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Abstract. In this paper we present an analytical formulation

of a Zero Position Coding (ZePoC) encoder for an AC power

standard based on class-D topologies. For controlling a class-

D power stage a binary signal with special spectral character-

istics will be generated by this ZePoC encoder for sinusoidal

signals. These spectral characteristics have a predictable ac-

curacy within a separated baseband to keep the noise floor

below a specified level. Simulation results will validate the

accuracy of this novel ZePoC encoder. For a real-time imple-

mentation of the encoder on a DSP/FPGA hardware archi-

tecture a trade-off between accuracy and speed of the ZePoC

algorithm has to be made. Therefore the numerical effects of

different floating point formats will be analyzed.

1 Introduction

ZePoC was invented and initially implemented for audio cod-

ing by the Institut für Theoretische Elektrotechnik (TET).

The main advantages of a complete digital class-D power

amplifier using ZePoC are the low switching rate and the

separated baseband (Streitenberger, 2005). A lot of effort

was made to develop a prototype of the ZePoC audio power

amplifier resulting in a number of publications. A good

overview can be found in the white paper from Texas Instru-

ments (Texas Instruments, 2005).

ZePoC is also ideal for an AC power standard based on

class-D topologies (Wellmann, 2010). An AC power stan-

dard consists of two channels. One channel provides a highly

accurate sinusoidal voltage and the other one a highly accu-

rate sinusoidal current. The mathematical methods presented

in this contribution are suitable for both channels. Figure 1

represents the block diagram of the voltage channel.

The ZePoC encoder is implemented on a digital signal

processor (DSP). Depending on some encoding parameters

the duty cycle of a pulse width modulated (PWM) signal is

computed and transferred to a field programmable gate array

(FPGA) via an I2S interface. A pulse shaper implemented on

the FPGA converts the received duty cycles into a bit stream.

This bit stream is a time discrete form of the binary PWM

signal. A gigabit serializer inside the FPGA allows a trans-

mission of the binary signal with a very high time resolution.

To amplify the binary PWM signal a class-D power stage

is used. An inverting driver controls a P-channel and a N-

channel MOSFET. At the output of the power stage the high

voltage of the PWM signal equals VDD and the low volt-

age equals VSS. If VDD and VSS are derived from natural

constants using a physical effect (e.g. Josephson effect), the

amplitude of the amplified PWM signal is highly accurate.

The problem of harmonic distortions caused by non-ideal

switching transients of the power stage and the static drain-

to-source on-resistance of the MOSFETs is not content of

this paper.

At the end of the signal chain an analogue low pass fil-

ter (LPF) is used to suppress the disturbances caused by the

switching. This is only possible because of the separated

baseband which ensures a spectral gap between the AC sig-

nal and the switching disturbances at higher frequencies. The

absolute value of the LPF frequency response has to be equal

to one at the frequency of the AC signal.

2 Pulse shaper

An example for the time function of the PWM signal used for

the AC power standard is displayed in Fig. 2. The periodic

time is Tsw and the switching frequency results in fsw =
1
Tsw

.
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Figure 1. AC power standard: block diagram of the voltage channel.
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Figure 2. Time function of the PWM signal.

All rising edges are equidistant in time, while the falling

edges are modulated. The modulation is done by controlling

the switch-on time of each period. For this purpose the duty

cycle τ ∈ (0,1) is used. τ ≤ 0 or τ ≥ 1 violate the switching

condition (overmodulation) and have to be avoided by the

ZePoC encoder.

For generating the binary PWM signal a digital pulse

shaper is used. The main characteristic of a pulse shaper is its

time resolution. In a synchronous digital circuit the change of

output signals is only possible in a discrete time grid deter-

mined by the clock frequency. Therefore a very high time

resolution is necessary to guarentee high accuracy.

The DSP used for this application is an ADSP-

21369KBPZ-3A manufactured by Analog Devices. This

DSP contains a digital PWM generator supporting a maxi-

mum clock frequency of 200 MHz (Analog Devices, 2013).

If the binary signal is directly generated by the DSP, the time

resolution is only 5 ns.

To increase the performance of the PWM generator inside

the DSP a special module containing delay lines and ana-

logue multiplexers was developed (Weber, 2014). This mod-

ule is able to enhance the time resolution up to approximately

313 ps without increasing any of the clock frequencies.

A better time resolution and jitter performance could

be achieved with a FPGA. The Altera Arria V GX

5AGXFB3H4F35C4N contains 24 transceivers supporting

clock frequencies up to 6.5536 GHz (Altera, 2015). A serial-

izer is part of each transceiver and is able to generate a binary

signal with a time resolution up to approximately 153 ps.
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Figure 3. Specified spectral characteristics of the PWM signal.

2.1 Spectral characteristics of the PWM signal

The noise floor inside the separated baseband has to be

lower than −120 dB. For this a minimum amount of

106
= 1 000 000 possible positions for the falling edge be-

tween two enframing rising edges are necessary. In digi-

tal systems it is often useful to deal with powers of two.

220
= 1 048 576 is chosen which leaves a margin of 4.8 % to

define an adequate minimum pulse width. With a serializer

running at 6.5536 GHz the switching frequency of the PWM

signal is

fsw =
6.5536GHz

220
= 6.25kHz. (1)

Figure 3 shows the spectral characteristics of the binary

PWM signal. The frequency of the carrier signal fc =
1
2
fsw

defines the separated baseband 0≤ f < fc. One sinusoidal

AC signal with frequency fa =
1
c
fc and amplitude a is in-

side the signal band 0< f < fa,max. The upper limit fa,max

depends on the frequency response HLPF,A of the analogue

LPF and c is the frequency factor between fa and fc.

3 ZePoC encoder

The block diagram of the ZePoC encoder is displayed in

Fig. 4. Real and imaginary part of complex signals are pro-

cessed separately and indexed with “R” and “I”.
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Figure 4. Block diagram of the ZePoC encoder.

Only the open-loop structure allows to find an analytical

formulation for the modulated signal m(t). In the following

subsections the ZePoC encoder and its analytical formulation

are described in detail.

3.1 Input signal

The input signal must be an analytical sinusoidal signal with

an adjustable amplitude a. To avoid overmodulation the fac-

tor a is limited to γ which defines also the minimum pulse

width of the binary output signal b(t). To simplify all equa-

tions the time variable t will be defined as t := ωT . The time

function

f (a, t)= a cos(t), 0≤ a ≤ γ < 1, a,γ ∈ R, (2)

and its Hilbert transform

f̂ (a, t)=H{f (a, t)} = a sin(t) (3)

results in the analytical input signal

F(a, t)= f (a, t)+ j f̂ (a, t). (4)

3.2 Analytical exponential modulation (AEM)

The AEM is defined as

X(a, t)= Re{X(a, t)}︸ ︷︷ ︸
=:XR(a,t)

+ j Im{X(a, t)}︸ ︷︷ ︸
=:XI(a,t)

= e−jF (a,t) (5)

which could be separated into its real and imaginary part

⇔

{
XR(a, t)= ef̂ (a,t) cos

(
f (a, t)

)
XI (a, t)=−e

f̂ (a,t) sin
(
f (a, t)

)
.

(6)

The cosine and the sine term describe a vector in the com-

plex plane. The complex signalX(a, t) is limited to 1 in polar

notation. X(a, t) is not depicted in Fig. 4 because it is only

the definition of the AEM.

To expand all possible positions of the vector described in

Eq. (6) to a half circle in the complex plane the arguments

have to be multiplied with π
2

. Because of the complex input

signal F(a, t) the argument of the exponential term has to be

multiplied with the same factor. Finally the constant factor

e−
π
2 must be appended to limit the output signals of the AEM

YR(a, t) and YI(a, t) to the closed interval [−1,1] with

⇒

{
YR(a, t)= e−

π
2 · e

π
2
f̂ (a,t)

· cos
(
π
2
f (a, t)

)
YI (a, t)=−e

−
π
2 · e

π
2
f̂ (a,t)

· sin
(
π
2
f (a, t)

)
.

(7)

In the next part of the ZePoC encoder the signals YR(a, t)

and YI(a, t) have to pass a low pass filter (LPF). For an an-

alytical formulation of the LPF it is essential to know the

frequency component of these signals. Therefore the sine,

cosine and the exponential function will be substituted by

Taylor polynomials

⇒

{
YR(a, t)= e−

π
2 ·EXPN (y) ·COSN (x)

YI (a, t)=−e
−
π
2 ·EXPN (y) ·SINN (x).

(8)

3.3 Approximation of the AEM by Taylor polynomials

The exponential function ey and the trigonometric functions

sine and cosine are approximated by Taylor polynomials

where N determines the degree. The Taylor expansions are

performed at the point 0 because of the symmetrical range of

the arguments around this point.

Beginning with the definition of the Taylor polynomial

EXPN (y) for ey the variable y is set to the argument of

the exponential function which has to be approximated. This

gives a sum of sinn(t) terms with constant coefficients. Ex-

panding these terms results in a sum of cosine terms with

frequency factors n= 0,1, . . .,N and constant coefficients

AN,n,s . The index N is the degree of the Taylor polynomial,

n is the frequency factor and s = 0 means there is no alternat-

ing sign in the sum. The Taylor polynomial for y = π
2
f̂ (a, t)

is defined as

EXPN

(
y =

π

2
f̂ (a, t)

)
=

N∑
n=0

yn

n!

=

N∑
n=0

(πa)nsinn(t)

2n n!
(9)
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=

N∑
n=0

AN,n,0(a)cos
(
n(t −

π

2
)
)
, N ∈ N0.

Similar to Eq. (9) the sine and cosine function are approx-

imated by Taylor polynomials. The index s = 1 of the ampli-

tude coefficientsAN,k,s(a) indicates that there are alternating

signs (−1)n in the sums COSN and SINN with

COSN

(
x =

π

2
f (a, t)

)
=

⌊
N
2

⌋∑
n=0

(−1)n
x2n

(2n)!

=

⌊
N
2

⌋∑
n=0

(−1)n
(πa)2ncos2n(t)

22n (2n)!
(10)

=

⌊
N
2

⌋∑
n=0

(−1)nAN,2n,1(a)cos(2n t) , N ∈ N0

and

SINN

(
x =

π

2
f (a, t)

)
=

⌊
N−1

2

⌋∑
n=0

(−1)n
x2n+1

(2n+ 1)!

=

⌊
N−1

2

⌋∑
n=0

(−1)n
(πa)2n+1cos2n+1(t)

22n+1 (2n+ 1)!
(11)

=

⌊
N−1

2

⌋∑
n=0

(−1)nAN,2n+1,1(a)cos((2n+ 1) t) , N ∈ N.

COSN contains only even powers of the argument x(
0,2, . . .,2 ·

⌊
N
2

⌋)
while SINN contains only odd powers(

1,3, . . .,2 ·
⌊
N−1

2

⌋)
. The floor functions ensure that every

degree N ∈ N can be used in Eqs. (10) and (11).

The constant amplitude coefficientsAN,k,s(a) can be writ-

ten in a compact sigma notation. Three different cases have

to be considered: k = 0, k is even and k is odd.

1st case : k = 0, N ∈ N, s ∈ {0,1} : (12)

AN,k,s(a)=

⌊
N
2

⌋∑
n=0

(−1)s·n
(

2n

n

)
(π · a)2n

24n(2n)!

2nd case : k ∈ N and even, k ≤N ∈ N, s ∈ {0,1} : (13)

AN,k,s(a)=

⌊
N
2

⌋∑
n= k

2

(−1)s(n−
k
2
)

 2n

n−
k

2

 (π · a)2n

24n−1(2n)!

3rd case : k ∈ N and odd, k ≤N ∈ N, s ∈ {0,1} : (14)

AN,k,s(a)=

⌈
N
2

⌉
−1∑

n= k−1
2

(−1)s(n−
k−1

2
)

 2n+ 1

n−
k− 1

2

 (π · a)2n+1

24n+1(2n+ 1)!

Table 1. Accuracy of the approximated AEM

Degree N |Error|max Accuracy

10 1.23× 10−5 98 dB

11 1.60× 10−6 115 dB

12 1.91× 10−7 134 dB

13 2.13× 10−8 153 dB

14 2.22× 10−9 173 dB

Next the products consisting of the sums EXPN ·COSN
and EXPN ·SINN have to be expanded. After sorting all terms

by frequency and summarizing all constants, YR(a, t) and

YI(a, t) can be written in a compact sigma notation as

⇒


YR(a, t)= e

−
π
2

2N−1∑
n=0

MN,n(a) cos
(
n(t −

π

2
)
)

YI (a, t)= e
−
π
2

2N−1∑
n=1

MN,n(a) sin
(
n(t −

π

2
)
)
.

(15)

The constant coefficients MN,k(a) are given by a dou-

ble sum over the products of two amplitude coefficients

AN,k,s(a) and defined as

MN,k(a)=
1

2

N∑
m=0

⌊
N
2

⌋∑
n=0

m+2n=k

AN,m,0(a) ·AN,2n,1(a) (16)

+
1

2

N∑
m=0

⌊
N
2

⌋∑
n=0

|m−2n|=k

AN,m,0(a) ·AN,2n,1(a).

All MN,k(a) have to be recalculated if the amplitude a of

the input signal is modified.

Table 1 shows the absolute error and the accuracy of the

AEM approximated by Taylor polynomials of degree N . It

can be seen that for the specified accuracy of 120 dB a degree

of N = 12 is sufficient.

3.4 Low pass filter (LPF)

In consequence of nonlinear mathematical operations inside

the AEM the signals YR(a, t) and YI(a, t) are no longer band-

limited. All signal components with frequencies above fc =

c ·fa have to be suppressed by the low pass filters (LPFs). To

apply the LPFs only the upper bound of summation 2N − 1

has to be replaced by bcc. No frequency components with a

frequency factor greater than c can pass the LPFs. The output

signals of the LPFs are

⇒


ZR(c,a, t)= e

−
π
2

bcc∑
n=0

MN,n(a) cos
(
n(t −

π

2
)
)

ZI (c,a, t)= e
−
π
2

bcc∑
n=1

MN,n(a) sin
(
n(t −

π

2
)
)
.

(17)
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Figure 5. One periode of m(c,a, t) for a = 0.99 and c = 6.25.

If the LPFs are disabled, ZePoC encoding becomes equal to

a natural pulse width modulation (NPWM).

3.5 Single-sideband phase modulation

The time function m(c,a, t) is built by mixing the complex

signalZ(c,a, t)= ZR(c,a, t)+jZI(c,a, t)with the complex

carrier signal C = cos(ct)+ j sin(ct) as follows:

m(c,a, t)= ZR(c,a, t) · cos(c t)+ZI(c,a, t) · sin(c t). (18)

For a = 0.99 and c = 6.25 this function is periodic with pe-

riod t = 8π . Figure 5 shows a plot of m(c,a, t) over one full

period.

3.6 Generating the bit stream

To generate the bit stream for the serializer each bit of the

stream must be set to a defined value. Therefore the func-

tion m(c,a, t) must be evaluated at the center of each bit.

Depending on this result (greater or less than zero) these bits

are set. In Fig. 4 this operation is depicted as sign function.

For generating the bit stream in an efficient way, the zeros

of m(c,a, t) must be found. It is not necessary to find the ex-

act positions of the zeros because of the bit stream’s discrete

time domain.

To find the zeros with little effort, a binary search algo-

rithm is used. Figure 8 illustrates the concept of this algo-

rithm for n= 3. The search area is exactly between two zeros

of the carrier signal sin(ct), enframing one zero ofm(c,a, t).

The search starts in the middle of the search area. At the

current position, the sign of m(c,a, t) will be evaluated. De-

pending on the sign the direction of the jump is chosen to

be left or right. After each jump the jump distance will be

halved. For a search area of 2n bits n jumps have to be exe-

cuted to find the bit Z where the zero crossing of m(c,a, t)

is.

All bits in the search area left of Z are set to logic one and

all bits right of Z are set to logic zero. To find out if the bit Z
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Figure 6. ZePoC spectrum for a = 0.99, fa = 500 Hz, c = 6.25,

fc = 3.125 kHz, fsw = 6.25 kHz, serializer@6.5536 GHz.
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Figure 7. NPWM spectrum for a = 0.99, fa = 500 Hz, c = 6.25,

fc = 3.125 kHz, fsw = 6.25 kHz, serializer@6.5536 GHz.

is a logic one or zero, an additional jump must be executed.

If this last jump was to the right, bit Z is set to logic one, else

Z is set to zero. The additional jump is similar to a rounding

function and helps to reduce the DC component of the binary

signal b(t).

3.7 Simulation results

Figure 6 displays the spectrum for a = 0.99 and c = 6.25

of the binary signal b(t) generated by the ZePoC encoder.

The disturbances within the separated baseband are below

−120 dB. The spectral gap between the AC signal and the

disturbances allows the use of an analogue LPF to suppress

the switching noise at the output of the voltage channel.

If the LPFs inside the ZePoC encoder are disabled, ZePoC

encoding becomes equal to NPWM. Figure 7 shows the

NPWM spectrum with the same parameters a and c. Here it

is not possible to separate the AC signal and the disturbances

www.adv-radio-sci.net/13/1/2015/ Adv. Radio Sci., 13, 1–8, 2015
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Figure 9. Linear interpolation of a discretized function.

with an analogue LPF. For all simulations the time base is

assumed to be ideal.

4 Real-time implementation

During simulation a frequency factor c ∈Q is used which re-

sults in a periodic binary signal b(t). If b(t) is periodical then

one period of b(t) can be computed and stored in memory.

No real-time processing is necessary in this case.

For an arbitrary frequency of the AC signal c ∈ R is re-

quired. Now b(t) is no longer periodical and a real-time im-

plementation of the ZePoC encoder is required.

4.1 Interpolation of sine and cosine functions

For the numerical evaluation of sine and cosine functions

often the CORDIC algorithm is used. CORDIC stands for

COordinate Rotation DIgital Computer and is an iterative al-

gorithm (Gupta, 2010). Iterative algorithms often need too

much computing time and are not suitable for a real-time im-

plementation of this ZePoC encoder on a DSP.

A very fast way to evaluate functions is to use a look-up

table (LUT) combined with linear interpolation. The argu-

ment of the function will be equidistant discretized. For each

discrete argument the exact function value will be evaluated.

Every two function values next to each other define a straight

line as shown in Fig. 9. The slope and offset of each line are

stored in a table.

To compute a function value the correct line must be lo-

cated depending on the argument. Then the slope and off-

set of the selected straight line are read from the table. The

resulting linear equation returns the interpolated function

value.

For an accuracy of 120 dB the absolute error must be less

than 10−6. Linear interpolation of sin(x) and cos(x)with x ∈

[−π,π ] using tables with 213
= 8192 entries has a maximum

error of 0.3×10−6. Each table contains 4096 slope- and 4096

offset-coefficients. Both tables fit in one internal 0.75 Mbit

SRAM block of the DSP.

The size of the tables can be reduced using the symmetries

sin(−x)=−sin(x) and sin
(
π
2
+ x

)
= sin

(
π
2
− x

)
. Also the

cosine function can be expressed as a π
2

phase shifted sine

function. If a reduced table is used a case analysis is nec-

essary which needs valuable computing time in a real-time

system.

4.2 Effects of different floating point formats

Floating point (FP) numbers are stored in a special binary

format. Any FP number consists of a sign S, an exponent

E and a mantissa M . For normalized signals in the closed

interval [−1, 1] the length of the mantissa M is the most

important factor for accuracy (Muller, 2009).

Table 2 lists the properties of the used FP formats sin-

gle, extended single and double. Always one bit is used for

the sign whereas the number of bits representing exponent

and mantissa varies. Only single and double precision num-

bers are standardized by IEEE 754 and natively supported

by MATLAB®. All simulations in the last section were done

using 64 bit double precision.

Double precision numbers are not natively supported by

the DSP. To use these 64 bit numbers on the DSP software

emulation is required. This software emulation needs a lot of

computing power and slows down the ZePoC algorithm dra-

matically. Therefore it is very important to use only FP for-

mats natively supported by the DSP. The computation time

for algorithms using 40 bit instead of 32 bit FP numbers is

the same.

For generating an AC signal with a frequency fa = 50 Hz

at a switching frequency of fsw = 2fc = 2cfa = 6.25 kHz a

factor c = 62.5 is required. An amplitude of a = 0.99 avoids

overmodulation. The binary PWM signal b(t) is computed

by the real-time ZePoC encoder implemented on the DSP.

All three FP formats are used to generate b(t) with different

accuracies. Figures 10, 11 and 12 show the resulting spectra

of the PWM signal for the different FP number formats.

Adv. Radio Sci., 13, 1–8, 2015 www.adv-radio-sci.net/13/1/2015/
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Figure 10. Spectrum of PWM signal for double precision a = 0.99,

fa = 50 Hz, c = 6.25, fsw = 6.25 kHz, serializer@6.5536 GHz
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Figure 11. Spectrum of PWM signal for extended single precision

a = 0.99, fa = 50 Hz, c = 6.25, fsw = 6.25 kHz, @6.5536 GHz

The main difference between the spectra is the noise floor.

For double precision every bin is below −130 dB and many

bins are not visible because they are below the plot range

of −180 dB. When using extended single precision the noise

floor contains many more visible bins but also here no bin ex-

ceeds −130 dB. Only for single precision numbers the noise

floor reaches −100 dB which is outside the specification of

−120 dB.
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Figure 12. Spectrum of PWM signal for single precision a = 0.99,

fa = 50 Hz, c = 6.25, fsw = 6.25 kHz, serializer@6.5536 GHz

Table 2. Floating point formats.

Single Ext. Single Double

32 bit 40 bit 64 bit

Sign S 1 1 1

Exponent E 8 8 11

Mantissa M 23 31 52

Standardized (IEEE 754) X X

Supported by MATLAB® X X

Supported by DSP X X

5 Conclusions

This contribution shows that an analytical formulation of a

ZePoC encoder is possible for sinusoidal input signals. The

accuracy can be determined by the degree of the Taylor poly-

nomials used to approximate the AEM.

A new pulse shaper with a very high time resolution based

on a FPGA will be used for the voltage channel of the AC

power standard. Therefore an easy and fast algorithm to gen-

erate a bit stream for the GHz serializer inside the FPGA is

presented.

For the real-time implementation on a DSP the effects of

different floating point number formats are analyzed. The

accuracy of extended single precision floating point numbers

is sufficient for the specified AC power standard.
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