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Abstract: The symmetrical structure of curcumin includes two 4-hydroxy-3-methoxyphenyl 

substructures. Laccase catalyzed formation of a phenol radical, radical migration and 

oxygen insertion at the benzylic positions can result in the formation of vanillin. As 

vanillin itself is a preferred phenolic substrate of laccases, the formation of vanillin 

oligomers and polymers is inevitable, once vanillin becomes liberated. To decelerate the 

oligomerization, one of the phenolic hydroxyl groups was protected via acetylation. 

Monoacetyl curcumin with an approximate molar yield of 49% was the major acetylation 

product, when a lipase from Candida antarctica (CAL) was used. In the second step, 

monoacetyl curcumin was incubated with purified laccases of various basidiomycete fungi 

in a biphasic system (diethyl ether/aqueous buffer). A laccase from Funalia trogii (LccFtr) 

resulted in a high conversion (46% molar yield of curcumin monoacetate) to vanillin 

acetate. The non-protected vanillin moiety reacted to a mixture of higher molecular 

products. In the third step, the protecting group was removed from vanillin acetate using a 

feruloyl esterase from Pleurotus eryngii (PeFaeA) (68% molar yield). Alignment of the 

amino acid sequences indicated that high potential laccases performed better in this 

mediator and cofactor-free reaction. 
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1. Introduction 

Flavors and fragrances originate from traditional extraction or distillation of plant and animal 

sources or from chemosynthesis, but the quality and the stability of the natural supplies are sometimes 

limited. Effective law in Europe (EG 1334/2008) and in the U.S. (Code of Federal Regulation, Title 

21) defines flavors with the preferred label ‘natural’ as compounds obtained by physical, enzymatic or 

microbiological processes. As this disqualifies chemical synthesis, biotechnological approaches have 

moved into focus [1]. Biocatalysis represents an economic alternative using either intact cells or 

isolated enzymes, such as laccases [2], often resulting in the formation of products difficult to obtain 

by conventional chemical means. Enzymes possess a long history of safe use in producing fermented 

foods. They accelerate just one reaction without the ballast of an ongoing metabolism of a whole cell. 

Technically well manageable, many technical enzymes have become amenable through recombinant 

hosts expressing the target enzyme in good yield and purity [3]. 

With an annual consumption of an estimated 15,000 tons, vanillin (4-hydroxy-3-methoxybenzaldehyde) 

is one of the most widely-used flavor compounds in baked goods, chocolates, dairy products, perfumes 

and even pharmaceuticals. Only 0.2% of the total demand is provided from vanilla beans, while the 

rest is supplied by chemical synthesis and a ferulic acid-based bioprocess. Natural vanilla flavor is a 

complex of many components, but the aroma is largely determined by vanillin. Because of the scarcity 

and high cost of natural vanilla extract, there has been a continuing interest in its biotechnological 

production. There are different possibilities for the production of natural vanillin, such as 

biotransformation of caffeic acid and veratryl aldehyde, or the fermentation of natural substrates, such 

as ferulic acid, eugenol, isoeugenol, coniferyl alcohol, vanillin alcohol and stilbene, by bacteria and 

fungi, such as Pseudomonas fluorescens, Escherichia coli, Amycolatopsis sp., Streptomyces setonii, 

Pycnoporus cinnabarinus or Aspergillus niger [4–7]. Ferulic acid is available in abundance in plant cell 

walls and has become the most popular precursor substrate. The increasing price of ferulic acid has 

stimulated the search for other natural precursor molecules to obtain vanillin naturally. 

Curcumin occurs in turmeric (Curcuma longa) rhizome powder, a common ingredient of curry 

spice, in concentrations of up to 3%. It is a food colorant (E 100) and was claimed to exhibit numerous 

wide biological functions, although the bioavailability of curcumin is low [8]. The two phenolic rings 

at the molecule ends are connected by two α,β-unsaturated carbonyl moieties. A hypothetical cleavage 

at the benzylic position would yield two moles of vanillin from one curcumin molecule. Because of 

physico-chemical and structural features similar to lignin-related compounds, it was supposed that 

lignin-degrading microorganism may also be able to degrade curcumin. Previously, Rhodococcus 

strains have been reported as promising candidates, which degraded curcumin to (E)-6-(4'-hydroxy-3'-

methoxyphenyl)-2,4-dioxo-5-hexenal, feruloylmethane, ferulic acid and vanillin [9]. The aim of the 

present study was to develop an enzyme-based route starting with curcumin and resulting in vanillin as 

the most abundant reaction product. 

2. Results and Discussion 

For 20 years, the degradation of natural ferulic acid to vanillin using an optimized bacterial strain 

(Amycolatopsis family) has been one of a few successful large-scale processes using whole cell 
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cultures for the production of a natural flavor compound [10]. Alternative precursors and routes to 

natural vanillin have been intensively researched, including the symmetric cleavage of curcumin. Its 

autoxidative degradation at physiological conditions led to the incorporation of oxygen into a curcumin 

radical resulting in a bi-substituted bicyclopentadione structure, while vanillin, ferulic acid and 

feruloylmethane occurred as minor degradation products [11]. A more concerted enzymatic cleavage at 

both benzylic positions using either a whole cell system or an oxidoreductase could be envisaged.  

One curcumin molecule would result in the formation of two molecules of vanillin, and a  

cofactor-independent enzyme would be most preferred. 

Abstraction of a hydrogen from a phenol with subsequent oxidation of the substrate is the  

domain of fungal laccases. These multi-copper oxidases (E.C.1.10.3.2) form resonance-stabilized  

phenol radicals directly or by the aid of mediators, such as caffeic acid, vanillin (natural) or  

2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS, non-natural), and reduce molecular 

oxygen to water at the same time [12]. The cofactor and mediator-free direct incubation of curcumin 

with various laccases of different redox potentials resulted in an immediate degradation of curcumin  

(as measured by HPLC) and visible formation of a buffer-insoluble precipitate. However, the targeted 

degradation products, mainly vanillin (and ferulic acid), were found in traces only. Being phenols 

themselves, they were preferred substrates for the laccases, resulting in oligo-/polymerization of the 

intermediate monomers. To arrive at the intended benzylic cleavage, a less reactive substrate was 

required. A hypothetical mechanism would imply the delocalization of the unpaired electron of  

the phenoxy radical into the side chain and, after tautomerization and insertion of molecular oxygen,  

the generation of respective 1,2-endoperoxides; these, in turn, are well known to decay into two 

carbonyl moieties (Figure 1) [13]. 

2.1. Acetylation of Curcumin 

2.1.1. By a Chemical Route 

To reduce the suitability of curcumin as a laccase substrate, it was aspired to achieve the acetylation 

of at least one of the phenolic hydroxyl groups of the molecule. Chemical formation of acetyl 

curcumins yielded two pairs of peaks with identical molecular masses, corresponding to monoacetyl, 

m/z 409, ESI(−) with 50%, and diacetyl curcumins, m/z 451, ESI(−) 50% by mass of total reaction 

products. The respective major peak of each pair was assigned to the phenolic acetyl/diacetyl ester 

with 93% by mass, whereas the minor peaks (7% by mass) were assigned to the acetylated hydroxyl 

group of the tautomeric form of curcumin. The reaction mixture was partially purified by means of 

preparative TLC. A curcumin-free mixture after purification, which was composed of around 90% 

monoacetyl curcumin and 10% of diacetyl curcumin, was used as the substrate for the following 

cleavage by three fungal laccases possessing different redox potentials. 
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Figure 1. Hypothetical pathway of laccase-catalyzed biotransformation of curcumin.  

(1) Curcumin; (2) O-centered curcumin radical; (3) C-centered curcumin radical;  

(4,5) C-centered radicals in the alkenyl chain of curcumin; (6,7) intermediate  

1,2-endoperoxides of the curcumin radical; (8) Vanillin; (9) Ferulic acid.  

2.1.2. By an Enzymatic Route 

For the production of ‘natural’ vanillin, an enzyme-based formation of acetyl curcumin is 

mandatory. Therefore, reverse hydrolysis was adapted for the acetylation of curcumin in organic 

medium. A number of commercial lipases are available for acetate synthesis. CAL, a lipase from 
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Candida antarctica, was frequently used, and vinyl acetate served as the acyl donor, thus forcing the 

equilibrium to the product side by tautomerization of the liberated vinyl alcohol. Yields were  

semi-quantified by LC-MS, but remained unsatisfactory. Reaction solvent, temperature, time and the 

molar ratio of the reactants were varied. A maximum yield of approximately 49% was eventually 

achieved using geranyl acetate as the acyl donor and a molar ratio of 1:50 of curcumin to acetyl donor. 

The yield of monoacetyl curcumin increased continuously over time until day three and decreased 

again thereafter. Even after a long time of incubation, only traces of diacetyl curcumin were detected. 

It may be speculated that the large and inflexible curcumin molecule does not fit well into the deep 

substrate-binding site of this lipase. The larger monoacetyl curcumin fitted even less well, thereby 

preventing diacetylation. 

2.2. Transformation of Acetyl Curcumin by Laccases 

The commercial laccase LccAbi of A. bisporus and two laccases, recovered and purified from 

supernatants of cultivated fungal strains, LccMgi (M. giganteus) and LccFtr (F. trogii), were compared 

(Table 1) [14]. Iso-active (1.19 U·mL−1 adjusted against ABTS as a substrate) laccase preparations in 

buffered aqueous solution were added to acetyl curcumins in different solvent systems; these were 

monophasic organic solvents, monophasic water/water miscible organic solvents and biphasic systems 

composed of water/water immiscible organic solvents  

Table 1. Characteristics of laccases used for the degradation of acetyl curcumin. 

Laccase Origin Redox Potential a pI pH Optimum b 
Temperature 

Optimum b (°C) 

LccAbi A. bisporus Middle (0.47–0.71 V) 3.5 4.5–5 30–40 

LccMgi M. giganteus High (0.73–0.78 V) 3.1 5–5.5 30–40 

LccFtr F. trogii High (0.73–0.78 V) 3.8 4.5–5 30–40 

a According to the literature; b according to 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) 

enzyme activity. 

The best reaction conditions were found to be a biphasic system consisting of water/diethyl ether. 

Samples were taken after 20 h and analyzed by LC-MS for substrate transformation and possible 

polymerization products and GC-MS for volatile degradation products. In all incubations in the 

presence of a laccase, as well as in the controls, diacetyl curcumin remained stable and did not change 

concentration over time. Monoacetyl curcumin concentration, in contrast, declined with time 

depending on the laccase added. For LccAbi, no distinct degradation occurred, whereas for LccMgi, a 

15% and for LccFtr a 46% decline of the monoacetyl curcumin concentration were observed. During 

the reaction, the yellow bright reaction solution did not show visible alteration with LccAbi, but turned 

into yellow/brownish with little precipitation with LccMgi and became cloudy with LccFtr. Several 

molecular masses in the m/z range >600 Da were detected over a broad retention time window in the 

LC-MS chromatograms of these samples, indicating the formation of oligomer phenols, but the 

structural elucidation of these was no the aim of this study. GC-MS analysis of the volatile reaction 

products showed just one major product, acetyl vanillin. This was expected, because other possible 

degradation products, such as vanillin or ferulic acid, were good substrates for the laccases and 
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polymerized in situ, as discussed above. The highest concentration of acetyl vanillin was analyzed for 

LccFtr, which agreed with the rapid degradation of monoacetyl curcumin (Table 2). 

Table 2. Yield of vanillin acetate after cleavage of monoacetyl curcumin in a biphasic 

system: 2 mL of 0.5 mM monoacetyl curcumin in diethyl ether and 2 mL aqueous buffer of 

laccases (each set to 1.19 U·mL−1) under continuous mixing for 20 h at 20 °C. 

Laccase Vanillin Acetate (mg·L−1) Vanillin Acetate (mM) Molar Product Yield (%) * 

LccAbi 6.4 0.032 6.4 
LccMgi 15.1 0.078 15.6 
LccFtr 45.02 0.23 46 

* Calculated according to the concentration of the actual precursor, monoacetyl curcumin. 

2.3. Alignment of the Laccases 

Different amino acid substituents near the substrate binding site and copper T1 coordination of 

laccases result in different potentials of the redox centers, thus affecting the catalytic properties of 

bacterial [15] and fungal laccases [16]. To better explain the observed differences in reactivity, the 

respective parts of amino acid sequences were aligned (Figure 2). According to previous studies, the 

T1 copper shows a trigonal bipyramidal coordination with three highly-conserved trigonal ligands 

(H,C,H) and two weakly coordinated ligands in axial position, of which one is invariable Ile, whereas 

the second is variable. There is a modest correlation between this axial ligand and the redox potential 

of T1 copper, with Phe consistently producing high, Leu middle and Met low potentials. An adjacent 

tripeptide (LEA in terms of high potential laccases), which is part of the T1 pocket, also serving as part 

of the substrate-binding pocket, is indicative of the respective redox potential of laccases, as well [16,17]. 

The comparison of the sequences of the laccases from Ftr, Mgi and Abi with literature data showed 

that with Phe, the axial ligand located in position 460 for Laccase Ftr and 480 for laccase Mgi; both 

had to be classified as high redox potential-type enzymes and LccAbi, having leucine in the axial 

position 485, as a midrange potential enzyme. The different oxidation rates of the laccases with 

monoacetyl curcumin as the substrate may be explained by these differences in the amino acid 

sequences and, consequently, redox potential. High potential laccases appear to be more suitable for 

the cleavage of C = C bonds in the side chain of curcumin. 

 

Figure 2. Partial amino acid alignment of LccFtr (Funalia trogii), LccMgi (Meripilus 
giganteus) and LccAbi (Agaricus bisporus). Bold letters show three out of four invariable 

T1 copper ligands, bold and italic letters the variable axial ligand and letters highlighted in 

grey a characteristic tripeptide of the binding site of T1 copper indicative of the redox 

potential of the respective laccases.   
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2.4. Enzymatic Deacetylation of Acetyl Vanillin 

Vanillin acetate was obtained as the major volatile compound of the laccase-catalyzed degradation 

of monoacetyl curcumin. To achieve the enzyme-catalyzed deacetylation of acetyl vanillin, three 

different esterases were compared (Table 3). At an optimum reaction temperature of 37 °C, the 

esterase PeFaeA deacetylated 68% of acetyl vanillin to vanillin after five hours of incubation, as 

calculated by external standard-based GC-flame ionization detection (FID) and GC-MS analyses. 

Table 3. Yield of vanillin after deacetylation of vanillin acetate in a biphasic system:  

2 mL of 1 mM vanillin acetate in diethyl ether and hexane (5:95) and 2 mL aqueous buffer 

of esterases (each set to 1 U·mL−1) under continuous mixing for 5 h at 37 °C. 

Esterase Vanillin (mg·L−1) * Vanillin (mM) Molar Product Yield (%) 

UmChlE 0 0 0 

Porcine liver 75.5 0.50 50 

PeFaeA 103 0.68 68 

* Calculated according to the external standard (3,4-dimethoxybenzaldehyde). 

In summary, many different possibilities for the biotechnological production of vanillin have been 

investigated in the past. Most processes were primarily affected by the high chemical reactivity and 

toxicity of vanillin. Thus, three-step enzymatic reactions are a novel approach to produce natural 

vanillin from curcumin (Figure 3). 

 

Figure 3. Three-step enzymatic bioconversion of curcumin to natural vanillin.  
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3. Experimental Section 

3.1. Materials 

All chemicals were analytical grade. Curcumin (>90%, natural) was purchased by Roth (Karlsruhe, 

Germany). 3,4-dimethoxybenzaldehyde and geranyl acetate from Sigma-Aldrich (Taufkirchen, 

Germany). 2,2'-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) and  

p-nitrophenyl butanoate were obtained from ICN Biochemicals (Muenchen, Germany). Diethyl ether, 

ethyl acetate, toluene and n-pentane were from Karl Roth (Karlsruhe, Germany), and solvents (all MS 

grade) used for HPLC-MS were from Carlo Erba Reactifs (Peypin, France). 

3.2. Enzymes 

Immobilized lipase (triacylglycerol hydrolase, EC 3.1.1.3 (Novozyme_435, 5000 U·g−1)) from 

Candida antarctica and laccase from Agaricus bisporus (6.8 U·mg−1) were from Sigma-Aldrich 

(Taufkirchen, Germany), and esterase from porcine liver (lyophilisate, 15 U·mg−1) was from Sigma 

Aldrich (Taufkirchen, Germany). Recombinant feruloyl esterase from Pleurotus eryngii (PeFaeA) and 

chlorogenic acid esterase from Ustilago maydis (UmChlE) were selected from our own stocks. Two 

further laccases were isolated from fungal culture supernatants, as described below. The strains were 

purchased from the Centraalbureau voor Schimmelcultures (Meripilus giganteus CBS 561.86) and from 

the German Collection of Microorganisms and Cell Cultures (Funalia trogii, DSMZ), respectively. 

3.3. Cultivation of Fungi 

The culture supernatant of M. giganteus was provided according to the paper of Schmidt et al. [18]. 

Submerged pre-culture of F. trogii was inoculated with the same structure of M. giganteus, except that 

for the main cultures, the expression of laccases was induced either by the addition of three grams per 

100 mL−1 wheat bran and CuSO4 (300 µM final concentration) to the culture medium of F. trogii or  

300 µM CuSO4 solely in the case of M. giganteus. At the time of maximum laccase activity (ABTS 

activity, pH 3.0), cultivation was stopped and the culture supernatant harvested and stored at −20 °C, 

unless used immediately for laccase isolation and purification. 

3.4. Laccase Isolation and Purification 

The laccase from M. giganteus was isolated according to the protocol of Schmidt et al. [18]. In 

brief, the supernatant was frozen at −20 °C, thawed and centrifuged at 25,000× g. After filtration using 

a 0.45-µM polyester filter (CHROMAFIL PET-45/25, Macherey-Nagel, Dueren, Germany) and 

concentration using an ultra-filtration module (30-kDa cut-off, PES, Sartorius, Goettingen, Germany),  

the laccase was purified using fast protein liquid chromatography (Biologic Duoflow TM, Bio-Rad, 

Hercules, CA, USA) at 4 °C. First, a weak anion exchange column was applied (HiPrep 16/10 DEAE, 

16 × 100 mm fast flow, GE Healthcare, Munich, Germany). Concentrated laccase fractions were submitted 

to a second purification using size exclusion chromatography (Superdex 75 10/300 GL column, GE 

Healthcare, Munich, Germany). Active fractions were pooled and adjusted to the activity required. 

http://www.sigmaaldrich.com/catalog/product/sigma/e3019?lang=en&region=CA
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Laccase from F. trogii was purified as follows: The culture supernatant was frozen at −20 °C, 

thawed and centrifuged at 5000× g at 4 °C for 15 min. The supernatant was filtered (0.45 µM, 

Chromafil Pet-45/25, Dueren, Germany), concentrated using an ultrafiltration module (30-kDa cut-off, 

PES, Sartorius, Goettingen, Germany) and subjected to fast protein liquid chromatography (Biologic 

Duoflow TM, Bio-Rad, Hercules, United States) at 4 °C. Twenty five milliliters of concentrated 

solution were purified on a HiPrep 16/10 DEAE, 16 × 100 mm fast flow column with a flow rate of  

3 mL·min−1 (GE Healthcare, Munich, Germany) with 20 mL running Buffer A (50 mM, potassium 

phosphate, pH 6.5) and eluted with 5% Buffer B (50 mM potassium phosphate, pH 6.5 + 1 M NaCl). 

Purification was controlled using SDS-PAGE electrophoresis. 

SDS-PAGE was performed using 12% (w/v) polyacrylamide gels. Samples were diluted in native 

loading buffer (0.05 M Tris/HCl pH 6.8, 0.1% bromophenol blue, 10% glycerol, 2% SDS) and applied 

to electrophoresis. Proteins were stained with ready-to-use Instant Blue solution (0.1%, Expedeon, 

Cambridge, UK). Laccase activity staining was performed directly on the gel using ABTS (5 mM in 

100 mM sodium phosphate buffer pH 4.5). 

3.5. Analysis of Amino Acid Sequence 

The identity of the purified laccases, as well as the sequence of lccAbi were deduced from the 

amino acid sequence of tryptic peptides of cut out protein bands from SDS gel electrophoresis.  

De-staining and tryptic digestions of the respective protein bands were carried out as described  

elsewhere [19]. Tryptic peptides were analyzed by means of nano-LC EASY-nLC II (Bruker 

Daltronik, Bremen, Germany) equipped with a 20-mm pre-column (C18-A1 3PCS; ThermoFisher 

Scientific, Dreieich, Germany) and a capillary column (0.1 mm × 150 mm) packed with Magic C18 

AQ (3-mm particle size, 200-Å pore size; Michrom Bioresources, Inc., Auburn, CA, USA) eluted by a 

linear gradient (300 nL·min−1) of water and acetonitrile, each with 0:1% formic acid v/v from 95% 

water to 95% acetonitrile within 25 min and held for 15 min. The amino acid sequences elucidated 

were subjected to protein database (NCBI, Mascot search algorithm). Sequences were aligned using 

the ClustalW2 multiple sequence alignment database. 

3.6. Enzyme Assays 

3.6.1. Laccase Activity 

The activity of each laccase was determined with ABTS as the substrate. The change in the 

absorbance was recorded at 420 nm using a Biotek Eon 2 Microplate reader (Biotek, Winooski, VT, 

USA) at 30 °C. In brief, 15 µL of enzyme solution were mixed with 0.5 mM substrate in  

50 mM phosphate buffer at pH 3.0 in a total volume of 300 µL. The change in the absorbance was 

monitored over ten minutes. One unit of enzyme activity was defined as 1 µmol of substrate  

(ɛ = 36,000 L·mol−1·cm−1) oxidized per minute under the experimental conditions [20]. 

3.6.2. Esterase Activity 

Esterase activity was assayed using p-nitrophenyl butanoate as the substrate and monitoring the 

change in absorbance at 410 nm (15,000 L·mol−1·cm−1, pH 8.0) over ten minutes with a Biotek Eon 2 
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Microplate reader (Biotek, Winooski, VT, USA) at 37 °C. Twenty microliters of sample were mixed 

with 175 μL of 100 mM sodium phosphate buffer (pH 6.0) and 5 μL of 50 mM p-nitrophenyl 

butanoate in ethanol. The increase of absorbance was monitored at 37 °C at 410 nm for 20 min. One 

unit of enzyme activity was defined as the release of 1 μmol nitrophenol per minute under the specified 

conditions [21]. 

3.6.3. Lipase Activity 

This assay was performed by measuring the increase in absorbance at 410 nm produced by  

p-nitrophenol released from 0.4 mM p-nitrophenyl butanoate in sodium phosphate buffer (50 mM,  

pH 7.0) at 37 °C. To start the reaction, the lipase solution or suspension (20 µL) was added to the 

substrate solution (175 µL buffer, 5 µL p-nitrophenyl butanoate). One international unit of activity was 

defined as the amount of enzyme that hydrolyzed one µmol of p-nitrophenol butanoate per minute 

under the conditions [22]. All enzyme assays were performed in duplicate, and the standard deviation 

was found below 5%. 

3.7. Curcumin Transformation 

3.7.1. Chemical Acetylation of Curcumin 

Acetylated curcumins were synthesized chemically as reference compounds using acetic anhydride. 

One mmol of curcumin was dissolved in 150 mL ethyl acetate and mixed for 20 min. After dissolving 

was completed, four mmol acetic anhydride were carefully added. After six hours, the reaction was 

stopped by adding one drop H2O2. Reaction yield (consumption of curcumin) and product 

identification were carried out by LC-MS. 

3.7.2. Lipase-Catalyzed Acetylation of Curcumin 

Before each experiment, ethyl acetate and toluene as the solvent and the acyl donor (vinyl or 

geranyl acetate) were stored over Na2SO4. The reaction was carried out in 2 mL ethyl acetate and 

toluene (10:90) in sealed 30-mL glass vials at 40 °C with continuous stirring using a glass magnetic stir bar  

(150 rpm). The powdered CAL was added to a final concentration of five mg·mL−1. Sodium acetate 

buffer 50 mM, pH 6, was added at 4% to the reaction solution. Over the incubation, time samples were 

taken, filtered using 0.45-µm filter (Chromafil PET-45/25, Macherey-Nagel) and then analyzed 

directly by LC-MS. 

3.7.3. Monoacetyl Curcumin Degradation 

The two-phase reaction system was made up of 2.0 mL of 0.5 mM monoacetyl curcumin 

(concentration calculated according to a curcumin standard) together with a minor impurity of diacetyl 

curcumin (concentration not affected by the laccase present) in 2.0 mL diethyl ether and 2.0 mL 

respective enzyme solution (1.19 U·mL−1, ABTS-assay, 30 °C, pH 3) in 50 mM sodium phosphate 

buffer, pH 5.5, under continuous vortexing at 1300 rpm (Heidolph, Germany) for 20 h at room 

temperature. A control sample with the buffer, but without enzyme, was treated under the same 
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conditions. After separation of the diethyl ether phase, the aqueous buffer was re-extracted three times 

with 2.0 mL diethyl ether, and the combined organic phases were dried over night with Na2SO4. The 

degradation rate of acetyl curcumin was determined by LC-MS, and volatile degradation products, 

such as vanillin acetate, were analyzed by GC-MS. 

3.7.4. Esterase-Catalyzed Deacetylation of Vanillin Acetate 

Three esterases were used for the hydrolysis of vanillin acetate. The hydrolysis was carried out in a 

glass vial containing 2 mL of 1 mM vanillin acetate dissolved in diethyl ether/hexane and 2 mL sodium 

phosphate buffer 50 mM, pH 5 and 6.5. The reactions were initiated by adding enzyme solution with 

an activity of one U·mL−1 to the reaction mixture and placed in a vortex shaker at 37 °C for five hours. 

The samples were extracted three times with diethyl ether, and the combined fractions were dried over 

sodium sulfate and analyzed by GC-MS using the external standard, 3,4-dimethoxybenzaldehyde (final 

concentration 125 mg·L−1). The reproducibility of three repeated transformations showed a relative 

standard deviation of typically 3%. 

3.8. Gas Chromatography 

3.8.1. Gas Chromatography/Flame Ionization Detection 

For each sample, 1 μL was injected on-column in an Agilent 7890A gas chromatograph (Agilent, 

Waldbronn, Germany) equipped with a cool on-column injection port and a 30 m × 0.32 mm i. d. × 

0.25 μm CP-Wax 52 CB column (Varian, Darmstadt, Germany). The oven temperature program was 

40 ° C for 3 min, raised at 3 °C per minute to 230 °C and held for 10 min. Hydrogen was used as the 

carrier gas at a flow rate of 2 mL per minute. Quantification was carried out according to the external  

standard (3,4-dimethoxybenzaldehyde). 

3.8.2. Gas Chromatography/Mass Spectrometry 

Gas chromatography-mass spectrometry (GC-MS) was conducted using a GC 8000 coupled to an 

MD 800 mass-selective detector (Fisons, Mainz-Kastel, Germany) equipped with a cool-on-column 

injection port and a 30 m × 0.32 mm i.d. × 0.25 μm CP-Wax 52 CB column (Varian). The samples were 

injected using the same oven program as for GC/FID, but helium at a flow rate of 1.2 mL per minute 

was the carrier gas. Mass spectra were acquired using electron impact ionization at 70 eV and a 200 °C 

source temperature. Reaction products were identified by comparing their RIs (Resonance-ionization) 

and mass spectra with those of authentic standards. 

3.9. Liquid Chromatography/Mass Spectrometry 

For the identification of vanillin, curcumin and acetylated curcumins, as well as for the determination 

of the molar mass of the expected oxidation/polymerization products thereof, high performance liquid 

chromatography coupled to a triple quadrupole mass analyzer was used (Varian 212 LC pump, Pro 

Star 325 UV-Vis detector, 320 TQ-MS mass spectrometer). The MS was conducted simultaneously in 

the ESI positive and negative mode with a scan range of m/z 110–500 or m/z 300–1200, respectively.  
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The MS parameters for ESI(+)/ESI(−) were: capillary voltage +30 V/−40 V, needle voltage  

5000 V/−4500 V, nebulizer gas (N2) 379 kPa, drying gas 207 kPa at 350 °C. For HPLC, water and 

acetonitrile (MS-grade), both containing 0.1% formic acid, were used as the mobile phase, and the 

following linear gradient was used: 10% acetonitrile for three minutes, up to 90% acetonitrile within  

20 min, hold for five minutes and back to start conditions. The separation was performed on an RP-18 

HD column (Eurosphere 100-C18-5-HD, 250 × 4 mm, 5 µm, Macherey-Nagel) at a flow rate of  

0.3 mL per minute. Additionally, UV absorption was monitored at 280 and 425 nm. 

4. Conclusions 

During the coming years, the flavor market is expected to increase, and biotechnology will contribute 

to guaranteeing the supply [1,23]. This work showed that laccases are suitable for the oxidative 

cleavage of acetyl curcumin in a cofactor- and mediator-independent reaction. A three-enzyme system 

provided protection/deprotection chemistry, with the selective acetylation of one of the two phenolic 

hydroxyl groups of curcumin as the key step. As a result, one phenol moiety of the symmetric 

molecule was protected against attack of the laccase, while the other vanillin moiety was inevitably 

lost to oligomerization. 

Laccase-catalyzed reactions are governed by the structure of the phenolic substrate, the redox potential 

of the enzyme (high, middle or low), the presence and choice of a mediator and the usual parameters, 

such as reaction pH, temperature and solvent composition [24]. A refined system, including a food-grade 

mediator, might convert both acetyl vanillin moieties of an enzymatically-synthesized diacetyl curcumin 

into ‘natural’ vanillin. To this end, the first enzymatic step must be made more efficient by using a 

lipase able to accept both curcumin and monoacetyl curcumin as substrates. Some representatives out 

of the large set of lignolytic enzymes of higher fungi might be even more suitable for the acetylation, 

cleavage and hydrolysis of phenolic substrate molecules to yield ‘natural’ flavor compounds. 
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