is the residual of the
real and imaginary part calculated over all training points (TP):

PDE =
1

TP

∑
TP

(‖‖‖‖ 1
𝜇𝜎

∇2Tf,Re + 𝜔Tf,Im
‖‖‖‖2
+

‖‖‖‖ 1
𝜇𝜎

∇2Tf,Im − 𝜔Tf,Re
‖‖‖‖2

) (10)

For example, having 100 training points in the domain, the
vector of points in which Equation (10) is evaluated looks like
[0.0099; 0.0198;…; 0.99] m. The solution at x= 0 and x= 1 m is
imposed by the BCs. This vector represents the input of the neu-
ral network. In case of very large domains, one could increase
the density of points in the regions where the variables are sup-
posed to exhibit a big gradient (i.e. in the penetration depth in
the present case). At the same time, locations where the network
is evaluated must be scattered in the entire domain.

All calculations of this work made use of the library Ten-
sorFlow [38]. NNs are trained on a 16 GB Nvidia Tesla P100
(COLAB). FEM calculations are performed on a i7-7700K Intel
CPU equipped with 64 GB of RAM. The training algorithm
used to minimize the loss function (Equation (10)) is Adam [37],
while all training points are used on a single batch. In this linear
case of Maxwell’s equations, parameters are chosen as follow:
𝜇 = 𝜇0 = 4𝜋10−7 H/m, 𝜎 = 107 S/m, 𝜔 = 2𝜋 rad/s.

2.1.1 Adimensionalization

Choosing a frequency of 1 Hz imposes to have a pretty large
domain, here of 1 m, since at the furthest boundary |B| is
supposed to be zero (Equation (8)). However, this is the result
of an adimensionalization and does not represent a restriction.
Let us suppose the frequency is 105 Hz, and we intend to
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FIGURE 1 Adimensionalization speeds the rate of convergence up

consider the calculation domain (0; 0.01) m. The space could
be adimensionalised as follow:

x̂ =
x

x0
(11)

Equation (7) becomes:

1

𝜇𝜎x2
0

𝜕2B

𝜕x̂2
= j𝜔B (12)

Assuming in this case x0 = 10−2, one obtains:

1
𝜇𝜎

𝜕2B

𝜕x̂2
= j �̂�B (13)

where �̂� = 20𝜋 rad/s and x̂ ∈ (0; 1) m. Moreover, as visible in
Figure 1, space adimensionalization speeds significantly the rate
of convergence up.

Since an analytical solution of Equation (7) exists [36], differ-
ent architectures of the NN have been tested aiming to study the
trade-off between accuracy of the solution and training time. We
introduced a “performance factor”, PF =  log(TT), where 
is the error (Equation (14)) between the NN’s and analytical
solution. The calculation of the error is based on the 100 train-
ing points within the domain. Using 100 training points is the
outcome of a trial and error approach that has revealed how
more points would not justify the increase of training time (TT)
in terms of accuracy. On the contrary, going below 100 training
points is detrimental for the solution’s precision.

 =
∫ |Tf,Re −ℜ(Bref )|dx

∫ |ℜ(Bref )|dx
+

∫ |Tf,Im −ℑ(Bref )|dx

∫ |ℑ(Bref )|dx
(14)

Six different configurations (Arch1, …, Arch6) are compared.
They differ in terms of number of neurons, hidden layers, con-
nection between layers, activation function. Max based activa-
tion functions are preferred since they do not saturate for posi-
tive values and they are quite fast to compute [4, 39].

∙ Arch1: Two hidden layers with ten neurons each, activation
function is max(0, x );

TABLE 1 Performance factor (PF) with different NN’s architectures

250 epochs 500 epochs 1000 epochs 2000 epochs

Arch1 4.10E+00 5.15E+00 5.89E+00 7.65E+00

Arch2 1.66E+00 5.62E−01 6.63E−01 1.25E−01

Arch3 3.97E−01 1.08E−01 2.02E−02 1.51E−02

Arch4 2.53E−01 4.28E−02 2.72E−02 1.33E−01

Arch5 8.11E−02 1.27E−02 5.07E−03 6.50E−03

Arch6 2.26E−01 4.48E−02 7.83E−03 5.32E−03

∙ Arch2: Two hidden layers with ten neurons each, activation
function is max(0, x3) [40];

∙ Arch3: Two hidden layers with 30 neurons each, activation
function is max(0, x3);

∙ Arch4: Two residual blocks [39], each containing 2 hid-
den layers with 30 neurons, activation function is
max(0, x3);

∙ Arch5: Two residual blocks, each containing 2 hidden layers
with 60 neurons, activation function is max(0, x3);

∙ Arch6: Two hidden layers with 60 neurons each, activation
function is max(0, x3);

We will mostly use architectures 5 and 6, motivated by the
results visible in Table 1. Figure 2 includes the comparison
between the analytical solution and the trial functions after
the NN has been trained for 500 epochs (4.5 s training time
with architecture 6, loss is 1.96E−02). The network works
equally well when the phase of B at x = 0 is non-zero (see
Figure 3).

2.2 Non-linear Maxwell’s equations
neglecting magnetic losses

EM devices make a widespread use of ferromagnetic materi-
als [41]. Ferromagnetic materials are a certain group of sub-
stances that tend to manifest or display strong magnetism in the
direction of the field due to the application of a magnetic field.
In general, the relation between the applied magnetic field and
magnetic flux density is not a single-valued. Indeed, the material
shows memory effects, the so-called “hysteresis”. However, in
the modelling of electromagnetic devices, it is a common prac-
tise to employ a “single-valued B–H curve” [42]. In this work,
the Froehlich’s equation is used [43]:

|B| = |H |
a + b|H | (15)

where a, b are two material dependent constants, |B| and |H |
are the modules of magnetic flux density and magnetic field,
respectively. Here it is assumed no phase shift between B and
H . It is noteworthy to underline that Equation (15) is not the
DC B–H curve, but it is an equivalent one that can be used
in time harmonic analysis. In fact, locally, in a time harmonic
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FIGURE 2 Linear Maxwell (real part of B, BRe(0) = 1, imaginary part
of B, BIm(0) = 0): comparison between the NN’s and the analytical solution
(curves optically coincide)

simulation, the value of permeability is constant throughout a
period. For this reason, an equivalent B–H relation is needed
[44]. The NN in the non-linear case has three outputs (1(x ),
2(x ), 3(x )), relative to |H |, |B|, and 𝜙, respectively, each
with a different trial function:

Tf,H = 1(x ) mH x (1 − x ) + H0(1 − x )

Tf,B = 2(x ) mB (1 − x )

Tf,𝜙 = 3(x ) m𝜙 x + 𝜙0(1 − x )

(16)

H0 and 𝜙0 are respectively the magnetic field intensity and the
phase at x = 0. In this test case, they value 1000 A/m and 0 rad,
while a, b, and 𝜎 are equal to 5000, 0.45, and 105 S/m, respec-
tively. mH , mB , m𝜙 are typically chosen one order of magnitude
higher than the expected maximum field values (i.e. 105, 101,
100, respectively). Frequency and calculation domain remain
unchanged. As before, the trial functions automatically satisfy
the Dirichlet BCs. The loss function must also take into account
for the B–H relation:

 = PDE +
102

TP

∑
TP

‖‖‖Tf,B −
Tf,H

a + bTf,H

‖‖‖
2

(17)

FIGURE 3 Linear Maxwell (real part of B, BRe(0) = 0.5, imaginary part
of B, BIm(0) = 0.5): comparison between the NN’s and the analytical solution
(curves practically coincide)

where PDE refers to Equation (5):

PDE =
1

TP

∑
TP

(‖‖‖‖ 1
𝜎
∇2Tf,H cos(Tf,𝜙 ) + 𝜔Tf,B sin(Tf,𝜙 )

‖‖‖‖2

+
‖‖‖‖ 1
𝜎
∇2Tf,H sin(Tf,𝜙 ) − 𝜔Tf,B cos(Tf,𝜙 )

‖‖‖‖2

)
(18)

The weight 102 is a heuristic choice. Results of the NN are
compared to those obtained with the commercial FEM package
ANSYS Mechanical Apdl. ANSYS Apdl models non-linear fer-
romagnetic material in time harmonic analysis replacing the DC
B–H curve by another fictitious B–H expression based on aver-
age energy equivalence [45, 46]. The calculation time required
by the FEM solution is approximately 1.2 s. In ANSYS it is also
possible to self-implement other equivalence methods for mod-
elling ferromagnetic materials, for instance when the “effective”
magnetization curve is known. In this case, in each element, the
value of the magnetic permeability is adapted to the magnetic
field strength. Nine iterations are enough to reduce the rate of
change after every iteration below 0.1%. However, the calcula-
tion time grows to 8.6 s. Two case studies have been analysed:
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| |

| |

FIGURE 4 Non-linear Maxwell: comparison between the NN’s and FEM
solution

the first one with a relative low magnetic field intensity (H0 =

1000 A/m, 𝜎 = 105 S/m), the second one with a pronounced
non-linearity (H0 = 80 kA/m, 𝜎 = 106 S/m). In the first case
750 epochs (6.8 s training time using architecture 6, average loss
1.9E − 02) are enough in order to achieve a satisfactory accu-
racy (Figure 4,  = 1.52E − 02). In the second one, the results
after 3000 epochs (19.7 s training time with architecture 6) are
visible in Figure 5 ( = 4.51E+00). Average loss is 2.78E+00.
Referring to B, assuming the FEM solution as reference, the
global error (Equation (14)) is equal in the first and second case
to 2.21E−02 and 2.97E−02, respectively.

So far, we have assumed that in the case of the NNs, nets
are initialised at every training. Similarly, in FEM models, the
geometry and the mesh have been built at every simulation. In
engineering we are often asked to solve inverse problems, for
instance, in order to design a device or to determine unknown
parameters, like material properties. This means that PDEs must
be solved hundreds or thousands of times. If it is the case, avoid-
ing, at every simulation, to initialize the model could save signif-
icant calculation time. If, on the one hand, this is hardly feasible
with a FEM commercial software, on the other, its applicabil-
ity to NNs is straightforward. With reference to the first case,
if we take an already trained NN and we use it as a starting

| |

| |

FIGURE 5 (Pronounced) Non-linear Maxwell: comparison between the
NN’s and FEM solution

point with a new B–H curve, 300 epochs are enough to reach a
loss of 1.07E−02 with a training time of 1.6 s. Similarly in the
second example, 1000 epochs could allow to achieve a loss of
1.81E+00 in 5.6 s. In conclusion, whenever the material proper-
ties or boundary conditions change, the neural network must be
trained because the solution of the PDE has changed. However,
using a pre-trained network could lead to a meaningful reduc-
tion in training time.

Equation (17), as aforementioned, does not refer to the DC
B–H curve, but to an equivalent expression for the time har-
monic analysis. However, the equation of this curve is not always
available. In literature, several methods have been developed
aiming at transforming the DC B–H function into an equivalent
dependency for time harmonic simulations. Effective magneti-
zation, RMS method, energy, enhanced co-energy are the most
well-known approaches [44, 51, 53, 54]. A RMS method consists
of assigning, at each |H | field value, the magnetic flux density it

has supposed to have at |H |∕√2. Its implementation is cheap
and straightforward, since Equation (17) turns into:

 = PDE +
102

TP

∑
TP

‖‖‖Tf,B −
Tf,H

a√
2
+ bTf,H

‖‖‖
2

(19)
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210 BALDAN ET AL.

However, in the present work we will refer to the enhanced
co-energy approach. The co-energy is defined as the area
under the B–H path and has unit of energy. Although
this quantity has no physical meaning, it allows to well
approximate the losses in time harmonic regime. There are
three different definitions of co-energy. The magnetic co-
energy:

wmc(|H |) = ∫
|H |

0
|B(h)| dh (20)

The flux density amplitude:

wfd(|H |) = 1
2
|B(|H |)| |H | (21)

The enhanced co-energy:

wec(|H |) = 1
2

[
wmc(|H |) + wfd(|H |)] (22)

As the first two approaches, respectively, overestimate and
underestimate the power losses in the time harmonic solution,
the enhanced co-energy is generally preferred [51]. The equiva-
lent magnetic flux density is:

|Beq| = 2wec(|H |)|H |2 |H | =
∫ |H |

0
|B(h)| dh|H | +

|B(|H |)|
2

(23)

Equation (17) becomes here:

 = PDE +
102

TP

∑
TP

⎛⎜⎜⎝
‖‖‖‖‖‖‖Tf,B −

∫ Tf,H

0
h

a+bh
dh

Tf,H
−

Tf,H

2(a + bTf,H )

‖‖‖‖‖‖‖2

⎞⎟⎟⎠ (24)

However, for numerical reasons, it is preferable to remove the
magnetic field intensity from the denominator. The loss func-
tion is thus:

 = PDE +
10−5

TP

∑
TP

⎛⎜⎜⎝
‖‖‖‖‖‖Tf,H Tf,B − ∫

Tf,H

0

h

a + bh
dh −

T 2
f,H

2(a + bTf,H )

‖‖‖‖‖‖2

⎞⎟⎟⎠
(25)

The weight 10−5 is the results of a heuristic choice. Architec-
ture 6 was employed. In order to reach a satisfactory accuracy,
the first case study (H0 = 1000 A/m) required 1000 epochs
( = 2.4E − 02, elapsed time is 26.8 s). The second case (H0
= 80 kA/m) needed 5000 epochs instead ( = 7.6E + 00,
elapsed time is 112.4 s). Pre-training the network can signifi-
cantly shorten the training time (9.6 s in the first case with 300
epochs and  = 1.2E − 02; 22.8 s in the second case with 1000
epochs and  = 9.6E + 00). This approach will be further used
in Section 4.

2.3 Non-linear Maxwell’s equations
including magnetic losses

In the previous section, the magnetic permeability has been sup-
posed to be a real number. That implies the losses in the mate-
rial come only from the eddy currents. However, ferromagnetic
materials show hysteretic effects that are associated with mag-
netic losses. Indeed, the area of the hysteresis loops represents
the magnetic loss per volume unit. In the framework of a time
harmonic analysis, a complex magnetic permeability can model
the magnetic losses [47–49]:

�̇� = 𝜇′ + j𝜇′′ = |�̇�|e j𝜓 (26)

That implies a phase shift between B and H . The NN has
now four outputs, the first two (1(x ),2(x )) responsible of|H | and |B|, the last two (3(x ),4(x )) refer to 𝜙H and 𝜙B

instead. The trial functions are analogous to those of Equation
(16). At x = 0 it is imposed the value of H0 = 10 kA/m and
𝜙H0

= 0. The loss function looks like:

 = PDE + BH + 𝜙 (27)

where PDE and BH are similar to those already presented in
the previous section, while the last term is equal to:

𝜙 =
103

TP

∑
TP

‖Tf,𝜙B
− Tf,𝜙H

− 𝜓‖2 (28)

The weight 103 is a heuristic choice. It is bigger than the
one taken in Equation (17) because the phase shift expressed
in radiant is, in absolute values, smaller than the magnetic
flux density. A high weight in 𝜙 ensures a more balanced
relative importance between the different terms of Equation
(27). The expression of the losses E due to eddy currents
is [49]:

E = ∫
V

|J |2
2𝜎

dV (29)

The equation for the magnetic losses is instead:

M = ∫
V

𝜔𝜇′′|H |2
2

dV (30)

The value of 𝜓 is assumed constant in the first instance. In
Table 2 we show the magnetic losses for different values of 𝜓.
We trained the NN for 104 epochs using architecture number 6
(average training time 35.7 s, loss 1.90E+00)

However, the phase of permeability is in many materials mag-
netic field dependent [49]. Usually, in case of magnetic steels, the
stronger is |H |, the greater is 𝜓. The approach we are propos-
ing can easily handle this condition by having 𝜓(|H |) in Equa-
tion (28). In Figure 6 one can see the results in case of H0 = 1

kA/m, 𝜙H0
= 0, and 𝜓 =

5

180𝜋
+

5

180𝜋
arctan(0.001|H |). This
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BALDAN ET AL. 211

TABLE 2 Magnetic losses at different values of 𝜓

𝝍 (◦) tan 𝝍 M (W ) M∕TOT (%)

1 0.0175 46.6 1.4

2 0.0349 105.7 3.2

5 0.0875 264.9 7.4

10 0.1763 553.7 13.8

FIGURE 6 Non-linear Maxwell including magnetic losses: the phase
change between B and H increases with growing |H |

expression of 𝜓 was purely chosen by way of example, in which
𝜓 grows monotonically with |H |. NN was trained for 104

epochs (40.5 s training time,  = 1.54E+00). A direct com-
parison with ANSYS Apdl is not possible because this soft-
ware, like many other packages, does not provide the possibil-
ity of using a complex permeability. One of the contribution of
this work is in fact to show a straightforward approach to esti-
mate how magnetic losses impact total losses. Since only 1D
cases are object of analysis in this paper, when dealing with
2D or 3D cases, one can either expand this approach to prob-
lems with bigger dimensionality, or increase in a FEM environ-
ment the eddy current losses by the magnetic losses got from
the NN.

3 SOLVING MAXWELL’S EQUATIONS
IN TIME DOMAIN

3.1 Linear Maxwell’s equations

In this section, we are going to solve Equation (6). This has
only an academic interest, since in case of linear materials the
equation solved in frequency domain provides the same result
(in steady state conditions) at a much lower computational cost.
In contrast to the cases presented so far, here also the time
appears as a variable. One approach is to consider the time just
as the spatial variables. However, we favour here the procedure
described in [9], where numerical time stepping is employed.
At each time step, the spatial distribution of the magnetic field
and flux density is determined. Time derivatives are estimated
with a finite difference approach. Since 6 is a diffusion equa-
tion, Crank–Nicolson method suits well to this problem. The
loss function is in fact:

 =
1

TP

∑
TP

‖‖‖Tf,Bn+1
− Tf,Bn

Δt

−
1

2𝜇𝜎
(∇2Tf,Bn+1

+ ∇2Tf,Bn
)‖‖‖2

(31)

here Tf,Bn+1
is the value of the trial function at the time step n +

1. The NN has in this case a single output 1 and, as before,
takes the Dirichlet boundary conditions into account:

Tf,Bn+1
=1(x ) mB x (1 − x )

+ B0(1 − x ) sin(𝜔Δ t (n + 1))
(32)

At t = 0 the magnetic flux density is supposed to be zero.
The number of epochs is not constant for all time steps because
the NN requires gradually less epochs to achieve a compara-
ble accuracy. An exponential decay in the number of epochs
for each time step is used. Material properties are same like in
Section 2.1. The total time is 1 s (frequency is 1 Hz) that has
been divided into 100 steps. The architecture number 5 is cho-
sen. Results from the NN (approximately 5000 epochs per each
time step, average loss 2.41E − 02) are in excellent agreement
with those obtained with a FD approach (global error taking
FD as reference is 4.62E − 03) (Figure 7). The big number of
epochs in comparison to the previous section is motivated by
the absolute need to reach a high level of convergence, espe-
cially in the first time steps. An imprecise solution would indeed
tend to increase the inaccuracy of the results of the following
time steps. For this reason, FD outperforms NN in terms of
calculation time.

3.2 Non-linear Maxwell’s equations
neglecting hysteresis

The Equation (5) has been solved combining the approaches
presented so far. A sinusoidal magnetic field H with a peak
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212 BALDAN ET AL.

FIGURE 7 Linear Maxwell in time domain (Results at time t = 0.75 s and
t = 1.0 s)

value of 10 kA/m is imposed at x = 0 m for t = [0; 1] s. The
loss function contains now a second term in order to impose the
non-linear law between B and H (similarly to Equation (15)).
We show here the time behaviour of H and B at x = 0.05 m.
The shape of the magnetic flux density is clearly deformed
in comparison to the magnetic field because of saturation
(Figure 8). The average loss is 2.57E − 02, while each time step
has an average of approximately 9000 epochs. In this case the
NN requires a longer calculation time in comparison to the
FEM model in order to reach similar results (here the global
error taking FEM as reference is 3.98E − 02).

3.3 Non-linear Maxwell’s equations
including hysteresis

The simulation and design of devices involving magnetic com-
ponents, such transformers, could require modelling hystere-
sis effects [52]. Several hysteresis models have been developed
in the last hundred years. Among them, the most commonly
used and known are the Preisach and Jiles–Atherton (JA) meth-
ods [26]. We will stick to the second one, because it is based
on the physical behaviour of the magnetic materials. In the
original JA [50] model, the magnetization M is decomposed

FIGURE 8 Non-linear Maxwell in time domain (H and B at x = 0.05 m)

into its reversible Mrev and irreversible Mirr component (M =

Mirr + Mrev), corresponding respectively to the reversible and
irreversible magnetic domain deformations. The basic equations
are:

Mrev = c (Man − Mirr ) (33a)

Man = Ms

(
coth

(|He|
a

−
a|He|

))
He|He| (33b)

𝜕Mirr

𝜕t
= max

(
0;

Mrev

ck

𝜕He

𝜕t

)
Mrev|Mrev| (33c)

where He = H + 𝛼M . a, c, 𝛼, Ms, and k are model parameters
for the JA method. A little algebra gives the following two rela-
tions:

Mrev =
c

1 − c
(Man − M ) (34a)

𝜕M

𝜕t
= (1 − c )

𝜕Mirr

𝜕t
+ c

𝜕Man

𝜕t
(34b)

In this section, two case studies are subject of investigation.
In the first example, the system of Equations (33) and (34)
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BALDAN ET AL. 213

FIGURE 9 Modelling hysteresis with the JA approach (hysteresis loop and
Magnetic flux density in time)

is solved using a neural net, aiming at getting the expression
of B in time. The excitation field is assumed sinusoidal: H =

5000 sin(2𝜋t ), where the time is here the only variable in the
domain (0; 1.25] s. The NN that provides the solution has only
one output, which refers to M . Material parameters are chosen
as follow: a = 700 A/m, c= 0.1, 𝛼 = 0.001, Ms = 1.6 106 A/m,
and k = 1000 A/m. Properties come from [26]. 100 training
points are used, which are uniformly distributed in the domain
(0; 1.25] s. The number of epochs is 2.5 × 104, while the loss
function refers instead to Equation (34b). A numerical trick is
necessary when calculating Man, because the given Equation
(33b) has singularities when |He| approaches zero. A standard
Taylor expansion is used when |He| < 0.1. Figure 9 summarizes
the results. The first picture qualitatively compares the output
of the network with the reference (i.e. the solution of equations
of JA model obtained numerically). You notice how, at t = 0,
B, H = 0; with growing H field, the curve of first magnetiza-
tion takes shape. Once reached the maximum H, B values, with
decreasing excitation, B will no longer track the curve of first
magnetization.

Finally, as a second case study, we considered a 1D time tran-
sient analysis where the JA model is implemented. Equation
(5) is solved, now keeping also Equations (33) and (34) into
account. A known H sinusoidal field is imposed at x = 0 with a

FIGURE 10 Non-linear Maxwell’s equations considering hysteresis (H
and B field)

peak value of 5 kA/m. The NN has two inputs (time and space)
and two outputs (related respectively to H and M ). So, unlike
what done in the last two sections, the time is now treated as
a variable. Therefore, the input is a 100 times 100 matrix, since
each input variable has 100 training points. The loss function
combines the residual of Equation (5) with the residual of Equa-
tion (34b). Training required 1.5 × 105 epochs (2.5E + 03 s was
the training time). Figure 10 summarizes the results, namely, the
time and space behaviour of H and B.

4 APPLICATIONS

4.1 Inverse B − H curve identification of
carbon steel AISI 4140

Induction heating of metals is a well-known resource efficient
technology. In particular, heating carbon steels allows to reach
efficiencies up to 90% below the Curie point. A correct mate-
rial properties knowledge improves the accuracy of numerical
simulations [33]. Referring to the AISI 4140 (whose carbon
content is approximately 0.42%), the B–H relation (Equation
(15)) is described with a = 270 and b = 0.577 [43]. In case
of a magnetic steel, in induction heat treatment applications,
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214 BALDAN ET AL.

FIGURE 11 Experimental setup for the B–H curve identification

TABLE 3 Synthetic data for the inverse B–H curve identification (I1, V2
are effective values, |H

0
| refers to the peak value)

I1 (A) |H
0
| (kA/m) V2 (V)

20 10.6 7.37

50 33.8 13.33

100 74.4 20.07

magnetic losses play a very minor role [56]. We refer now to
the experimental setup of Figure 11. A primary coil with 175
windings (N1) is supplied with an AC voltage source (frequency
is 50 Hz). The secondary (peak up) coil is needed for the mea-
surement of the induced voltage (V2) and has 20 windings (N2).
The piece is a cylinder with a radius of 50 mm and length of
350 mm. The magnetic field intensity between the secondary
coil and the piece could be quantified by a teslameter (the calcu-
lation of the magnetic field strength from the magnetic flux den-
sity is immediate, known 𝜇0). No real experiments have been
performed with this setup. Synthetic data have been obtained
using a 2D axisymmetric time harmonic FEM model (ANSYS
based), which reproduced the setup of Figure 11. In addition to
the geometry, material properties are required as input param-
eters for the 2D FEM model. They include the B–H curve (a
= 270 and b = 0.577) and the electrical resistivity of AISI 4140
(25E−08 Ωm) and copper (2E − 08 Ωm) [43].

Three different excitation currents I1 have been analysed.
Table 3 summarizes the synthetic data obtained with the 2D
FEM model. These data are the input parameters for the inverse
B–H curve identification, which could be formulated as opti-
mization problem:

min
a,b

max
i=1,…,3

|V2,1D (|H
0,i
|, a, b) −V2(|H

0,i
|)| (35)

in which V2,1D has been obtained from the model presented in
Section 2.2 as:

V2,1D =
N2𝜔√

2

([
∫ Tf,B cos(Tf,𝜙 ) dx

]2

+

[
∫ Tf,B sin(Tf,𝜙 ) dx

]2) 1

2

(36)

It means that at each combination of a, b, and H0 = |H
0
|,

the neural network is trained to solve the direct (forward) prob-
lem. In the neural network based model, the excitation field is
assumed to be H0 (see Equation (16)), while 𝜙0 is zero. 100
training points have distributed inside the domain (0; 0.05) m.

The equivalent B–H curve is based on the enhanced co-energy
(see Section 2.2 for details relative to the NN’s characteristics).
Equation (35) is solved coupling the differential evolution (DE)
algorithm [55] with the 1D deep learning based field evaluation.
With a population of 20 individuals, after 12 generations, the
minimum of Equation (35) is supposed to be at a = 320.4 and
b = 0.571. In that point, the objective function values 0.539 V.
The identified parameters are close to the exact ones. The exact
and estimated B–H curves show a discrepancy only at very low
field intensities (below 2 kA/m) in virtue of the different a

value.

4.2 An electromagnetic–thermal coupled
analysis for induction heating

The simulation of an induction heating process always involves
at least an electromagnetic solution, in order to determine the
distribution of the heat sources, and a thermal solution [24, 31
34]. In order to save computational time, the electromagnetic
analysis will be done in harmonic conditions. The thermal field
is governed by the Fourier’s law, which is a diffusion equation,
similarly to Equation (6). A new neural network, which has
one input (the space x) and one output (1, relative to the
temperature) variable, is employed in order to calculate the
temperature evolution in time and space. As done in Equation
(31), a numerical stepping is employed for handling the time
derivative. Here the explicit Euler method is adopted:

Tn+1 − Tn

Δt
=

𝜆

d cp

𝜕2Tn

𝜕x2

1

x2
0

+
q

d cp
(37)

subjected to:

−
1
x0

𝜕Tb

𝜕x
=

h

𝜆
(Tb − T∞ ) (38)

in which 𝜆, d , and cp indicate thermal conductivity, density,
and specific heat, respectively. q represents the heat sources,
obtained from the sum of the eddy currents and magnetic losses.
Equation (38) is a Robin boundary condition (Tb speaks for tem-
perature at the boundary, i.e. x = 0 m), which takes the thermal
losses into account (h is the convective heat transfer coefficient,
T∞ is the temperature of the environment. x0 is intended to
adimesionalize the calculation domain). No Dirichlet BCs must
be fulfilled and therefore the trial function will look like:

Tf,T (x ) = mT 1(x ) (39)

mT is equal to 103, since the temperature is not expected to
overcome 1000 ◦C. The BC (Equation (38)) is implemented as
a penalty within the loss function. Therefore the loss function
contains two members: the first refers to Equation (37), the
second to Equation (38). The architecture of the net is the
number 5. 100 training points have been used. The number of
epochs, which gradually decreases in the successive time steps,
is on average, 3 × 104.
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BALDAN ET AL. 215

FIGURE 12 Induction heating setup

FIGURE 13 Comparison between experiment, NN, and FEM

Real experiments have been carried out to validate the elec-
tromagnetic thermal simulations that rely on the neural net-
works technique (Figure 12). A eight winding inductor is wound
around a AISI 4140 billet with 12 mm radius. The inductor’s
current was monitored with a Rogowski coil, while the sur-
face temperature of the billet, in the central part of the induc-
tor, has been measured by a thermocouple. From the current
value and the inductor topology, an estimation of H0 (excitation
field), needed for Equation (16), is obtained. The used mate-
rial properties are: electrical resistivity 35E−08 Ωm (at 200 ◦C),
B–H curve with a = 270 and b = 0.577, thermal conductivity
41 W/m K (at 200 ◦C), specific heat 500 J/kg◦C (at 200 ◦C),
density 7800 kg/m3 [43]. The initial and environment tempera-
ture is 30 ◦C, while h is assumed to value 5 W/m2◦C. Finally,
the frequency is 12 kHz. The process has a duration of half
a second that has been divided into 10 time steps in the sim-
ulation. Figure 13 compares the experimental results with the
1D FEM and NN simulations. A good agreement is achieved.
Moreover, the absolute difference between FEM and neural
networks approach is never higher than 0.6 ◦C. That confirms
the possibility of using a neural networks based method also in
induction heating simulations.

FIGURE 14 Simulated temperature on the surface of the MFC

4.3 Field analysis for inverse magnetic
properties identification of MFCs

The method described in Section 4.2 is here extended to the
class of materials that have non-negligible hysteretic behaviours.
These include, among others, magnetic flux concentrators
(MFCs) for induction applications. In fact, due to the high
electrical resistivity, magnetic losses are dominant. In this sec-
tion, the neural networks based technique uses the approach
described in 2.3 for the electromagnetic solution. The thermal
analysis is same as in Section 4.2. The aim is to show that our
method can potentially be adopted to inverse determine the
complex expression of magnetic permeability (Equation (26)).
We refer to a case where the flux guiding material is located
inside a long cylindrical coil, similarly to the previous exam-
ples, such that the field distribution could be assumed locally
uniform. It is performed a 1D field analysis (electromagnetic
and thermal) in order to find the distribution of temperature in
the MFC. Material properties are supposed to be same as for
the Fluxtrol 50 [57]: electrical resistivity is 5 Ωm, parameters
of the B–H curve are assumed to be a = 12000 and b = 0.65,
𝜆 is 6 W/m◦C, cp is 400 J/kg◦C, d is 6100 kg/m3. The only
guessed property is 𝜓 (5◦). The excitation field H0 is here sup-
posed 5 kA/m, while the frequency is 100 kHz. In this condi-
tions, the magnetic losses are dominant compared to the Joule
losses. Figure 14 depicts the surface temperature in case of a
process 5 s long.

5 CONCLUSIONS

In this paper, MQS Maxwell’s equations have been solved in
both frequency and time domain making use of artificial neu-
ral networks. The flexibility of neural networks can good tackle
the non-linearity that characterizes ferromagnetic materials. The
proposed approach is to be understood as a straightforward
method that fill the gaps of FEM electromagnetic software. In
fact, in the linear case, as well as in the non-linear time tran-
sient, and harmonic solution with real valued permeability, the
FEM solution is usually faster than the NN. However, whenever
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216 BALDAN ET AL.

a FEM package cannot model, in time or frequency domain,
hysteresis, employing the deep learning based approach gives an
uncomplicated way of performing a simulation. For instance, it
is possible to quantify the hysteretic losses within a flux con-
centrating material. It was also highlighted how, in general, pre-
training NNs further helps to reduce the training time. In this
case, the elapsed time could become comparable to that of
the FEM model (as in the non-linear time harmonic problem).
Despite in this work Maxwell’s equations have been solved in
1D domain, some applications do exist. Examples from the
inverse magnetic properties identification, as well from induc-
tion heating, have been reported. We are currently working on
the extension of this approach to the 2D case. The increase of
training points seems to be well managed by the deep learn-
ing techniques.
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