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O R I G I N A L  A R T I C L E

Atom Strapdown: Toward Integrated Quantum Inertial 
Navigation Systems

Benjamin Tennstedt*1  Ashwin Rajagopalan2  Nicolai B. Weddig1  Sven Abend2   
Steffen Schön1  Ernst M. Rasel2

1  INTRODUCTION

Atom interferometry is a highly precise technique for inertial sensing (Kasevich 
et al., 1991). By interrogating a free-evolving atom wave packet with a series of laser 
pulses, information about accelerations and turn rates can be extracted, allowing 
the calculation of a complete navigation solution (position, velocity, and attitude). 
Applications of this technique for accelerometers (Barrett et al., 2014), gyroscopes 
(Gauguet et al., 2009; Schubert et al., 2021), and complete inertial measurement 
units (IMUs) (Gebbe et al., 2021; Gersemann et al., 2020) based on Bose–Einstein 
condensates are currently under research. The potential position accuracy reaches 
5 m after 1 h of inertial navigation (Jekeli, 2005), which makes atom interferometry 
a highly promising technique for navigation in global navigation satellite system 
(GNSS)-denied environments.

Commercial options are already available for static settings, i.e., quantum gra-
vimeters (Vermeulen et al., 2018), and have an accuracy and long-term stability 
comparable or even superior to those of other high-end conventional sensors 
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Abstract
We present an alternative technique for estimating the response of a cold atom 
interferometer (CAI). Using data from a conventional inertial measurement 
unit (IMU) and common strapdown terminology, the position of the atom wave 
packet is tracked in a newly introduced sensor frame, enabling hybridization 
of both systems in terms of acceleration and angular rate measurements. The 
sensor frame allows for an easier mathematical description of the CAI measure-
ment and integration into higher-level navigation systems. The dynamic terms 
resulting from the transformation of the IMU frame into the CAI sensor frame 
are evaluated in simulations. The implementation of the method as a prediction 
model in an extended Kalman filter is explained and demonstrated in realis-
tic simulations, showing improvements of over two orders of magnitude with 
respect to the conventional IMU strapdown solution. Finally, the implications 
of these findings for future hybrid quantum navigation systems are discussed. 
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(Freier et al., 2016). In the case of changing inertial quantities, some challenges 
still remain. The atom interferometer itself has a very limited dynamic range when 
used alone, and conventional measurement models for the interferometer read-
out are often not suited for highly dynamic trajectories. Thus, in state-of-the-art 
techniques, hybridization with other sensors, such as conventional accelerome-
ters, is mandatory in order to produce a navigation solution (Cheiney et al., 2018; 
Richardson et al., 2020; Templier et al., 2022; Zahzam et al., 2022).

In our prior work (Tennstedt & Schön, 2020), a combination of conventional 
IMUs and atom interferometers in the frame of an extended Kalman filter (EKF) 
was presented. The phase shift of the cold atom interferometer (CAI) is predicted 
from the measurement of the conventional IMU, determining the target fringe 
of the CAI and effectively solving the fringe ambiguity problem. The CAI mea-
surement is then used to correct the prediction model of the IMU, which enables 
the estimation of a number of IMU error quantities, e.g., sensor bias or misalign-
ment, based on the state vector configuration (Tennstedt & Schön, 2021) This 
model has been successfully tested with two IMUs of different accuracies, with the 
higher-class IMU emulating an atom interferometer (Weddig et al., 2021). With the 
bias of the conventional IMU corrected, the position drift of the combined navi-
gation solution was reduced by a factor of 30. In general, the combined solution 
benefits from the superior long-term stability of the CAI, as discussed in Tennstedt 
et al. (2021). This solution was further evaluated for applications on low Earth orbit 
satellites (HosseiniArani et al., 2022), where the electrostatic accelerometer in use 
has a lower white noise density than the CAI, but a larger long-term drift.

However, the models introduced thus far have been developed under the assump-
tion that the atom interferometer is aligned with the body frame of the vehicle. 
In addition, the equations are not scalable, which prevents the integration of one 
or more atom interferometers in a higher-level navigation system. In this paper, a 
suitable coordinate system for the sensor frame is introduced in order to allow an 
easier integration in future high-level navigation and multi-sensor systems. First, 
a system is developed for a general case with several sensor frames, followed by a 
special CAI multi-axis scheme based on differential measurements presented in 
Gersemann et al. (2020). This multi-axis scheme is then used for further evaluation 
in the scope of this paper.

The remainder of this paper is structured as follows. The measurement principle 
of CAIs for inertial sensing is briefly summarized in Section 2. The necessity and 
basic idea for hybridization are explained, and two types of hybridization that are 
relevant for this paper are described. In Section 3, the mathematical framework for 
the phase shift prediction, the atom strapdown scheme, is developed. A comparison 
with a second existing hybridization scheme follows in Section 3.2. Performance 
studies are carried out in Section 4 based on simulations, where the phase shift is 
of particular focus. Based on realistic dynamics derived from measurement cam-
paigns, the single phase shift terms are quantified and visualized in order to gain 
insight and derive requirements for future hybrid sensor designs. Furthermore, the 
error of the predicted phase shift with respect to the CAI observation is tracked 
and discussed. The conclusions of this work are presented in Section 5 with a final 
evaluation.

2  ATOM INTERFEROMETRY FOR INERTIAL SENSING

Atom interferometers use the wave-particle characteristics of an atomic wave 
packet to deduce inertial quantities. In a basic Mach–Zehnder-type configuration, 



    TENNSTEDT et al.

shown in Figure 1, an atomic wave packet is manipulated by a series of three 
directed laser pulses in order to split, reverse, and recombine the internal states of 
the atoms.

During the interaction of the atom wave packet with the beam splitter lasers, 
the atoms are set in a superposition of two internal energy states, |1,m〉  and 
|2,m k� � ,  where m  is the momentum of the wave packet,   is the reduced 
Planck constant, and k � 4�

�
 is the effective laser wave number, which itself is 

related to the wavelength λ,  e.g., 780 nm for rubidium. The probability that the 
atoms are in one of the two states oscillates with a certain Rabi frequency Ωeff  and 
depends on the time of the laser interaction, the pulse time τ .  If the atoms are all 
in state 1 at the beginning of the interaction, they will all switch their state after a 
certain 2τ  pulse into state 2, resembling a mirror pulse. Likewise, if the interaction 
lasts for a duration of τ ,  the probability for a transition is 50% and a state-splitter 
pulse can be realized. During each atom–laser interaction, a phase shift between 
the two states is accumulated because both states yield different momenta. Under 
a number of assumptions such as a symmetric pulse sequence (Antoine & Borde, 
2003), it is sufficient to describe the position of the center of mass of the atoms 
at the mid-point line between both states, as shown in Figure 1. The phase shift 
between the two states then depends on the relative position x  of the atoms in 
the sensor frame, as well as the effective wave number k  of the lasers for each 
atom–laser interaction. The main limitation of this method is that the trajectories 
of the two atomic states must overlap at the time of the recombination pulse. This 
requirement might be violated in the presence of rotations, where a loss of contrast 
attributed to an insufficient closing of the wave packet trajectory occurs (Roura 
et al., 2014) and a separation phase must be considered.

FIGURE 1 Basic principle of a CAI 
Left: Atom interferometry in the Mach–Zehnder configuration. An atomic wave packet is 
manipulated by directed laser pulses with a separation time T, allowing inertial quantities to be 
extracted from the resulting phase shift. The atom position along the mid-point line (yellow) is 
decisive for the resulting phase shift. Right: Scheme of a CAI. After leaving their source, the 
atoms a are prepared in a three-dimensional magneto-optical trap (MOT). Afterwards, they are 
launched into free propagation, and their states are manipulated by a series of laser pulses. Finally, 
the atoms in one of the states are counted by detecting photons that are emitted after additional 
manipulation steps. A retroreflection mirror is used in order to allow Raman state transitions 
(Kasevich & Chu, 1992) and acts as a spatial phase reference. In this setup, an optomechanical 
resonator (OMR) is used to measure the mirror vibrations, i.e., frame accelerations, and to 
reconstruct the interferometer phase.
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For the introduced three-pulse Mach–Zehnder configuration and under consid-
eration of the midpoint-line theorem, the final phase shift φ( )3t  at the time t3  of 
the last interaction reads as follows: 

	 �( ) ( ) 2 ( ) ( )3 1 1 2 2 3 3t k x t k x t k x t� � � � (1)

The actual observation after a measurement cycle is the transition probability, 
or population, of the atoms. This population p  can be assessed by counting the 
number of atoms in one of the two states, N1  or N2 .  In turn, the population can 
be related back to the phase shift via the following relation: 

	 p
N

N N
� �1

1 2

1
2
1

�
�( cos )� � (2)

As a didactic example, the phase shift can now be calculated by the inverse 
cosine. To retrieve the inertial effects from the phase shift, additional models are 
needed. Assuming a constant acceleration a, a simple motion equation of x at= 1

2
2  

is sufficient. The quantity of interest can then be computed by applying the model 
to Equation (1), plugging the result into Equation (2), and then solving for a. The 
final equation for the inertial quantity in this example is then: 

	 a
kT

p�
1 2 1
2
arccos ( )� � (3)

if k k k k= = =1 2 3  (static setting) and T  is the interrogation time between the laser 
pulses, cf., Figure 1.

The approach of using the inverse cosine shows one major drawback of the CAI. 
The phase shift is only defined in the interval of 0 � �� � ,  which is a flank of the 
cosine function. For a typical setup with an interrogation time of 10 ms and the 
example above, this range corresponds to an acceleration of only approximately 
2 mm/s². A vibration of the sensor frame may be larger than this value, which leads 
to ambiguity in the CAI measurement.

This drawback can be circumvented by either compensating for vibrations via a 
stabilized platform or using different acceleration sensors to measure the vibration 
and to combine the signals via convolution with the CAI response function, cf., 
Cheiney et al. (2018) or Richardson et al. (2020), in order to enable measurements 
with the atom interferometer.

Another way to benefit from the better long-term stability of the CAI is to use 
a conventional IMU as the main sensor and to correct any drift errors with the 
atom interferometer measurement, e.g. Tennstedt & Schön (2020), while the solu-
tion of the ambiguity problem works in a similar manner. Both techniques will be 
explained in the next section.

3  HYBRIDIZATION

The idea behind hybridization is driven by two objectives. The first objective is to 
resolve the fringe ambiguity. This is done by reconstructing the atom interferome-
ter phase with the help of high-rate sensors able to resolve signals that would oth-
erwise exceed the dynamic range of the interferometer. For this step, we propose 
the atom strapdown technique as a prediction method that utilizes acceleration 
and angular rate measurements from an IMU as input.

The second objective is to correct the IMU-based prediction model with the 
observation of the atom interferometer. To this end, an EKF is applied with the 
bias of the accelerometers and gyroscopes as a state augmentation.
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In the following subsections, this formalism is described, compared with another 
phase reconstruction method that has been previously applied to experimental 
data, and finally implemented in the framework of an EKF.

3.1  Phase Reconstruction with Atom Strapdown

As clarified in the introduction, the phase shift of an atom interferometer pri-
marily depends on the relative position of the atom wave packet in the sensor 
frame. The basic equations of a typical strapdown algorithm that is used to com-
pute the kinematic state of a moving platform from accelerometer and gyro-
scope measurements are adapted in order to estimate the wave packet position 
and its velocity.

3.1.1  Sensor Frame Phase Shift Representation

To allow a more general three-degree-of-freedom formalism, the position vector 
pointing to the center of the atom wave packet a  in an arbitrary sensor frame s 
with index j x y z∈[ , , ]  will be denoted as x sj a

sj
, .  For now, it is assumed that each 

CAI has only one sensitive direction, defined by its effective wave vector ksj .  As 
an example, for j x= ,  cf., Figure 2, the vector may read ksx Tk= [ , 0, 0] ,  where k 
is the effective wave number introduced above. The phase shift φ sj  in the corre-
sponding sensor frame can then be calculated by Equation (1). The origin of the 
s-frame is defined in the exact location at which the atom wave packet is released 
into free propagation. When the first splitter pulse is applied at t1 = 0, the initial 
position in the respective sensor frame is zero, and hence, the phase shift according 
to Equation (1) is reduced to two terms: 

	 � sj sj
sj a
sj sj

sj a
sjt T t T� � �� � � �2 ( ) ( 2 ), ,k x k x � (4)

where T  is the interrogation time between the laser pulses and ⋅  denotes a scalar 
product.

FIGURE 2 Position vector x sx a
sx

,  pointing to the atom wave packet in the CAI sensor frame sx 
The axis sx1  corresponds to the forward direction. In this case, the forward direction is aligned 
with the beam splitter laser field and, thus, the sensitive axis ksx  of the sensor, indicated by the 
black dotted line. For the other two axes, sx3  aligned in the downward direction orthogonal to 
sx1,  and sx2  completes the right-handed system.
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If an IMU is used to estimate the position of the atom wave packets in the sensor 
frame, a framework known from inertial navigation can be utilized: the strapdown 
algorithm. The differential motion equations for the position x sj a

sj
,  and velocity 

v sj a
sj

,  of the respective atom wave packets are as follows: 

x vsj a
sj

sj a
sj

, ,= � (5)

	 v f v gsj a
sj

i sj
sj

i sj
sj

sj a
sj sj

, , , ,2� � �� � ��� � (6)

Here, fi sj
sj
,  are the specific forces, i.e., accelerations, and the term 2 , ,ΩΩi sj

sj
sj a
sjv  

denotes the Coriolis force, as the atoms have a velocity relative to the s-frame. 
The gravity vector gsj  is considered as well. The rotation rates are expressed in 
the skew-symmetric matrix ��i sj

sj
i sj
sj

, ,[ ]� �� � ,  where the index i denotes the inertial 
frame. The index s j  with j x y z∈[ , , ]  denotes the corresponding sensor frame, cf., 
Figure 3. As an example, the vector v sx a

sx
,  marks the velocity between the sx  frame 

origin and the atom wave packet a  in the sx  frame, expressed in the sx  frame.
Note that the equations are solved in the respective s-frame; hence, the change 

in the velocity v sj a
sj

,  of the atom with respect to the s-frame points in the direc-
tion opposite to the acceleration of the s-frame, cf., Equation (6). This does not 
account for gravity gsj ,  which affects the motion of the atom wave packet even 
when the s-frame is not accelerated. Gravity can be considered as an external force. 
Additional effects, such as centrifugal and Euler accelerations, that depend on the 
position x sj a

sj
,  are not considered in this study, as their effects are comparably small 

for short interrogation times. For future actual implementations with specified 
CAI parameters, such as the initial position of the atoms in the s-frame, the dif-
ferential equation (Equation (6)) can be enhanced accordingly. Furthermore, the 
recoil velocity caused by the laser–atom interaction is neglected, as the impact on 
the phase shift is small compared with the effect of the accelerations.

FIGURE 3 Sensor frames as defined in the strapdown model 
All systems are right-handed. The b-frame is the center of the platform, corresponding to the 
frame in which the conventional IMU is placed. Left: General setting. Two sensor frames, sx and 
sy, are depicted, with each one sensitive for a single spatial dimension, indicated by a wavy line. 
A  third frame, sz, may be placed with the sensitive axis aligned along the b3 direction. Right: 
Multi-axis scheme. By using a single source and three different laser beam directions aligned with 
the axes of the s frame, acceleration measurements on all spatial axes can be realized.
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The differential equations are solved by integration to determine the atom posi-
tions at times t T=  and t T= 2  and to calculate the phase via Equation (4). Unless 
otherwise stated, all parameters are time-dependent.

3.1.2  Consideration of Spatial Displacements Between 
Sensors

The accelerations fibb  and turn rates ΩΩib
b  are now given in a different system b, 

i.e., the body frame with the origin at the center of the IMU. This arrangement 
results in a spatial distance to the s-frame in which the quantities must be trans-
formed, i.e., a lever arm xb sj

b
, ,  cf., Figure 3. As an example, for a very simplistic and 

general design of a three-dimensional atomic sensor system, it can be assumed that 
there are three atomic interferometers with frames sx, sy, and sz, each with a sen-
sitive axis in one of the spatial dimensions. The transformations of specific forces 
in this case are as follows: 

	 f f f C f C x Ci sj
sj

i b
sj

b sj
sj

b
sj

ib
b

b
sj

ib
b

ib
b

b sj
b

b
sj

, , , ,( )� �� � ��� �� ����ib
b

b sj
bx , � (7)

The fictitious forces resulting from the transformation are expressed in the cen-
trifugal term ΩΩ ΩΩib

b
ib
b

b sj
b( ),x  and the Euler term ΩΩib

b
b sj
bx , ,  which results from angular 

accelerations of the frame. The sensor frames and body frame are all connected to 
a rigid platform; thus, there is no change in the distance xb sj

b
, ,  and no Coriolis term 

ΩΩib
b

b sj
b
x ,  needs to be considered. This same rigid platform argument allows us to set 

the specific force between both frames to zero, f 0b sj
sj
, = .  A rotation Cb

sj  between the 
two systems, resembling sensor misalignment, can be included.

The transformation of the turn rates is straightforward: 

	 �� �� �� ��i sj
sj

i b
sj

b sj
sj

b
sj

ib
b

, , ,� �� C � (8)

In analogy to the forces, the rigid platform allows no relative rotation ΩΩb sj
sj
,  

between the sensors and body frame, and thus, ��b sj
sj
, � 0.

3.1.3  Multi-Axis Model

It is assumed that all three CAI sensors use a single atomic source, as displayed 
in Figure 3, cf., Gersemann et al. (2020); thus, a single sensor frame s  is sufficient. 
Furthermore, the misalignment between the s  and b  frames is assumed to be 
zero, and hence, Cb

s  equals I, the identity matrix.
This multi-axis CAI model has three sensitive axes, which are considered in the 

model by their respective ks-vector. For example, for the interferometer sequence 
in the x direction, the vector reads ks

x
Tk= [ , 0, 0] ,  with kx  as the respective effec-

tive wave number. The coordinate center and the starting position of the atoms in 
each direction are identical. Note that in this multi-axis CAI, an initial splitter pulse 
is applied immediately before the Mach–Zehnder sequence, which divides the ini-
tial wave packet into two counter-propagating ensembles in order to differentiate 
between phase shifts based on linear acceleration and those based on rotation. This 
approach affects the initial velocity v sa

s  and will be important in Section 3.3.
According to Equation (4), the phase shift φ s  depends on the position x s  of the 

atoms in the s-frame. We can state the following: 
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	 x x x xs
acc
s

rot
s

mix
s� � � � (9)

with the single position terms caused by linear acceleration xacc
s ,  rotation xrot

s , 
and effects of a changing rotation vector during the integration interval xmix

s  now 
explained in detail. 

Acceleration

The position of the atoms in the laser frame s, as measured by a conventional 
accelerometer in the b-frame, is calculated as follows: 

	 x f g x xacc
s

ib
s s

ib
s

ib
s

bs
s

ib
s

bs
s

t

dt� � � � ��� ���� �� �� ��( ) 2

0

 � (10)

In the position shift caused by linear accelerations, three terms are involved in 
addition to gravity gs :  the specific forces fibs  measured by the conventional accel-
erometer, the centrifugal term ΩΩ ΩΩib

s
ib
s

bs
s( )x  due to the lever arm, and the Euler term 

ΩΩib
s

bs
sx  resulting from a change in turn rate.

Rotation

The atom position shift based on a rotation of the s-frame results from the 
Coriolis term alone: 

	 x vrot
s

ib
s

s a
s

t

dt� 2 ,
2

0

���� ���� � (11)

Coning

The presence of turn rates during the measurement interval leads to a change 
in orientation vector of the s-frame, which must be considered. An additional 
coning/sculling mixture term appears, cf., Savage (1998), which will subsequently 
be labeled with the subscript mix. The position of the atoms in the laser frame is 
then as follows: 

	 x g f x xmix
s

ib
s

t
s

ib
s

ib
s

ib
s

bs
s

ib
s

bs
sdt� �� �� �� ��

0

( )�
�

�
�
�

�

�
�
�

� � ��� �

���� dt
t

2

0

� (12)

Note that the same fictitious force terms, namely the centrifugal and Euler terms, 
apply as in the linear acceleration case. The difference here is that the whole term 
is rotated by the relative change in orientation ���ibs dt.

Higher-Order Terms

The wave packet is potentially affected in the presence of gravity gradients or 
gravitational waves, which leads to higher-order phase shift terms with respect to 
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the integration time (Antoine & Borde, 2003; Bongs et al., 2006). For the terres-
trial navigation case considered herein and the often limited dimensions of CAI 
vacuum chambers, the interrogation time T  is comparably short, typically in the 
range of 10–25 ms. Thus, higher-order terms only have a diminishing effect in the 
face of terms resulting from rotation and linear acceleration and, consequently, can 
be neglected.

This situation changes drastically in space applications (Trimeche et al., 2019), 
where large interrogation times of several seconds are achievable and gravity gra-
dients as well as higher-order terms can no longer be ignored.

3.2  Evaluation of the Atom Strapdown Phase Prediction

To evaluate the atom strapdown method, this technique is compared with a 
second method to extract the interferometer phase: the convolution of accelera-
tion sensor signals with the interferometer sensitivity function. This method is a 
common way to hybridize the signals of conventional sensors with the atom inter-
ferometer response and is used by different groups, e.g., Richardson et al. (2020), 
Cheiney et al. (2018), and Zahzam et al. (2022). First, this method is briefly sum-
marized. Then, the predicted phase shift of the atom strapdown method and the 
convolution are compared based on an experimental data set Richardson et al. 
(2020). In that experiment, the acceleration data of the sensor frame are measured 
by an optomechanical resonator (OMR) attached to the retroreflection mirror of 
the interferometer. This sensor is a mere prototype, and its characteristics are only 
briefly stated.

Phase Reconstruction by Convolution

To reconstruct the atom interferometer response that has been distorted because 
of acting ambient ground vibrations, the OMR signal is convolved with the acceler-
ation sensitivity function f t( )  of the atom interferometer, given in Equation (13) 
and shown in Figure 4. This convolution is then integrated over the interferometer 
duration to calculate the corresponding phase correction value for that particular 
atom interferometer shot, as shown in Equation (14):

	 f t

t t

t t T

T

eff

eff

eff

eff

( )

1 ( ) 0<

<

1

1

1

�

�

�

�

��� � �

� � � �

�

cos for

for

�

� � �

11 ( ( )) < 3

2 3 3 < 21

� �� � � � �

� � � � � �

cos �

�

eff t T T t T

T t T t T
eff

for

for

� �

� � 33

1 ( ( 2 )) 2 3 < 2 4

0

1

�

� �
�

�
eff

eff t T T t T

otherwise

� �� � � � �

�

�

cos for

for

��
�
�
�
�

�

�
�
�
�
�

� (13)

Here, Ωeff  is the effective Rabi frequency, τ  is the laser pulse duration, and T  
is the interrogation time:

	 �vib eff vibk f t a t dt� ( ) ( )
��

�

� � (14)
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The OMR has a sensitivity on the order of 10–5 m/s² for frequencies above 10 Hz; 
at lower frequencies, 1/f noise dominates. Therefore, the OMR is capable of sup-
pressing ambient vibrational noise for interferometers with lower integration 
times, with a maximum limit of 10 ms for good fringe reconstruction. This lim-
itation arises because interferometers with lower T have a higher corner cut-off 
frequency, which is given by 1/ 2T;  therefore, higher-frequency vibrations will be 
capable of inducing noise to the interferometer. Beyond an interrogation time of 
10 ms, the fringe reconstruction performance obtained via the OMR signal declines 
because of its poor low-frequency performance. 

The acceleration data were acquired at a rate of 100 kHz throughout the interfer-
ometer duration, which spans TMZ = 0.02003 s.  Consequently, for each shot of the 
atom interferometer, 2003 acceleration measurement samples are integrated over 
the interferometer duration in the strapdown in order to calculate the atom posi-
tion in the sensor frame by using the equations in Section 3.1.3. The positions at the 
times of the atom–laser interactions are then used in Equation (4) to compute the 
phase shift. The Earth turn rate at the local latitude, 52.38°, is used as input for ΩΩis

s .  

Evaluation

The resulting phase shifts from both methods show good agreement, cf., Figure 5. 
However, a relatively constant offset of approximately 0.04% is visible, as well as 
occasional spikes of up to 0.186%. The largest difference during the whole experi-
ment with over 17000 CAI shots is approximately 2%.

One possibility for the deviation lies in the beam splitter pulse durations, which 
are not yet considered in the atom strapdown method. The two state splitter pulses 
each have a duration of 7.5 µs, while the duration of the mirror pulse is twice as 
long, leading to a total of 30 µs. During these pulses, the sensitivity of the interfer-
ometer regarding the inertial quantity changes, following a sinusoidal pattern, cf., 
Equation (13). Because of the 100-kHz accelerometer data rate, approximately 3–5 
of the 2003 data points are integrated differently in the two methods.

Finally, we include some general remarks on the two methods: The convolution 
technique uses the sensitivity of the atom interferometer with respect to changes 
in the phase shift, which is then further related to the sensitivity to the acceleration 
of the sensor frame.

FIGURE 4 Acceleration sensitivity function of the atom interferometer according to 
Equation (13)
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In the atom strapdown method, the position of the atoms is calculated explicitly. 
However, the phase shift in Equation (1), which uses the atom position as input, 
originates from the sensitivity of the atom interferometer response. Thus, the con-
volution method can be seen as a more specialized and slim way of combining sig-
nals of different sensors with the CAI measurement, whereas the atom strapdown 
method is a more general approach, allowing the consideration of arbitrary target 
frames.

The new method can be further used to include different motion models and 
dynamics in the differential equation system. Furthermore, different sensors could 
be utilized to predict the atom position, for example, odometry from car wheels or 
visual sensors. 

3.3  Implementation of Phase Prediction in a Hybrid Filter

Thus far, the atom strapdown method has been introduced as a way to predict 
the phase shift of an atom interferometer in an arbitrary sensor frame. The gen-
eral steps for implementing the phase shift prediction in a filter framework (see 
Figure 6) have been sketched in prior works, e.g., Tennstedt & Schön (2021). Some 
important aspects are now repeated and explained, including the adaption of the 
measurement model, as the new dynamic equations need some special care.

It is worth stressing the clear differentiation between the kinematic state of the 
moving platform calculated in the IMU strapdown, i.e., the position xeb

n  and veloc-
ity veb

n  of the body frame (index b) with respect to the Earth frame (index e) as well 
as the attitude Cb

n  in a target navigation frame (superscript n), from the kinematic 
state of the atom wave packet in the sensor frame (atom strapdown). The param-
eters that are used in both systems are the bias of the accelerations ba  and angu-
lar rate measurements bg .  The kinematic state of the wave packet changes with 
each new measurement cycle; thus, it is not necessary to keep track of these states 
beyond the corresponding measurement interval. Consequently, the state vector of 
the filter inherits the kinematic state of the platform with the IMU bias as a state 
augmentation:

	 x x v b b= [ , , , ]eb
n

eb
n

a g
T � (15)

0 10 20 30 40 50 60 70 80 90 100
Shot #

-30

-20

-10

0

10

20

30

P
re

di
ct

ed
 

 [r
ad

]

Convolution
Atom Strapdown

0 10 20 30 40 50 60 70 80 90 100
Shot #

0

0.05

0.1

0.15

0.2

R
el

at
iv

e 
er

ro
r [

%
]

FIGURE 5 Comparison of the two phase shift calculation methods 
Left: The two results generally agree very well, and a deviation is hardly visible. Right: The relative 
error, i.e., the difference between the results of the methods divided by the half-sum of both 
results, reveals a nearly constant systematic offset of approximately 0.04%, whereas larger spikes 
occur for some shots. Depicted are the first 100 CAI measurement intervals typical for a data set 
of 17440 measurements in total.
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With this design decision, the filter innovation, which is based on the atom phase 
shift model, can also be used to correct the kinematic state of the platform, due to 
coupling with the bias in the system model. The corresponding transition matrix F 
over the course of a system time step ∆t  is as follows: 

	 F

I I C 0
0 I C 0
0 0 I 0
0 0 0 I
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3 3
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The uncertainties for the accelerometers wa  and gyroscopes w g  are modeled 
as white noise with respective variances σn

2  and random walk processes. The vari-
ance σ rw

2  of the latter is modeled by an integrator with white noise wrw in,  as input, 
sampled from a Gaussian distribution with variance � rw in t,

2 � .  For each individual 
axis and sensor, the process reads as follows: 

	 w t t w t w trw rw rw in( ) ( ) ( ),� �� � � (17)

The processes are combined in the system perturbation vector w w w= [ , ]a g
T  

and affect the bias of the accelerations and angular rates. Hence, the perturbation 
input B  matrix reads as follows: 

	 B

0 0
0 0
I 0
0 I
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where the covariance matrix is given as follows: 
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FIGURE 6 Integration of the atom strapdown method in a filter and simulation framework 
The CAI response (phase shift φ)  is predicted by the conventional IMU data and fused with the 
actual CAI observation p in the error state extended Kalman filter (ES-EKF) to estimate the bias 
of the IMU sensors.
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The discrete time process noise matrix with subscript k indicating the time step 
t t t� ��  can then be assembled: 

	 Q FBQ B Fk w
T T

t

t t

dt�
�

�
�

� (20)

The remaining equations follow that of a regular EKF with error states, as 
described in Tennstedt et al. (2021). Thus, at the filter step at time step k, the total 
state ˆ kx  is updated with the estimated error state ˆ :kδx  

	 ˆ ˆ ˆk k kδ+ − += +x x x � (21)

The superscript − denotes a predicted state, whereas + denotes a filtered state. 
At each filter update, the predicted error state is always initialized as zero; hence, 
the filtered error state is essentially the difference between the CAI observation pk  
and the predicted observation ˆ( ),k

−h x  weighted by the Kalman gain Kk :  

	 ˆ ˆ( ( ))k k k kδ + −= ⋅ −x K p h x � (22)

The observation model h  of the CAI is based on the phase prediction obtained 
from the IMU data. The acceleration measurement of the IMU, fibb ,  must be 
adapted in order to include a potential deviation ba ,  i.e., bias, from the true accel-
eration value :b

ibf  

	 b b
ib ib= + af f b � (23)

The analytical CAI observation equation per axis is the transition probability p: 

	 p � 1
2
1 ( )0� � �� �cos � � �� � (24)

where φ0  is the steered laser phase and φ  is the phase shift prediction from the 
IMU data. Readout contrast and offset of the actual signal are not considered in 
the scope of this paper. In fact, only the contrast affects the sensitivity in a real 
application.

The steered phase φ0  is set such that the sum of φ0  and φ  equals π2  in order to 
maximize the sensitivity with respect to the additional bias-induced phase shift ��.

The derivative of Equation (24) with respect to the accelerometer bias reads as 
follows: 

	 �
�

� �
�
��

p

a ab b
| 1

2
(
2

)
0 =2� � �

�
��

��
� sin � (25)

In the limit of �� � 0,  we obtain the following: 
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The observation matrix Ha  for the acceleration bias is then written as follows: 

	 H
b

k ka
a

s T s T
ib
sp T T� �

�
�

� �
1
2
( ) 1

2
( )2 3�� � (27)

Only the acceleration and mixed term, cf., Equation (10) and Equation (12), 
respectively, are sensitive for an acceleration bias. Because of the skew-symmetric 
matrix ΩΩib

s ,  the second term is non-zero only if the angular rate in the direction of 
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the respective perpendicular axes is non-zero. This result is in line with the prior 
statement that the phase shift on a particular sensitive CAI axis is only affected by 
rotations perpendicular to the axis.

The observation matrix Hg  for the gyroscope bias follows a similar pattern. The 
IMU gyroscope measurement ωωib

b  consists of the true angular rates b
ibω  and the 

bias bg :  

	 b b
ib ib g= + bω ω � (28)

The derivative of Equation (24) with respect to the gyroscope bias is as follows: 

	 �
�

� �
�
��

p

g gb b
| 1

2
(
2

)
0 =2� � �

�
��

��
� sin � (29)

As before, the limit of �� � 0  gives the following: 

	
��

� �� ��
�

�
�

�
�
�

�
�
�0

1
2

(
2
) 1

2lim sinp

g g gb b b
� � � (30)

The observation matrix Hg  for the gyroscope bias results in a rather extensive 
expression: 
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The first two terms come from the derivative of the centrifugal term with 
respect to the gyroscope bias. The term ( ) [ ] 2k vs T

sa
s T×  resembles the Coriolis term 

observed for the atoms in a rotating s-frame. This term scales with the atom veloc-
ity. The fourth term 12

3( ) [ ]k fs T
ib
s T×  results from the partial derivative of the mixed 

term, which scales with the linear accelerations. Terms five to seven are produced 
by the product rule when differentiating the centrifugal term between the b- and 
s-frame. The final Euler term including the angular acceleration ΩΩib

s  is not con-
sidered for the EKF measurement linearization in the frame of this work because 
of the inaccessibility of these values. The angular accelerations can be acquired 
by either numerical differentiation of the turn rates or state vector augmentation 
when using at least three conventional IMUs. However, the first method is rather 
inaccurate because of the differentiation of gyroscope white noise in the signal, 
whereas the second method may be evaluated in a future study.

The complete observation matrix H  can now be constructed: 

	 H 0 0 H H� a g� � � (32)

Thus far, the observation equation and matrices in the s-frame have been stated 
for an arbitrary CAI observation on a single sensitive axis as defined by the wave 
vector ks.  In the six-degree-of-freedom case, there are now two measurements per 
spatial axis at a time in order to differentiate between angular rates and linear accel-
erations. In this case, the observation vector reads p = [ , , , , , ]p p p p p px

A
y
A

z
A

x
B

y
B

z
B T ,  

where the superscripts A and B refer to anti-parallel propagating wave pack-
ets after the initial separation split. The individual phase shifts are predicted 
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for each observation independently; thus, for three sensitive CAI axes with two 
counter-propagating wave packets, there is a total of six different predicted atom 
wave packet states.

For now, it is assumed that the interferometers on all axes perform measure-
ments at the same time. Thus, the observation matrices are individually computed 
according to Equations (27) and (31) with the respective ks  and v sa

s  and are finally 
added together to produce a single update step.

4  RESULTS AND DISCUSSION

4.1  Impact of Dynamics on Phase Shift Terms

Setting

We now consider a hybrid solution between a conventional IMU and the CAI 
according to the multi-axis scheme. The previous equations revealed a number of 
fictitious force terms when the IMU measurement is transformed from the b-frame 
to the sensor frame. To evaluate the impact of different dynamics on the single 
phase shift terms, a trajectory with a constant velocity of 1 m/s in the driving direc-
tion s1  as well as one period of a sinusoidal changing yaw rate with an amplitude 
of 0.05 rad/s is simulated. With these settings, it is possible to apply an angular rate 
and angular acceleration on s3  and an accelerations in the s2  direction and thus 
excite all phase shift terms.

The goal is to determine to which order of magnitude the single terms affect 
the phase shift of the interferometer. Afterwards, the effect of the most dominant 
terms on the error phase shift in the case of an IMU bias is evaluated depending on 
the sensor distance xbs

s .

Results

The results in Figure 7 show that in the forward direction, the rotation term is 
dominant. Whereas the Euler and centrifugal terms of the acceleration as well as 
the mixed term generally scale with the distance between the b- and s-frames, the 
largest effect arises from the centrifugal term. In the right direction, the largest 
impact results from the lateral accelerations of the trajectory. However, the angu-
lar accelerations are scaled by the lever arm as well, which leads to an increased 
Euler term that surpasses even the lateral accelerations in parts of the simulation 
when the lever arm is set to 1 m, e.g., at t = 25 s.  Regarding the mixed terms, the 
effect is generally quite small. In fact, the mixed term resembles the transformation 
terms of the linear accelerations, scaled by the integrated angular rates. Thus, for 
most terrestrial applications, these terms are smaller than the centrifugal and Euler 
terms from the transformation of the linear acceleration alone.

Next, we focus on the effect of the lever arm on the dynamic terms. In contrast 
to the prior example, the error of the predicted phase in the case of a bias in the 
accelerations and angular rates is now examined. Instead of a time-dependent tra-
jectory, only a slice of the trajectory with the dynamics at an exact time is given. The 
phase error in this situation is evaluated based on the size of the lever arm, where 
xbs
s T� [ , , 0] �  is varied in the interval ∈[0, 1] m  on an equidistant scale.
The parameters are set as follows, according to the maximum values that can be 

expected for typical maneuvers. A constant angular rate ��ib
s T� [0.1, 0.1, 0.5] rad/s  

and acceleration fibs T� [ 3, 4, 5] 2� m/s  represent the dynamic situation. The 



TENNSTEDT et al.

angular rate and angular acceleration for the mixture Euler term are scaled down 
by a factor of 1 / 2  to account for being normally phase-shifted by 90 degrees 
with respect to each other, as Figure 7 demonstrates in the right direction for the 
example of the Euler and acceleration terms.

The constant biases of the acceleration and angular rate signals are defined as 
ba � 10 4 2� m/s  and bg � 3 10 5� � rad/s  on all axes.

The interrogation time and wave numbers are T = 25ms and kx y z, , 4 /780� � nm, 
respectively. The initial atom velocity v sa

s T= [0, 0.096, 0] m/s  is summed with the  
integrated linear accelerations fibs T⋅2  in order to emulate the largest atom velocity to 
be expected.

As shown in Figure 8, the linear acceleration and the rotation in the correspond-
ing direction are naturally independent of the lever arm. The acceleration has a rel-
atively large impact, which is caused by the comparably large accelerometer bias. 
The two terms that show the greatest scaling with the magnitude of the lever arm 
are the centrifugal and Euler terms. This trend matches the results in Figure 7, 
but also shows that even a small distance of 0.4 m in any direction can surpass the 
dynamic range defined by the atom interferometer measurement equation.

4.2  Impact of Dynamics on Bias Estimates

Thus far, the new algorithms have been introduced and the adaption of a hybrid 
filter presented. The results have indicated that the spatial displacement xbs

s  

FIGURE 7 Impact of the different transformation terms on the CAI phase shift in the 
forward (top panels) and right (bottom panels) direction 
The figures show the magnitude of the phase shift. A logarithmic scale is chosen to facilitate the 
separation of the single dynamic terms, as the mixed terms are comparably small. Similarly, the 
y-axis is limited to the range of [10 , 10 ]5 3−  rad to avoid unfavorable scaling. As expected from the 
dynamic equations, the lever arm xbs

s T= [ , 0, 0] ,  where   is the value indicated in the title of 
each subfigure, linearly scales the centrifugal (Centri) and Euler parts of both the acceleration 
and mixture term.
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between the CAI and the IMU might lead to difficulties for the bias estimate. The 
correction of this bias is a crucial step in improving the hybrid navigation solution. 
Based on another trajectory derived from a number of different dynamic experi-
ments (Weddig et al., 2022), the effect of the dynamics in the s-frame on the bias 
estimate is further investigated. 

Setting

A trajectory that involves most of the maneuvers identified in the analysis of 
different data sets collected with IMUs during real-world measurement campaigns 
is simulated, cf., Figure 9. After an initial static phase, an accelerated phase follows 
with some minor vibrations on all axes. This phase is followed by a sliding right 
turn, with only the angular rate changing. Afterwards, a left turn is applied with 
accelerations in the b1  and b2  directions, as well as a spike in both signals at 
t = 26 s. The trajectory is concluded with another accelerated phase with vibrations 
and a small turn rate on the b3  axis.

The simulated IMU acceleration signal is affected by a discrete white noise pro-
cess with a standard deviation of 5 10 5 2� � m/s .  Additionally, a random walk pro-
cess based on integrated white noise with variance 9 10 10� � m /s2 5  is applied in 
order to introduce a significant drift of the signal. The gyroscope measurement 
consists of the angular rates with additive white noise samples with a standard 
deviation of 1.4544 10 5� � rad/s  and a random walk process with input white noise 
sampled from a variance of 4 10 14� � rad /s2 3.  This measurement corresponds to 
the performance of a navigation-grade ringlaser gyroscope. The data rate of the 
simulated trajectory and the IMU is 200 Hz. The CAI is modeled with a discrete 
white noise process with a variance of 1 10 3� �  a.u. added to the transition proba-
bility. The interrogation time is set to T = 25 ms, corresponding to a filter rate of 
�t T� 2  = 50 ms, with no dead or readout times considered. The uncertainty of the 
simulated CAI translates to a phase uncertainty of approximately 63 mrad or, in 

FIGURE 8 Phase shift errors induced by accelerometer and gyroscope bias depending on the 
spatial distance between the IMU and CAI 
The dotted black line represents the maximum allowed phase shift in order to stay on one flank 
of the cosine signal, i.e., the maximum dynamic range of the CAI observation. The magenta line 
is the sum of all phase shift terms. The coning terms are combined under Mix Terms because 
of their comparably low magnitude. The lever arm range of values represents the value   in 
xbs
s T� [ , , 0] � .
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FIGURE 9 Trajectory generated from the measured data showing the accelerations (left) 
and rotation rates (right) 
The track includes several different maneuvers of 7.5 s length each, including a stationary phase 
with oscillations on the different sensor axes, timed accelerations, and turn maneuvers.

conjunction with the interrogation time, an acceleration uncertainty with a stan-
dard deviation of 6.3 �10� m/6 2s per shot.

A spatial displacement of xbs = [0, 0,s T0.1] m is applied, which was selected 
based on the results from the previous section, where the values for fibb and ωω bib 
are based on the maximum amplitude of the oscillations and the bias is equal to 
the deviation of approximately 2σ for the respective white noise process. This 
distance may resemble an IMU placed directly over the atom interferometer frame. 
The simulation was processed in 100 different runs, in which all noise processes 
were sampled independently. Importantly, this number allows for the intended 
qualitative discussion, but is not sufficient for a statistically proven Monte-Carlo 
analysis, as twelve independent variables are sampled in total.

Note that in the trajectory at approximately 26 s, when the large spike in acceler-
ations in the x and y direction occurs, the oscillation amplitude in the acceleration 
signal in the z direction also reaches its maximum. At the same time, the ampli-
tude of the angular rates in x and y peaks, while a large turn rate in the z direction 
is present as well. According to the experiment in the previous section, it can be 
expected that the phase shift error resulting from this situation might be similar 
to or even larger than the dynamic range of the atom interferometer and thus pro-
duce an error in the filtered solution.

Results

The acceleration bias estimates, cf., Figure 10, are able to follow the noise process 
quite well, and the effects of the dynamics of the trajectory can hardly be seen. The 
increase in uncertainty over time, as reflected in the empirical standard deviation, 
is explained by the random walk that was added to the base signals. In the standard 
deviation of the gyroscope bias, two distinct peaks can be seen at approximately 
26 s and 33–35 s, prominently in the x and y direction. This expected decrease in 
performance is also visible in the velocity vn

eb state, cf., Figure 11. Although the 
velocity estimate of the hybrid solution is largely improved during the first 25 s 
with a factor of approximately 100 at best, there is a sudden increase in the error at 
approximately 26 s. The acceleration spikes in the trajectory scale with the accel-
erometer and gyroscope errors in the mixed term, leading to a comparably large 
phase error. At 33 s, a similar case occurs when the magnitude of the trajectory 
signals on all axes is at a local maximum.
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In total, the error of the predicted phase was larger than π /2  in approximately 
14% of the CAI measurements. This result does not necessarily imply that the tar-
get fringe is lost and the EKF update fails, as convergence to the true trajectory is 
generally still possible in the range of �� .  Nevertheless, a larger linearization error 
occurs when the measurement sensitivities are computed in these cases, leading 
to a non-optimal update of the filter despite the fact that the trajectory is resolved 

FIGURE 10 Simulation results for the estimated acceleration and gyro biases 
Top panels: Acceleration and gyroscope bias (blue lines, added to the simulated reference 
as additive noise signal) and the estimated bias states (red lines) as an example for one of the 
simulated instances. Left: The acceleration bias estimate is more noisy in the x and y directions. 
This result is due to the fact that the spatial displacement of the IMU is only in the z direction; 
hence, the centrifugal term has no effect in this direction. Bottom figures: Empirical standard 
deviation between simulated instances for the acceleration bias estimates (left) and gyroscope 
bias estimates (right).

FIGURE 11 Results for the estimated velocity 
Left: ∆v eb

n  velocity error of the hybrid EKF solution (blue) and the IMU strapdown solution (red), 
with respect to the simulated ground truth. Depicted is the magnitude of the three-dimensional 
vector of the mean velocity error of the state instances. Right: Empirical standard deviation 
between the individual solutions.
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by the IMU and the innovation ˆ( )k k
−−p h x  in Equation (22) is independent of the 

linearization.
For comparison, the results of a smooth slalom trajectory without any spikes 

in the signals are depicted in Figure 12. The CAI-aided EKF solution allows an 
improvement of over two orders of magnitude as compared with the IMU strap-
down solution alone.

5  CONCLUSION

In this paper, the atom strapdown method was introduced and explained, as well 
as its application for state prediction in an EKF. This hybridization technique based 
on a classical IMU and a CAI has two main qualities: First, it allows the phase shift 
of an atom interferometer to be predicted based on data from a conventional IMU. 
Equations were developed in a newly introduced sensor frame for the CAI. Second, 
this method allows one to combine measurements of an atom interferometer with 
conventional IMU measurements, in order to correct for IMU biases.

A comparison between the strapdown method and the hybridization technique 
based on convolution, developed and used in the physics community, shows that 
both methods deliver comparable results in the predicted CAI phase shift, while 
the atom strapdown method is a more general concept that allows the consid-
eration of different dynamics and sensor systems. The methods were compared 
based on a static data set. Further kinematic experiments, including a one-axis CAI 
with controlled time-varying accelerations as well as a full six-degree-of-freedom 
setup, are currently planned. More detailed CAI models that include the effects of 
dynamics and temperature on the atoms will be investigated as well.

Taking the dynamics from real car trajectories obtained from IMU measure-
ments, our simulations showed that it is possible to produce a valid hybrid solution 
of a conventional IMU and a six-axis CAI, as the trajectory states and biases are 
reliably estimated. Comparison with an IMU-only solution showed performance 
improvements of about two orders of magnitude. In the case of large signal spikes 
on several axes at the same time, the solution loses accuracy due to cross-coupling 
of different axes and due to a scale effect induced by the transformation from the 
b- to s-frame. Methods for identifying those situations on the fly in order to discard 
the CAI measurement if necessary will be investigated in future studies.

In addition, two conclusions for practical implementation can be drawn: First, 
the lever arm, especially between the accelerometer and the CAI, should be kept 

FIGURE 12 Velocity state estimates for a smooth slalom trajectory 
Left: ∆v eb

n  velocity error of the hybrid solution (blue) and the IMU strapdown solution (red), with 
respect to the simulated ground truth. Depicted is the magnitude of the three-dimensional vector. 
Right: Empirical standard deviation between the individual solutions.
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small. The actual limit is strongly related to the IMU noise characteristics and 
the dynamics that are expected in individual applications. The exemplary study 
in Section 4.1 revealed that a distance of 40 cm between the two sensors was the 
maximum for the dynamic situation considered. Similar assessments could be per-
formed for further applications. The distance is less important for the gyroscope, as 
the transformations from the b- to s-frame in Equation (8) show that the angular 
rate measurement is not affected by the lever arm. Solutions such as the OMR 
prototype applied directly to the retroreflection mirror of the CAI seem to provide 
a valid option for future hybrid accelerometer implementations, while at the same 
time, a high-precision gyroscope with a larger distance to the CAI could be used.

Second, the best situations for using a CAI in conjunction with an IMU might 
be in navigation tasks in which no spikes in the trajectory signals occur, e.g., in 
maneuvers with nearly constant acceleration and turn rates. Even if the EKF can 
cope with those situations, the best performance is achieved in smooth maneuvers. 
More specific applications must be examined in the future.
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