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Ammonia-oxidizing archaea possess a wide range of cellular
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Nitrification, the oxidation of ammonia to nitrate, is an essential process in the biogeochemical nitrogen cycle. The first step of
nitrification, ammonia oxidation, is performed by three, often co-occurring guilds of chemolithoautotrophs: ammonia-oxidizing
bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox). Substrate kinetics are considered to be a major
niche-differentiating factor between these guilds, but few AOA strains have been kinetically characterized. Here, the ammonia
oxidation kinetic properties of 12 AOA representing all major cultivated phylogenetic lineages were determined using
microrespirometry. Members of the genus Nitrosocosmicus have the lowest affinity for both ammonia and total ammonium of any
characterized AOA, and these values are similar to previously determined ammonia and total ammonium affinities of AOB. This
contrasts previous assumptions that all AOA possess much higher substrate affinities than their comammox or AOB counterparts.
The substrate affinity of ammonia oxidizers correlated with their cell surface area to volume ratios. In addition, kinetic
measurements across a range of pH values supports the hypothesis that—like for AOB—ammonia and not ammonium is the
substrate for the ammonia monooxygenase enzyme of AOA and comammox. Together, these data will facilitate predictions and
interpretation of ammonia oxidizer community structures and provide a robust basis for establishing testable hypotheses on
competition between AOB, AOA, and comammox.
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INTRODUCTION
Nitrification, the microbially mediated oxidation of ammonia (NH3)
to nitrate (NO3

−) via nitrite (NO2
−), is a key process of the

biogeochemical nitrogen cycle [1, 2] and is mostly driven by
autotrophic microorganisms that are capable of growing with NH3

and/or NO2
− as sole energy generating substrates. For more than

a century, ammonia-oxidizing bacteria (AOB) were considered the
lone drivers of aerobic ammonia oxidation by autotrophs, as
ammonia-oxidizing archaea (AOA) [3, 4] and complete ammonia
oxidizers (comammox) [5–7] eluded discovery until relatively
recently. Our present-day understanding of ammonia oxidation is
quite different: AOA frequently outnumber AOB in oligotrophic
habitats [8–10], while AOB often dominate in eutrophic environ-
ments [11–14]. Comammox have been shown to be abundant and
sometimes even dominant in various natural and engineered
environments [15–19], although the habitat range and ecophy-
siology of comammox remains less well resolved. Notably, in the
majority of ecosystems—with the exception of the marine

environment, where no comammox has been detected—AOA,
AOB, and comammox often co-occur.
Many environmental and physiological factors are known to

affect the niche differentiation and habitat selection of ammonia-
oxidizing microorganisms (AOM) [20, 21]. In fact, AOM species
display differential responses to factors such as pH, oxygen
concentrations, light conditions, temperature, metal and organic
compounds, and substrate concentrations [22–27]. These differ-
ential responses are frequently used to explain the co-occurence
of AOM across environments. However, the cellular properties
underlying these niche-differentiating physiological characterstics
of AOM often remain unclear.
The substrate affinity of a microorganism can be expressed with

Michaelis–Menten kinetic equations, analogous to enzyme
kinetics, defined by an apparent-half-saturation concentration
(substrate affinity; Km(app)) and a maximal reaction rate (Vmax). In
addition, the specific substrate affinity (a°; Vmax divided by Km(app))
takes into account both the cellular Km(app) and Vmax, and is thus
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an appropriate measure for comparing interspecies competitive-
ness [28]. Throughout this study, instantaneous substrate-
dependent kinetic properties were measured which represent
cellular activity in the absence of growth. Therefore, the
Michaelis–Menten modeled kinetic properties discussed here
(Km(app) and Vmax) differ from Monod modeled kinetic properties
(Ks and μmax), which also take into account other cellular process
(e.g., growth, division, stress, and repair). Our focus on
Michaelis–Menten modeled kinetic properties is in part due to
the enormous challenges that would be associated with growing
such a wide array of AOA under the continuous cultivation
conditions necessary to determine Monod kinetic properties.
Based on whole cell kinetic properties, AOM were observed to

have different survival or lifestyle strategies. The first study
investigating the whole cell kinetics of an AOA revealed that
Nitrosopumilus maritimus SCM1 displayed a low maximum NH3

oxidation rate (Vmax), but a very high substrate affinity and a° for
NH3, compared with AOB [29]. Based on these findings with a
single AOA strain, substrate affinity was postulated as a major
niche-differentiating factor between AOA and AOB [20, 29].
However, recently it was shown that (i) the only comammox
isolate Nitrospira inopinata has a Km(app) for NH3 lower than that of
all characterized AOB and (ii) that the Km(app) for NH3 in a few non-
marine AOA strains is not always orders of magnitude lower than
that of AOB [5]. Nevertheless, the AOA with comparatively high Km
(app) for NH3 (low affinity) still possess a significantly higher a° than
AOB, indicating that these AOA are still more efficient substrate
scavengers [5]. Furthermore, temperature and pH, which are
known niche-differentiating factors [30–32], have previously been
shown to affect the substrate affinity of AOB [33–35], but the
influence of these parameters on the substrate affinity of AOA and
comammox remains to be determined.
In this study, the whole cell kinetic properties of 12 AOA species

were determined through instantaneous substrate-dependent
microrespirometry (MR) experiments. These include representa-
tives from all four major AOA phylogenetic lineages, isolated or
enriched from various habitats (i.e., marine, terrestrial, and
geothermal) and possessing a wide variety of pH and temperature
growth optima. In these analyses, we also explored the links
between the cellular Km(app) and a° of AOM with their cell surface
area to volume (SA/V) ratio. Furthermore, by performing MR
experiments at different pH values we investigated whether the
undissociated NH3 or ammonium (NH4

+) is the substrate for AOA
and comammox.

MATERIALS AND METHODS
Cultivation of ammonia oxidizers
Several previously described growth media were used to cultivate the
AOM used in this study. A comprehensive guide with medium components
and cultivation conditions is provided in the Supplementary Materials and
Methods, Tables S1, and S2. Briefly, all cultures were grown without
shaking, in the dark, at their optimum growth temperature and pH, unless
otherwise stated. Ammonium (NH4Cl) from pre-sterilized stocks was added
as substrate as needed. The growth medium of Nitrosarchaeum koreense
MY1, ‘Ca. Nitrosotenuis chungbukensis’ MY2, ‘Ca. Nitrosotenuis uzonensis’
N4, N. maritimus SCM1, Nitrosopumilus piranensis D3C, and Nitrosopumilus
adriaticus NF5 was supplemented with sodium pyruvate (0.5 mM) at all
times. The pH of all growth media were adjusted when necessary
by addition of sterile NaHCO3. Ammonia oxidation activity was determined
by measuring ammonium, nitrite, and nitrate concentrations photome-
trically [36–39] using an Infinite 200 Pro M Nano+ spectrophotometer
(Tecan Group AG, Switzerland).

Novel AOA enrichments and pure culture
The sampling site, enrichment process, and initial strain characterization
details for the two novel thermophilic AOA enrichment cultures ‘Ca.
Nitrosofervidus tenchongensis’ DRC1, and ‘Ca. Nitrososphaera nevadensis’
GerE used in this study are provided in the Supplementary Materials and

Methods. In addition, in this study, ‘Ca. N. uzonensis’ N4 was isolated as a
pure culture from a previously described geothermal spring enrichment
culture [40]. Further details are provided below and in the Supplementary
Materials and Methods.

Phylogenetic analysis
Taxa chosen for phylogenetic reconstruction met at least one of three
different criteria: (1) inclusion in the current study, (2) published as a
culture/enrichment or (3) designation as a “GTDB representative of
species” for the group of taxa classified as “Nitrososphaerales” by the
Genome Taxonomy Database release 05-RS95 [41]. A concatenated
alignment of 34 universal genes (43 markers) was automatically
constructed using CheckM [42]. IQ-TREE v 2.1.2 [43] was used for
phylogenetic reconstruction following automatic model determination
with modelFinder [44], which identified LG+ F+ R6 as the best-fit model
according to the Bayesian Information Criterion (BIC). Bipartition support
was determined with ultrafast bootstraps (UFboots [45]).

Substrate-dependent oxygen uptake measurements
Cellular substrate oxidation kinetics were determined from instantaneous
substrate-dependent oxygen uptake measurements as previously
described [5, 29, 46]. Briefly, measurements were performed with a MR
system, equipped with a PA 2000 picoammeter and a 500 μm tip diameter
OX-MR oxygen microsensor (Unisense, Denmark), polarized continuously
for at least 24 h before use.
Active AOA, AOB, and N. inopinata cells were harvested (4000 × g,

10min, 20 °C) from ammonium replete active cultures, using 10 kDa-cutoff,
Amicon Ultra-15 centrifugal filter units (Merck Millipore, Germany).
Concentrated cells were washed with and resuspended in substrate-free
medium appropriate for the respective cultures. Exceptions were ‘Ca.
Nitrosocosmicus franklandus’ C13 and the marine AOA, N. maritimus SCM1,
N. piranensis D3C, and N. adriaticus NF5. These four AOA strains were not
active in the MR chambers after attempts to concentrate their biomass.
Therefore, ammonium concentrations were monitored daily for these four
cultures, and cells were used without concentration for MR promptly upon
substrate depletion [29]. AOM harvested cells for MR experiments were
incubated for at least 30 min in a recirculating water bath set to the
experimental temperature (Tables S2 and S3) prior to being transferred to
the MR chambers (~2ml).
In addition to MR experiments at optimal growth temperature and pH

(Table S2), MR experiments were also performed at non-optimal growth
temperatures and medium pH (Table S3). ‘Ca. N. oleophilus’ MY3 was
cultivated at 30 °C, harvested with centrifugal filter units (see above), and
incubated for ~2 h in substrate-free medium across a range of
temperatures (25, 30, and 35 °C). MR experiments were then performed
at the respective preincubation temperature. Likewise, N. inopinata and
‘Ca. N. oleophilus’MY3 cells were harvested with centrifugal filter units (see
above) and resuspended in substrate-free medium containing 10mM
HEPES (pH 7.4). The pH was adjusted to 6.5–8.4 with 1 M HCl or 1 M NaOH
(Table S3). These cultures were then incubated at their optimum growth
temperature for ~1 h prior to cellular kinetic measurements. Culture pH
was determined before and after oxygen uptake measurements to confirm
the pH did not change during MR. Substrate-dependent oxygen uptake
measurements were performed as described below.
For all MR experiments, glass MR chambers containing glass-coated

magnetic stir bars were filled headspace-free, sealed with MR injection lids,
and submerged in a recirculating water bath. An OX-MR microsensor was
inserted into each MR chamber and left to equilibrate (300 rpm, ~1 h).
Exact temperatures used for each culture and experiment are provided in
Tables S2 and S3. Stable background sensor signal drift was measured for
at least 15 min prior to initial substrate injections, and the background
oxygen consumption rate was subtracted from the measured oxygen
uptake rates. Hamilton syringes (10 or 50 μl; Hamilton, USA) were used to
inject NH4Cl stock solutions into MR chambers. Both single and multiple
trace oxygen uptake measurements were performed. For single trace
measurements, a single substrate injection was performed, and oxygen
uptake was recorded until substrate depletion. For multiple trace
measurements, multiple injections of varying substrate concentration
were performed in a single MR chamber. Once stable, discrete slopes of
oxygen uptake were calculated following each substrate injection.
Immediately following oxygen uptake measurements, the total ammonium
concentration and pH of the MR chamber contents were determined. The
cells were stored at −20 °C for protein analysis. Cells were lysed with the
Bacterial Protein Extraction Reagent (BPER, Thermo Scientific) and the total
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protein content was determined photometrically with the Pierce
bicinchoninic acid Protein Assay Kit (Thermo Scientific) as per the
manufacturer’s instructions. Before and after MR assays of N. piranensis
D3C, ‘Ca. N. uzonensis’ N4, and ‘Ca. N. oleophilus’MY3, an aliquot of culture
was filtered onto membranes (0.2 µm polycarbonate GTTP membranes;
Merck Milipore, Germany) and DAPI (4ʹ,6-diamidino-2-phenylindole; 10 µg
ml−1; 5 min; room temperature) stained prior to microscopic measurement
of biomass cell aggregate size, as described previously [47, 48].

Calculation of kinetic properties
Km(app) and Vmax were calculated from both single and multiple trace
substrate-dependent oxygen uptake measurements. Total ammonium
(NH3+ NH4

+) oxidation rates were calculated from oxygen uptake
measurements using a substrate to oxygen consumption ratio of 1:1.5
[5, 29]. Total ammonium uptake rates were fitted to a Michaelis–Menten
model using the equation:

V ¼ Vmax ´ S½ �ð Þ ´ KmðappÞ þ S½ �� ��1 (1)

where V is the reaction rate (μM h−1), Vmax is the maximum reaction rate
(μM h−1), S is the total ammonium concentration (μM), and Km(app) is the
reaction half saturation concentration (μM). A nonlinear least squares
regression analysis was used to estimate Km(app) and Vmax [49]. The Km(app)

for NH3 for each strain was calculated based on the Km(app) for total
ammonium, incubation temperature, pH, and salinity [50]. Km(app) values
for AOM not determined in this study were compiled from the literature
[5, 29, 33, 34, 51–55]. If only total ammonium information was given by the
authors for Km(app), the corresponding NH3 values were calculated based
on the reported experimental temperature, pH, and salinity values. Vmax

values of pure cultures were normalized to culture protein content. The
specific substrate affinity (a°; l g wet cells−1 h−1) of each pure culture strain
was calculated using the equation:

ao ¼ Vmax

cellular protein x 5:7

� �
x KmðappÞ�1 (2)

Where the Vmax is normalized to the protein concentration (g l−1) of the
culture in the MR chamber and the factor of 5.7 g wet cell weight per g of
protein was used for all AOM [5, 29, 56]. The a° for NH3 or total ammonium
were calculated using the respective Km(app) for NH3 or total ammonium.

Cell surface area to volume ratio calculation
Approximate cell SA/V ratios were determined using cell dimensions
provided by or calculated from previously published phase contrast,
transmission electron, or scanning electron microscopy images (Table S4).
The following equations for the surface (SA) area and volume (V) of a
sphere (3) and rod (4) were used:

SA ¼ 4πr2; V ¼ 4=3πr3 (3)

SA ¼ 2πrðhþ rÞ; V ¼ πr2h (4)

where r is the cell radius (µm) and h is the cell length (µm). The cell size
and volume from published phase contrast images were verified using
MicrobeTracker [57].

RESULTS AND DISCUSSION
AOA kinetic properties
In this study we investigated the kinetic properties of 12 AOA
strains, including representatives from all four described AOA
phylogenetic lineages: Nitrosopumilales (Group I.1a), ‘Ca. Nitroso-
taleales’ (Group I.1a-associated), Nitrososphaerales (Group I.1b),
and ‘Ca. Nitrosocaldales’ (thermophilic AOA clade) [58, 59] (Fig. 1).
These AOA isolates and enrichments were obtained from a variety
of habitats (marine, soil, sediment, hot spring) and have optimal
growth pH and temperatures ranging from 5.3–7.8 to 25–72 °C,
respectively (Table S2). The substrate-dependent oxygen con-
sumption rates for all AOA tested followed Michaelis–Menten
kinetics. Below, the kinetic properties of these AOA are put into a
broader context with comparisons to previously characterized
AOM. It is important to note that the whole cell kinetic properties,
such as substrate competitiveness, detailed here were generated

from instantaneous activity measurements in the absence of
growth. It is unknown how the substrate competitiveness of
nitrifiers may or may not differ from their competitiveness when
cellular processes such as growth, division, stress, and repair are
involved.

Nitrosopumilales (Group I.1a). From this lineage, three mesophilic
marine (N. piranensis D3C, N. adriaticus NF5, and N. maritimus
SCM1) [3, 60], two agricultural soil (N. koreense MY1 and ‘Ca. N.
chungbukensis’ MY2) [61, 62] and one thermal spring isolate (‘Ca.
N. uzonensis’ N4) [40] were kinetically characterized (Fig. S1).
These AOA all displayed a high substrate affinity for NH3, ranging
from ~2.2 to 24.8 nM. Thus, all characterized Nitrosopumilales, and
not just marine isolates, are adapted to oligotrophic conditions. All
possess substrate affinities several orders of magnitude higher
(lower Km(app)) than any characterized AOB, with the exception of
the recently characterized acidophilic gammaproteobacterial AOB
‘Ca. Nitrosacidococcus tergens’ [55] (Fig. 2a). This finding appears
to support the widely reported hypothesis that regardless of the
environment, AOA in general are adapted to lower substrate
concentrations than AOB [22, 29, 30]. However, as described later,
this trend does not apply to all AOA.
As the substrate oxidation kinetics of the marine AOA strain, N.

maritimus SCM1, originally characterized by Martens-Habbena
et al. [29] have recently been disputed [63], they were revisited in
this study (Fig. S2). With the same strain of N. maritimus used in
Hink et al. [63] (directly obtained by the authors), we were able to
reproduce (Figs. S1 and S2) the original kinetic properties of N.
maritimus SCM1 reported in Martens-Habbena et al. [29] ruling
out strain domestication during lab propagation as cause for the
observed discrepancy. Therefore, the reported differences in the
literature possibly reflect the measurements of two distinct
cellular properties, Km(app) [29] and Ks [63], representing the half
saturation of activity and growth, respectively. In addition,
differences in pre-measurement cultivation and growth condi-
tions could also contribute to these unexpected differences
[63, 64]. More details are provided in the Supplementary Results
and Discussion.

‘Ca. Nitrosotaleales’ (Group I.1a-associated). The only isolated AOA
strains in this lineage ‘Ca. Nitrosotalea devanaterra’ Nd1 and ‘Ca.
Nitrosotalea sinensis’ Nd2, are highly adapted for survival in acidic
environments and grow optimally at pH 5.3 [25, 65]. Both display a
relatively low affinity for total ammonium (Km(app)= 3.41–11.23
μM), but their affinity for NH3 is among the highest calculated of
any AOA characterized (Km(app)= ~0.6–2.8 nM) (Fig. 2a,c, and Fig.
S3). This seemingly drastic difference in substrate affinity for total
ammonium versus NH3 is due to the combination of the high acid
dissociation constant of ammonium (pKa= 9.25) and the kinetic
properties of these strains being carried out at pH 5.3. The very
limited availability of NH3 under acidic conditions has led to the
hypothesis that these acidophilic AOA should be highly adapted
to very low NH3 concentrations and possess a high substrate
affinity (low Km(app)) for NH3 [66, 67]. Our data corroborate this
hypothesis.

Nitrososphaerales (Group I.1b). The AOA strains ‘Ca. N. nevaden-
sis’ GerE (culture information provided in Supplementary Results
and Discussion), ‘Ca. N. oleophilus’ MY3 [68] and ‘Ca. N.
franklandus’ C13 [69] were kinetically characterized, and con-
textualized with the previously published kinetic characterization
of Nitrososphaera viennensis EN76 and ‘Ca. Nitrososphaera
gargensis’ [5]. Together, the Nitrososphaerales AOA possess a
wide range of affinities for NH3 (Km(app)= ~0.14–31.5 µM) (Fig. 2a
and Fig. S4). Although this range of NH3 affinities spans more than
two orders of magnitude, none of the Nitrososphaerales AOA
possess an affinity for NH3 as high as any Nitrosopumilales or ‘Ca.
Nitrosotaleales’ AOA (Fig. 2a).
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Nitrosopumilales

Ca. Nitrosotaleales

Nitrososphaerales

Ca. Nitrosocaldales

non-AOA

Ca. Nitrosocosmicus agrestis SS (GCA_008389435.1)

Ca. Nitrosofervidus tenchongensis DRC1
archaeon HR04 (GCA_002898655.1)

Ca. Nitrosocaldus islandicus 3F (GCA_002906215.1)
Ca. Nitrosocaldus cavascurensis SCU2 (GCA_900248165.1)

Ca. Nitrosocaldus yellowstonensis HL72

Thaumarchaeota archaeon UBA57 (GCA_002494565.1)
Thaumarchaeota archaeon UBA223 (GCA_002495905.1)

Thaumarchaeota archaeon EAC691 (GCA_002693165.1)
Thaumarchaeota archaeon SAT139 (GCA_002713205.1)

Thaumarchaeota archaeon UBA183 (GCA_002495205.1)
Thaumarchaeota archaeon TA_14 (GCA_005877185.1)
Thaumarchaeota archaeon TA_8 (GCA_005877225.1)

Thaumarchaeota archaeon TA_13 (GCA_005877365.1)

Thaumarchaeota archaeon palsa_1368 (GCA_003135575.1)
Thaumarchaeota archaeon bog_1369 (GCA_003164815.1)

Thaumarchaeota archaeon UBA141 (GCA_002495315.1)
Conexivisphaera calidus NAS−02 (GCA_013340765.1)

Thaumarchaeota archaeon SAT137 (GCA_002713325.1)

Nitrosopumilus maritimus SCM1 (GCA_000018465.1)
Nitrosopumilus sp. GoM_MAG4 (GCA_003702495.1)

Nitrosopumilus sp. GoM_MAG5 (GCA_003702525.1)
Nitrosopumilus sp. GoM_MAG6 (GCA_003702545.1)

Ca. Nitrosopumilus sp. SW (GCA_006740685.1)

Marine Group I thaumarchaeote SCGC AAA799−P11 (GCA_000746685.1)
Marine Group I thaumarchaeote SCGC AAA799−D11 (GCA_000746765.1)
Marine Group I thaumarchaeote SCGC AAA799−B03 (GCA_000746785.1)

Ca. Nitrosopumilus koreensis AR1 (GCA_000299365.1)
Nitrosopumilus piranensis D3C (GCA_000875775.1)

Ca. Nitrosopumilus salaria BD31 (GCA_000242875.3)
Nitrosopumilales archaeon CG_4_9_14_0_2_um_filter_34_16 (GCA_002788515.1)
Ca. Nitrosopumilus sediminis AR2 (GCA_000299395.1)

Nitrosopumilus sp. UBA526 (GCA_002506665.1)
Nitrosopumilus sp. BACL13 MAG−121220−bin23 (GCA_001437625.1)

Thaumarchaeota archaeon Baikal−G2 (GCA_002737455.1)
Nitrosopumilus sp. Nsub (GCA_001541925.1)
Ca. Nitrosomarinus sp. GoM_MAG2 (GCA_003702465.1)

Ca. Nitrosomarinus catalina SPOT01 (GCA_002156965.1)
Nitrosopumilus sp. MED−G94 (GCA_003331425.1)

Ca. Nitrosopumilus adriaticus NF5 (GCA_000956175.1)
Ca. Nitrosopumilus sp. NM25 (GCA_003175215.1)

Nitrosopumilus sp. LS_AOA (GCA_001543015.1)
Thaumarchaeota archaeon NORP47 (GCA_002317795.1)

Thaumarchaeota archaeon NP142 (GCA_002730325.1)

Thaumarchaeota archaeon SCGC AAA282−K18 (GCA_000484975.1)
Thaumarchaeota archaeon casp−thauma3 (GCA_001510275.1)

Nitrosopumilus sp. H13 (GCA_003724285.1)
Nitrosopumilus sp. D6 (GCA_003724325.1)

Ca. Nitrosospongia ianthellae IBTHAUMO2 (GCA_900620265.1)

Ca. Nitrosoarchaeum limnia SFB1 (GCA_000204585.1)
Ca. Nitrosoarchaeum limnia BG20 (GCA_000241145.2)

Nitrosoarchaeum koreense MY1 (GCA_000220175.2)
Nitrosarchaeum sp. GW199_bin.3 (GCA_004297665.1)

Ca. Nitrosoarchaeum sp. Baikal−G1 (GCA_002737445.1)
Ca. Nitrosoarchaeum sp. BD3 (GCA_003569705.1)

Nitrosopumilaceae archaeon F1−80−MAGs016 (GCA_005798405.1)
Nitrosopumilales archaeon CG15_BIG_FIL_POST_REV_8_21_14_020_37_12 (GCA_002781805.1)

Cenarchaeum symbiosum A (GCA_000200715.1)
Thaumarchaeota archaeon S13 (GCA_003724275.1)

Crenarchaeota archaeon MA_CRA_1 (GCA_003352285.1)

Thaumarchaeota archaeon SCGC AAA007−O23 (GCA_000402075.1)
Euryarchaeota archaeum SCGC AAA287−E17 (GCA_000484935.1)

Thaumarchaeota archaeon SP139 (GCA_002709285.1)
Marine Group I thaumarchaeote SCGC AAA799−O18 (GCA_000746705.1)

Ca. Nitrosopelagicus brevis CN25 (GCA_000812185.1)
Thaumarchaeota archaeon casp−thauma4 (GCA_001510295.1)

Nitrosopelagicus sp. REDSEA−S31_B2 (GCA_001627235.1)
Thaumarchaeota archaeon NAT229 (GCA_002698885.1)

Thaumarchaeota archaeon CSP1−1 (GCA_001443365.1)

Ca. Nitrosotenuis chungbukensis MY2 (GCA_000685395.1)
Ca. Nitrosotenuis sp. GW928_bin.17 (GCA_004322465.1)
Ca. Nitrosotenuis uzonensis N4 (GCA_000723185.1)

archaeon Bin_33_1 (GCA_005240025.1)
Ca. Nitrosotenuis cloacae SAT1 (GCA_000955905.3)

Nitrosopumilales archaeon UBA218 (GCA_002499525.1)
Ca. Nitrosotenuis aquarius AQ6f (GCA_002787055.1)

Thaumarchaeota archaeon 13_1_40CM_4_38_7 (GCA_001917995.1)
Thaumarchaeota archaeon 13_1_20CM_2_39_20 (GCA_001920395.1)

Thaumarchaeota archaeon TA_9 (GCA_005877205.1)
Nitrosopumilales archaeon PowLak16_MAG28 (GCA_007280465.1)
Ca. Nitrosotalea bavarica SbT1 (GCA_900167955.1)

Ca. Nitrosotalea devanaterra ND1 (GCA_900065925.1)
Ca. Nitrosotalea okcheonensis CS (GCA_900177045.1)

Ca. Nitrosotalea sinensis ND2 (GCA_900143675.1)

Thaumarchaeota archaeon TA_20 (GCA_005877305.1)
Nitrosopumilales archaeon PowLak16_MAG10 (GCA_007280335.1)

Nitrosopumilaceae archaeon UBA8516 (GCA_013330055.1)

Ca. Nitrososphaera gargensis Ga9.2 (GCA_000303155.1)
Nitrososphaera sp. UBA217 (GCA_002501845.1)

Ca. Nitrososphaera nevadensis GerE
Nitrososphaera sp. UBA210 (GCA_002494895.1)

Nitrososphaera viennensis EN76 (GCA_000698785.1)
Ca. Nitrososphaera evergladensis SR1 (GCA_000730285.1)

Nitrososphaeraceae archaeon UBA348 (GCA_002501855.1)
Thaumarchaeota archaeon RRmetagenome_bin19 (GCA_003176995.1)

Thaumarchaeota archaeon TA_21 (GCA_005877075.1)
Thaumarchaeota archaeon TA_15 (GCA_005877345.1)

Ca. Nitrosocosmicus oleophilus MY3 (GCA_000802205.2)
Ca. Nitrosocosmicus arcticus (GCA_007826885.1)

Ca. Nitrosocosmicus hydrocola G61 (GCA_001870125.1)
Ca. Nitrosocosmicus franklandus C13 (GCA_900696045.1)
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Fig. 1 Phylogenetic reconstruction of ammonia oxidizing archaea (AOA) rooted on closely related non-AOA members of the
“Thaumarchaeota”. Black taxon labels correspond to AOA from cultures or enrichments. Gray taxon labels correspond to representative
metagenome assembled genomes from release 05-RS95 of the genome taxonomy database [41]. AOA that were kinetically characterized in
the current study are highlighted in gray and AOA that were previously characterized are indicated with an asterisk (*). The phylogeny was
calculated with IQ-TREE under model LG+ F+ R6 using an alignment of 34 universal genes (43 markers) produced by CheckM [42]. Support
values (UFboot) greater than 95% for bipartitions are shown with a black circle and support values between 80% and 95% are shown with a
gray circle. Order designations reflect lineages proposed by Alves et al. [59]. The scale bar indicates amino acids changes per site.
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The moderately thermophilic enrichment culture ‘Ca. N.
nevadensis’ GerE displayed a higher substrate affinity (lower Km
(app)) for NH3 (0.17 ± 0.03 µM) than the other characterized AOA
strains within the genus Nitrososphaera (Fig. 2a). In contrast, ‘Ca. N.
oleophilus’ MY3 and ‘Ca. N. franklandus’ C13, which belong to the
genus Nitrosocosmicus, had the lowest affinity (highest Km(app)) for
NH3 (12.37 ± 6.78 μM and 16.32 ± 14.11 μM, respectively) of any
AOA characterized to date. In fact, their substrate affinity is
comparable to several characterized AOB (Fig. 2a). In this context
it is interesting to note that several Nitrosocosmicus species have
been shown to tolerate very high ammonium concentrations [68–
70], a trait usually associated with AOB [24, 54]. The low substrate
affinity observed in Nitrosocosmicus AOA correlates with the
absence of a putative Amt-type high affinity ammonium
transporter in the genome of any sequenced Nitrosocosmicus
species to date [68, 69, 71].

‘Ca. Nitrosocaldales’ (Thermophilic AOA lineage). The thermophilic
AOA enrichment cultures, ‘Ca. Nitrosocaldus yellowstonensis’ HL72
[72] and ‘Ca. N. tenchongensis’ DRC1 (culture information
provided in Supplementary Results and Discussion), possess
affinities for NH3 (Km(app)= ~1.36 ± 0.53 μM and ~0.83 ± 0.01 μM;
respectively comparable to AOA within the genus Nitrososphaera
(Fig. 2a). Notably, the substrate oxidation rate of these two AOA
quickly dropped with increasing substrate concentrations after
Vmax was reached (Fig. S5). This trend was not observed with any
other AOA tested here and may reflect an increased susceptibly to
NH3 stress at high temperatures, as the free NH3 concentration
increases with increasing temperatures [33]. It should be noted
that both of these AOA cultures are enrichment cultures, as no
member of the ‘Ca. Nitrosocaldales’ has been isolated to date.
Together, these results highlight that the substrate affinity for

NH3 among AOA species is much more variable than previously

hypothesized, spanning several orders of magnitude and in some
cases overlapping with the substrate affinity values of character-
ized non-oligotrophic AOB. In addition, the substrate affinity of
AOA is related, to a certain degree, to their phylogenetic
placement within each of the four AOA phylogenetic lineages
mentioned above (Fig. 2). Although the substrate affinity ranges of
these AOA lineages overlap, the link between AOA phylogeny and
kinetic properties provides deeper insights into the physiological
and evolutionary differences among AOA species. As a limited
number of AOA have been isolated and characterized to date, the
continued isolation and characterization of AOA from under-
represented phylogenetic lineages and new habitats is needed.
While substrate affinity is certainly one of multiple factors that
contribute to niche differentiation between AOM in general, it
may also present a previously under acknowledged factor in AOA
niche differentiation.

Maximum substrate oxidation rates (Vmax). The normalized
maximum substrate oxidation rate of all the AOA characterized
to date only span about one order of magnitude from 4.27 to
54.68 μmol N mg protein−1 h−1. These normalized AOA Vmax

values are in the same range as the recorded Vmax for the
comammox N. inopinata (~12 μmol N mg protein−1 h−1) and the
marine AOB strain Nitrosococcus oceani ATCC 19707 (~38 μmol N
mg protein−1 h−1) but are lower than the normalized Vmax of the
AOB Nitrosomonas europaea ATCC 19718 (average of 84.2 μmol N
mg protein−1 h−1; Fig. 2e). The high Vmax value for N. europaea is
the only real outlier among the AOM characterized to date and it
remains to be determined whether other AOB related to N.
europaea also possess such a high Vmax or if members of the
Nitrosomonadales possess a broad range of Vmax values. Similarly,
as additional comammox strains become available as pure
cultures their kinetic characterization will be vital in understanding

a bAOA AOB

I II III IV

AOA

I II III

AOB

AOA

I II III

AOB
c d e

Fig. 2 Substrate-dependent oxidation kinetics of ammonia-oxidizing microorganisms. The (a) apparent substrate affinity (Km(app)) for NH3,
(b) specific substrate affinity (a°) for NH3, (c) Km(app) for total ammonium, (d) a° for total ammonium, and (e) maximum oxidation rate (Vmax), of
AOA (red), comammox (blue), and AOB (black) are provided. Symbols filled with light gray represent previously published values from
reference studies (references provided in Materials and Methods). The four different gradations of red differentiate the four AOA phylogenetic
lineages: (I) Nitrosopumilales, (II) ‘Ca. Nitrosotaleales’, (III) Nitrososphaerales, and (IV) ‘Ca. Nitrosocaldales’. Measurements were performed with
either pure (circles) or enrichment (diamonds) cultures. Multiple symbols per strain represent independent measurements performed in this
study and/or in the literature. The individual Michaelis–Menten plots for each AOM determined in this study are presented in Figs. S1, S3–5,
and S8. Note the different scales.
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the variability of these ecologically important parameters within
this guild.

Specific substrate affinity (a°). Although the Km(app) and Vmax of
AOM can be compared by themselves and provide useful
information on cellular properties, the ability of an AOM to
scavenge (and compete for) substrate from a dilute solution is
most appropriately represented by the a°, which takes into
account both the cellular Km(app) and Vmax [28]. In previous studies,
the a° of AOM has been calculated using the Km(app) value for total
ammonium (NH3+ NH4

+) and not the Km(app) value for NH3 [5, 29].
Calculating the a° based on the Km(app) value for total ammonium
allows for the a° of AOM to be compared with the a° of
microorganisms that do not use NH3 as a sole energy generating
substrate, such as ammonium assimilating heterotrophic bacteria
or diatoms [29]. While this is useful when evaluating competition
for total ammonium in mixed communities or environmental
settings, an a° calculated using the Km(app) value for NH3 may be
more useful when directly comparing the interspecies competi-
tiveness of AOM for the following reasons: (i) our data support the
hypothesis that the substrate for all AOM is NH3 and not NH4

+ (see
below) and (ii) the Km(app) value for total ammonium is more
dependent on the environmental factors it was measured at (e.g.,
pH, temperature, salinity) than the Km(app) for NH3.
All characterized AOA (with the exception of representatives of

the genus Nitrosocosmicus) and the comammox bacterium N.
inopinata possess much higher a° for total ammonium or NH3

(~10–3000×) than the AOB, N. oceani or N. europaea (Fig. 2b–d),
indicating that they are highly competitive in environments
limited in either total ammonium or only NH3. However, due to
the low number of published normalized Vmax values for AOB, a°
could only be calculated for these two AOB representatives. Thus,
extrapolations to the a° of all AOB species, based solely on these
observations should be approached with caution.
The low variation in experimentally measured Vmax values

(Fig. 2e) across all measured AOM in combination with the high
variation in Km(app) values leads to a strong relationship between
cellular a° and the reciprocal of Km(app) (Fig. 3) according to Eq. 2
(see Materials and Methods). AOM adapted to oligotrophic (low
substrate) conditions should possess both a high substrate affinity
(low Km(app)) and a high ao [28]. Therefore, the AOM best suited for
environments limited in total ammonium are the AOA belonging
to the Nitrosopumilales and the comammox isolate N. inopinata,
(top right corner of Fig. 3a). Overall, when looking at solely NH3 or
total ammonium, the separation of species in these plots remains
similar, with the exception that the acidophilic AOA belonging to
the ‘Ca. Nitrosotaleales’ are predicted to be best suited for life in
environments limited in NH3 (Fig. 3b). The adaptation correlates
well with the fact the AOA ‘Ca. Nitrosotalea devanaterra’ Nd1 and
‘Ca. Nitrosotalea sinensis’ Nd2 were isolated from acidic soils with
a pH of 4.5 and 4.7, respectively [25, 65], where the NH3:NH4

+

equilibrium is heavily shifted toward NH4
+.

In either case, when looking at NH3 or total ammonium, the
AOA belonging to the genus Nitrosocosmicus (‘Ca. N. oleophilus’
MY3 and ‘Ca. N. franklandus’ C13) and AOB populate the lower left
section of these plots, indicating that they are not strong substrate
competitors in NH3 or total ammonium limited environments
(Fig. 3). Here, the Vmax of all the AOM reported spans ~10×,
whereas the difference in Km(app) spans about five orders of
magnitude. If the cellular kinetic property of Vmax really is so
similar across all AOB, AOA, and comammox species (Fig. 2e)
compared to the large differences in Km(app) values, then substrate
competitiveness can be predicted from an AOMs Km(app) for either
NH3 or total ammonium (Fig. 2a–c). This may prove especially
helpful when characterizing enrichment cultures, where normal-
izing ammonia-oxidizing activity to cellular protein in order to
obtain a comparable Vmax value is not possible. However, there is
also a need for more kinetically characterized AOB and

comammox species to confirm this hypothesis. In addition, when
comparing AOM, differences in the Vmax cellular property will play
a larger role, the closer the Km(app) values of the AOM strains are.
This is important to consider when comparing AOM from similar
habitats and likely adapted to similar substrate concentrations.

The effect of environmental and cellular factors on AOA kinetic
properties. The concentration of NH3 present in a particular
growth medium or environment can vary by orders of magnitude,
based solely on the pH, temperature, or salinity of the system [73].
This is notable because at a given total ammonium concentration,
the concentration of NH3 is ~10 times higher at 70 °C versus 30 °C
and ~1000 times lower at pH 5.3 versus pH 8.4 (representative of
maximum ranges tested). While it should be recognized that in
our dataset no AOM were included that have a pH optimum
between 5.3 and 7.0, the effect of pH and temperature on the
ammonia oxidation kinetics of AOM must be considered in order
to understand their ecophysiological niches. However, there was
no correlation between the kinetic properties of AOM (Km(app),
Vmax, and a°) measured in this study and their optimal growth
temperature or pH. This lack of correlation between AOM species
kinetic properties and growth conditions does not imply that the
cellular kinetic properties of an individual AOM species will remain
the same over a range of pH and temperature conditions.
Therefore, we investigated the effect of pH and temperature
variation on the substrate-dependent kinetic properties of the
AOA strain ‘Ca. N. oleophilus’ MY3, and the effect of pH on the
comammox strain N. inopinata. Here, the AOA ‘Ca. N. oleophilus’
MY3 was selected based on the fact that it is a non-marine,
mesophilic, pure culture, that does not require external hydrogen
peroxide scavengers for growth. These traits are shared with the
previously characterized AOB, N. europaea [35], and the comam-
mox organism, N. inopinata (this study) and thus facilitate
comparison.

The effect of temperature. The effects of short-term temperature
changes on the substrate-dependent kinetic properties of ‘Ca. N.
oleophilus’ MY3 were determined. Temperature shifts of 5 °C
above and below the optimal growth temperature (30 °C) had no
effect on the Km(app) for total ammonium. However, the Km(app) for
NH3, Vmax, and a° of ‘Ca. N. oleophilus’ MY3 all increased with
increasing temperatures (Fig. S6). Therefore, as temperature
increased, ‘Ca. N. oleophilus’ MY3 displayed a lower substrate
affinity (higher Km(app) for NH3) but would be able to turnover
substrate with a higher Vmax and better compete for substrate
with a higher a°. Increasing AOA Km(app) values for NH3 with
increasing temperatures have also been observed across studies
with N. viennensis EN76 (Fig. S2), and this is discussed in more
detail in the Supplementary Results and Discussion. In addition,
similar observations have previously been made for AOB strains
belonging to the genus Nitrosomonas [33, 34]. The increase in Vmax

and a° can be explained in terms of the Van’t Hoff rule (reaction
velocity increases with temperature) [74], or in terms of a
temperature sensitivity coefficient (Q10; change in reaction
velocity over 10 °C) [75]. Here, the maximal reaction velocity of
‘Ca. N. oleophilus’ MY3, displays a relative Q10 of 2.17 between 25
and 35 °C, which is in line with more general microbial respiration
measurements [75, 76].
The increase in Km(app) for NH3 (lower NH3 affinity) with

increasing temperature is less straightforward to interpret. As this
is a whole cell measurement, the observed differences may result
from either broad cellular changes or from changes in individual
enzymes involved in the ammonia oxidation pathway specifically.
At the cellular level, changes in the proteinaceous surface layer (S-
layer) or lipid cell membrane could affect substrate movement/
transport and enzyme complex stability. It has been suggested
that the negatively charged AOA S-layer proteins act as a
substrate reservoir, trapping NH4

+ and consequently increasing
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the NH3 concentration in the AOA pseudo-periplasmic space [77].
It is interesting to note that sequenced representatives from the
genus ‘Ca. Nitrosocosmicus’ lack the main S-layer protein (slp1)
found in all Nitrosopumilales, Nitrososphaerales, and ‘Ca. Nitroso-
taleales’ sequenced isolates [71], although it remains to be
demonstrated whether ‘Ca. Nitrosocosmicus’ members actually
lack a S-layer or form S-layers composed of other proteins. In
addition, it has been demonstrated that elevated temperatures
significantly alter the lipid composition in the AOA cell membrane
[78, 79]. However, it is unclear how differences in the cell
membrane or S-layer composition between AOA species may
affect the observed kinetic properties. In this context it is
important to note that on the single enzyme level, previous
studies have shown the same trend of decreasing substrate
affinity and increasing maximal reaction velocity with increasing
temperatures, due to altered protein structures and an increased
enzyme-substrate dissociation constant [80, 81].
Notably, differing optimum growth and activity conditions were

previously determined for the marine AOB strain Nitrosomonas
cryotolerans [34]. These observations raise interesting, albeit
unanswered, questions about why the growth and activity
temperature optima are or can be uncoupled in AOM, and what
this means for AOM niche differentiation and their competitive-
ness in-situ. Moving forward, investigations into the growth and
cellular kinetic properties of AOM across a range of environmental
factor gradients will be essential in understanding competition
between AOM in engineered and environmental systems.

The effect of pH. The effects of short-term pH changes on the
substrate-dependent kinetics of ‘Ca. N. oleophilus’ MY3 and N.
inopinata were determined. The Vmax of both ‘Ca. N. oleophilus
MY3’ and N. inopinata were stable at 37.3 ± 6.6 μmol N mg
protein−1 h−1 and 11.2 ± 2.5 μmol N mg protein−1 h−1, respec-
tively, in medium with a pH between ~6.5 and ~8.5 (Table S3). The
Km(app) for total ammonium of ‘Ca. N. oleophilus MY3’ and N.
inopinata decreased by more than an order of magnitude (~11×)
across this pH range, while the Km(app) for NH3 remained more
stable, increasing only 3–4 times (Fig. 4). This stability of the Km
(app) for NH3 compared with the larger change in the Km(app) for
total ammonium across this pH range suggests that the actual
substrate used by AOA and comammox is indeed the undisso-
ciated form (NH3) rather than the ammonium ion (NH4

+), as
previously demonstrated for AOB [34, 35, 54, 82]. As these kinetic

measurements were performed with whole cells, the change in Km
(app) for NH3 across this pH range may be due to cellular effects of
the differing pH values unrelated to the direct ammonia oxidation
pathway. The changes in Km(app) for NH3 and Km(app) for total
ammonium demonstrated here for ‘Ca. N. oleophilus’ MY3 and N.
inopinata are similar to what has been observed for AOB. That
AOA and AOB utilize the NH3 as a substrate, aligns with the fact
that both are competitively inhibited by the non-polar acetylene
compound [83, 84].
Interestingly, the only exception to this rule to date is the

gammaproteobacterial marine AOB Nitrosococcus oceani. The
reported Km(app) for total ammonium of N. oceani remained more
stable (~2.3×) than the Km(app) for NH3 (78×) when the pH was
shifted from 6.3 to 8.6 [85]. With this exception in mind, our results
support the hypothesis that AOA, AOB, and comammox utilize
NH3 as their substrate. As only a few AOM have been
characterized in this manner, the characterization of a more
diverse set of AOM species is needed in order to make broader
conclusions.
It is important to note that the substrate affinities reported here

represent whole cell affinities and not the substrate affinity of
ammonia monooxygenase (AMO) enzymes. Therefore, further
experimental investigation with purified AMO and ammonia/
ammonium transporter proteins is warranted. Although NH3 can
freely diffuse passively into AOM, this does not mean that the
cellular affinity reported here is necessarily unrelated to the
transporter-mediated movement of NH3/NH4

+ into AOM cells. For
example, AOB have previously been shown to accumulate very
high (1 M) intracellular NH4

+ concentrations [86]. This high
intracellular NH4

+ concentration may provide a concentrated
substrate reservoir, indirectly increasing the concentration of NH3

around the AMO enzyme complex. In addition, the negatively
charged S-layer of N. maritimus has been shown to act as a
substrate reservoir for the positively charged NH4

+. This total
ammonium concentration in the pseudo-periplasmic space of
AOA, may also act to indirectly increase NH3 concentrations
around the AMO enzyme complex [77]. However, the impact of
total ammonium capture and transport on the ammonia oxidation
kinetic properties of AOB, AOA, and comammox are not yet well
understood. It is unknown if such a concentration mechanism
would be more important for an AOB with a low substrate affinity
(e.g., N. europaea) or for an AOA living in extremely substrate-
limited environments (e.g., N. maritimus).

a b

Fig. 3 The reciprocal relationship between the substrate affinity (Km(app)) and specific substrate affinity (a°) of ammonia-oxidizing
microorganisms (AOM). Reciprocal plots for both (a) total ammonium and (b) NH3 are depicted. The Km(app) and a° values correspond to the
values presented for pure AOM isolates in Fig. 2. Data for AOA (red), comammox (blue), and AOB (black) are shown. The correlation (R2)
indicates the linear relationship between the logarithmically transformed data points.
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The effect of cell morphology. All AOM share the primary enzyme
involved in ammonia oxidation, AMO, which is located in the
cytoplasmic membrane with its substrate-binding site most likely
facing the outside of the cell [77]. Therefore, a higher cellular SA/V
ratio likely contributes to an increase in a°, as it increases the
space available for AMO and the chance to bind NH3 at very low
concentrations. This assumption is based on the hypothesis that
an increased abundance of uptake enzymes (e.g., permeases)
leads to a higher a° [28, 56]. In fact, the SA/V ratio of AOM
(Table S4) correlates to the log of their observed Km(app) for NH3

(R2= 0.88), Km(app) for total ammonium (R2= 0.70), a° for NH3

(R2= 0.78), and a° for total ammonium (R2= 0.72; Fig. 5). This type
of casual semi-log relationship between cell size and nutrient
affinities has previously been observed between microorganisms
and their affinity for phosphate [87] as well as theoretically modeled
for nutrient uptake and utilization in general [88]. Therefore, the SA/
V ratio of newly cultured AOM might be a useful general indicator
for these cellular kinetic properties. Consequently, AOM with a high
SA/V ratio will likely outcompete other AOM in many natural aquatic
and terrestrial environments, such as the pelagic marine water
column that has a very low standing total ammonium pool.
Consistently, these oligotrophic environments have already been
postulated to select for organisms with a high SA/V ratio, enhancing
their nutrient uptake capabilities [89, 90].
The correlation between the SA/V ratio and cellular kinetic

properties of AOM sheds some light on the unusual kinetic
properties of the AOA belonging to the genus Nitrosocosmicus.
Both ‘Ca. N. oleophilus’ MY3 and ‘Ca. N. franklandus’ C13 possess a
very low SA/V ratio compared to other AOA isolates and they both
possess several characteristics normally associated with AOB—high
substrate tolerances [68–70], low affinities for NH3, and a low a° for

NH3—that are not consistent with the long-held convention that all
AOA are much stronger competitors for NH3 than AOB in substrate-
limited environments. Therefore, the individual cell morphology of
AOM may have a direct relationship with their cellular kinetic
properties. Although this is only a correlation-based observation, it
highlights that further investigation into these characteristics is
warranted.
In addition to cellular morphology, the size of cell aggregates can

affect the kinetic properties of AOM [48]. Cell aggregates have a
lower SA/V ratio than individual cells, which can decrease diffusion
rates and create microscale substrate/oxygen gradients within
aggregates [91]. In order to ensure that the large differences in
substrate affinity among AOA are not caused by differences in cell
aggregation, the aggregate size of ‘Ca. N. uzonensis’ N4, ‘Ca. N.
oleophilus’ MY3, and N. piranensis D3C cultures were inspected
before and after MR experiments (Fig. S7).
These three AOA were chosen to highlight the aggregate sizes

observed in cultures that displayed the lowest (‘Ca. N. oleophilus’
MY3) and among the highest (‘Ca. N. uzonensis’ N4 and N. piranensis
D3C) substrate affinities. No aggregation pattern was observed that
would explain the multiple orders of magnitude differences in
substrate affinity between these AOA. In fact, of the three AOA
investigated, the only strain to form large cell aggregates either
before or after MR experiments was N. piranensis D3C, which has
one of the highest measured substrate affinities (lowest Km(app) for
NH3). In contrast, the cell aggregate size of ‘Ca. N. oleophilus’ MY3
and ‘Ca. N. uzonensis’ N4 were unaffected by the MR experiment
and remained relatively small (Fig. S7). As ‘Ca. N. oleophilus’MY3 has
one of the lowest substrate affinities (highest Km(app) for NH3) and
formed only small cell aggregates, the low substrate affinity of ‘Ca.

Fig. 4 The effect of medium pH on the substrate affinity of ‘Ca. N. oleophilus MY3’ and N. inopinata. The substrate affinities for both (a,b)
NH3 and (c,d) total ammonium (NH3+NH4

+) are provided. Individual substrate affinity values determined at each pH are shown as single
points (circles). The boxes represent the first and third quartiles (25–75%) of the substrate affinity range under each condition. The median
(line within the boxes) and mean substrate affinity (black diamonds) values are also indicated. The whiskers represent the most extreme values
within 1.58× of quartile range. The variation of the substrate affinity values across the entire tested pH range are indicated in each panel. In all
four instances there was a significant difference between the affinity at the lowest pH and the highest pH, as determined by a Student’s t test
(p < 0.005). The average substrate affinity values for ‘Ca. N. oleophilus MY3’ and N. inopinata at each pH are provided in Table S3.
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N. oleophilus’ MY3 was not an artefact caused by cell aggregation.
Taken together, both environmental (pH and temperature) and

AOM cellular (SA/V ratio) factors affect or are related to the
observable cellular kinetic properties of individual AOM species.
These factors need to be considered when investigating AOM
competition or niche differentiation in-situ, as they are often in flux
in environmental settings. This can be especially true considering
cell morphology, which is often dependent on growth conditions
[92]. However, the plasticity of the cellular kinetic properties within
individual AOM species does not explain the larger trends observed
here across AOA lineages or between AOM (Figs. 2, S1, S3–5, S8).

CONCLUDING REMARKS
In this study we substantially extended the set of available
substrate oxidation kinetic properties for AOA by the analysis of
pure cultures or enrichments from various lineages within this
guild. Furthermore, our kinetic data obtained at different pH
values supports the hypothesis that, like for AOB, the substrate for
AOA and comammox is NH3. Together, our findings provide novel
insights for our understanding of niche differentiation among
AOM and demonstrate a surprising variability of the inferred
kinetic properties among AOA. Thus, our data strengthens the
recent discovery [5] that not all AOA possess an extremely high
substrate affinity or specific substrate affinity. The observed links
between AOA kinetic properties, phylogeny, and cell morphology
also enables the formulation of testable hypotheses on

nitrification kinetics in systems thus far characterized solely with
molecular (e.g., amplicon sequencing or metagenomic) tools.
As environmental factors such as temperature and pH influence

kinetic properties of AOA including their cellular affinity for NH3,
future analyses of kinetic properties of AOM should not only be
performed at their optimal growth conditions, but also over a
range of conditions that reflect their environmental niches. Such
experiments will generate a more informative picture on AOM
competition and niche differentiation.

Newly isolated Nitrosotenuis species
The isolated strain N4 is a novel species of the genus Nitrosotenuis
of the order Nitrosopumilales, and we propose the following
candidate status:

Taxonomy.

(i) Etymology. The taxonomy for ‘Candidatus Nitrosotenuis
uzonensis’ sp. nov. is as follows: Nitrosus (Latin masculine
adjective), nitrous; tenuis (Latin masculine adjective), small/
slender; uzonensis (Latin neutrum genitive), from Uzon.

(ii) Locality. A terrestrial thermal spring located in the Uzon
caldera on the Kamchatka peninsula, Russia.

(iii) Diagnosis. A chemolithoautotrophic ammonia oxidizer of
the phylum Thaumarchaeota, which is straight and rod-
shaped, with a diameter of 0.2–0.3 µm and a length of
0.4–1.7 µm. Growth over a period of several years has been

ba

c d

Fig. 5 Logarithmic correlation of the substrate affinity (Km(app)) and specific substrate affinity (a°) with the cellular surface area to volume
ratio of ammonia-oxidizing microorganisms (AOM). All Km(app) (a, c) and a° (b, d) values correspond to values presented in Fig. 2. The surface
area to volume (SA/V) ratio calculations for each AOM are provided in Table S4. Data for AOA (red), comammox (blue), and AOB (black) are
shown. The three different gradations of red differentiate three distinct AOA phylogenetic lineages. The error bars represent the standard
deviation of replicate kinetic experiments or SA/V ratio measurements of each AOM strain. The logarithmic correlation (R2) value was
calculated from the average values of each AOM and is presented on a semi-log axis.
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maintained in a medium with a pH of 7.5 at 37 °C. It belongs
to the AOA order Nitrosopumilales (group I.1a). AOA with
almost identical 16S rRNA and amoA gene sequences have
been detected in various environments, including soil and
groundwater [22, 40, 62].
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