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Abstract 

Soils are currently a sink for atmospheric C, but may become a source in the coming decades. 
Predicting future gains or losses in soil C will require quantifying the time scales on which C cycles 
through soils, as well as deepening our understanding of the mechanisms controlling these cycling 
rates. Global patterns of soil C stocks and the radiocarbon (14C) signature of bulk soil C (∆14Cbulk) 
establish temperature as a master control on soil C ages and accumulation rates. Yet emerging 
understanding underscores the importance of mineral control for both soil C cycling rates and the 
temperature sensitivity of decomposition. The central aim of this dissertation is to quantify the time 
scales of soil C cycling on which mineralogical controls are relevant and the influence of the soil 
mineral assemblage on the responses of soil C ages and transit times to climate. 

Radiocarbon is a sensitive tracer for quantifying time scales of soil C cycling. The mean age of 
soil C can be constrained with observations of ∆14Cbulk, but the 14C signature of heterotrophically 
respired CO2 (∆14Crespired) adds a powerful constraint on the age of C returning to the atmosphere i.e., 
soil C transit time. Incubating archived soils would enable the construction of time series of 
∆14Crespired, substantially reducing uncertainty from observations at single point in time. The objective 
of the first study in this dissertation (Ch. 2) is to assess the feasibility of measuring ∆14Crespired in 
archived soils by quantifying potential biases caused by air-drying, rewetting, and storage of soils 
prior to incubation. Results indicate storage has a negligible impact, but air-drying and rewetting 
leads to a small increase in the relative contribution of older C to respiration. However, the absolute 
bias in ∆14Crespired from air-drying and rewetting was minimal (±12‰ to ±40‰), suggesting that 
constructing time series of ∆14Crespired from incubations of archived soils is promising as long as soils 
undergo the same air-drying and rewetting procedure. 

In Ch. 3 of this dissertation, I compare the distribution and change over time in ∆14Cbulk and 
∆14Crespired among soils developed on different parent materials (andesite, basalt, granite) but with 
similar mean annual soil temperature (MAST) and climate regime (warm ~ 12.0 °C, cool ~ 8.6 °C, 
cold ~ 6.6 °C) using archived soils. The results provide new evidence that mineral assemblages: 1) 
mediate climatic control of soil C turnover, and 2) are relevant for C cycling on annual to decadal time 
scales as well as centennial and longer. Furthermore, the effect of MAST on the change observed in 
∆14Crespired over time was only significant in the soils with the lowest content of poorly crystalline 
metal (oxy) hydroxide (PCM) content, implying that soil organic matter interactions with these 
minerals may attenuate temperature sensitivity of soil C ages and transit times. 

Determining ages and transit times of soil C requires the use of a model. In Ch. 4 of this 
dissertation (Ch. 4) I demonstrate how time series of ∆14Crespired and 14Cbulk can be used to constrain 
soil C models using the data from Ch. 3. Different two-pool model structures yielded similar estimates 
for soil C ages, transit times, and inputs, indicating that 14Crespired and 14Cbulk are robust constraints for 
such a system. Trends in mean ages and transit times with respect to climatic and mineralogical 
factors were similar to those in ∆14Cbulk and ∆14Crespired, respectively. However, the models also yield 
probability distributions of age and transit time. The distributions reveal that in some soils, such as 
those with abundant PCMs, small amounts of highly ∆14C-depleted C can bias estimates of the mean, 
potentially leading to overestimates of ages or transit times. Modeled estimates of the pre-aging of 
soil C inputs show an increase with depth, adding to the growing recognition that observed increases 
in 14C age with depth may not be due solely to slower turnover, but also vertical transport.  

The central theme of this dissertation is that mineral-associated soil organic matter is not a 
homogenous pool, and in soils consisting of a wide range of soil mineral assemblages, consists of C 
cycling on time scales ranging from annual to millennial. Furthermore, ages and transit times of C in 
the PCM-rich soils of this study were less sensitive to temperature than in PCM-poor soils, 
highlighting the importance of accounting for mineral assemblages in predicting the effect of rising 
temperatures on soil C stocks.
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Quotations 

“[Science] has two rules. First: there are no sacred truths; all assumptions must be critically examined; 

arguments from authority are worthless.  Second: whatever is inconsistent with the facts must be 

discarded or revised.” – Carl Sagan 

“If it should turn out that we have mishandled our own lives as several civilizations before us have 

done, it seems a pity that we should involve the violet and the tree frog in our departure.” – Loren 

Eisley 

“The chief value of a PhD is that no one ever assumes you’re stupid, they just keep thinking they don’t 

understand you” – Plaque in my grandfather’s study 
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1. General Introduction 

1.1. Anthropogenic climate change and the global C cycle 

Life as we know it exists on Earth due to the greenhouse effect, a property of the atmosphere that 

allows incoming solar radiation to be transmitted, but enables reabsorption of much of the longwave 

radiation emitted from the planet’s surface. The atmosphere of the Earth is composed of 79% inert 

nitrogen gas, 20.9% oxygen, and small amounts of trace gases. These trace gases include the so-called 

greenhouse gas species, which are characterized by their ability to absorb longwave electromagnetic 

radiation. The most important of these trace species, with respect to the aggregate amount of heat 

absorbed, is carbon dioxide (CO2). The amount of CO2 in the atmosphere (at the time of this writing) 

is 422 ppm, which represents an increase in concentration of more than 50% since the start of the 

modern industrial era (1750), and is also the highest level reached in the past three million years 

(Canadell et al., 2021). 

Total fossil fuel derived CO2 emissions over the period 1750 to 2007 are estimated to be 350 Pg C, 

with half of the total CO2 emitted since the year 1980 (Andres et al., 2012). Current anthropogenic C 

emissions are 10.8 Pg C y-1, but the net rate of atmospheric CO2 increase is about half of that amount 

(5.2 Pg C y-1) due to the absorption of excess CO2 by both the ocean and land sinks (2.9±0.4 Pg C y-1 

and 3.1±0.6 Pg C y-1, respectively) (Friedlingstein et al., 2022). The long-term concentration of CO2 in 

the atmosphere has been maintained at nearly constant levels (280 ppm) throughout the Holocene, 

reflecting the balance of processes operating on time scales ranging from annual to millennial, 

including: physical exchanges between the ocean and atmosphere, volcanic outgassing and rock 

weathering, freshwater outgassing, and the give and take of photosynthesis and heterotrophic 

respiration (Canadell et al., 2021). We humans have substantially disrupted this balance through our 

ever-growing consumption of fossil fuels, a process through which we are releasing C that has been 

absent from the atmosphere for hundreds of millions of years — C that took tens of thousands of 

years to accumulate — in a matter of decades. 

1.1.1 Soil C dynamics key for predicting future climate change 

The fate of the land sink is a major source of uncertainty in predicting future fluxes of C in global 

climate models, reflecting the need for further constraints on the sensitivity of terrestrial C cycling to 

evolving environmental conditions (Friedlingstein et al., 2014; Huntzinger et al., 2017; Todd-Brown 

et al., 2018). Increases in atmospheric CO2 concentration may lead to sequestration of additional 
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atmospheric CO2 by way of increases in plant productivity. However, if environmental changes lead 

to losses of current soil C stocks, soils would shift from being a sink for atmospheric CO2 to a source.  

The balance of C fluxes between the soil and atmosphere is embedded in soil C transit times, i.e., the 

length of time that C inputs remain in the soil before returning to the atmosphere. Soil C transit times 

typically reflect processes of soil C persistence that operate on annual to decadal time scales, in 

contrast to soil C ages, which give insight into soil C persistence mechanisms operating on decadal to 

centennial or longer time scales (Sierra et al., 2018). In this dissertation I will demonstrate how 

observations of bulk soil and respired radiocarbon over time can be used to constrain estimates of 

ages and transit times of soil C across a range of mineralogical and climatic conditions, yielding novel 

insights into the sensitivity of C gains or losses.  

The importance of soils in the global C cycle stems from the large amount of C stored in soils relative 

to other pools. Although the oceans are the largest global C reservoir (~39,500 Pg), soils are the 

largest terrestrial reservoir (1,700 Pg C), followed by permafrost (1,400 Pg), and vegetation (450 Pg) 

(Friedlingstein et al., 2022). The total amount of C in the atmosphere is just over half of the amount 

stored in soils (875 Pg), making the atmosphere sensitive to relatively small changes in the soil C 

reservoir (Paustian et al., 2019). The net flux of C from the atmosphere to the land is currently 3.1 Pg 

C y-1, but rising CO2 concentrations and changes in climate are predicted to alter the strength of this 

sink (Todd-Brown et al., 2014). However, global climate models diverge with regards to both the 

magnitude and direction of the predicted change (Friedlingstein et al., 2014). 

Global climate models infer increases in soil C inputs over the past decades in response to increases 

in net ecosystem productivity (NEP) (Sitch et al., 2015); and such increases are expected to continue 

in the future under continued climate change (Fernández-Martínez et al., 2019). Increases in NEP are 

a vegetative response to the lengthening of the growing season in high latitude regions as well as the 

CO2 fertilization effect, through which photosynthesis increases under elevated CO2 and higher 

temperatures (Mooney et al., 1991; Schimel et al., 2015). The relative strength of these effects in the 

future may be offset by reductions in NEP from nutrient limitation or unfavorable climate changes, 

but most global C models predict overall increases in NEP the coming decades, with a commensurate 

increase expected for soil C inputs (Ainsworth and Rogers, 2007; Todd-Brown et al., 2014; Kolby 

Smith et al., 2016; Fernández-Martínez et al., 2019). Increased soil C inputs may lead to increased C 

storage, but both current model simulations and empirical datasets reveal a concurrent increase in 

heterotrophic respiration, suggesting that these additional inputs may not persist long enough in 
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soils to have a substantial effect on soil C stocks, or may have a priming effect on existing soil C stocks 

(Sitch et al., 2015; Bernal et al., 2016; Bond-Lamberty et al., 2018; Hicks Pries et al., 2017). 

Decomposition rates are predicted to accelerate in the coming decades as a result of the response of 

the soil microbial community to rising temperatures (Crowther et al., 2016). However, empirical 

studies considering the effect of warming on soil C stocks lack consensus, showing gains, losses, or 

no discernible effect at all (Conant et al., 2011; Haddix et al., 2011; Hamdi et al., 2013; Giardina et al., 

2014; Hicks Pries et al., 2017; Soong et al., 2021). One explanation for this variability is the high 

degree of heterogeneity in soil organic matter, which can be found in free particulate forms, occluded 

in aggregates, or associated with soil minerals in myriad arrangements (Lehmann and Kleber, 2015). 

Organic matter in these different forms is thought to differ with respect to microbial decomposability, 

based on turnover times assigned on the basis of differences in radiocarbon among empirically 

defined soil C fractions (Heckman et al., 2018). A substantial amount of the variation in the 

distribution of organic matter among these fractions can be explained by soil forming factors: most 

prominently climate, parent material, and vegetative cover (Heckman et al., 2022). Yet the sensitivity 

of different soil fractions to changes in environmental conditions such as temperature remains poorly 

quantified (Conant et al., 2011; Frey et al., 2013), as does the degree to which these fractions 

correspond to meaningful soil C pools in situ (Abramoff et al., 2018). 

Most C that enters the soil is quickly lost, with only a small proportion remaining in the soil on decadal 

or longer time scales (Sierra et al., 2018). This is relevant for the uncertainty in global C fluxes in 

global climate models, as increases to soil C inputs would lead to minimal increases in soil C storage 

if they are quickly lost through respiration, but to substantial gains if inputs remain for decades or 

longer. This response can be inferred from transit time, with faster transit time indicating smaller 

gains in C per unit of input, and slower transit times indicating higher gains. Similarly, faster 

decomposition rates would be expected to decrease the amount of time C inputs remain in the soil, 

but may also lead to accelerated losses of currently sequestered C. Determining the temperature 

sensitivity of decomposition in soil C pools turning over at different rates remains a key challenge for 

understanding the impact of predicted temperature increases on the soil C reservoir (Conant et al., 

2011). I provide insight into this issue in this dissertation by comparing soil C ages and transit times 

in soils along a gradient of MAST and across a range of parent materials. These ages and transit times 

must be estimated with a model, which I constrain using a time series of ∆14Cbulk and ∆14Crespired. 
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1.2. Radiocarbon as a tracer for soil C dynamics 

Radiocarbon is an essential tool for quantifying the age of C in soils and the rate at which C cycles 

between soils and the atmosphere. The use of radiocarbon for dating organic materials began in the 

mid-20th century following the publication of a short letter published by Willard Libby, in which he 

estimated the production rate of 14C via cosmic ray spallation, and suggested that enough 14C should 

be in “radioactive equilibrium” with the biosphere to make the isotope a useful tracer for organic 

materials (Libby, 1946). Libby would go on to receive the Nobel Prize in chemistry for this work in 

1960. 

The key to the success of the radiocarbon dating technique is partly due to the regular rate of 

production in the stratosphere, and partly due to the time scale on which the 14C atom undergoes 

radioactive decay. Radiocarbon has a half-life of 5730 years, which makes it useful for dating 

materials <70,000 y (Trumbore et al., 2016). Plants and animals carry the 14C signature of the 

atmosphere during their lifetime as a consequence of either fixing CO2 directly from the atmosphere 

or ingesting plant-derived C through the consumption of other organisms. The decay rate of 14C is 

slow enough that there is no appreciable change in 14C in the tissues of all but the longest-lived 

species during their lifetime. However, once the open exchange of 14C with the environment stops, 

e.g., at the moment of death, the regular decay of 14C can be used to estimate the age of the sample. 

A challenge in radiocarbon measurement is the relative scarcity of the 14C isotope. The common 12C 

isotope, with six protons and six neutrons, makes up the majority of C atoms on Earth (98.89%), 

followed by trace amounts of the stable isotope 13C (1.11%), which has one extra neutron. Prior to 

human disruption of the balance between 14C production and decay, the natural abundance of the 14C 

isotope (six protons, eight neutrons) was approximately one in every trillion atoms of C. Due to this 

scarcity, measurements of 14C rarely refer to the absolute abundance of 14C, but rather to the 

deviation of the 14C:12C ratio from a standard. This is akin to the approach used for reporting 

measurements of 13C, where δ13C is the deviation in the ratio of 13C:12C of the sample relative to the 

universal standard, Vienna Pee Dee Belemnite. The use of standards also helps to account for biases 

in measurement due to the technique used, e.g., decay counting or accelerator mass spectrometry 

(AMS) in the case of 14C, as well as differences in sample preparation between laboratories.  

Differences in mass among the different isotopes of C have important implications for the way they 

behave in chemical reactions. Certain reactions and certain catalysts, such as biological enzymes, 



General Introduction 

 24 

discriminate against the heavier isotopes of C. These patterns of equilibrium or kinetic fractionation 

need to be accounted for when reporting radiocarbon. Since this fractionation is mass-dependent, 

discrimination against the 14C isotope is roughly twice that for the 13C isotope, as the mass difference 

between 14C and 12C is twice that of the difference between 13C and 12C. Accordingly, radiocarbon 

measurements are corrected for this discrimination and expressed as if the 13C:12C ratio of the sample 

had a constant value of -25‰ (denominator, Eq. 1-1).   

Radiocarbon measurements must be further corrected for the process of ongoing radioactive decay 

in the absolute 14C standard: a piece of wood from 1890, which was chosen to be representative of 

the pre-industrial atmosphere (Trumbore et al., 2016). Routine 14C measurements rely on a reference 

laboratory standard, OX-1, which is derived from a crop of sugar beets grown in 1955. The activity of 

OX-1 is corrected for radioactive decay in the universal standard over the period 1895 to 1950 (a 

factor of 0.95), and for its actual δ13C value of -19‰. While many different units for reporting 14C 

exist, the primary unit for reporting 14C data used in this dissertation is ∆14C, which is corrected for 

both mass-dependent fractionation and for radioactive decay in the OX-1 sample between the year 

of measurement (y) and 1950 (Eq. 1-1) (Stuiver and Polach, 1977). 

 𝐶 =  [

𝐶14

𝐶13 ]
𝑠𝑎𝑚𝑝𝑙𝑒,−25

0.95
𝐶14

𝐶13 ]
𝑂𝑋−1,−19

𝑒
(

𝑦−1950
8267 )

]14  ( 1-1 ) 

where 8267 is the true mean life of 14C. 

Conventional 14C ages are calculated on the basis of the amount of 14C remaining in a sample (Eq. 1-

2), but are never an accurate estimate of true age. One reason is that the rate of stratospheric 14C 

production varies over time, another is that the formula uses a less accurate value for the mean life 

of 14C for consistency with earlier measurements (Stuiver and Polach, 1977). Variations in the natural 

production rate of 14C occur due to shifts in the solar cycle, the dipole moment of the earth, and 

changes in the Earth’s carbon cycle related to climate. These variations can be accounted for by 

measuring the 14C content of known-age samples and using the observed differences to calibrate 

conventional 14C ages to calendar years. Human activities over the past few centuries have also 

contributed substantially to the variation of atmospheric 14C, in addition to natural variations in 

cosmogenic production. Most prominently, these changes have been due to nuclear weapon testing 

and the burning of fossil fuels. 
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 𝐶 𝑎𝑔𝑒 =  −8033 ln (𝐹)14  ( 1-2 ) 

where -8033 is the Libby mean life of 14C, ln(F) is the natural logarithm of fraction modern (F), and 

fraction modern is equivalent to the non-decay corrected value of ∆14C / 1000 + 1. 

Above ground nuclear weapons testing in the mid-20th century dramatically increased atmospheric 

14C, doubling the concentration over the decade 1955 to 1965 (Figure 1-1). Following the 

international ban on such tests in 1965, atmospheric 14C levels rapidly declined as the ocean and the 

land absorbed the excess “bomb-C”. This rapid decrease in the atmospheric 14C signal had an 

unexpected benefit: enabling the use of the bomb-C pulse as a tracer for shorter cycling C pools with 

nearly annual resolution, particularly for the decades with the most rapid rate of decline (ca. 1965 to 

1990) (Broecker and Olson, 1960; Trumbore, 2000). Atmospheric 14C levels have largely returned to 

pre-bomb levels as of 2020 (Levin et al., 2022; Hua et al., 2021; Carbone et al., 2023), but due to pre-

aging of soil C inputs and the presence of soil C pools cycling on decadal and longer timescales, the 

bomb-C pulse will remain a useful tool for determining soil C dynamics in the decades to come.  

The atmospheric 14C record reveals a slowly decreasing trend over the early part of the 20th century, 

which can also be attributed to human activity. Termed the Suess effect, the decrease in atmospheric 

14C is the result of the emission of radiocarbon-free CO2 to the atmosphere from the burning of fossil 

fuels (Keeling, 1979). The continued burning of fossil fuels means that Suess effect is likely to become 

stronger in the coming decades, creating the potential for using the annual changes in atmospheric 

14C driven by this process as a new tool for tracing short term C cycling in the future (Graven et al., 

2020). 

1.2.1 Radiocarbon in soils and the power of soil archives 

The use of the radiocarbon dating technique in the field of soil science began in the late 1950s 

(Broecker and Olson, 1960; Paul et al., 1964). A challenge with radiocarbon dating of soil organic 

matter is that unlike organic tissues, in which the exchange of C with the atmosphere ceases after 

death, soils are an open system in which C is continuously exchanged with the atmosphere (Campbell 

et al., 1967). In such a system the concept of a conventional radiocarbon age (Eq. 1-2) is no longer 

valid, and a model is necessary to estimate the age of C in soils (Trumbore, 2000). Early efforts to 

apply radiocarbon dating to soil C acknowledged this issue and also noted that fractionating soils 

according to physical or chemical properties resulted in notable differences in radiocarbon among 
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fractions (Broecker and Olson, 1960; Campbell et al., 1967; Scharpenseel, 1971; Goh and Molloy, 

1978; Scharpenseel and Becker-Heidmann, 1992).  

The number of radiocarbon measurements of bulk soils, soil fractions, and soil C fluxes has increased 

substantially in the first decades of the 21st century, in part due to rapid improvements in 

measurement technology (Lawrence et al., 2020). Early studies of radiocarbon in soils relied on decay 

counting, a time-consuming method that requires a large amount of sample to measure the rate of 

radiocarbon decay. In contrast, the method commonly used today is AMS. In AMS, ratios of 14C:13C:12C 

are measured directly, obviating the need to wait for 14C to decay. The AMS method is faster and has 

a lower sample requirement than decay counting, but has been cost prohibitive historically due to 

the relatively scarcity of capable laboratories and the need to run a high energy accelerator. Newer 

AMS models with lower power requirements — and a fraction of the footprint and operating costs of 

the older instruments — have proliferated in laboratories around the world over the past decade, 

with the benefit of lowering cost and access barriers for making soil radiocarbon measurements. 

Unfortunately for the field of soil organic matter research, the optimal time for measuring soil 

radiocarbon was in the decades immediately following the bomb-C peak when the bomb-C signal was 

strongest. Dilution of the bomb-C signal from the contributions of more slowly cycling pools of soil C 

can lead to multiple solutions when applying a model to estimate ages or transit times, and this 

problem is exacerbated by increasing dilution. Applying time series of radiocarbon measurements is 

an effective approach for constraining soil C models that mitigates the problem of multiple solutions 

(Trumbore et al., 1996; Baisden and Canessa, 2013). Optimally, such a time series would also contain 

samples from the early part of the bomb-C period in order to leverage the power of the stronger 

bomb-C signal. Together, the utility of the time series approach and dilution of the bomb-C signal 

over time highlights the value of an underappreciated resource: soil archives.  

Throughout this dissertation I demonstrate the power of measuring ∆14C in archived soils as a tool 

for quantifying changes in ∆14C over time, effectively reducing uncertainty in estimates of soil ages 

and transit times. In the first study introduced in the dissertation (Ch. 2), I outline the application of 

a novel approach for obtaining a time series of ∆14Crespired by incubating archived soils, including 

quantification of potential biases from the processes of air-drying, rewetting, and storage. I extend 

these findings in the second study (Ch. 3) to quantify the change over time in ∆14Cbulk and ∆14Crespired 

for soils developed on different parent materials and under different climate regimes. In the third 

study (Ch. 4), I illustrate the power of ∆14Cbulk and ∆14Crespired time series (constructed from archived 
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soils) for constraining soil C models, and how such models can be used to deepen our understanding 

of how soil C ages and transit times vary in response to climatic and mineralogical controls. 

1.2.2 Biological fractionation of soil organic matter through incubation 

Separating soil organic matter into fractions that correspond to differences in assumed turnover 

rates is a common technique applied to the problem of soil C heterogeneity. Reported soil C ages 

range from < 1 to 106 y, and can cover multiple orders of magnitude within a single soil sample 

(Koarashi et al., 2012; Heckman et al., 2022). However, soil C ages can also vary within a soil fraction. 

Common empirical approaches that rely on chemical or physical means to fractionate soil organic 

matter pools have been shown to yield mixtures of different C ages when further fractionated (Sollins 

et al., 2009; Plante, 2013; Heckman et al., 2018), in some cases indicating that the fraction is a mixture 

of different pools of soil C, rather than a single homogenous pool. For this reason, a biological 

approach to fractionation is advantageous when the goal is to isolate a pool of faster cycling C, i.e., 

more readily decomposed by the microbial community, from more slowly cycling C pools that are 

better protected from decomposition. 

Laboratory soil incubations are a simple biological fractionation method in which soil samples are 

placed in a sealed non-reactive container and allowed to respire, after which the respiration products 

can be collected and analyzed. This method is low cost, and easy to implement and scale. There are 

many variations on laboratory soil incubation methods, but when the goal of incubation is to assess 

the ∆14C signal of aerobic heterotrophic respiration, the typical approach is to remove living roots, 

create optimal conditions for respiration with respect to temperature and moisture conditions, and 

to keep the duration of the incubation short.  

The duration of an incubation procedure designed for measuring ∆14Crespired must be long enough to 

accumulate adequate CO2 to measure the 14C signal, but typically does not extend overly long. The 

CO2 respired in the initial phases of a laboratory incubation is thought to correspond more closely to 

the substrates consumed by the microbial community in situ, thus shorter duration incubations 

minimize potential effects of substrate limitation. Shorter duration incubations also have the benefit 

of limiting build-up of CO2, which has an inhibitory effect on respiration at high concentrations 

(Šantrŭčková and Šimek, 1994). A related concern is the temperature at which incubations are 

performed. Temperature does not affect ∆14Crespired directly, but can have indirect effects by way of 

changing respiration rates. Decomposition rates increase with increasing temperature, leading to 
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changes in substrate use when the most preferable substrate is depleted and potentially altering 

∆14Crespired (Vaughn and Torn, 2019).  

A fundamental criticism of the laboratory incubation method is the inevitable disruption of the soil 

that occurs prior to initiating the incubation. Disruption starts with sample collection and continues 

with processing of soil samples in the laboratory. For example, sieving soils disrupts 

macroaggregates, rearranging the spatial distribution of decomposer community and substrates and 

leading to potential changes in substrate use. Whether or not dead roots are removed (or if they have 

been partially removed) also has a strong effect on ∆14Crespired, as root C is typically younger than that 

of the surrounding soil organic matter. Finally, the process of rewetting soils can also lead to changes 

in substrate availability via potential desorption of mineral bound organic matter, osmotic lysis of 

microbial cells, or through simple redistribution of microbes and dissolved organic C.  

Rewetting soils typically releases a burst of CO2, a phenomenon that has been the subject of many 

studies over the past several decades. This rewetting pulse is often termed the “Birch effect” after the 

author who published seminal work on the topic in the 1950s (Birch, 1958). Many hypotheses have 

been put forward to explain this pulse of CO2, including abiotic mechanisms as well as competing 

biological mechanisms (Williams and Xia, 2009; Warren, 2016; Brookes et al., 2017). Different 

mechanisms are likely to operate under different conditions, but the debate continues as to which 

mechanisms are the most important and under which conditions (Borken and Matzner, 2009; 

Schimel et al., 2011). The effect of rewetting on (non-labeled) ∆14Crespired has received little attention, 

but could yield valuable insights into the potential source of the rewetting pulse. 

In the first study of this dissertation (Ch. 2), I quantify the effects of air-drying, rewetting, and soil C 

storage on ∆14Crespired observed in laboratory soil incubations. The results reveal different effects for 

soils collected from grassland versus forest ecosystems. I provide guidelines for minimizing these 

biases when measuring ∆14Crespired in incubations of archived soils, and demonstrate the application 

of this technique for constructing time series of ∆14Crespired in the second study of the dissertation (Ch. 

3).   

1.3. Parent material and climatic control of soil C dynamics 

Soil development is controlled by five primary factors: climate, organisms, relief, parent material, and 

time (Jenny, 1941). These soil forming factors shape and determine the rate at which primary 

minerals are altered to secondary mineral phases, changes in the morphology and horizonation as 
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the soil profile develops, and the quantity and persistence of soil organic matter (Heckman et al., 

2022). Climate, and in particular temperature, along with parent material and organisms (specifically 

vegetation), are consistently selected as the most important variables for predicting soil C abundance 

and persistence globally (Batjes, 1996; Jobbágy and Jackson, 2000; Mathieu et al., 2015; Koven et al., 

2017; Abramoff et al., 2019; Shi et al., 2020). These factors are not independent, however, particularly 

with regards to the development of specific mineral assemblages and their effect on soil organic 

matter dynamics (McBratney et al., 2003; Rasmussen et al., 2007; Doetterl et al., 2018). 

The mixed conifer biome on the western slope of the Sierra Nevada mountains (USA) provides an 

ideal natural laboratory for controlling these factors. Differences in parent material along the north-

south axis of the cordillera, along with regular changes in temperature with increasing elevation 

moving west to east, enables mineralogical effects on soil C dynamics to be separated from effects of 

temperature while also controlling for the effect of vegetation (Rasmussen, 2004). Rasmussen (2004) 

established nine sites in 2001 along this combined parent material and climate gradient, publishing 

several follow-up studies on soil C dynamics and weathering processes (Rasmussen et al., 2007, 

2010b, 2006, 2010a, 2018b). This dissertation builds on these earlier efforts by synthesizing the 

existing data alongside new measurements made on archived soils from the initial sampling 

campaigns, and adds data from new samples collected in 2019.  

The mineral assemblage of a soil is a function of parent material as well as ongoing weathering 

processes (Chadwick and Chorover, 2001; Chorover et al., 2004; Dixon et al., 2016). Recent work 

points to the primacy of the specific minerals present in the soil, rather than the total amount of clay 

or surface area, in controlling soil C accumulation and persistence in soils (Torn et al., 1997; Kaiser 

and Guggenberger, 2003; Rasmussen et al., 2018a; Possinger et al., 2020). Specifically, the presence 

of reactive secondary minerals with high specific surface area and poorly crystalline structure (e.g., 

PCMs) have been shown to be correlated with both the age and abundance of soil C across a range of 

parent materials and climates (Dahlgren et al., 1997; Masiello et al., 2004; Rasmussen et al., 2018b; 

Kramer and Chadwick, 2018; Von Fromm et al., 2021). However, PCMs tend to be most abundant in 

soils developed on parent materials rich in volcanic glass and feldspars, such as Andisols (Rasmussen 

et al., 2007; Heckman et al., 2009; Rasmussen et al., 2010b; Slessarev et al., 2022). Furthermore, the 

abundance of PCMs in a given soil changes in conjunction with weathering, since these secondary 

minerals are metastable and crystallize to form less reactive mineral species with time (Torn et al., 

1997; Masiello et al., 2004). 



General Introduction 

 30 

Persistence of soil C found in association with soil minerals varies according to the strength and type 

of bonds present. Current understanding of the formation of mineral-organic matter associations 

supports a zonal model that considers the functional groups of organic molecules as well as the 

availability of binding sites on mineral surfaces (Kleber et al., 2007; Sollins et al., 2006; Possinger et 

al., 2020). This model includes the formation of microaggregates with both mineral and organic 

components, as well as networks of micropore structures, which have been observed to self-

assemble predictably according to specific mineral assemblages (Lehmann et al., 2007; Steffens et al., 

2017). The relevance of organo-mineral interactions extends beyond the bonds formed directly 

between mineral surfaces and organic molecules to the formation of organo-mineral complexes, held 

together with additional organo-organic bonds (Kleber et al., 2015; Possinger et al., 2020). Together, 

these findings provide further evidence that empirical fractionation methods such as size or density 

may not be able to distinguish between readily desorbed or exchanged material and tightly bonded 

material, and this has important implications for the interpretation of ∆14C values from such coarsely 

defined organo-mineral fractions. In Ch. 5 of this dissertation, I compare the variance in ∆14C 

measured on density fractions, bulk soil organic matter, and respired CO2 to evaluate the benefits of 

these different fractionation approaches for quantifying climate and mineralogical effects on the time 

scales of soil C cycling, and for constraining soil C models. 

Separating the effects of climate and vegetation on soil C dynamics can be challenging, given that 

temperature and moisture limitations control the distribution of different biomes globally, and can 

also affect local plant community distributions, i.e., via microclimate effects (Whittaker, 1967; 

Whittaker et al., 1970; Bailey, 2004). For this reason, the effect of vegetation is often controlled within 

studies of climatic effects on soil C dynamics. The lifecycle of the dominant vegetation also affects the 

amount of time C spends in the ecosystem from the time of fixation to the time of respiration, with 

perennial plants capable of storing C for many years before mobilizing it in new growth. This pre-

aging effect (or lag time) has important implications for interpreting radiocarbon values, for example, 

leading to older apparent radiocarbon ages of fine roots recovered from forest soils compared to 

grassland soils (Solly et al., 2018). In Ch. 2 of this dissertation, I address this issue directly by 

assessing the differences in ∆14Crespired observed between grassland and forest soils, and how this may 

affect interpretation of ∆14Crespired in incubations of archived soils. Furthermore, in Ch. 4 I demonstrate 

how lag time can be estimated as a parameter in a compartmental model of soil C dynamics, as well 

as potential mechanisms influencing the differences in lag times observed between soils under 

different climate regimes and increasing soil depth.  



General Introduction 

 31 

A key question for predicting the impact of predicted temperature increases on soil C stocks due to 

climate change is the temperature sensitivity of soil organic matter decomposition. The overall effect 

of temperature on soil C dynamics is obvious from global distributions of soil C stocks and bulk soil 

radiocarbon values: soil C stocks are higher and ∆14C values are more depleted, i.e., soil C is older, 

when comparing colder regions to warmer regions (Carvalhais et al., 2014; Hengl et al., 2017; Koven 

et al., 2017; Shi et al., 2020). However, the mean age of soil C globally is 4,830±1,730 y (integrated to 

1 m depth), indicating that the global patterns of soil C stocks and ∆14C reflect long term equilibrium 

processes and therefore may not be representative of the response of soil C stocks to a changing 

climate. 

Temperature sensitivity of soil organic matter decomposition is commonly measured using the Q10 

metric, which gives the change in respiration rates relative to a 10 °C change in temperature (Eq. 1-

3) (Davidson and Janssens, 2006). The Q10 metric is derived from the Arrhenius equation (Eq. 1-4), 

and therefore assumes an exponential response of reaction rates to temperature (Sierra, 2012). 

However, observational data do not always fit this theoretical relationship. There is substantial 

variation in the literature for Q10 values obtained for the decomposition of soil organic matter at 

different sites, and particularly among empirically defined “labile” and “resistant” soil organic matter 

pools (Haddix et al., 2011; Karhu et al., 2019; Lugato et al., 2021).  

 𝑄10 =
𝐾𝑇+10

𝐾𝑇
 ( 1-3 )  

where KT is the reaction/respiration rate observed at reference temperature T, and KT+10 is the rate 

observed for the same reaction at T + 10 °K. 

 𝑘 = 𝐴 𝑒
(

−𝐸

𝑅𝑇
)
 ( 1-4 ) 

where k is the reaction/respiration rate observed at reference temperature T, A is a pre-exponential 

factor, E is activation energy, and R is the universal gas constant. 

Extending the Q10 concept to turnover times, another temperature sensitivity metric that avoids the 

mathematical constraints imposed by the Arrhenius equation is the “climatological Q10” (Q10c), 

defined as the first derivative of the change in turnover time observed with respect to changes in 

mean annual temperature (Koven et al., 2017). Applying Q10c approach to a global dataset, with 

steady-state turnover time estimated as the ratio of soil C stocks to net primary production, Koven et 



General Introduction 

 32 

al. (2017) find that the temperature sensitivity of soil organic matter decomposition in warm 

climates is low (Q10c ~ 1), but increases exponentially at mean annual temperatures < 4 °C. The 

authors attribute this overall trend in Q10c to environmental limitations on decomposition, e.g., 

slowing of microbial activity when soils are frozen. However, the authors also note that other factors, 

such as interactions between soil organic matter and mineral assemblages, need to be considered in 

order to account for the substantial amount of variation in soil C turnover times that remain 

unexplained by mean annual temperature (Koven et al., 2017). 

In this dissertation I explicitly test the hypothesis that soil organic matter decomposition will differ 

among soils with different mineral assemblages but similar MAST by comparing ∆14Cbulk and 

∆14Crespired (Ch. 3), as well as ages and transit times of soil C (Ch. 4), for the soils from the combined 

parent material by climate gradient study initiated by Rasmussen (2004). Rasmussen et al. (2006) 

measured differences in respiration rates and the size of the mineralizable soil C pool under 

simulated temperature increase at the same study sites considered in this dissertation, suggesting 

temperature sensitivity of soil organic matter decomposition may be controlled in part by mineral 

assemblages. I build on this work in by quantifying how much of the variance in the rate of change in 

soil C ages and transit times along the MAST gradient can be explained by parent material or PCM 

abundance (Ch. 4), and present the results of a model experiment using a space-for-time substitution 

to predict the effect of rising temperatures on soil C stock changes at the study sites (Ch. 5).   

There are several potential ecological or soil-specific explanations for why temperature alone is 

inadequate for predicting soil organic matter decomposition rates. First, soils contain a large variety 

of different organic compounds, each with a different absolute reaction rate, as well as a specific 

“intrinsic temperature sensitivity of decomposition”, which derives from the chemical complexity of 

the molecule in question and ambient temperature (Davidson and Janssens, 2006). Second, in the 

spatially heterogeneous soil environment, substrate limitation or enzyme availability may constrain 

reaction rates independently of temperature (Sollins et al., 1996). Finally, feedback from the soil 

environment by way of changes in soil water content, energy status of the microbial community, or 

physical disturbances all have the potential to affect substrate availability, enzyme production, and 

the probability of interaction between decomposer organisms and soil organic matter—an ecological 

complexity that goes well beyond simple temperature control (Schimel and Weintraub, 2003; 

Davidson and Janssens, 2006; Lehmann et al., 2007; Schimel and Schaeffer, 2012). 
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Recognizing the challenges of determining temperature sensitivity of soil organic matter a priori, 

newer generation soil C models typically assume different temperature sensitivities for different 

decomposition processes, e.g., depolymerization, microbial uptake of dissolved organic matter, and 

mineral adsorption and desorption, and tune the parameters for these relationships using observed 

data (Tang and Riley, 2014; Abramoff et al., 2019; Ahrens et al., 2020). The results from such model 

studies indicate that a better understanding of how mineral assemblages affect the temperature 

sensitivity of soil organic matter decomposition is a key factor in improving predictions of how soil 

C stocks will change in response to increases in temperature. In this dissertation I elucidate how 

mineral assemblages are related to soil C ages and transit times, with implications for improving soil 

C modeling as a function of parent material and weathering processes at sites beyond those explicitly 

considered here. 

1.4. Ages and transit times of soil C 

The commonly used term “turnover time” is ambiguous when applied to bulk soil C, as it diverges 

from the age of soil C when bulk soil cannot be considered a single homogenous pool, or when the 

system is not at steady state. Given that the well-mixed assumption of a homogenous, steady-state 

system is not often met in soils, two more relevant terms for describing soil C dynamics are age and 

transit time (Manzoni et al., 2009; Sierra et al., 2017). The mean age of soil C refers to the average 

amount of time C remains in the soil, while the mean transit time refers to the average age of C in the 

release flux, e.g., respired CO2 (Sierra et al., 2017). An important feature of heterogeneous (multi-

pool) systems is that the system age differs from that obtained from a one-pool model, since it is 

determined by both the decomposition rates of each pool and transfers of C between pools.  

A pool of soil C is considered to be homogenous by definition, meaning that all of the atoms of C in 

the pool have an equal probability of being decomposed under favorable conditions. The mean age 

and mean transit time for a pool of soil C are one and the same. The term turnover time is also 

equivalent to the inverse of the decomposition rate when applied to soil C pools; however, this may 

not be the same as the mean pool age due to pre-aging of inputs. Due to the element of stochastic 

chance in the process of decomposition, there exists a range of ages of soil C even within a 

homogenous pool. Scaling back up to the whole soil, it becomes apparent that the system age of bulk 

soil C is more accurately represented as a distribution of soil C ages resulting from the superposition 

of the age distributions of each constituent pool. Comparing bulk soil C age distributions from several 

commonly used global soil C models (including CENTURY, RothC, CLM, and CESM), a common feature 
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is that mean ages are typically substantially older than median ages (Sierra et al., 2018; He et al., 

2016; Shi et al., 2020). This approach of characterizing soil C age as a distribution has important 

ramifications for interpreting radiocarbon measurements from bulk soil C and empirical fractions, 

particularly in light of the non-Gaussian distributions typically observed for soil C ages. 

Bulk soil ∆14C measurements are a useful proxy for the mean age of soil C, as they represent a mass-

weighted average of the ∆14C signal from each pool of soil C (regardless of how the pools are defined). 

Yet for the age distributions estimated for the soil C models mentioned above (Sierra et al., 2018), 

the median age is a better estimate of the central tendency of the distribution, not the mean. This 

reveals that both mean ages and ∆14Cbulk are susceptible to leverage from extreme values, e.g., small 

pools of C cycling on centennial to millennial time scales. I will demonstrate this fact in the synthesis 

chapter of this dissertation by comparing ∆14C distributions from modeled pools of soil C to those 

from empirically defined fractions, revealing the biases inherent in these different approaches. 

The ∆14C value of heterotrophically respired CO2 from bulk soil is a useful proxy for mean transit time 

as it is a flux weighted average of the ∆14C signal of C respired from each pool. Transit times are also 

characterized by a distribution, but one that is likely to take a different shape from the age 

distribution due to differing contributions to respiration from pools with different mean ages. By 

definition, in a steady state system, mean transit time is equivalent to the ratio between soil C stocks 

and fluxes. However, due to definitions of system boundaries, e.g., soil depth, and the time of year 

samples were collected, values of transit time estimated from radiocarbon-constrained models may 

not match those estimated from other methods. I will address this issue further in the context of the 

findings of this dissertation in Ch. 5. 

1.5. Applying compartmental models to obtain age and transit time distributions 

Age and transit time distributions can be computed for a compartmental model expressed by a 

system of linear differential equations. The general equation for such a model is 

 
𝑑𝐶

𝑑𝑡
= 𝐮 + 𝐁 ∙ 𝐂 (𝑡) ( 1-5 ) 

where dC/dt is the change in C over time, u is an n dimensional vector of inputs, B is an n x n matrix 

giving the decomposition rates of each pool on the diagonal and transfers between pools on the off-
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diagonal, and C(t) is the n dimensional vector of C stocks. At steady-state this model has an analytical 

solution (Eq. 1-6) that returns the mean age (x*) of the particles leaving the system.  

 𝑥∗  =  −𝐁−1 ∙  𝐮 ( 1-6 ) 

The key principle for deriving the distributions of soil C ages and transit times from such a model is 

that the probability of a given atom of C being released from the system is the result of a stochastic 

process that is independent of the deterministic processes that control the decomposition rates and 

transfers defining soil C dynamics, i.e., the term B in Eqs. 1-5 and 1-6 (Sierra et al., 2018). Stated 

another way, we assume that the age of a given atom of C does not determine the probability that it 

will be decomposed, but rather that age is a consequence of the processes controlling which pool the 

atom is in, transfers between pools, and specific environmental conditions. Empirical studies provide 

support for this assumption, with soil samples from different depths decomposing at similar rates 

despite older C ages inferred at the deeper depths (Soong et al., 2021), and different size fractions of 

soil organic matter decomposing at similar rates despite differences in inferred C ages (Karhu et al., 

2019). 

The probability distribution of ages can be determined from a stochastic model which we define with 

a continuous-time absorbing Markov chain parameterized from the system of linear differential 

equations: 

 𝑓(𝑎) =  −1𝑇 ∙ 𝐁 ∙  𝑒𝑎∙𝐁 ∙  
𝑥∗

∑ 𝑥∗ ( 1-7 ) 

where a is the random variable age, B is an n x n matrix giving the probability that an atom of C will 

be transferred to other pools, -1T is the transpose of an n dimensional vector of ones, eaB is the matrix 

exponential of a, and Σ x* is the sum of C stocks for all model pools at steady-state.  

The probability distribution for transit time can be computed similarly by the expression 

 𝑓(𝜏) =  −1𝑇 ∙ 𝐁 ∙  𝑒𝜏∙𝐁 ∙  
𝐮

∑ 𝐮
 ( 1-8 ) 

where 𝜏 is the random variable transit time. The derivation of these expressions (Eqs. 1-7 and 1-8) 

are provided by Metzler and Sierra (2018).  
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These distributions provide further insight into the fate of C entering the soil that cannot be 

determined from ∆14Cbulk and ∆14Crespired alone. For example, in order to answer pertinent questions 

for the potential benefits of soil C sequestration such as “How long do annual C inputs remain in the 

soil, on average?”, or “How long would 50% of one year of inputs remain in the soil? ”, the relevant 

metrics would be the mean and median transit time, respectively (Crow and Sierra, 2022). These 

distributions can also be used to answer additional questions such as how much climate warming is 

avoided by the storage of C in soils over a given time frame by incorporating the radiative effect of a 

unit of CO2 and integrating the area under the release curve of CO2 (Sierra et al., 2021). Finally, the 

distribution of soil C ages in bulk soil or in particular pools of soil C can also provide valuable insight 

into the persistence mechanisms underlying these distributions. I illustrate these calculations of the 

climate benefit of C sequestration with the Sierra Nevada soils in the synthesis chapter of this 

dissertation (Ch. 5), and discuss implications of the estimated age distributions for soil C persistence 

mechanisms in Chs. 3, 4, and 5. 

1.6. Motivation and objectives 

The motivation for this dissertation was to quantify how climate and mineralogical factors influence 

time scales of soil C cycling. Soil C plays an outsized role in the global C cycle due to the size of the 

reservoir. However, uncertainty regarding the response of soil C dynamics to changes in climate 

remains a major impediment for improving future climate predictions. Temperature has long been 

recognized as a key factor controlling soil C abundance and persistence, but is inadequate for 

explaining the variation observed in soil C dynamics—either on global scales or at the plot level. 

Mineral organic association is known to be a critical mechanism for long term persistence of soil C, 

but recent studies suggest that mineral-associated soil organic matter pools contain annual to 

decadally cycling components as well. Furthermore, mounting empirical evidence indicates that soil 

mineral assemblages influence the temperature sensitivity of soil organic matter decomposition. 

The overall goal of quantifying the relative influence of climatic and mineralogical factors on time 

scales of soil C cycling was addressed in three studies, each of which consisted of the following 

specific objectives: 

(Study 1) Impacts of Drying and Rewetting on the Radiocarbon Signature of Respired CO2 and 

Implications for Incubating Archived Soils. This study sought to quantify the effect of air-
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drying/rewetting and storage duration on the ∆14Crespired, including an applied case study comparing 

soils from forest and grassland sites.  

• (Obj-14CIncubations) Determine the feasibility of measuring ∆14Crespired in laboratory 

incubations of archived soils. 

• (Obj-14CIncubations) Quantify potential biases of air-drying/rewetting and storage 

duration on ∆14Crespired. 

• (Obj-14CIncubations) Assess the influence of land cover (grassland vs. forest) on the 

∆14Crespired measured in incubations of archived soils. 

(Study 2) Soil minerals mediate climatic control of soil C cycling on annual to centennial 

timescales. This study assesses the relationship of climatic and mineralogical factors to the 

distribution of ∆14Cbulk and ∆14Crespired at nine sites spanning a combined gradient of parent material 

and climate, as well as quantifying the change in ∆14Cbulk and ∆14Crespired between 2001 and 2019 as a 

function of climate, parent material, and depth.  

• (Obj-14CTimeseries) Compare changes in ∆14Cbulk and ∆14Crespired over time as a function of 

parent material, climate, and depth. 

• (Obj-14CTimeseries) Demonstrate the relative influence of specific climatic and 

mineralogical factors on 14Cbulk, ∆14Crespired, and the difference between ∆14Crespired and ∆14Cbulk. 

(Study 3) Mineralogical and climatic controls on age and transit time distributions of soil C. 

This study leverages the time series of ∆14Cbulk and ∆14Crespired measurements presented in Study 2 to 

constrain compartmental models of soil C dynamics, and outlines the implications for parameter 

identification and model selection using this approach. The relative influence of climatic and 

mineralogical factors on system age and transit time distributions obtained from these models are 

quantified, the mineralogical influence on temperature sensitivity of soil organic matter 

decomposition is discussed, and potential strategies for improving constraints on model pool 

dynamics are explored. 

• (Obj-Age&TransitTime) Select optimal parameter sets and model structures for modeling 

soil C dynamics with a time series of ∆14Cbulk and ∆14Crespired. 
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• (Obj-Age&TransitTime) Calculate the soil C inputs and lag times (pre-aging due to vertical 

transfers and storage in vegetation) required to satisfy soil C dynamics in radiocarbon-

constrained compartmental models. 

• (Obj-Age&TransitTime) Resolve the influences of temperature, depth, parent material, and 

reactive mineral content on soil C age and transit time distributions.   

• (Obj-Age&TransitTime) Elucidate the effect of mineralogical factors on the sensitivity of 

soil C age and transit time distributions to mean annual temperature, including implications 

for potential changes in soil C stocks in response to increases in temperature. 
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1.7. Figures 

Figure 1-1. Change in atmospheric ∆14C content over time by latitudinal zone (data from Hua et al., 
2021). 
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2.1. Abstract 

The radiocarbon signature of respired CO2 (∆14Crespired) measured in laboratory soil incubations 

integrates contributions from soil carbon pools with a wide range of ages, making it a powerful model 

constraint. Incubating archived soils enriched by “bomb‐C” from mid‐20th century nuclear weapons 

testing would be even more powerful as it would enable us to trace this pulse over time. However, 

air‐drying and subsequent rewetting of archived soils, as well as storage duration, may alter the 

relative contribution to respiration from soil carbon pools with different cycling rates. We designed 

three experiments to assess air‐drying and rewetting effects on ∆14Crespired with constant storage 

duration (Experiment 1), without storage (Experiment 2), and with variable storage duration 

(Experiment 3). We found that air‐drying and rewetting led to small but significant (α < 0.05) shifts 

in ∆14Crespired relative to undried controls in all experiments, with grassland soils responding more 

strongly than forest soils. Storage duration (4–14 y) did not have a substantial effect. Mean 

differences (95% CIs) for experiments 1, 2, and 3 were: 23.3‰ (±6.6), 19.6‰ (±10.3), and 29.3‰ 

(±29.1) for grassland soils, versus −11.6‰ (±4.1), 12.7‰ (±8.5), and −24.2‰ (±13.2) for forest 

soils. Our results indicate that air‐drying and rewetting soils mobilizes a slightly older pool of carbon 

that would otherwise be inaccessible to microbes, an effect that persists throughout the incubation. 

However, as the bias in ∆14Crespired from air‐drying and rewetting is small, measuring ∆14Crespired in 

incubations of archived soils appears to be a promising technique for constraining soil carbon 

models. 

2.2. Plain Language Summary 

Soils play a key role in the global carbon cycle by sequestering carbon from the atmosphere for 

decades to millennia. However, it is unclear if they will continue to do so as the climate changes. 

Microbial decomposition of soil organic matter returns carbon back to the atmosphere, and 

radiocarbon dating of this returning CO2 (∆14Crespired) can be used to quantify how long carbon is 

stored in ecosystems. Incubating archived soils could provide unique insight into soil carbon 

sequestration potential by quantifying the change in ∆14Crespired over time. However, air‐drying, 

duration of archiving, and subsequent rewetting of soils may bias estimates of sequestration 

potential by altering the balance of younger versus older carbon leaving the soil. We compared 

∆14Crespired from soils incubated with and without air‐drying and archiving, and found that the air‐

dried soils appeared to release slightly older carbon than soils that had never been air‐dried. The 

amount of time the soils were archived did not have an effect. Since the bias from air‐drying and 
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rewetting was small, incubating archived soils appears to be a promising technique for improving 

our ability to model soil carbon cycling under global climate change. 

2.3. Key Points 

• ∆14Crespired measured in incubations of archived soils provides additional constraints for soil 

carbon models 

• Air‐drying and rewetting soils shifted ∆14Crespired by 10‰–20‰ independent of the duration 

of storage 

• Differences in direction and magnitude of ∆14Crespired shifts between forests and grasslands 

depended on sampling year and system C dynamics 

2.4. Introduction 

Soil carbon is a heterogeneous mixture of organic matter, some components of which persist in the 

soil for months or years, while others persist for centuries or millennia. The persistence of soil carbon 

can be understood through the concept of different “pools” of carbon, each defined by the mechanism 

by which carbon is stabilized in the soil and characterized by a distinct probability distribution of C 

ages (Sierra et al., 2018). Measuring the radiocarbon signature of heterotrophic respiration 

∆14Crespired) in laboratory incubations is a powerful constraint for modeling soil carbon dynamics 

because it provides an integrated measure of the carbon‐weighted contribution to the soil efflux from 

carbon pools with distinct C sources and cycling rates (Trumbore, 2000). Using archived soils to 

construct a time series of ∆14Crespired has the potential to amplify the power of this model constraint, 

but it is unclear how air‐drying, storage, and subsequent rewetting of archived soils may affect 

∆14Crespired observed in laboratory incubations. 

The distribution of soil carbon among faster and more slowly cycling pools has important 

implications for predicting the response of the soil carbon reservoir to changes in inputs or 

decomposition rates resulting from climate change (Trumbore, 2000). Soils with large pools of slowly 

cycling carbon would be expected to sequester more carbon with increased inputs than soils 

dominated by fast cycling pools, while shifts in temperature or moisture regimes may affect 

decomposition rates differently depending on the stabilization mechanism. ∆14Crespired reflects 

respiration fluxes dominated by the decomposition of fast cycling carbon in contrast to bulk soil ∆14C, 

which is dominated by large stocks of relatively slowly cycling carbon (Sierra et al., 2018). Together, 

these measurements can improve predictions of the response of soil C to global change. 
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Soil archives offer a window into the past, and incubating archived soils provides an opportunity to 

observe how ∆14Crespired changes over time. The pulse of radiocarbon introduced into the biosphere 

from nuclear weapons testing (“bomb‐C”), which peaked in the mid‐20th century, serves as an ideal 

tracer (Trumbore, 2009). New C inputs to the soil over the decades following the bomb‐C peak carry 

distinct annual radiocarbon signatures due to the decrease in the concentration of atmospheric 14C 

over this period. Following the bomb‐C tracer in ∆14Crespired respired from soils collected and archived 

over the latter half of the 20th century and first decades of the 21st could therefore provide unique 

insight into decadal scale soil C dynamics. 

A critical challenge for the interpretation of ∆14Crespired data is that, due to the curvature of the bomb‐

C peak, there were two points in time at which the Δ14C signature of atmospheric CO2 was identical. 

This means observations of Δ14C from just a single point in time can be fit to models with different 

intrinsic decomposition rates. Trumbore (2000) gives the example of a two independent, 

homogenous pools of soil carbon, one with an intrinsic decomposition rate (k) of 6.6 years and the 

second with k = 50 years, both of which would have had a Δ14C of 166‰ in 1996. Observations of 

∆14Crespired measured in incubations of archived soils could help resolve this ambiguity by enabling 

the construction of a time series of ∆14Crespired. The trajectory of ∆14C in a soil carbon pool turning over 

every 6.6 years is quite different from one with an intrinsic decomposition rate of 50 years making a 

∆14Crespired time series a strong additional constraint for model parameterization (Baisden et al., 

2013). 

Prior to long term storage soils are commonly air‐dried. However, this process is known to affect 

biological, physical, and chemical properties of the soil (Bartlett and James, 1980; Jones et al., 2019). 

For example, incubation of soils following air‐drying and rewetting typically leads to a rapid increase 

in CO2 production, ranging from hours to several days (the Birch effect), before returning to 

equilibrium respiration rates (Birch, 1958). Hypothesized sources for the CO2 released following soil 

rewetting include (and typically represent a combination of): lysis of microbial cells subjected to 

osmotic shock (Warren, 2016; Williams and Xia, 2009), disruption of soil aggregates, osmolytes 

released from microbes emerging from aridity‐induced dormancy (Fierer and Schimel, 2003), 

and desorption of mineral‐associated organic matter (Kaiser et al., 2015; Slessarev et al., 2020). 

While the impact of air‐drying and rewetting on soil respiration rates has been extensively studied 

(Borken and Matzner, 2009; Schimel, 2018), the potential effects of air‐drying, long‐term storage, 

and rewetting on Δ14C‐CO2 has yet to be documented. 
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If air‐drying and rewetting affects the relative contribution to respiration of soil organic matter pools 

with different intrinsic cycling rates, this should be detectable in ∆14Crespired. For example, disruption 

of soil aggregates following drying and rewetting would likely lead to greater accessibility of soil 

organic matter formerly protected from decomposition via physical occlusion. Drying followed by 

rewetting could also lead to desorption of organic matter sorbed to minerals, increasing the 

accessibility of this formerly protected substrate. If drying and rewetting mobilizes carbon from 

these relatively slowly cycling soil organic matter pools, the effect should be detectable as a shift in 

∆14Crespired. However, if the rewetting pulse derives mainly from lysed microbial cells or the release of 

microbial osmolytes, little change in ∆14Crespired would be expected. 

Obtaining ∆14Crespired measurements from incubations of archived soils would be a valuable tool for 

further constraining and improving soil carbon models, but first the possible effects of air‐drying and 

rewetting, as well as the effect of storage duration, must be assessed. 

We designed three experiments to answer the following questions: 

1. Is ∆14Crespired measured in incubations of soils prior to air‐drying altered by the process of air‐

drying, storage, and subsequent rewetting? 

2. What is the effect of air‐drying and rewetting alone, that is without storage, on ∆14Crespired? 

3. Does the duration of storage affect ∆14Crespired? 

 

We present the results of these three experiments, along with an applied example of interpreting a 

time series of ∆14Crespired constructed by incubating archived soils. Our results provide support for the 

utility of incubating archived soils to understand rates of soil C cycling and provide constraints for C 

cycle models. They also provide insight into long‐standing questions about the substrates fueling 

rewetting pulse respiration, as well as differences in soil C dynamics between forest and grassland 

ecosystems. We conclude with suggestions for how best to employ the radiocarbon incubation 

technique with archived soils beyond our sample set. 

2.5. Materials and Methods 

We devised three experiments to quantify potential shifts in ∆14Crespired measured in laboratory soil 

incubations following air‐drying, storage, and rewetting. All three experiments consider the effect of 
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air‐drying followed by subsequent rewetting, but with varying storage duration, from less than 1 

month (no storage) to 14 years. Experiment 1 focuses on the effects of air‐drying and 7 years of 

storage prior to rewetting (air‐dry/rewet + storage), Experiment 2 on the effect of air‐drying and 

rewetting alone, that is without storage (air‐dry/rewet), and Experiment 3 on the effect of varied 

storage duration (storage duration). All soils were split following sample collection, with one split 

air‐dried, and the other refrigerated under field‐moisture conditions until incubation. For each 

experiment we considered the undried split to be the control sample and the air‐dried split to be the 

treatment sample. 

2.5.1 Experiment 1: Air‐Dry/Rewet With Long‐Term Storage 

2.5.1.1. Experiment 1 Sample Selection and Field Sampling 

Soils analyzed for Experiment 1 were collected in 2011 from plots established as part of the 

Biodiversity Exploratories project (Fischer et al., 2010). The samples used in this study comprise a 

subset of samples originally collected for a study by Solly et al. (2014). Two ecosystem types (forest 

and grassland) were sampled from two regions of central Germany, Schorfheide‐Chorin (Central 

Germany 1) and Hainich‐Dün (Central Germany 2). The two regions have similar climates, but are 

characterized by different soil textures (Table 2-1). We selected carbonate‐free soils from three 

grassland plots (50 m by 50 m) and three forest plots (100 m by 100 m) in each of the two geographic 

regions (n total = 12 sites), using the criterion that the ∆14Crespired observed in the 2011 incubations 

fell within the interquartile range observed for the ecosystem type and region. Further details on the 

soil collection and sampling strategy can be found in Solly et al. (2014). 

2.5.1.2. Experiment 1 Sample Preparation 

Following sample collection, soils for Experiment 1 were sieved to <2 mm at field‐moisture, and 

water holding capacity (WHC) was determined on a 10 g subsample. Briefly, we removed the tips 

from 50 ml centrifuge tubes and covered them with a fine mesh (<50 μm). We filled the tubes with 

soil and placed them upright with the mesh‐side down in a glass dish filled with deionized water. 

Tubes were left overnight. The following day we moved them to a second glass dish filled with sand. 

We allowed the soils to drain for 30 min before weighing again to determine the amount of water 

absorbed. The remaining soil was then split, with one aliquot air‐dried at 40°C (air‐dry/rewet + 

storage treatment samples, n = 12), while the other aliquot was left at field moisture (control‐1 

samples, n = 12). Control‐1 samples were stored in re‐sealable plastic bags at 4°C until incubation. 
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After air‐drying, air‐dry/rewet + storage samples were placed in re‐sealable plastic bags, and stored 

in large plastic boxes in a cool (ca. 15°C) dark room for seven years. 

2.5.1.3. Experiment 1 Incubations 

Control‐1 incubations were performed in 2011 on single samples due to time and space limitations 

within the original experiment. Soils were weighed out into 250 ml beakers and placed into 1,000 ml 

mason jars with airtight lids fitted with two sampling ports. The mass of soil used for control‐1 

incubations ranged from 45 to 75 g (air‐dry equivalent), based on estimated respiration rates from 

previous work at the sites. Soil masses were adjusted to ensure that enough CO2 would be respired 

to measure ∆14Crespired (>0.5 mg) while at the same time preventing excessive CO2 build‐up, as this has 

been shown to negatively impact heterotrophic respiration (Šantrŭčková and Šimek, 1994; 

MacFadyen, 1973). 

Soil moisture content of control‐1 samples was adjusted to 60% of WHC prior to sealing the jars. We 

moistened the soil from the top using a perforated luerlock cap attached to a 10 ml syringe that 

emitted water in small droplets for minimal disturbance. All control‐1 samples were incubated for 4 

days following moisture adjustment (the first enclosure period), after which the jars were flushed 

with CO2‐free air and allowed to accumulate CO2 for a second enclosure period of 14 days. 

We performed the air‐dry/rewet + storage treatment incubations on the air‐dried subsamples in 

2018. We incubated the air‐dry/rewet + storage samples in duplicate in order to quantify potential 

laboratory errors. Owing to a limited quantity of archived soil, we reduced the mass of soil incubated 

to 20 g. Using the same procedure as with control‐1 samples, soil moisture content was adjusted to 

60% WHC prior to flushing and sealing the jars. We maintained the same 4-day first enclosure period 

to capture the CO2 released during the rewetting pulse. We determined the duration of the second 

enclosure period for the air‐dry/rewet + storage treatment incubations according to the amount of 

CO2 respired. We allowed the air‐dry/rewet + storage treatment incubations to proceed until the 

same amount of CO2 had been respired per g soil C as in the second enclosure period of corresponding 

control‐1 sample incubations. Consequently, the incubation duration of the second enclosure period 

for the air‐dry/rewet + storage treatment incubations varied (Table 2-2). 

Headspace CO2 concentrations for control‐1 incubations were measured once at the end of the first 

enclosure period, but were measured daily during the first enclosure period for air‐dry/rewet + 

storage incubations. We measured headspace CO2 concentrations one to three times per week during 
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the second enclosure period for both control‐1 and air‐dry/rewet + storage treatment incubations, 

with more frequent measurements made for samples with faster respiration rates. Headspace gas 

samples were collected and analyzed for ∆14C and δ13C content at the end of both the first enclosure 

period and the second enclosure period for the air‐dry/rewet + storage treatment incubations. 

However, these measurements were only made following the second enclosure period for control‐1 

samples. All samples were incubated at 20°C. 

2.5.2 Experiment 2: Air‐Dry/Rewet Without Long‐Term Storage 

2.5.2.1. Experiment 2 Sample Selection and Field Sampling 

We returned to the Central Germany 1 region (Hainich‐Dün) in July 2019 to collect samples for 

Experiment 2 from the same plots originally sampled for Experiment 1 in 2011. We observed similar 

∆14Crespired across both Central Germany regions in Experiment 1, so we restricted the resampling to 

just Hainich‐Dün to save on cost and time. At each plot (n = 6) we collected three cores from the same 

depth interval as 2011 (0–10 cm), which were then homogenized to yield one composite sample. 

Following the protocol from the 2011 sampling, any aboveground vegetation was clipped, and 

organic horizons were scraped away prior to coring at the forest plots. 

2.5.2.2. Experiment 2 Sample Preparation 

Following sample collection, soils for Experiment 2 were sieved to <2 mm at field moisture, and WHC 

was determined on a 10 g subsample. The remaining soil was then split, with one aliquot air‐dried at 

40°C (air‐dry/rewet treatment samples, n = 6), while the other aliquot was left at field moisture 

(control‐2 samples, n = 6). Control‐2 samples were stored in re‐sealable plastic bags at 4°C until 

incubation. After air‐drying, air‐dry/rewet treatment samples were placed in re‐sealable plastic bags, 

and stored in large plastic boxes in a cool (ca. 15°C) dark room for two months prior to incubation. 

2.5.2.3. Experiment 2 Incubations 

Incubation conditions for control‐2 and air‐dry/rewet treatment samples were identical. Incubations 

were performed in duplicate. We weighed out 20 g (air‐dry equivalent) of soil into 250 ml beakers 

and placed them into the same incubation vessels as we used for Experiment 1. Prior to sealing the 

jars, we adjusted the soil moisture content to 60% WHC in the same manner as Experiment 1 samples 

(section 2.5.1.3): either from field moisture (control‐2 samples) or from the air‐dried state (air‐

dry/rewet samples). Following moisture adjustment, jars were flushed with CO2‐free air, sealed, and 
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left to incubate for the 4‐day first enclosure period. After the first enclosure period the jars were 

flushed, and CO2 was allowed to accumulate for a second enclosure period (Table 2-2). 

Headspace CO2 concentrations of both contol‐2 and air‐dry/rewet incubations were measured 

following the same protocol as the air‐dry/rewet + storage incubations in Experiment 1: daily during 

the rewetting pulse period, and one to three times per week during the second enclosure period, 

depending on respiration rates. Headspace gas samples were collected and analyzed for ∆14C and 

δ13C content at the end of both the rewetting pulse period and the second enclosure period. Control‐

2 samples were allowed to respire until >0.5 mg of CO2‐C was present in the jar headspace, which is 

the quantity needed to measure ∆14C. Incubations for the air‐dry/rewet treatment samples were 

allowed to proceed until the same amount of CO2 was respired per g of soil C as in the corresponding 

control‐2 sample. All samples were incubated at 20°C. 

2.5.3 Experiment 3: Storage Duration 

Control‐3 incubations were conducted by different investigators in different labs as part of six 

unrelated experiments. Due to the variation in experimental design among the control‐3 incubations, 

we were forced to modify the incubation conditions for Experiment 3 samples slightly from the 

protocols followed in Experiments 1 and 2. 

2.5.3.1. Experiment 3 Sample Selection 

The main criteria for sample selection for Experiment 3 were: (a) samples were split prior to original 

incubation, with one portion air‐dried and archived in amounts adequate for a repeated incubation; 

(b) ∆14Crespired was measured from soils incubated close to the time of collection following a relatively 

short (one to three weeks) incubation period. We sought to cover a range of storage duration times 

(between 4 and 14 years, constrained by the availability of samples), and a range of soil types and 

climatic conditions (Supplemental Table 2-5). 

2.5.3.2. Experiment 3 Sample Preparation 

Sieving protocols varied among control‐3 samples, with some samples sieved to 2‐mm while others 

remained unsieved (Supplemental Table 2-5). All soils obtained for the storage duration 

incubations were air‐dried splits made prior to control‐3 incubations. 
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Experiment 3 Incubations 

Soil mass and replication of corresponding storage duration treatment incubations varied (Table 

2-2) according to the amount of soil material available. We kept the soil moisture the same between 

paired control‐3 and storage duration treatment incubations. Incubation temperatures varied for 

control‐3 incubations, but we conducted all storage duration treatment incubations at 20°C for 

simplicity. Although temperature has known effects on respiration rates, it has been shown that it 

does not affect ∆14Crespired (Vaughn and Torn, 2019). 

We did not have information on either the duration of the rewetting period or the corresponding 

amount of CO2 respired during this period for all of the control‐3 samples. Rather than impose a first 

enclosure period with an arbitrary duration, we decided to incubate the storage duration treatment 

samples for a single enclosure period beginning immediately after rewetting. We felt this was 

justified as we did not observe significant differences between first and second enclosure period 

∆14Crespired in the first two experiments (Results 2.6.2). We allowed respiration in the storage duration 

treatment samples to proceed until the same amount of CO2 had been respired per g of soil C as in 

the second enclosure period of the corresponding control‐3 sample incubations. 

We measured headspace CO2 concentrations every three days for the first two weeks of the storage 

duration treatment incubations, and weekly as needed thereafter; control‐3 CO2 measurement 

frequency varied. Aliquots of jar atmosphere were collected once the samples reached target CO2 

concentrations (7–48 mg CO2 g C−1), and then analyzed for ∆14C. We conducted the majority (n = 16) 

of the Experiment 3 storage duration treatment incubations in 2018 at the Max Planck Institute for 

Biogeochemistry (MPI‐BGC) but the remainder (n = 12) of the treatment sample incubations were 

performed in 2009 at the University of California Irvine (UCI) (Supplemental Table 2-5). 

2.5.4 Soil Analyses 

Total carbon and nitrogen contents of the Central Germany samples were determined by dry 

combustion in a CN analyzer (Vario Max, Elementar Analysensysteme GmbH) following fine grinding 

with a ball‐mill (Retsch MM400). Soil texture of the Central Germany samples was determined using 

the pipette method, following removal of organic matter (Schlichting et al., 1995). Soil property data 

for the samples from all other regions were obtained from the original studies (Cisneros-Dozal et al., 

2006; Gaudinski et al., 2000; Hopkins et al., 2012; Solly et al., 2014; Koarashi et al., 2012) (Table 2-2. 

Experimental design). 
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2.5.5 Isotopic Analyses 

For all three experiments, we separated CO2 from the gas samples collected from incubation jar 

headspace using a vacuum line, with splits of the purified CO2 analyzed for both δ13C and ∆14C. 

Radiocarbon analyses were conducted at the MPI‐BGC accelerator mass spectrometer facility 

(Steinhof, 2013) or the UCI W.M. Keck Facility for Accelerator Mass Spectrometry (Xu et al., 2007) 

(Table S5). Radiocarbon values are reported in units of ∆14C, defined as the deviation in parts per 

thousand of the ratio of 14C–12C from that of the oxalic acid standard measured in 1950. In order to 

account for potential mass‐dependent fractionation effects, the 14C/12C ratio of all samples is 

corrected to a common δ13C value of −25 ‰ (Stuiver and Polach, 1977). Although the effect was 

small, ∆14C data from air‐dry/rewet + storage samples (Experiments 1 and 3) were also corrected for 

depletion of 14C in the samples due to radioactive decay occurring during storage. 

Measurements of δ13C (Experiments 1 and 2 only) were made at MPI‐BGC (Delta+XL, Thermo 

Finnigan). Data are reported using δ13C notation, which refers to the deviation in parts per thousand 

of the ratio of 13C/12C in the Vienna Pee Dee Belemnite standard. 

2.5.6 Statistical Analysis 

We compared the mean differences between treatment and control sample ∆14Crespired and δ13C‐CO2 

within ecosystem types for each experiment in order to assess the significance of the treatment 

effects. We quantified the analytical error associated with the radiocarbon incubation method by 

calculating the mean of the variance measured among replicates for all samples that were replicated. 

For samples that were not replicated we used the mean of the replicate variance measured across all 

samples. First we calculated mean differences between control and treatment samples, and the 

variance of this mean difference, and then we determined the mean and variance of the pooled 

sample. We calculated pooled statistics separately for forest and grassland soils in Experiments 1 and 

2. Statistics were aggregated across ecosystem type for Experiment 3 as the direction of trend was 

the same for both forest and grassland soils (in this experiment), and we only had a limited number 

of grassland soils (n = 3). 

The pooled mean is simply the average of the individual sample means weighted by the number of 

replicates. We determined the pooled variance (Eq. 2-1) using the method of O’Neil (2014), which 

takes into account both sampled and unsampled variance for a finite population. We used this 
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variance to determine 95% confidence intervals around the pooled mean difference, which we 

deemed significant if the confidence interval did not overlap zero. 

 𝑆𝑁
2 =

∑  (𝑛𝑖−1) 𝑠𝑖
2 + ∑[𝑛𝑖 ∙ (�̅�𝑖 − �̅�)]

𝑁 − 1
 ( 2-1 ) 

We conducted a parallel analysis using a linear mixed model approach, which we found supported 

our main findings with the paired difference approach. We decided to present only the results from 

the paired difference analysis in the interest of simplicity. However, details of the linear mixed model 

analysis and the results are provided in the supporting information (section 2.9). We also conducted 

an exploratory analysis on the effect of the amount of C respired and the change in soil moisture 

content on the difference between control and treatment sample ∆14Crespired. 

All statistical analyses were performed in R (R Core Team, 2020). 

2.5.7 Conceptual Model 

We developed a conceptual model for the forested sites from a single region, Hainich‐Dün (Central 

Germany 2), to illustrate potential sources for the carbon respired following the air‐drying and 

rewetting treatments imposed in this study. We did not use the ∆14Crespired data observed in our study 

to constrain the model, but rather used a model developed for forested sites in the same region to 

validate our findings (Schrumpf and Kaiser, 2015). We implemented a two‐pool parallel model, with 

inputs partitioned between slow and fast cycling soil C pools and no transfers between pools, using 

the Soil R package (Sierra et al., 2014). In an earlier study, Schrumpf and Kaiser (2015) estimated 

first order C cycling rates and pool sizes for empirically defined soil C pools using a density 

fractionation procedure. We approximated the inverse of the first order cycling rates (turnover 

times) for the fast and slow pools of our model using Schrumpf and Kaiser (2015)'s empirical 

estimates for the free light fraction and the heavy fraction from the 0–5 cm depth increment: 4 and 

115 years for the fast and slow pools, respectively. Schrumpf and Kaiser (2015) found that 10% of 

the carbon in the 0–5 cm depth layer was in the free light fraction. We used this proportion to 

partition soil C between the fast and slow pools, under the assumption that the free light fraction 

corresponds to the fast pool. Following the earlier study, we assumed a lag time of 8 years for inputs. 
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2.6. Results 

2.6.1 Respiration Rates 

We observed consistent differences between control and treatment sample respiration rates in 

Experiments 1 and 2, with control sample respiration rates lower than treatment sample respiration 

rates in both experiments (Figure 1-1). However, the magnitude and timing of maximum respiration 

rates diverged among experiments and between grassland and forest soils (Figure 1-1). Maximum 

respiration rates were more than twice as high in grassland soils than in forest soils for air‐dry/rewet 

+ storage treatment samples in Experiment 1 (Figure 1-1a), but were similar across ecosystem types 

for the air‐dry/rewet treatment samples in Experiment 2 (Figure 1-1b). See Supplemental Figure 

2-1 for Experiment 3 sample respiration rates. However, CO2 flux rates cannot be meaningfully 

interpreted for these samples given the differences in incubation temperature, the degree to which 

rewetting pulse CO2 was included in the control‐3 incubations, and the wide variation in CO2 

measurement frequency among samples. 

2.6.2 First and Second Enclosure Period ∆14Crespired and δ13C‐CO2 

We did not see significant differences when we compared ∆14Crespired from the first enclosure period 

to that of the second enclosure period (Figure 2-1). This was true for all comparisons made within 

experiment, treatment, and ecosystem groups, with one exception: grassland control‐2 samples had 

slightly higher ∆14Crespired in the second enclosure period compared to the first (mean difference = 

10.4‰, 95% CI = [6.0‰, 14.8‰]). When we combined data across experiments, ecosystem types, 

and treatments, the mean difference in ∆14Crespired between enclosure periods was only 2.0‰ (95% 

CI = [−1.0‰, 5.0‰]), which is similar to the reported precision for 14C measurements (1.7‰–

2.7‰). (We excluded the forest control‐2 sample that was clearly an outlier (Figure 2-1) from this 

combined analysis). 

We note that, due to lower respiration rates during the first enclosure period, only three of the six 

forest soils in the air‐dry/rewet + storage treatment group from Experiment 1 (Figure 2-1) 

generated enough CO2 to measure radiocarbon content. In addition, it was not possible to compare 

∆14Crespired across enclosure periods for the control‐1 samples as ∆14Crespired of the first enclosure 

period was not measured in 2011. 
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In contrast to ∆14Crespired, we did observe significant differences between the δ13C‐CO2 of the first 

enclosure period and that of the second enclosure period for the forest soils in the air‐dry/rewet + 

storage treatment group in Experiment 1 (mean difference = −1.16‰, 95% CI = [−1.69‰, −0.63‰]) 

and the control‐2 grassland soils (Experiment 2) (mean difference = 0.85‰, 95% CI = [0.64‰, 

1.07‰]) (Supplemental Figure 2-1). Note that as with ∆14C, δ13C‐CO2 was not measured for the first 

enclosure period of control‐1 incubations. 

2.6.3 Overall Treatment Effects on ∆14Crespired and δ13C‐CO2 

We observed consistent differences between control and treatment sample ∆14Crespired in the second 

enclosure period in all three experiments (Table 2-3). Treatment sample incubations typically 

resulted in differences between 20‰ and 40‰ relative to control sample incubations, although the 

majority of the differences were within ±20‰ (dashed lines, Figure 2-3). The samples from Oak 

Ridge are an exception in that mean difference in ∆14Crespired between storage treatment samples and 

corresponding control‐3 samples was −44.0‰ (Table 2-3). 

Forest and grassland soil ∆14Crespired shifted in opposite directions following treatment in Experiment 

1: the air‐dry/rewet + storage treatment led to depletion in forest soils, but enrichment in grassland 

soils (Table 2-3). In contrast, both forest and grassland soils in Experiment 2 responded to the air‐

dry/rewet treatment with enrichment in ∆14Crespired. Experiment 3 treatment sample ∆14Crespired 

tended to be depleted relative to the controls (points below the 1:1 line in Figure 2-3) for the 

majority of forest and grassland soils. 

We did not find evidence of a substantial effect of the amount of C respired on ∆14Crespired, nor 

consistent effects due to the change in soil moisture (Supplemental Figure 2-7, Supplemental 

Figure 2-8). 

Treatment samples in Experiment 1 and Experiment 2 showed significant differences (α = 0.05) in 

δ13C‐CO2 relative to the controls for both forest and grassland soils (Supplemental Figure 2-6). 

Overall differences in δ13C‐CO2 were slightly larger for forest soils than in grassland soils (Table 2-3). 

Note that comparisons of δ13C‐CO2 were not made in Experiment 3 owing to a lack of data for the 

control‐3 samples. 
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2.6.4 Storage Duration Effect on ∆14Crespired 

We used data from both Experiment 1 and Experiment 3 to assess the effect of storage duration. The 

longest duration of storage was 14 years, while the shortest was 5 years. Over this range of time, we 

did not observe a trend in the difference between control and treatment ∆14Crespired with increasing 

duration of storage (Figure 2-4). 

2.6.5 Time Series Analysis of ∆14Crespired (Experiments 1 and 2) 

For the sites sampled in both 2011 (Experiment 1) and 2019 (Experiment 2), the absolute value of 

the mean difference in ∆14Crespired between control and treatment samples was greater in grassland 

samples than in forest samples at both time points (Table 2-3). In addition to the absolute values of 

∆14Crespired, the difference between ∆14Crespired and the atmosphere in the year of sampling (∆∆14C) is a 

useful indicator of soil C transit times, i.e., the duration of time from when CO2 was fixed from the 

atmosphere to when it leaves the soil via respiration. We observed that sample ∆14Crespired was 

enriched relative to the atmosphere across ecosystem types for all both control and treatment 

samples at all timepoints, that is ∆∆14C values were all positive (Figure 2-5, Table 2-3). We measured 

lower ∆∆14C values for grassland samples than forest samples in both 2011 and 2019, meaning 

grassland sample ∆14Crespired was closer to the atmosphere than forest sample ∆14Crespired (Table 2-3). 

Within ecosystem types, control sample ∆∆14C values were lower than treatment samples for both 

2011 and 2019 grassland soils, as well as the 2019 forest soils. However, we observed the opposite 

trend for the 2011 forest soils: for these soils the treatment sample ∆14Crespired was closer to the 

atmosphere than control sample ∆14Crespired. 

2.7. Discussion 

2.7.1 How Closely do Incubations of Archived, Air‐Dried and Rewetted Soils Match 

Results From Fresh Soil Incubations? 

The results from all three experiments in this study show that measuring ∆14Crespired in incubations of 

air‐dried and archived soils is a promising technique for constructing time series of respired 

∆14Crespired and constraining soil carbon models. We observed that air‐drying and rewetting shifted 

observed ∆14Crespired relative to control incubations of soils that had never been air‐dried, but these 

differences were relatively small: on the order of 10‰–25‰ (excluding the samples from the Oak 

Ridge labeling experiment, Table 2-3). However, differences between control and treatment 
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∆14Crespired were significant for all three experiments (Table 2-3), suggesting that the process of 

drying and rewetting leads to utilization of substrates with distinct ∆14C signatures. 

2.7.2 Effects of Air‐Drying and Rewetting on the Age of Respired CO2 

We suggest that air‐drying and rewetting mobilizes carbon from more slowly cycling pools than 

would be available to the microbial community in soils that did not undergo air‐drying and rewetting. 

Given the trajectories of ∆14C in slow and fast cycling soil carbon pools over time, we can expect 

different responses to air‐drying and rewetting in ∆14Crespired in soils sampled at different times. The 

time series data from the Hainich‐Dün sites sampled in both 2011 and 2019 provide a case‐study for 

this behavior. At these sites we observed enrichment in ∆14Crespired following air‐drying and rewetting 

for the forest soils collected in 2019 (Experiment 2) and the grassland soils collected in both 2011 

(Experiment 1) and 2019 (Experiment 2), but depletion in the forest soils collected in 2011 

(Experiment 1). We present an empirical model of soil C dynamics developed at the Hainich‐Dün 

forest site in a previous study (Schrumpf and Kaiser, 2015) in order to illustrate the importance of 

the year of sampling and system‐specific carbon dynamics in interpreting ∆14Crespired following air‐

drying and rewetting (Figure 2-6). 

Comparing model projections of the trajectories for fast, slow and respired Δ14C with the ∆14Crespired 

measured in this study (Figure 2-6) indicates that our data are consistent with the mobilization of 

carbon from the slow C pool following drying and rewetting. Following treatment, ∆14Crespired (black 

points) shifts toward the slow pool ∆14C curve (dashed blue line), indicating an increased 

contribution to respiration from this pool. Due to the crossing of the slow and fast (magenta) pool 

curves in 2015, increased contribution of the slow pool to respiration following air‐drying and 

rewetting leads to relative depletion of ∆14Crespired in 2011, but relative enrichment of ∆14Crespired in 

2019. Thus, the bias in ∆14Crespired introduced by air‐drying and rewetting could be either higher or 

lower relative to a sample incubated without air‐drying depending on the year of sampling. 

2.7.3 Explaining Differences in Forest Versus Grassland Soil ∆14Crespired in 

Experiments 1 and 2 

A key difference in carbon cycling between forest and grassland ecosystems is the potential for 

carbon storage in woody tissues after it is fixed from the atmosphere (Gaudinski et al., 2000). Carbon 

entering the soil in forest ecosystems may be “pre‐aged” compared to inputs in grassland ecosystems. 
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Earlier work in some of the same Central Germany forest and grassland ecosystems analyzed in this 

study (the Hainich‐Dün and Schorfheide‐Chorin regions) provides support for the pre‐ageing of 

carbon in forest ecosystems: Solly et al. (2014) found the mean age of the carbon in fine roots in the 

forest ecosystems to be approximately 10 years, in comparison to 1–2 years for fine roots in the 

grassland ecosystems. This pre‐aging, or lag effect, for fine root inputs may explain the greater ∆∆14C 

values seen for the respiration from forest ecosystems as compared to the grassland ecosystems in 

this study (Table 2-3). 

In contrast to forests, the grassland soils responded to the air‐drying and rewetting treatment with 

relative enrichment in ∆14Crespired in both 2011 (Experiment 1) and in 2019 (Experiment 2) (Figure 

2-5). However, we believe that the grassland soil response is due to the same mechanism as in the 

forest soils: a greater contribution of more slowly cycling carbon to respiration following air‐drying 

and rewetting. The smaller positive ∆∆14C values we observed in grassland soils, in addition to the 

known shorter ‘lag’ effect, suggest that overall C cycling rates are faster in grasslands than in forests, 

which would lead to an earlier crossing of the 14C curves for the fast and slow cycling soil carbon 

pools (see Figure 2-6). Our results indicate that for the Central Germany sites we sampled in this 

study, this crossing occurred prior to 2011 for the grassland soils, but between 2011 and 2019 for 

the forest soils. If this is correct, even though the net change in ∆14Crespired due to air‐drying and 

rewetting differed between forests and grasslands in Experiment 1, both outcomes are still be 

consistent with the explanation that air‐drying and rewetting mobilizes additional carbon from a 

more slowly cycling pool. 

2.7.4 Is Rewetting Pulse CO2 Derived From Different C Sources? 

There are competing hypotheses for the source of CO2 released immediately following rewetting, 

which seek to explain the immediate increase in respiration as well as the subsequent return to basal 

respiration rates (Fierer and Schimel, 2003; Kaiser et al., 2015; Slessarev et al., 2020; Warren, 2016; 

Williams and Xia, 2009). Due to the often dramatic differences in respiration rates between the 

rewetting period and subsequent respiration (e.g., Figure 1-1), previous authors posit differences in 

the substrates fueling rewetting versus subsequent respiration. However, we did not find a 

significant difference in ∆14Crespired between these two respiration periods. This finding was true for 

all of the samples in which we measured ∆14Crespired in both the rewetting pulse period and a second 

enclosure period (Figure 2-3). These results suggest that the change in substrate availability 

initiated by air‐drying and rewetting may not be limited to the rewetting pulse. 
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There is a large body of literature that provides evidence for different chemistry of the substrates 

fueling the rewetting pulse compared to that of the substrates fueling basal respiration (Williams and 

Xia, 2009; Wu and Brookes, 2005; Xiang et al., 2008; Franzluebbers et al., 2000). However, as other 

recent work has shown, persistence of soil organic matter is not solely due to chemistry (Dungait et 

al., 2012; Lützow et al., 2006; Marschner et al., 2008; Schmidt et al., 2011). The similarity in ∆14C 

across substrates utilized in the rewetting pulse and the second enclosure period, despite likely 

diverging in chemistry (cf. change in δ13C‐CO2, Table 2-3 and Supplemental Figure 2-6), is therefore 

in line with the modern paradigm (Lehmann and Kleber, 2015; Lehmann et al., 2020). Alternatively, 

microbial recycling over the relatively short duration of the incubations in this study (mean = 9 d) 

could also explain the lack of change in ∆14Crespired between enclosure periods. For context, we note 

that the mean amount of CO2 respired in the incubations in this study was 0.8% of the initial total soil 

organic carbon. This microbial recycling hypothesis is also supported by the shifts in δ13C observed 

between the rewetting pulse and the second enclosure period, which we did find to be significant. 

While it is beyond the scope of this study, the age of C released has potential to help refine hypotheses 

about underlying mechanisms. For example, the decomposition of older, physically protected organic 

matter via disruption of aggregates (Kaiser et al., 2015) could be consistent with our observations, 

which could be tested by comparing measurements of C isotopes in physically separated aggregates 

to those in respired CO2. Similarly, future experiments could be designed to investigate more specific 

hypotheses regarding extracellular versus microbially derived sources for fueling the rewetting 

pulse. For example, comparing C isotopes in microbial phospholipid fatty acids (PLFA) versus those 

in water extractable organic C to what is respired before and after air‐drying and rewetting would be 

one approach for assessing the relative importance of microbial recycling versus mineral‐associated 

C (Slessarev et al., 2020). 

2.7.5 Implication of δ13C‐CO2 Shifts Following Drying and Rewetting 

The consistent enrichment in δ13C‐CO2 seen following both the air‐dry/rewet + storage treatment 

and the air‐dry/rewet treatment (Table 2-3, Supplemental Figure 2-5) could have multiple 

possible causes. Microbial recycling has been shown to lead to δ13C enrichment (Wynn et al., 2005), 

and to be enhanced following air‐drying and rewetting (Brödlin et al., 2019; Slessarev et al., 2020). If 

the carbon substrate responsible for the rewetting pulse is derived from mobilization of older, 

microbially processed, and/or mineral‐associated C, increases in ∆14Crespired and δ13C‐CO2 such as 

those observed in both the air‐dry/rewet and the air‐dry/rewet + storage samples could be expected 
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(Wynn et al., 2005). As noted previously, the ∆14C unit accounts for mass‐dependent fractionation 

effects, thus this phenomenon does not affect the radiocarbon results as reported. 

We observed greater enrichment of δ13C‐CO2 in forest soils than in grassland soils, which could 

indicate greater microbial recycling in forest soils or potentially more mobilization of mineral‐

associated organic matter in forest soils than in grassland soils following treatment. Mineral‐

associated organic matter has been shown to be more enriched in δ13C as well as older on average 

than bulk soil organic matter (Schrumpf et al., 2013). This combination of observations indicates that 

more mineral‐associated organic carbon may have been released upon rewetting in the forest soils 

than in the grassland soils. However, the similarity in the direction of the δ13C‐CO2 response across 

forest and grassland soils (Supplemental Figure 2-5) suggests that a similar mechanism is at work 

in both ecosystems. 

2.7.6 Assessing Potential Storage Effects on ∆14Crespired 

Data from Experiment 1 and Experiment 3 showed that storage duration does not have a strong effect 

on ∆14Crespired, at least within a period of 5–14 years (Figure 2-4). Nearly all of the soils incubated 

were from forests soils collected before 2019, and these all exhibited depletion of ∆14Crespired following 

air‐drying/rewet + storage treatment (Figure 2-3, Figure 2-4). However, the depletion in the forest 

soils was greatest in the samples from Oak Ridge (magenta triangles, Figure 2-3), which had been 

substantially enriched in ∆14C above background levels through release of enriched 14C from a nearby 

incinerator four years prior to sample collection. This and a subsequent manipulation experiment 

resulted in 14C enrichment of both surface litter and root inputs (at levels between +400‰ and + 

1,000‰) that persisted until the time of sample collection (Cisneros-Dozal et al., 2006). 

One explanation for the greater shift observed for the Oak Ridge soils as compared to the nonlabeled 

forest soils is that for these labeled soils there is a greater difference in ∆14C between the carbon fixed 

in the two decades prior to sampling (∼80–200‰) and the labeled carbon (+400‰–1,000‰) 

introduced to the soil in the four years prior to sampling. The consistently lower ∆14Crespired for 

samples incubated after air‐drying and rewetting adds further support to the idea that C being 

mobilized comes primarily from CO2 made available for decomposition from C fixed from the 

atmosphere >4 years previously. Alternatively, the greater difference observed in the Oak Ridge 

samples could indicate that the most recently fixed carbon in archived soils is lost over the storage 
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period. However, given that storage of air‐dried samples has not been linked to substantial loss of 

soil C in previous studies (Blake et al., 2000), this seems unlikely. 

Thus, our major finding is that incubation of archived soils can provide useful information on the 

dynamics of soil carbon and, in particular, be helpful for constraining models of soil carbon. As it is 

clear that the process of air‐drying and rewetting likely mobilizes and increases the contribution of 

older soil C to respiration in incubations, we recommend that modern soil comparisons use the same 

treatment (air‐drying and rewetting) when creating a time series using newly collected soils from 

the same location. 

2.8. Conclusion 

Measuring ∆14Crespired in incubations of air‐dried and archived soils is a promising technique for 

constructing time series of respired ∆14Crespired and constraining soil carbon models. Air‐drying and 

rewetting of soils led to small but significant differences in the ∆14C of respired CO2 in laboratory 

incubations when compared to incubations of the same soils without air‐drying. The magnitudes of 

these differences do not appear to be affected by the duration of storage and are within 25‰ for the 

majority of forest soils and 40‰ for the more limited number of grassland samples studied. Samples 

collected and analyzed in the same laboratory had smaller differences of 12.1‰, and 20.4‰, for 

forest and grasslands, respectively. (For context, ∆14C of atmospheric CO2 has declined by ca. 5‰ per 

year between 2000 and 2015 (Graven et al., 2017). 

Overall, our results demonstrate that differences in ∆14Crespired between archived soils and what might 

have been observed in samples incubated prior to air‐drying and rewetting depend on two key 

variables: the year of sample collection and the carbon dynamics of the system being studied. 

Determining the exact mechanism driving the differences in ∆14Crespired is beyond the scope of this 

study, but our results suggest that the CO2 released upon rewetting air‐dried soils is fueled 

predominantly by older carbon, specifically through the mobilization of substrate from soil organic 

matter pools dominated by carbon fixed years to decades previously. Furthermore, this shift in 

∆14Crespired persists beyond the rewetting pulse, suggesting that simply excluding the rewetting pulse 

CO2 when measuring ∆14Crespired does not eliminate the bias introduced by air‐drying and rewetting. 

Finally, we recommend that when comparing ∆14Crespired between recently collected soils and 

archived soils, both samples should undergo the same air‐drying and rewetting procedure to 

minimize bias. 
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2.9.  Supplemental Information 

2.9.1 Methods: Linear mixed models 

We compared the results of the paired mean difference analysis approach discussed in the main text 

with a linear mixed modeling (LMM) framework. For the first set of models, we set ∆14Crespired 

observed in the second enclosure period as the response variable, and used sample ID as a random 

intercept term to account for the imbalance in the number of laboratory replicates analyzed for 

control versus treatment incubations. For fixed effects, we assessed the interaction of ecosystem type 

with treatment, as well as the three-way interaction of treatment, ecosystem type, and experiment 

for the combine dataset of Experiment 1 and Experiment 2 samples. We evaluated the significance of 

the treatment effect by looking at the contrasts between control and treatment samples across 

experiments but within ecosystem types. These models were also run for 13C-CO2. 

We also used the LMM framework to assess changes in ∆14Crespired and 13C-CO2 between enclosure 

periods. For these models we extended our initial model by adding enclosure period as an additional 

dependent variable. These models were restricted to the experiments and treatments where we 

measured the response variable in both enclosure periods (Experiment 1 treatment samples, and all 

Experiment 2 samples). We looked at the overall significance of the parameter estimates as well as 

the contrasts from this model by each experiment, treatment, and ecosystem type.  

We tested the effect of storage duration on observed ∆14Crespired using a combined dataset of 

Experiments 1 and Experiment 3 samples. We used ∆14Crespired observed in the second enclosure 

period for all samples except the Experiment 3 treatment samples for which only a single enclosure 

period was observed. We constructed a linear mixed model with storage duration, treatment, and the 

interaction of these two variables as fixed effects. As with the previous models we allowed for a 

random intercept term for each sample. We did not include ecosystem type in this model as all of the 

grassland samples were collected at the same point in time. We also excluded the effect of 

experiment, since this could lead to a spurious relationship due to the change in ∆14C of atmospheric 

CO2 over time and the fact that samples were collected and analyzed at different times. This model 

was run first with and then without the Oak Ridge samples, as we considered these samples to be a 

separate population as they contain 14C from a labelling experiment in addition to atmospheric 14C.   

All statistical analyses were performed in R (R Core Team 2019). We used the package lme4 (Bates 

et al., 2015) to perform the mixed modeling, and for contrast analysis we used the package ‘emmeans’ 
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(Lenth, 2021). We employed Tukey’s honestly significant difference test to account for multiple 

comparisons and the Kenward-Roger method for estimating degrees of freedom, an approach which 

has shown to perform well for small sample sizes (Kenward and Roger, 1997). 

2.9.2 Results: Linear mixed models  

Contrast analysis of the LMM output shows that control-treatment differences are not significant for 

the forest samples, but are significant for the grassland samples in both Experiment 1 and 

Experiment 2 (first two columns of Supplemental Figure 2-1). While the results are similar to the 

paired difference approach used in the main text, the paired difference approach found both forest 

and grassland differences to be significant. 

Comparing the differences observed over time when samples were treated the same at both 

timepoints (columns "∆/t Ctl" and "∆/t Trt", Supplemental Figure 2-1)we see significant differences 

for both the samples that were never air-dried ("∆/t Ctl") and the samples that were air-dried and 

rewet ("∆/t Trt"). Both differences are positive, i.e., ∆14Crespired declined for both control and treatment 

samples over the period 2011 to 2019. However, we see that the difference over time appear smaller 

for the forest samples when comparing the difference between the treatment samples (26‰) to the 

difference between the control samples (49‰), although the confidence intervals overlap 

substantially. We believe this provides support for reliability of the archived technique when looking 

at changes in ∆14Crespired over time across samples that have been air-dried and rewetted. 

Finally, when comparing treatment samples that have never been air-dried (final two columns of 

figure), the estimated differences are skewed higher or are no longer significant. Specifically, we fail 

to detect a significant change in the grassland ∆14Crespired over time when comparing control samples 

from 2011 to air-dried and rewet samples from 2019 (penultimate column, "∆/t Ex1 Ctl - Ex2 Trt"). 

Looked at the other way, i.e., treatment ∆14Crespired from the 2011 grassland samples compared to 

control grassland samples in 2019, the difference is substantially exaggerated (last column): 58‰ 

vs. 27‰ (ctl-ctl) or 38‰ (trt-trt). The difference is also greater for forest samples for both of these 

cross-treatment comparisons. These differences imply it is important to treat the soils from all time 

points the same in regards to air-drying and rewetting when constructing a time series using 

∆14Crespired measured on archived soils in order to minimize bias. 
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2.9.3 Effect of initial soil moisture contents on 2nd enclosure period ∆14Crespired 

Differences in field moisture content of samples could be related to the magnitude of the shift in 

∆14Crespired observed between control and treatment sample, as control sample field moisture content 

varied. All treatment samples were air-dried in the laboratory prior to rewetting: a change in 

moisture content of zero percent water holding capacity (%WHC) to 60 %WHC. In contrast, moisture 

adjustment of control samples was made from field moisture, thus, for example, control samples with 

lower field moisture contents received a correspondingly greater water addition than wetter control 

samples.  

In order to control for the variance in field moisture content of control samples, we looked at the 

relationship of the difference in the second enclosure period ∆14Crespired observed between control 

and treatment samples and the change in moisture content of the control samples. If the shift in 

∆14Crespired observed in response to the air-drying and rewetting treatment were a linear function of 

the change in moisture content, the differences between control and treatment ∆14Crespired should be 

smaller for samples with lower field moisture. However, we did not observe any consistent 

relationship between the difference in ∆14Crespired in the and field moisture (Supplemental Figure 

2-8).  

We observed the strongest trend in the Experiment 2 grassland samples, but the trend was opposite 

to what we expected: differences in ∆14Crespired between treatment samples and control samples were 

greater for drier samples than wetter samples (Supplemental Figure 2-8). Experiment 2 forest 

samples showed the expected trend, but it did not appear to be linear (Supplemental Figure 2-8). 

Given the relatively low sample number when considered within treatment and ecosystem groups 

(Experiment 1 n = 6, Experiment 2 n = 3), we do not consider these trends to be significant, but the 

data from Experiment 2 suggest that the relationship between the change in ∆14Crespired and the 

magnitude of rewetting warrants further study. 
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2.10. Tables 

Table 2-1. Mean soil properties by sampling region  

      Nutrients Particle size 

      Organic C Total N Sand Silt Clay 

Experiment Regiona Ecosystemb nc MAT MAP Mean sd Mean sd Mean sd Mean sd Mean sd 

   sites °C mm yr-1 g kg-1 

1, 2 Central Germany 1 forest 3 8.3 550 22.1 8.1 1.1 0.3 861 44 92 27 47 20 

1, 2 Central Germany 1 grassland 3 8.3 550 22.8 1.5 2.2 0.1 731 99 158 75 111 31 

1, 2, 3 Central Germany 2 forest 3 7.3 650 23.7 0.5 1.7 0.1 54 18 754 7 193 15 

1, 2, 3 Central Germany 2 grassland 3 7.3 650 41.8 1.9 3.9 0.1 32 17 553 78 414 65 

3 Oak Ridge, USA forest 2 14.1 1360 24.9 0 1.1 0.1 - - - - - - 

3 Sierra Nevada, USA forest 2 9.8 960 28.4 1.4 1.1 0.1 700 141 210 85 100 71 

3 Harvard Forest, USA forest 1 7.9 1075 60.0 - - - - - - - - - 

3 Duke FACE, USA forest 1 15.5 1140 16.6 - 0.8 - - - - - - - 

aThe Central Germany regions are from the Biodiversity Exploratory project: Schorheide-Chorin (region 1) and Hainich-Dün (region 2). 
Climate data for these sites are from Fischer et al. (2010). Harvard Forest nutrient data from Gaudinski et al. (2000); climate data are the 
ten-year averages from 1991 to 2000 (Boose and Gould, 2021); all Oak Ridge data are from Cisneros-Dozal et al. (2006); Duke FACE data 

are from Hopkins et al. (2012); Sierra Nevada data are from Koarashi et al. (2012). Note that not all data were available for all sites. bCentral 
Germany 2, Harvard Forest, and Oak Ridge forest sites are mixed deciduous; Central Germany 2 forest sites include both coniferous and 
deciduous stands; Sierra Nevada and Duke FACE forest sites are exclusively coniferous. Grasslands were all cool-season grasses (C3 

photosynthetic pathway). cSee Table 2-2 for the total number of samples per experiment, and Table 2-3 for the number of samples per site 
per experiment. 
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Table 2-2. Experimental design 

        
Enclosure periodc 

      
Moisture contentb 1st (rewetting pulse) 2nd 

Experiment n Treatment Repsa 

Sampling 

date 

Incubation 

date Intial Adjusted Time ∆14C δ13C Time ∆14C δ13C 
    

year year % grav % grav days 
  

days 
  

1 12 control-1 1 2011 2011 24-55 (11) 24-61 (13) 4 no no 14 yes yes 

12 air-dry/rewet + storage 2 2011 2018 <1 24-61 (13) 4 yes yes 5-45 yes yes 

2 6 control-2 2 2019 2019 17-40 (10) 22-42 (9) 4 yes yes 10-38 yes yes 

6 air-dry/rewet 2 2019 2019 <1 22-42 (9) 4 yes yes 7 yes yes 

3 29 control-3 1-3 1999-2011 1999-2011 6-95 (18) 18-95 (17) 1-10 no no 5-14 yes no 

29 storage duration 1-3 2018 2009, 2018 <1 18-95 (17) - - - 5-45 yes no 

aLaboratory incubation replicates. bMin. and max. values given for control samples, with standard deviations in parentheses. Initial moisture content for 
treatment samples was <1% following air-drying. Moisture content was adjusted to 60% of water holding capacity for all Experiment 1 and Experiment 

2 samples (Methods), but as WHC was not determined for all of Experiment 3 samples the gravimetric (grav) data is provided instead. cFirst enclosure 
period duration range is only taken from a subset of the samples where it was explicitly reported (n = 4, Hopkins et al., 2012 and Koarashi et al., 2012). 
The duration was reported as an estimate for some samples (1 week, n = 20, Cisneros-Dozal et al., 2006) or not reported at all for other samples (n = 4, 
Gaudinski et al., 2000). Δ14C-CO2 and respiration rates from the first enclosure period were only measured for 2 of the 29 control-3 samples (Koarashi et 
al., 2012). As we did not find significant differences between Δ14C-CO2 of the 1st and 2nd enclosure periods (Results), we decided to incubate the storage 
duration samples in Experiment 3 for single enclosure period in order to better control the total amount of CO2 respired. 
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Table 2-3. ∆14C and δ13C of respired CO2 in the second enclosure perioda 

    
 ∆14Crespired δ13C-CO2 ∆14Crespired δ13C-CO2 

Experimentb Ecosystem Treatment n Mean Mean ∆∆ sdc Mean sdc Mean CI95c Mean CI95c 
    

‰ 

1 forest air-dry/rewet + storage 6 82.2 44.9 8.8 -24.2 1.1 
    

1 forest control-1 6 93.8 56.5 7.7 -26.8 0.2 -11.6 [-15.7, -7.5] 2.38 [1.83, 2.92] 

1 grassland air-dry/rewet + storage 6 77.8 40.5 11.4 -27.2 0.5 
    

1 grassland control-1 6 54.5 17.2 16.8 -27.7 0.4 23.3 [16.7, 29.9] 0.51 [0.18, 0.83] 

2 forest air-dry/rewet only 3 51.8 62.9 24.9 -24.5 1.4 
    

2 forest control-2 3 39.1 50.2 17.9 -26.1 0.8 12.7 [4.2, 21.2] 1.56 [0.41, 2.72] 

2 grassland air-dry/rewet only 3 39.8 50.9 19.9 -27.5 0.4 
    

2 grassland control-2 3 20.2 31.4 9.6 -28.6 0.3 19.6 [9.3, 29.9] 1.11 [ 0.57, 1.66] 

3a forest storage duration 9 - - - - - 
    

3a forest control-3 9 - - - - - -24.2 [-37.4, -11.0] - - 

3a grassland storage duration 3 - - - - - 
    

3a grassland control-3 3 - - - - - -29.3 [-58.4, -0.2] - - 

3b forest storage duration 17 - - - - - 
    

3b forest control-3 17 - - - - - -44.0 [-52.0, -35.9] - - 

aExperiment 3 storage duration treatment samples were only incubated for a single enclosure period and so data were measured following this period. 

bResults from Experiment 3 reported separately for the enriched samples from Oak Ridge (3b) and the nonenriched samples (3a). Mean control and 

treatment Δ14C-CO2 are only reported for Experiments 1 and 2 where the aggregated data are representative of one site at one point in time. cThe ΔΔ 

notation denotes the difference from the atmosphere at the time of sampling.
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Supplemental Table 2-1. Linear mixed model marginal means for enclosure period ∆14Crespired 

Period Treatment Experiment Type mean SE df lower.CL upper.CL 

2nd control 1 forest 93.8 7.8 24.4 77.7 109.9 

2nd treatment 1 forest 82.2 6.9 15.7 67.5 96.9 

1st treatment 1 forest 91.4 8.1 26.7 74.8 108.0 

2nd control 2 forest 44.0 8.2 27.2 27.3 60.8 

1st control 2 forest 20.2 8.2 27.2 3.5 37.0 

2nd treatment 2 forest 56.7 8.2 27.2 40.0 73.5 

1st treatment 2 forest 55.3 8.2 27.2 38.6 72.0 

2nd control 1 grassland 54.5 7.8 24.4 38.4 70.6 

2nd treatment 1 grassland 77.8 6.9 15.7 63.1 92.4 

1st treatment 1 grassland 75.0 7.0 16.5 60.2 89.9 

2nd control 2 grassland 20.8 8.1 26.9 4.2 37.4 

1st control 2 grassland 10.4 8.1 26.9 -6.3 27.0 

2nd treatment 2 grassland 40.3 8.1 26.9 23.7 57.0 

1st treatment 2 grassland 39.6 8.1 26.9 23.0 56.2 
 
 

Supplemental Table 2-2. Linear mixed model marginal means for control and treatment ∆14Crespired 
(2nd enclosure period only) 

Treatment Experiment Type mean SE df lower.CL upper.CL 

control 1 forest 93.8 6.0 18.8 81.3 106.3 

treatment 1 forest 82.2 5.4 13.0 70.6 93.9 

control 2 forest 43.0 6.3 21.3 29.9 56.0 

treatment 2 forest 55.7 6.3 21.3 42.6 68.7 

control 1 grassland 54.5 6.0 18.8 42.0 67.0 

treatment 1 grassland 77.8 5.4 13.0 66.1 89.4 

control 2 grassland 21.8 6.3 21.3 8.8 34.8 

treatment 2 grassland 41.4 6.3 21.3 28.3 54.4 
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Supplemental Table 2-3. Storage duration effect in linear mixed models (including Oak Ridge 
samples) 

Estimated Trends 

Treatment Duration SE df lower.CL upper.CL 

control 12.18 4.46 44.7 3.205 21.2 

treatment 8.46 4.48 45.8 -0.569 17.5 

      

Degrees-of-freedom method: Kenward-Roger    

Confidence level: 0.95      

      

Contrasts 

Contrast Estimate SE df t ratio p 

control - treatment 3.73 1.31 61.4 2.855 0.0059 

      

Degrees-of-freedom method: Kenward-Roger    

Supplemental Table 2-4. Storage duration effect in linear mixed models (excluding Oak Ridge 
samples) 

Estimated Trends 

Treatment Duration SE df lower.CL upper.CL 

control 8.59 4.63 36.9 -0.786 18.0 

treatment 5.61 4.54 34.4 -3.605 14.8 

      

Degrees-of-freedom method: Kenward-Roger    

Confidence level: 0.95     

      

Contrasts 

Contrast Estimate SE df t ratio p 

control - treatment 2.98 3.9 44.5 0.765 0.4485 

      

Degrees-of-freedom method: Kenward-Roger    
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Experiment

Collection 

date

Treatment 

incubation 

date

Control 

incubation 

laboratory

Treatment 

incubation 

laboratory

Control 

AMS 

facility

Treatment 

AMS 

facility Latitude Longitude Region Site Ecosystem ID

Incubation 

replicates Soil order Sieved Top Bottom

Field 

moisture Organic C Total N Sand Silt Clay Reference

year WRB name

< 

2mm gravimetric gravimetric

% water 

holding 

capacity g kg
-1

g kg
-1

g kg
-1

g kg
-1

g kg
-1

1 2011 2018 MPI-BGC MPI-BGC P P 53.09 13.63 Central Germany Schorfheide-Chorin forest SEW11 2 Cambisol Yes 0 10 0.26 0.26 60 31.3 1.3 884 85 31 Solly et al. 2014

1 2011 2018 MPI-BGC MPI-BGC P P 52.90 13.85 Central Germany Schorfheide-Chorin forest SEW34 2 Albeluvisol Yes 0 10 0.24 0.24 60 16.4 0.7 889 69 42 Solly et al. 2014

1 2011 2018 MPI-BGC MPI-BGC P P 52.90 13.93 Central Germany Schorfheide-Chorin forest SEW43 2 Cambisol Yes 0 10 0.30 0.30 60 18.4 1.1 810 121 69 Solly et al. 2014

1 2011 2018 MPI-BGC MPI-BGC P P 53.12 13.68 Central Germany Schorfheide-Chorin grassland SEG38 2 Cambisol Yes 0 10 0.25 0.27 60 22.8 2.2 838 72 89 Solly et al. 2014

1 2011 2018 MPI-BGC MPI-BGC P P 53.12 13.84 Central Germany Schorfheide-Chorin grassland SEG40 2 Luvisol Yes 0 10 0.26 0.27 60 21.3 2.0 710 192 98 Solly et al. 2014

1 2011 2018 MPI-BGC MPI-BGC P P 52.98 13.83 Central Germany Schorfheide-Chorin grassland SEG46 2 Cambisol Yes 0 10 0.31 0.34 60 24.3 2.3 644 210 146 Solly et al. 2014

1 2011 2018 MPI-BGC MPI-BGC P P 51.34 10.36 Central Germany Hainich-Dün forest HEW22 2 Luvisol Yes 0 10 0.38 0.37 60 23.3 1.7 68 747 184 Solly et al. 2014

1 2011 2018 MPI-BGC MPI-BGC P P 51.11 10.45 Central Germany Hainich-Dün forest HEW41 2 Luvisol Yes 0 10 0.40 0.42 60 23.4 1.9 34 754 210 Solly et al. 2014

1 2011 2018 MPI-BGC MPI-BGC P P 51.10 10.46 Central Germany Hainich-Dün forest HEW42 2 Stagnosol Yes 0 10 0.34 0.36 60 24.3 1.7 60 760 184 Solly et al. 2014

1 2011 2018 MPI-BGC MPI-BGC P P 51.28 10.45 Central Germany Hainich-Dün grassland HEG10 2 Vertisol Yes 0 10 0.47 0.61 60 43.7 4.0 30 532 436 Solly et al. 2014

1 2011 2018 MPI-BGC MPI-BGC P P 51.08 10.57 Central Germany Hainich-Dün grassland HEG32 2 Cambisol Yes 0 10 0.52 0.54 60 40.0 3.8 17 640 340 Solly et al. 2014

1 2011 2018 MPI-BGC MPI-BGC P P 51.29 10.38 Central Germany Hainich-Dün grassland HEG48 2 Cambisol Yes 0 10 0.55 0.56 60 41.6 4.0 50 488 465 Solly et al. 2014

2 2019 2019 MPI-BGC MPI-BGC P P 51.34 10.36 Central Germany Hainich-Dün forest HEW22 2 Luvisol Yes 0 10 0.38 0.37 60 23.3 1.7 68 747 184 Solly et al. 2014

2 2019 2019 MPI-BGC MPI-BGC P P 51.11 10.45 Central Germany Hainich-Dün forest HEW41 2 Luvisol Yes 0 10 0.40 0.42 60 23.4 1.9 34 754 210 Solly et al. 2014

2 2019 2019 MPI-BGC MPI-BGC P P 51.10 10.46 Central Germany Hainich-Dün forest HEW42 2 Stagnosol Yes 0 10 0.34 0.36 60 24.3 1.7 60 760 184 Solly et al. 2014

2 2019 2019 MPI-BGC MPI-BGC P P 51.28 10.45 Central Germany Hainich-Dün grassland HEG10 2 Vertisol Yes 0 10 0.23 0.22 60 43.7 4.0 30 532 436 Solly et al. 2014

2 2019 2019 MPI-BGC MPI-BGC P P 51.08 10.57 Central Germany Hainich-Dün grassland HEG32 2 Cambisol Yes 0 10 0.17 0.23 60 40.0 3.8 17 640 340 Solly et al. 2014

2 2019 2019 MPI-BGC MPI-BGC P P 51.29 10.38 Central Germany Hainich-Dün grassland HEG48 2 Cambisol Yes 0 10 0.19 0.22 60 41.6 4.0 50 488 465 Solly et al. 2014

3 2011 2018 MPI-BGC MPI-BGC P P 51.34 10.51 Central Germany Hainich-Dün forest HEW26 2 Luvisol Yes 0 10 0.34 0.36 60 24.4 1.6 54 796 150 Solly et al. 2014

3 2011 2018 MPI-BGC MPI-BGC P P 51.18 10.38 Central Germany Hainich-Dün forest HEW47 2 Stagnosol Yes 0 10 0.43 0.45 60 32.5 2.4 46 632 323 Solly et al. 2014

3 2011 2018 MPI-BGC MPI-BGC P P 51.22 10.37 Central Germany Hainich-Dün grassland HEG20 3 Stagnosol Yes 0 10 0.47 0.45 60 27.2 2.3 102 661 239 Solly et al. 2014

3 2011 2018 MPI-BGC MPI-BGC P P 51.11 10.43 Central Germany Hainich-Dün grassland HEG33 3 Cambisol Yes 0 10 0.47 0.47 60 40.1 3.8 29 618 353 Solly et al. 2014

3 2011 2018 MPI-BGC MPI-BGC P P 51.21 10.39 Central Germany Hainich-Dün grassland HEG6 3 Stagnosol Yes 0 10 0.41 0.45 60 20.8 2.0 45 698 257 Solly et al. 2014

3 2008 2018 UCI UCI UCI P 35.98 -79.09 Duke FACE Duke FACE control forest 120 1 Ultic Alfisol Yes 5 15 0.95 0.95 16.6 0.8 Hopkins et al. 2012

3 1999 2009 UCI UCI UCI UCI 42.54 -72.18 Harvard Forest Harvard Forest forest NWN-1 Ap (bag) 1 Inceptisol Yes 0 16 60.0 Gaudinski et al. 2001

3 1999 2009 UCI UCI UCI UCI 42.54 -72.18 Harvard Forest Harvard Forest forest NWN-1 Ap #27 1 Inceptisol Yes 0 16 60.0 Gaudinski et al. 2001

3 1999 2009 UCI UCI UCI UCI 42.54 -72.18 Harvard Forest Harvard Forest forest NWN-2 Ap #34 1 Inceptisol Yes 0 16 60.0 Gaudinski et al. 2001

3 1999 2009 UCI UCI UCI UCI 42.54 -72.18 Harvard Forest Harvard Forest forest NWN-1 Ap #44 1 Inceptisol Yes 0 16 60.0 Gaudinski et al. 2001

3 2004 2018 UCI UCI UCI P 35.94 -84.33 Oak Ridge TVA forest TVA 6E C 1 Inceptisol No 0 5 0.28 0.28 24.9 1.2 Cisneros-Dozal et al. 2005

3 2004 2018 UCI UCI UCI P 35.94 -84.33 Oak Ridge TVA forest TVA 2B C 1 Inceptisol No 0 5 0.30 0.30 24.9 1.2 Cisneros-Dozal et al. 2005

3 2004 2018 UCI UCI UCI P 35.94 -84.33 Oak Ridge TVA forest TVA 3B C 1 Inceptisol No 0 5 0.49 0.49 24.9 1.2 Cisneros-Dozal et al. 2005

3 2004 2018 UCI UCI UCI P 35.94 -84.33 Oak Ridge TVA forest TVA 5B C 1 Inceptisol No 0 5 0.26 0.26 24.9 1.2 Cisneros-Dozal et al. 2005

3 2004 2018 UCI UCI UCI P 35.97 -84.27 Oak Ridge Walker Branch forest WB 4B C 1 Ultisol No 0 5 0.34 0.34 24.9 1.0 Cisneros-Dozal et al. 2005

3 2004 2018 UCI UCI UCI P 35.97 -84.27 Oak Ridge Walker Branch forest WB 5B C 1 Ultisol No 0 5 0.25 0.25 24.9 1.0 Cisneros-Dozal et al. 2005

3 2004 2018 UCI UCI UCI P 35.97 -84.27 Oak Ridge Walker Branch forest WB 8B C 1 Ultisol No 0 5 0.34 0.34 24.9 1.0 Cisneros-Dozal et al. 2005

3 2004 2018 UCI UCI UCI P 35.97 -84.27 Oak Ridge Walker Branch forest WB 3E C 1 Ultisol No 0 5 0.36 0.36 24.9 1.0 Cisneros-Dozal et al. 2005

3 2004 2018 UCI UCI UCI P 35.97 -84.27 Oak Ridge Walker Branch forest WB 7E C 1 Ultisol No 0 5 0.18 0.18 24.9 1.0 Cisneros-Dozal et al. 2005

3 2004 2018 UCI UCI UCI P 35.94 -84.33 Oak Ridge TVA forest TVA 4E 1 Inceptisol No 0 5 0.26 24.9 1.2 Cisneros-Dozal et al. 2005

3 2004 2018 UCI UCI UCI P 35.94 -84.33 Oak Ridge TVA forest TVA 6E 1 Inceptisol No 0 5 0.30 24.9 1.2 Cisneros-Dozal et al. 2005

3 2004 2018 UCI UCI UCI P 35.94 -84.33 Oak Ridge TVA forest TVA 8E 1 Inceptisol No 0 5 0.22 24.9 1.2 Cisneros-Dozal et al. 2005

3 2004 2009 UCI USGS Menlo Park UCI UCI 35.94 -84.33 Oak Ridge TVA forest TVA2B-C_iT2 1 Inceptisol No 0 5 0.30 24.9 1.2 Cisneros-Dozal et al. 2005

3 2004 2009 UCI USGS Menlo Park UCI UCI 35.94 -84.33 Oak Ridge TVA forest TVA3-C_iT1 1 Inceptisol No 0 5 0.49 24.9 1.2 Cisneros-Dozal et al. 2005

3 2004 2009 UCI USGS Menlo Park UCI UCI 35.97 -84.27 Oak Ridge Walker Branch forest WB4B-C_iT2 1 Ultisol No 0 5 0.34 24.9 1.0 Cisneros-Dozal et al. 2005

3 2004 2009 UCI USGS Menlo Park UCI UCI 35.97 -84.27 Oak Ridge Walker Branch forest WB5-C_iT2 1 Ultisol No 0 5 0.25 24.9 1.0 Cisneros-Dozal et al. 2005

3 2004 2009 UCI USGS Menlo Park UCI UCI 35.97 -84.27 Oak Ridge Walker Branch forest WB8-C_iT2 1 Ultisol No 0 5 0.34 24.9 1.0 Cisneros-Dozal et al. 2005

3 2009 2018 UCI UCI UCI P 37.03 -119.27 Sierra Nevada Musick forest MA 3 Ultic Haploxeralf Yes 5 20 0.07 0.33 50 27.4 1.0 600 270 150 Koarashi et al. 2012

3 2009 2018 UCI UCI UCI P 37.03 -119.19 Sierra Nevada Shaver forest SA 3 Pachic Xerumbrept Yes 5 20 0.07 0.31 50 29.4 1.2 800 150 50 Koarashi et al. 2012

Incubation moisture

Depth

cm

Particle size distribution

Supplemental Table 2-5. Site data, soil properties, and supporting references for all samples (Experiments 1, 2, and 3) 
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2.11. Figures 

Figure 2-1. Respiration rates for Experiment 1 (Air-dry/rewet + storage) and Experiment 2 (Air-
dry/rewet only) samples. a) Experiment 1 samples; b) Experiment 2 samples. Vertical gray line at 
day 4 demarcates the end of the first enclosure period (rewetting pulse). Points show measurements 
and lines show trends in mean respiration rate. Shaded ribbons represent one standard error of the 
mean. The final measurement points for a few samples which took >18 days to reach CO2 targets are 
excluded for display reasons; respiration rates for those samples remained constant. Note that 
headspace CO2 concentrations for control-1 samples (panel a) were only measured once during the 
first enclosure period (day 4) in contrast to daily measurements for all other samples. 
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Figure 2-2. Δ14C-CO2 (∆14Crespired) for the rewetting pulse (first enclosure period) versus the second 

enclosure period. Points are means of laboratory duplicates and error bars are the minimum and 

maximum. Note that Δ14C-CO2 was not measured for the first enclosure period (rewetting pulse) in 

control-1 samples; additionally samples from three of the forest plots of the air-dry/rewet + storage 

samples from Experiment 1 failed to accumulate enough CO2 during this period to measure Δ14C-CO2. 
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Figure 2-3. Overall treatment effect on ∆14Crespired. Points show data from all three experiments and 
are the mean of laboratory replicates (for replicated samples); error bars are standard deviation of 
replicates. Solid line is 1:1. For context, the dashed and dotted lines show differences of ±20‰ and 
±40‰, respectively. Location names are followed by the corresponding experiment number in 
parentheses. The samples from both Central Germany sites (Hainich-Dün and Schorfheide-Chorin) 
behaved similarly in Experiment 1, so samples analyzed in the same experiment are coded with the 
same colors in the above figure. Oak Ridge soils were part of a whole ecosystem 14C label experiment 
(Cisneros-Dozal et al., 2006), where the label occurred within four years of original sample collection. 
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Figure 2-4. Treatment effect on ∆14Crespired in relation to storage duration. Points show data from 
Experiments 1 and 3. Data are averaged by site (some regions had multiple sites, Table 2-3) and error 
bars show the standard deviation for the site mean. Note that Central Germany samples from 
Experiments 1 and 3 are averaged together here. For context, the dashed and dotted lines show 
differences of ±20‰ and ±40‰, respectively. The Oak Ridge sample points with the greater 
treatment-control difference at both 5 and 14 years of storage are from the Tennessee Valley site, 
which received more 14C label than did the other Oak Ridge site, Walker Ridge. 
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Figure 2-5. Time series of control and treatment Δ14C-CO2 (∆14Crespired) in Experiments 1 and 2. (a) 

forest sites, (b) grassland sites. Points show mean ∆14Crespired within ecosystem and treatment groups; 

error bars show the standard deviation. Atmospheric Δ14C-CO2 data (black line) are from Graven et 

al. (2017) up to the year 2015, while data points from 2015 to 2019 are extrapolated (Sierra, 2018). 

All atmospheric radiocarbon data are for the northern hemisphere (zone 2). 
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Figure 2-6. Conceptual model fit and observed ∆14Crespired for the Hainich-Dün forest sites (Central 

Germany 2). (a) Δ14C of soil pools and heterotrophically respired CO2 predicted by the model adapted 

from Schrumpf and Kaiser (2015) alongside atmospheric Δ14C for the bomb-C period (1950–2020) 

and ∆14Crespired observed in this study (black points) (b) (inset) Zoom to study period. Blue arrows 

show the shift in ∆14Crespired following air-drying and rewetting. Note that ∆14Crespired shifts toward the 

slow pool in both 2011 and 2019, but the direction of the shift depends on sampling year. Points are 

jittered to prevent over plotting; error bars show standard deviations. Note that the model was not 

fit to the ∆14Crespired observed in this study. Atmospheric Δ14C-CO2 data are from Graven et al. (2017) 

up to the year 2015, while atmospheric points from 2015 to 2019 are extrapolated (Sierra, 2018). All 

atmospheric radiocarbon data is for the northern hemisphere (zone 2). 
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Supplemental Figure 2-1. 95% confidence intervals for linear mixed model contrasts of Hainich-
Dün forest time series data 

 
 
  



Study 1 

 88 

Supplemental Figure 2-2. Time series of control and treatment Δ14C-CO2 (∆14Crespired) in 
Experiments 1 and 2, with error bars showing 95% confidence intervals estimated from the linear 
mixed model instead of pooled standard deviations (cf. Figure 2-5). Points show mean Δ14C-CO2 
within ecosystem and treatment groups. Atmospheric Δ14C-CO2 data (black line) are from Graven et 
al. (2017) up to the year 2015, while data points from 2015 to 2019 are extrapolated (Sierra, 2018). 
All atmospheric radiocarbon data are for the northern hemisphere (zone 2). 
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Supplemental Figure 2-3. Respiration rates for Experiment 1 and Experiment 2 (rewetting pulse 
respiration rates shown as a cumulative average for all samples). CO2 concentrations for Experiment 
1 control samples were only measured once during the pre-incubation period, in contrast to daily 
measurements for all other samples. Pre-incubation respiration rates are shown here calculated as 
cumulative averages for the whole pre-incubation period for ease of comparison across all 
treatments in both Experiment 1 and Experiment 2. 
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Supplemental Figure 2-4. Respiration rates for Experiment 3. Experiment 3 storage duration 
treatment samples were only incubated for a single enclosure period, as the results of Experiment 1 
and Experiment 2 showed no significant difference in ∆14Crespired between the rewetting pulse CO2 
released during the pre-incubation period and the CO2 respired during the second enclosure period. 
The grassland storage duration treatment samples (blue dotted line) respired an equivalent amount 
of CO2 in just 3 d as the corresponding control-3 samples respired during the rewetting pulse period 
and the second enclosure period combined. Consequently those incubations were stopped after the 
first CO2 measurement point. 
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Supplemental Figure 2-5. 13C-CO2 of rewetting pulse and 2nd enclosure period. Points are means; 
error bars show the minimum and maximum of laboratory duplicates. 
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Supplemental Figure 2-6. Time series of control and treatment 13C-CO2 (Experiments 1 and 2). 
Points are means; error bars show pooled standard deviations. 
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Supplemental Figure 2-7. Change in ∆14Crespired in relation to cumulative soil carbon respired. Error 
bars show minimum and maximum values measured for laboratory duplicates, while points show 
the mean. Lines connect mean pre-incubation and second enclosure period observations for a single 
sample. Lines parallel to the x-axis indicate a lack of trend in ∆14Crespired with the amount of carbon 
respired, while differences between open and filled symbols show the impact of treatments on both 
the amount of carbon respired and ∆14Crespired. Note that pre-incubation ∆14Crespired was not measured 
for the control-1 samples in 2011. Plot limits exclude outlier point (HEW22 control-2, pre-
incubation) for improved legibility. 
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Supplemental Figure 2-8. Change in ∆14Crespired relative to the change in moisture content (control - 
treatment). Differences in ∆14Crespired are shown as means; error bars show pooled standard 
deviations. All samples were rewetted to 60% of water holding capacity (WHC) prior to incubation, 
but control samples were rewetted from field moisture whereas treatment samples were rewetted 
after air-drying. Data from Experiment 3 are not shown as field moisture content was unknown for 
the majority of samples (Supplemental Table 2-5). 
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3.1. Abstract 

Climate and parent material both affect soil C persistence, yet the relative importance of climatic 

versus mineralogical controls on soil C dynamics remains unclear. To test this, we collected soil 

samples in 2001, 2009, and 2019 along a combined gradient of parent material (andesite, basalt, 

granite) and climate (mean annual soil temperature (MAST): 6.5 °C “cold”, 8.6 °C “cool”, 12.0 °C 

“warm”). We measured the radiocarbon of heterotrophically respired CO2 (∆14Crespired) and bulk soil 

C (∆14Cbulk) as proxies for transient and persistent soil C, and characterized mineral assemblages 

using selective dissolution. Using linear regression, we observed that MAST was not a significant 

predictor of either ∆14Cbulk or ∆14Crespired, yet climate was highly significant as a categorical variable. 

Climate explained more variance in ∆14Cbulk and ∆14Crespired over 0–0.1 m, but parent material 

explained more from 0.1–0.3 m. Cool site soil C was more persistent (lower ∆14Cbulk) than cold or 

warm climate sites, and also more persistent on andesitic soils, followed by basaltic and then granitic 

soils. Poorly crystalline (oxy) hydroxides of Al and Fe (PCMs), but not crystalline Fe oxides (CRM), 

were significantly (p < 0.1) correlated with ∆14Cbulk, ∆14Crespired, and ∆14Crespired - ∆14Cbulk, indicating 

their importance for soil C cycling on both short and long timescales. The change in ∆14Crespired 

observed over the study period was linearly related to MAST for the granite soils with the lowest 

PCM content, but not in the andesitic and basaltic soils with higher PCM content. This link between 

PCM abundance and the decoupling of MAST and soil C cycling rates suggests PCMs may attenuate 

the temperature sensitivity of decomposition. 

3.2. Introduction 

Understanding the response of soil carbon stocks to current and future changes in climate requires 

insight into the environmental factors governing soil carbon dynamics. Climate, and in particular 

temperature, has been found to be the most important variable for explaining the age of soil carbon 

in topsoil at local to global scales (Frank et al., 2012; Mathieu et al., 2015; Shi et al., 2020). Yet our 

current understanding of soil organic matter decomposition underscores the importance of 

mechanisms that may control the temperature sensitivity of this process, such as the interaction 

between soil organic matter and minerals (Davidson et al., 2000; Rasmussen et al., 2005; Davidson 

and Janssens, 2006; Lehmann and Kleber, 2015). The effect of mineral-organic associations on the 

temperature sensitivity of soil organic matter has been addressed in several modeling studies (Tang 

and Riley, 2014; Abramoff et al., 2019; Woolf and Lehmann, 2019; Ahrens et al., 2020). These models 

typically invoke Michaelis Menten kinetics in addition to an Arrhenius-type temperature response in 
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order to account for energy and substrate limitations on decomposition rates of soil organic matter 

found in association with minerals (Tang and Riley, 2019; Ahrens et al., 2020). In situ studies 

comparing the role of soil mineral assemblages and temperature in explaining soil C dynamics over 

time are scarce, yet are critical for testing model-based findings. We designed the current study to 

quantify the relative importance of climatic versus mineralogical mechanisms of soil organic C 

persistence across time scales ranging from annual to centennial and beyond. 

The relevance of soil minerals for mediating soil organic matter protection has been found to be a 

function of the specific minerals present, rather than the amount of clay or total mineral surface area 

(Kramer and Chadwick, 2018; Rasmussen et al., 2018a). Soil mineral assemblages are dynamic, 

developing over time as primary minerals inherited from parent material weather to form reactive, 

poorly crystalline secondary minerals, which in turn eventually weather or ripen into increasing 

stable crystalline species (Mikutta et al., 2010; Slessarev et al., 2022). The relative abundance of PCMs 

and CRMs in soils is directly related to parent material, but is also a function of mineral weathering 

rates (Rasmussen et al., 2018a; Slessarev et al., 2022). This is relevant for soil C dynamics, as soils 

enriched in PCMs are known to be of particular importance for the accumulation and persistence of 

soil C (Torn et al., 1997; Masiello et al., 2004). Due to the strong effect of climate on weathering, 

different soil mineral assemblages can form from the same parent material under different climatic 

regimes (Kramer and Chadwick, 2016; Rasmussen et al., 2018b). Conversely, similar mineral 

assemblages can be found among soils developed on different parent materials given adequate time 

for weathering and similar vegetation and climate (Graham and O’Geen, 2010; Rasmussen, 2004; 

Rasmussen et al., 2010a, 2010b). These complex interactions demonstrate that climatic and 

mineralogical controls on soil C cycling are not independent, but interact over the centennial to 

millennial time scales of soil development. 

The potential for ligand exchange is a key determinant of the strength and sorptive capacity of soil 

minerals. This potential is a function of surface area, charge, and in particular, the density of 

accessible hydroxyl groups (Kaiser and Guggenberger, 2003; Kleber et al., 2015; Rasmussen et al., 

2018a). Poorly crystalline Al and Fe (oxy) hydroxides are particularly enriched in hydroxyl groups, 

and batch sorption/desorption experiments have shown that the mineral-organic interactions 

between pedogenic metal oxide-rich clays are stronger than those with siloxane-rich phyllosilicate 

clays (Kahle et al., 2004). Furthermore, the reactive properties of pedogenic metal (oxy) 

hydroxides/oxides can also facilitate lower strength interactions with soil organic matter through 

multivalent cation bridging (Kleber et al., 2007). The high reactivity of poorly crystalline Fe (oxy) 
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hydroxides in particular is also implicated in the observations that these Fe mineral phases are 

correlated with aggregate stability but crystalline Fe oxide content is not (Duiker et al., 2003).  

Rasmussen et al. (2018b) observed that oxalate extractable Fe, which extracts poorly crystalline Fe 

(oxy) hydroxides, was the best predictor both soil C concentration and ∆14Cbulk across soils with 

mixed mineralogies. In contrast, crystalline Fe oxides, as represented by the difference between 

dithionite-citrate extractable Fe and ammonium-oxalate extractable Fe, were not as well correlated 

with ∆14Cbulk or SOC as PCMs in this study (Rasmussen et al., 2018b). Yet other studies have 

demonstrated that the strength of the correlations between PCM or CRM abundance and SOC or 

∆14Cbulk may be depth dependent, with CRMs more relevant in the A horizon and PCMs in the B 

horizon (Masiello et al., 2004).  In spite of much study, the relevance of mineral-organic associations 

with specific mineral phases such as poorly crystalline Fe and Al (oxy) hydroxides or crystalline Fe 

oxides for shorter timescales of soil C cycling remains an open question (Heckman et al., 2018). 

Radiocarbon (14C) is a useful tracer for soil C dynamics over annual to millennial time scales 

(Trumbore, 2000). The use of 14C to measure timescales of soil carbon decomposition is reliant on 

our knowledge of the 12C/14C ratio of atmospheric CO2. Once CO2 is fixed into organic matter via 

photosynthesis this ratio starts to shift, as 14C is preferentially lost due to radioactive decay. Changes 

in the 12C/14C ratio due to radioactive decay are detectable at timescales of hundreds to thousands of 

years. However, we can detect changes in 14C with nearly annual resolution for the so-called “bomb-

C” period, which began with the atmospheric testing of nuclear weapons in the mid-20th century 

(Trumbore, 2000). This pulse of “bomb-C” led to a doubling of atmospheric 14C concentration prior 

to the ban on above-ground nuclear tests in 1963 (Hua et al., 2021). The level of 14C in the atmosphere 

returned to pre-bomb levels around 2020, thus archived samples now represent the best opportunity 

to construct a high-resolution time series of the bomb-C pulse as it moves through different soil 

organic matter pools (Trumbore, 2009). 

Soil is an open system, and this has important implications for the interpretation of radiocarbon 

measurements of soil C. For most soils, the majority of carbon that enters the soil leaves quickly, with 

only a small fraction persisting on time scales > 10 y (Sierra et al., 2018; Crow and Sierra, 2022). The 

signal from these persistent pools typically dominate measurements of ∆14Cbulk, while the signal from 

more transient pools dominate measurements of ∆14Crespired (Trumbore, 2000). Here we define 

“transient” for C cycling on annual to decadal timescales, while we use “persistent” to refer to C 

cycling on centennial to millennial timescales. A diagnostic feature of ∆14Cbulk and ∆14Crespired is that 
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when these two metrics are the same, this indicates all of the C in the soil has an equal probability of 

being decomposed by microbes, i.e., the system is homogenous (Sierra et al., 2017). However, when 

∆14Cbulk and ∆14Crespired are substantially different, this indicates the presence of both labile and 

persistent pools of soil C (Ewing et al., 2006; Hopkins et al., 2012). 

We turned to the western slope of the Sierra Nevada Mountains, USA to compare and contrast the 

effects of climate and mineral assemblage on soil C dynamics. Drawing on earlier studies in this 

region (Jenny et al., 1949; Harradine and Jenny, 1958; Trumbore et al., 1996, p.199; Dahlgren et al., 

1997; Rasmussen, 2004), we selected soils similar in age and vegetation along a combined gradient 

of parent material (granite, andesite, basalt) and MAST (6.5 °C, 8.6 °C, 12.0 °C). The climate gradient 

also represents a weathering gradient, with poorly developed soils at the cold climate sites, 

intermediately developed soils at the cool climate sites, and highly weathered soils at the warm 

climate sites (Rasmussen, 2004; Rasmussen et al., 2010a, 2010b). Previous work at these sites 

(Rasmussen, 2004; Rasmussen et al., 2010a, 2010b, 2018b) and nearby locations (Trumbore et al., 

1996; Dahlgren et al., 1997; Castanha et al., 2008; Koarashi et al., 2012) confirmed strong differences 

in mineral assemblages along both the parent material and climate gradients, making these sites an 

ideal setting for probing the relative influence of climatic and mineralogical factors (and their 

interactions), on soil C dynamics. 

We were able to construct a time series of both ∆14Cbulk and ∆14Crespired at these sites by combining 

data from samples newly collected in 2019 with data from archived samples collected in 2001 and 

2009-2010 (referred to subsequently as 2009). Such a time series provides a crucial constraint for 

determining the trajectory of bomb-derived 14C concentrations over time (Baisden et al., 2002; 

Stoner et al., 2021). Whether bomb-C concentrations are increasing or decreasing in bulk or respired 

CO2 over time depends on both on the distribution of soil C among pools with different cycling rates 

as well as the year in which the soil was sampled (Beem-Miller et al., 2021). Given this, the trajectory 

of 14C cannot be easily determined from observations at a single point in time (Baisden et al., 2013). 

Using the radiocarbon time series in combination with previously determined mineralogical data, we 

were able to test several hypotheses regarding the roles of mineralogical versus climatic factors in 

determining both overall cycling rates and the dynamics of transiently cycling soil C. 

We can expect soils with large stocks of persistent soil C to have depleted values of ∆14Cbulk relative 

to soils dominated by fast cycling soil C. If climate proves more important than parent material for 

determining soil C persistence, than we would expect to see large differences in ∆14Cbulk among 
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climate regimes when comparing soils within a given parent material, but minimal differences among 

parent materials when comparing soils within the same climate regime. However, if parent material 

proves more important than climate for soil C persistence, we would expect the opposite trends in 

∆14Cbulk: differences would be greater among parent materials within a given climate regime than 

among climate regimes within a given parent material. Alternatively, if persistent soil C were 

associated with specific soil minerals, we would expect an interactive effect of parent material and 

climate on ∆14Cbulk. For example, if soil C persistence is due to the association of soil organic matter 

with PCMs, we would expect to observe the most depleted ∆14Cbulk values where the combination of 

parent material and climate factors has led to the greatest abundance of these specific soil minerals. 

Soil C found in association with minerals is typically older than organic matter found in free 

particulate forms (Lavallee et al., 2020). Accordingly, we might expect climate to be the dominant 

factor controlling the amount and cycling rates of C in transiently cycling soil C pools, with mineral 

factors being less relevant at these shorter timescales. If this hypothesis is correct, we would expect 

to see greater differences in ∆14Crespired among different climate regimes and within a given parent 

material than we would among different parent materials within the same climate regime. 

Furthermore, given sufficient moisture, we would expect warmer climate soils to have ∆14Crespired 

values closer to the atmosphere than colder climate soils, due to faster decomposition rates in the 

actively cycling soil C pools. Accordingly, we would also expect ∆14Crespired to change more over time 

at the warmer climate sites than at the colder climate sites. 

3.3. Methods 

3.3.1 Site descriptions 

We collected samples from nine sites in the Sierra Nevada Mountains of California (see Rasmussen 

et al., 2018b for a map of sampling locations). Parent material changes from basalt to andesite to 

granite along the north-south axis of the cordillera, while MAST decreases as a function of increasing 

elevation along the east-west axis (Table 3-1). Total mean annual precipitation (MAP) ranges from 

910 to 1400 mm yr-1 across the sites. Precipitation increases slightly with elevation (Table 3-1), and 

falls mainly as rain at lower elevations (< 1400 m), but mainly as snow at higher elevations (> 1800 

m) (Rasmussen, 2004). The andesitic and basaltic parent materials receive slightly more 

precipitation on average than the granitic soils, with MAP of 1330 (± 75) mm yr-1, 1160 (± 175) mm 

yr-1, and 1000 (± 85) mm yr-1 averaged across the andesite, basalt, and granite transects, respectively. 
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Vegetation at the study sites is typical of the Sierran Mixed Conifer habitat (Parker and Matyas, 1981). 

All of the sites are forested and dominated by conifers. The species composition changes along the 

elevation and climate gradient, but not along the parent material gradient. Tree species at the lowest 

elevation warm climate sites are predominantly Pinus ponderosa mixed with lesser amounts of 

Quercus spp. The canopy species at the mid-elevation cool climate sites consist primarily of Abies 

concolor and Pinus lambertiana, while Abies magnifica dominates at the high elevation cold climate 

sites. Species present at all sites include Calocedrus decurrens in the canopy, the shrubs 

Arctostaphylos spp., Chamaebatia foliolosa, and Ceanothus spp. in the understory, and variable ground 

cover of grasses and forbs. 

3.3.2 Sample collection 

Site locations were initially established in 2001 by Rasmussen (2004) and resampled in 2009 

(Rasmussen et al., 2018b) and 2019 (this study). Three replicate pits were dug at each site. Only 

samples collected from the A horizon were available from 2001, so we focus on the upper mineral 

soil layers in this study (0 to ca. 0.3 m) despite availability of sample from deeper soil layers in 2009 

and 2019. Sampling was done from pit sidewalls by horizon in 2001 and 2009, and by 0.1 m 

increments in 2019. We located the sites for the 2019 sampling using GPS and geospatial coordinates 

recorded during site establishment. Prior to sample collection we compared the soil profiles to the 

pedon descriptions from the 2001 sampling campaign to confirm the profiles matched. 

3.3.3 Incubations 

Laboratory soil incubations were performed on composite samples from the three replicate profiles 

sampled at each site in 2001 and 2019. We omitted the 2009 samples from the incubation experiment 

because sample material was only available from a single profile at each site. We composited and 

incubated each depth increment separately in 1 L glass mason jars fitted with airtight sampling ports 

in the lids. Incubations were performed in duplicate. Prior to the start of incubations, we adjusted the 

soil moisture content to 60% of water holding capacity (WHC). Samples from 2001 were air-dried 

prior to archiving, and therefore we also air-dried the freshly collected soils from 2019 in order to 

control for the known effects of air-drying and rewetting on 14Crespired (Beem-Miller et al., 2021). We 

defined WHC as the gravimetric water content of water-saturated soil placed in mesh-covered 

(50µm) tubes (50ml) weighed after draining for 30 minutes on a bed of fine sand. Following 

rewetting we allowed the soils to respire for one week before closing the jars. 
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Incubations proceeded until CO2 concentrations in the jar headspace reached approximately 10,000 

ppm, at which point we collected a 400 ml gas subsample for radiocarbon analysis. While differences 

in incubation duration can lead to substrate depletion, potentially affecting ∆14Crespired, we do not 

believe this would impact the results presented here due to the relatively short duration of all of 

these incubations (Supplemental Figure 3-2). 

Gas samples were collected with pre-evacuated stainless-steel vacuum canisters (Restek GmbH, Bad 

Homburg, Germany). All incubations were performed in the dark at 20°C. 

3.3.4 Soil Physical Analyses and Mineral Characterization 

Data on soil particle size distribution, bulk density, and mineral characterization were obtained from 

previously published analyses of samples collected at the study sites in 2001 and 2009 (Rasmussen, 

2004; Rasmussen et al., 2005, 2007, 2010a, b, 2018b). Both qualitative and quantitative approaches 

were used to characterize soil mineral assemblages, including X-ray diffraction (XRD) for the clay (<2 

µm) fraction, and non-sequential selective dissolution. These previous analyses revealed that the 

dominant mineral species in the soils of the highly weathered warm climate zone were similar across 

parent materials, but differed substantially across parent materials at the less weathered cool and 

cold climate sites. Mineral assemblages at the warm climate sites are dominated by 1:1 clays and 

large accumulations of crystalline Fe oxides (Dahlgren et al., 1997; Rasmussen et al., 2010a, b). In 

contrast, the cool and cold climate andesitic soils contain high concentrations of short-range order 

minerals such as allophane and Fe oxyhydroxides. The cool and cold climate basaltic soils contain 

intermediate amounts of reactive secondary minerals, while the granitic soils lack reactive secondary 

minerals almost entirely, but are rich in quartz and contain relatively more hydroxyl-interlayered 

vermiculite than soils from the other lithologies (Rasmussen, 2004). 

The previous work at these sites showed that the oxalate extractable Fe was the best predictor of 

both C abundance and 14Cbulk, but that oxalate extractable Al was also strongly correlated with these 

metrics (Rasmussen et al., 2018b). Accordingly, our analyses focus on the relationship between 

radiocarbon measurements and the abundance of PCMs (sum of ammonium-oxalate extractable Al 

and half of the ammonium-oxalate extractable Fe selectively dissolved from bulk soils). We also 

compared the relationship between ∆14C (bulk and respired) and CRM abundance (difference of 

dithionite-citrate extractable Fe and ammonium-oxalate extractable Fe) (Masiello et al., 2004; Kleber 

et al., 2005). A caveat for the use of CRM as defined here as a proxy for crystalline (oxy) hydroxides 
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is that this excludes crystalline forms of Al. The dithionite-citrate extraction also excludes gibbsite, 

however as gibbsite was quantified by Rasmussen et al. (2018), we were able to assess the effect of 

gibbsite separately and did not find it to explain a significant amount of the variance in ∆14Cbulk or 

∆14Crespired.  

3.3.5 Carbon, Nitrogen, and Radiocarbon Analysis 

Total carbon content was determined by dry combustion (2019 samples: Vario Max, Elementar 

Analysensysteme GmbH, Langenselbold, Germany) on finely ground soils (2019 samples: MM400, 

Retsch GmbH, Haan, Germany). For radiocarbon analysis of 2001 and 2019 samples, we first purified 

CO2 from combusted soil samples (bulk soils) and incubation flask samples (respired CO2) on a 

vacuum line using liquid N2. Following purification, samples were graphitized with an Fe catalyst 

under an H2 enriched atmosphere at 550 °C. Radiocarbon content was then measured by accelerator 

mass spectrometry (Micadas, Ionplus, Zurich, Switzerland) at MPI-BGC (Steinhof et al., 2017). See 

Rasmussen et al. (2018b) for details of C and radiocarbon analysis of the 2009 samples. 

We report radiocarbon values using units of ∆14C, defined as the deviation in parts per thousand of 

the ratio of 14C/12C from that of the oxalic acid standard measured in 1950. This unit also contains a 

correction for the potential effect of mass-dependent fractionation by normalizing sample 13C to a 

common value of -25 ‰ (Stuiver and Polach, 1977). Values of ∆14C > 0 indicate the presence of ‘bomb’ 

C produced by atmospheric weapons testing in the early 1960s; values of ∆14C < 0 indicate radioactive 

decay of 14C, which has a half-life of 5730 years. 

3.3.6 Spline fitting 

We used a spline function to compare soil properties from samples collected from different depth 

intervals in different years and at different sites. We were motivated to use consistent depth 

increments across sites when resampling in 2019 because of the strong correlation between depth 

and ∆14C observed in the 2009 dataset, a correlation also noted in numerous other studies (Mathieu 

et al., 2015; Shi et al., 2020). We fit a mass-preserving quadratic spline to the 2001 and 2009 profiles 

in order to convert soil property data to the equivalent depth increments sampled in 2019 (Bishop 

et al., 1999). We performed the spline fitting with the ‘mpspline’ function of the GSIF package in R, 

using a value of 0.1 (Hengl, 2019). 
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3.3.7 Statistical analysis 

We used a linear modeling approach to assess the relative explanatory power of climate versus 

parent material on the observed variation in ∆14C, as well as potential interactions between these two 

factors. We constructed separate models for ∆14Cbulk and ∆14Crespired but with the same equation 

structure (Eq. 3-1). For each model we considered the two-way interaction between parent material 

and climate as well as the three-way interaction with time. For ease of interpretation, we considered 

the effect of depth by modeling each depth layer separately (0–0.1 m, 0.1–0.2 m, 0.2–0.3 m). We also 

made pairwise comparisons of ∆14Cbulk and ∆14Crespired across sites and within years, and across years 

for individual sites. We assessed the significance of the temporal trend for pairwise combinations of 

parent material and climate using the ‘emmtrends’ function of the emmeans package (Lenth, 2021). 

We corrected for multiple comparisons using Tukey’s honestly significant mean difference. 

 ∆14𝐶 = 𝛼 + 𝛽1(𝑃𝑎𝑟𝑒𝑛𝑡𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙) × 𝛽2(𝐶𝑙𝑖𝑚𝑎𝑡𝑒) × 𝛽3(𝑌𝑒𝑎𝑟) + 휀, ( 3-1 ) 

where  is the intercept term, the  terms are coefficients, and  is random error. 

We also considered the relationship between ∆14Cbulk and ∆14Crespired in order to gain insight into 

potential differences in soil C dynamics and persistence mechanisms across our sites (Sierra et al. 

2018). We modeled the effects of parent material (Eq. 3-2) and climate (Eq. 3-3) on this relationship 

separately, as we did not have an adequate number of observations to consider the interactions. For 

this analysis, we used ∆14C measurements made on samples collected in 2001 and 2019, and data 

from all depths. We excluded both depth and time from the models as the three-way interactions 

between depth or time, ∆14Cbulk, and the explanatory variable (parent material in Eq. 3-2, or climate 

in Eq. 3-3) were not significant. 

 ∆14𝐶𝑟𝑒𝑠𝑝𝑖𝑟𝑒𝑑 = 𝛼 + 𝛽1(∆14𝐶𝑏𝑢𝑙𝑘) × 𝛽2(𝑃𝑎𝑟𝑒𝑛𝑡_𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙) + 𝜖 ( 3-2 ) 

 ∆14𝐶𝑟𝑒𝑠𝑝𝑖𝑟𝑒𝑑 = 𝛼 + 𝛽1(∆14𝐶𝑏𝑢𝑙𝑘) × 𝛽2(𝐶𝑙𝑖𝑚𝑎𝑡𝑒) + 𝜖 ( 3-3 ) 

We assessed the relative importance of PCMs versus CRMs in protecting soil C from microbial 

decomposition by regressing ∆14C against the concentrations of ammonium-oxalate extractable Fe, 

ammonium-oxalate extractable Al, pyrophosphate extractable Al, and dithionite-citrate extractable 

Fe (Eq. 3-4). We fit the model for ∆14Cbulk, ∆14Crespired, and the difference between ∆14Crespired and ∆14Cbulk 
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(∆14Cbulk-respired). We used 14C data from 2001, 2009, and 2019 for the 14Cbulk model, but only data from 

2001 and 2019 for the ∆14Crespired and ∆14Cbulk-respired models (as 14Crespired data were not available for 

the 2009 samples). Selective dissolution was only performed on the soils collected in 2001, but these 

data were assumed to be comparable for the other time points as they reflect weathering processes 

operating at timescales much beyond the 18-year duration of this study. The regression analysis 

conducted with Eq. 3-4 was done for the combined depth increment of 0–0.3 m, as extracted metal 

concentrations did not change substantially over this depth (Rasmussen et al., 2018b). Combining 

depth increments allowed us to control for the depth dependence of ∆14C as well as to simplify 

interpretation of the data. In order to obtain values for the necessary data over the 0 to 0.3 m depth 

increment we computed mass-weighted estimates of extractable metal concentrations, carbon mass-

weighted means of ∆14Cbulk, and flux-weighted means of ∆14Crespired; these calculations were made 

prior to determining ∆14Cbulk-respired. 

 ∆14𝐶 = 𝛼 + 𝛽1(𝑀𝑒𝑡𝑎𝑙𝑥) + 𝛽2(𝑡𝑖𝑚𝑒) + 휀, ( 3-4 ) 

where  is the intercept term,  is the coefficient for each factor in the model, Metalx is the 

concentration of selectively dissolved metal oxides, time is the year of sampling, and  is random 

error. 

We present the results of regression analyses looking at PCMs versus CRMs in the main text (Figure 

3-5). Results for specific relationships between the concentration of Fe or Al extracted with 

ammonium-oxalate, Fe extracted with dithionite-citrate, and Al extracted with sodium-

pyrophosphate, and ∆14Cbulk, ∆14Crespired, and the difference between ∆14Crespired and ∆14Cbulk (∆14Crespired-

bulk) are provided in the supplemental information (Supplemental Figure 3-4, Supplemental 

Figure 3-5, Supplemental Figure 3-6, Supplemental Figure 3-7, Supplemental Figure 3-8). 

3.4. Results 

3.4.1 Soil carbon concentrations and flux rates 

We observed both parent material and climate effects on soil organic C (SOC) concentration (Figure 

3-1, a–c). Concentrations of SOC were similar among parent materials for the warm climate sites (Fig. 

1a), while at the cool and cold climate sites (Figure 3-1, b and c) the andesitic soils had higher SOC 

concentrations than either the basaltic or granitic soils. The basaltic and granitic soils had similar 

SOC concentrations across climate zones, while the cool and cold climate andesitic soils were 
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enriched in C relative to the warm climate soils. Soils showed a similar decrease in SOC concentration 

with depth across all sites (Figure 3-1). We did not calculate SOC stocks for the 2019 samples as we 

did not measure bulk density or coarse fragment content for these samples (Schrumpf et al., 2013; 

Beem-Miller et al., 2016). However, measurements of SOC stocks made in 2001 and 2009 showed 

similar overall trends as SOC concentration, with the highest SOC stocks observed in the andesitic 

soils, followed by the basalt and granitic soils for which SOC stocks were similar (Figure 3-1, d–f, see 

also Rasmussen et al., 2018b). 

Soil organic C concentrations did not change significantly over time at the majority of our sites 

(Supplemental Figure 3-1). We saw the most substantial variation in SOC concentration between 

2001, 2009, and 2019 in the surface mineral layers (0–0.1 m). We observed significant differences 

between years for the 0–0.1 m layer at the warm climate andesitic and basaltic sites, and for 0–0.1 m, 

0.1–0.2 m, and 0.2–0.3 m layers at the cold climate andesitic site (Supplemental Table 3-1). 

Flux rates of heterotrophic respiration differed among parent materials and among climate zones. 

When compared on a carbon basis (mg CO2 g C-1 d-1), flux rates tended to be higher for the andesitic 

soils than soils from either basaltic or andesitic soils, particularly at depth (Supplemental Figure 

3-2). The exceptions to this trend were the surface (0–0.1 m, 2001 and 2019) and near-surface (0.1–

0.2 m, 2019) soils from the warm climate sites (Supplemental Figure 3-2). Respiration rates for 

granitic and basaltic soils tended to decrease with decreasing MAST (warm > cool > cold); however, 

we did not see any clear trend in respiration rates with respect to climate for the andesitic soils 

(Supplemental Figure 3-2). 

3.4.2 Radiocarbon depth profiles 

3.4.2.1. Bulk soil. 

∆14Cbulk covaried with both parent material and climate. We observed the most enriched ∆14Cbulk at 

the warm climate sites, indicating a preponderance of relatively young, fast-cycling C in these soils. 

However, contrary to what would be expected from the decomposition-temperature relationship, we 

observed the oldest soil C (i.e., most depleted ∆14Cbulk values) at the cool climate sites with 

intermediate MAST (Figure 3-2, b) rather than at the cold climate sites (Figure 3-2, c). When 

comparing ∆14Cbulk from different parent materials within a given climate zone, ∆14Cbulk of andesitic 

soils tended to be the most depleted, while the granitic soils tended to be the most enriched (Figure 

3-2, a–c; Supplemental Table 3-2, Supplemental Table 3-3, Supplemental Table 3-4). We focus 
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here on the 2019 data for simplicity, but ∆14Cbulk profiles showed similar patterns in both 2001 

(Supplemental Figure 3-3, a) and 2009 (Rasmussen et al., 2018b). 

Analysis of variance for ∆14Cbulk revealed significant two-way interactions between parent material 

and climate at all depths (Table 3-2). This interaction was evident in the differences in ∆14Cbulk that 

we observed among parent materials within each climate zone. We observed the greatest differences 

in ∆14Cbulk among parent materials at the warm and cool sites (Figure 3-2, a-b), while ∆14Cbulk was 

similar among parent materials at the coldest sites (Figure 3-2, c). We also found depth to be an 

important factor influencing the relative importance of climate versus parent material effects on 

∆14Cbulk. Although ∆14Cbulk declined with depth for all sites, climate explained more of the variance in 

∆14Cbulk in the uppermost soil layer (0–0.1 m) whereas parent material explained more in the bottom 

two layers (0.1–0.2 m, 0.2–0.3 m) (Table 3-2). 

3.4.2.2. Heterotrophically respired CO2. 

The patterns we observed in ∆14Crespired were similar to those we observed in ∆14Cbulk (Figure 3-2, d–

f). We found climate to the only significant factor for explaining the variance observed in 14Crespired in 

the uppermost soil layer (0–0.1 m), while at the deepest depth (0.2–0.3 m) parent material was more 

important than climate (Table 3-2). Overall, we found the two-way interaction between parent 

material and climate explained more of the variance in ∆14Crespired than it did in ∆14Cbulk (Table 3-2). 

The effect of climate on ∆14Crespired was moderated by parent material. Accordingly, we did not 

observe significant differences in ∆14Crespired among the andesitic soils when compared across climate 

zones at any depth (Supplemental Table 3-2, Supplemental Table 3-3, Supplemental Table 3-4). 

In contrast, ∆14Crespired diverged substantially between climate zones for the basaltic and granitic soils, 

particularly for the 0.1–0.2 m and 0.2–0.3 m depth layers (Figure 3-2, d–f). Overall, ∆14Crespired values 

across sites were most similar at the soil surface (0–0.1 m), and most divergent at the intermediate 

depth (0.1–0.2 m) (Figure 3-2, d–f). 

3.4.3 Radiocarbon time series 

Temporal trends in bulk and respired ∆14C reflect the degree to which soil C is exchanging with C 

fixed from the atmosphere. The average annual decline in ∆14C atmospheric CO2 between 2001 and 

2009 for the northern hemisphere was -5.13 ‰ y-1 (Graven et al., 2017; Sierra, 2018) (Figure 3-3, 
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dotted lines). Therefore, changes in ∆14C of soil C that parallel the atmospheric trend must be 

exchanging relatively rapidly compared to those that change little over the same time period. 

3.4.3.1. Bulk soil 

We observed a significant three-way interaction between parent material, climate, and time at all 

three depths in the linear models (Eq. 3-1) for ∆14Cbulk (Table 3-2). The change over time in ∆14Cbulk 

was also affected by depth, with greater differences seen between 2001 and 2019 in the uppermost 

soil layer than in the deeper layers (Figure 3-3, a–f). We observed a significant decrease in ∆14Cbulk 

over time in both warm and cool climate granitic soils for the uppermost soil layer (0–0.1 m), and 

additionally for the warm climate andesitic soils (Figure 3-3, a and c; Supplemental Table 3-5). In 

the deeper soil layers (0.1–0.2 m and 0.2–0.3 m), we only observed a significant change over time in 

∆14Cbulk for the cool climate basalt and granite soils (Figure 3-3, d; Supplemental Table 3-5). ∆14Cbulk 

of the cool climate andesitic soils remained essentially unchanged between 2001 and 2019 for all 

depths (Figure 3-3, c-d; Supplemental Table 3-5), underscoring the importance of the interaction 

between parent material and climate for explaining temporal trends in ∆14Cbulk. 

The relationship of ∆14Cbulk to atmospheric ∆14C also depended on the combination of parent material 

and climate. In 2001, the warm climate sites were the only sites where the basaltic and andesitic soils 

were enriched relative to the atmosphere, and this enrichment was only observed for the uppermost 

soil layer (Figure 3-3, a). In contrast, 0–0.1 m layer granitic soils at both the warm and cool climate 

sites were enriched relative to the atmosphere in 2001 (Figure 3-3, a and c). For the cold climate 

sites, where ∆14Cbulk was most similar across all three lithologies, ∆14Cbulk was depleted relative to 

atmospheric in both surface and subsoil layers in 2001 (Figure 3-3, e-f). 

We observed that ∆14Cbulk remained either unchanged or tended to decrease between 2001 and 2019 

across sites. In the latter case, the rates of change in ∆14Cbulk were typically smaller than the 

corresponding change in atmospheric ∆14C over the same period. Accordingly, ∆14Cbulk measured in 

2019 tended to be enriched relative to the atmosphere at more sites, and also more enriched at depth 

than in 2001. We observed surface soil ∆14Cbulk (0–0.1 m) in 2019 to be enriched relative to the 

atmosphere at all sites except for the cool climate andesite soils (Figure 3-3; Figure 3-2, d–f). 

Furthermore, ∆14Cbulk was enriched relative to the atmosphere down to 0.3 m at two of the sites in 

2019: the warm climate granite soil (Figure 3-2, d) and cold climate basalt soil (Figure 3-2, f). 
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∆14Cbulk at the cool climate andesite site was the most depleted relative to the atmosphere at all time 

points (Figure 3-3, c-d). 

3.4.3.2. Heterotrophically respired CO2. 

Temporal trends in ∆14Crespired (Figure 3-3, g–l) tended to be of greater magnitude than what we 

observed for ∆14Cbulk (Figure 3-3, a–f). However, changes in ∆14Crespired between 2001 and 2019 still 

tended to be smaller in magnitude than the change observed in the atmosphere over this period 

(Figure 3-3, g–l). In contrast to ∆14Cbulk, ∆14Crespired values of both surface and near surface soils (0–

0.2 m) were close to atmospheric levels in 2001, while in 2019, ∆14Crespired tended to be enriched 

relative to the atmosphere, even for the deeper soil layers (Figure 3-3, g–l). 

We saw significant decreases in ∆14Crespired over time for surface (0–0.1 m) soils at seven of the nine 

sites, with the only exceptions being the cool climate andesitic and cold climate granitic sites (Figure 

3-3, g–l; Supplemental Table 3-6). In absolute terms, the changes in ∆14Crespired over time in the 

uppermost soil layer were greatest at the warm sites (-4 ±2‰ y-1), while changes were similar for 

the cool and cold sites (-2.7 ±1.2‰ y-1, and -2.2 ±2.1‰ y-1, respectively). When considered within 

parent materials, granitic soils showed the greatest decrease in ∆14Crespired over time at the warm 

climate site and the least change at the cold climate site. In contrast, the andesitic soils showed the 

least amount of change over time at the cool climate sites, and changes over time in the basaltic soils 

were similar across all three of the climate zones (Figure 3-3, g–l). 

The magnitude of the change in ∆14Crespired over time tended to decrease with depth for all soils 

(Figure 3-3, g–l). For the 0.1–0.2 m layer, we observed significant negative trends over time for 

∆14Crespired at only four of the nine sites (warm andesite, cool basalt, cool granite, and cold basalt) 

(Figure 3-3, h, j, l; Supplemental Table 3-6), and only one site for the 0.2–0.3 m layer (cold basalt) 

(Supplemental Table 3-3). ∆14Crespired at the cool andesitic soils remained unchanged at all depths 

over the study period (Figure 3-3, g–l; Supplemental Table 3-6). 

We observed a significant increase in ∆14Crespired from 2001 to 2019 at only one site: the cold climate 

granitic soil (Figure 3-3, l).; Supplemental Table 3-6). This was also the only soil for which 

∆14Crespired was more depleted than ∆14Cbulk. We observed this anomaly for the deeper soil layers in 

both 2001 and 2019. We measured ∆14Crespired values of -469 and -127‰ for the 0.08–0.27 m layer in 

2001, compared to ∆14Cbulk values of -31 and -11‰ in the same year. Similarly, we observed 

∆14Crespired values of -397 and -24‰ for the 0.1–0.2 m layer in 2019, compared to -18 and 0‰ for 
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∆14Cbulk. However, these anomalous values of ∆14Crespired were restricted to the deeper soil layers from 

this one site, and were consistent over time, thus the response appears to be artifact that is unique 

to these soils. If old soil C dominated the release flux in situ, it would indicate the C dynamics of the 

system were not in equilibrium, which we think unlikely. We suspect this phenomenon is related to 

the specific response of these soils to the disturbance of the soil during sample extraction and 

preparation, and accordingly, we have excluded these highly depleted samples from the statistical 

analyses. This may be due to the lower pH of these soils (5.1) relative to the other sites (cf. Table S1 

in Rasmussen et al., 2018b), which promotes increased desorption of organic matter (Chadwick and 

Chorover, 2001; Masiello et al., 2004). 

3.4.4 Relationship of bulk soil and respired CO2 14C 

We assessed the relationship between ∆14Cbulk and ∆14Crespired using linear regression models for 

parent material Eq. (3-3) and climate Eq. (3-4). We observed that while ∆14Crespired was enriched 

relative to ∆14Cbulk for almost all sites and all depths, the magnitude of the difference depended on 

both parent material and climate. Accordingly, y-intercepts for all models were indistinguishable 

from or greater than zero, indicating that CO2 respired by these soils is predominantly modern (i.e., 

< 60 years old) in all but the deepest soil layers, regardless of parent material or climate regime. We 

found the largest y-intercept values for the soils developed on andesitic parent material (72‰), and 

for soils in the cool climate zones (65‰), values indicating that CO2 respired from these soils is 

relatively enriched in decadally cycling bomb-C. 

Slope values less than one in these models indicate that every ‰ change in ∆14Cbulk is associated with 

a correspondingly smaller change in ∆14Crespired. This suggests that the process regulating persistence 

of soil C on long time scales is distinct from that which regulates more transiently cycling soil C. 

Similar to what we found for the y-intercepts, modeled slopes for the parent material-only model (Eq. 

3-2) were smallest for the andesitic soils: slope = 0.51, 95% CI = [0.22, 0.80]) (Figure 3-4, a), and for 

cool climate soils in the climate-only model (Eq. 3-3): slope = 0.61, 95% CI = [0.30, 0.91]) (Figure 

3-4, b). While we could not test the interaction of parent material and climate factors in these models 

directly owing to the limited number of observations, we observed that mean differences in ∆14Cbulk 

and ∆14Crespired were substantially greater for the cool climate soils developed on andesitic parent 

material than for the other sites. 
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3.4.5 Mineral assemblages and radiocarbon 

Mineral assemblage data is reported fully in Rasmussen et al. (2018b). Here we focus on the selective 

dissolution data with respect to the trends we observed in ∆14Cbulk, ∆14Crespired, and ∆14Crespired-bulk. We 

observed a significant negative correlation between ∆14Cbulk and the concentration of oxalate 

extractable Fe, oxalate extractable Al, and pyrophosphate extractable Al (Supplemental Figure 3-4, 

Supplemental Figure 3-5, Supplemental Figure 3-6). However, for simplicity we focus here on the 

abundance of PCMs (the sum of ½ oxalate extractable Fe and oxalate extractable Al) and CRMs (the 

difference of dithionite-citrate extractable Fe and oxalate extractable Fe). 

The relationship between PCM abundance and ∆14Cbulk was highly significant (p <0.001), but the 

relationship between CRM abundance and ∆14Cbulk was not (Supplemental Figure 3-7). For 

∆14Crespired, we observed a significant relationship with PCM abundance for the 2001 samples (p = 

0.04), but not for the 2019 samples (Supplemental Figure 3-8). Accordingly, the combined set of 

2001 and 2019 data was only marginally significant (p = 0.07). However, we did see a highly 

significant relationship between PCM abundance and ∆14Crespired-bulk (Figure 3-5, a). As with ∆14Cbulk, 

there was no relationship with CRM abundance for either ∆14Crespired (Supplemental Figure 3-8) or 

∆14Crespired-bulk (Figure 3-5, b). 

3.5. Discussion 

Climatic and mineralogical factors both play key roles in soil carbon persistence. However, the 

relevance of parent material for explaining soil organic matter persistence in soils with mixed 

mineralogies is still poorly explained. In the current study we illuminate how parent material 

interactions with climate lead to the development of distinct mineral assemblages, which in turn 

control the dynamics of soil C cycling at timescales ranging from annual to centennial. Our key 

findings are: 1) soil mineral characteristics mediate climatic controls on soil C cycling, and 2) 

mineralogical controls on soil C cycling are not limited to soil C persistence on centennial timescales, 

but are relevant for C cycling on shorter timescales as well. 

Our results challenge the primacy of climatic controls on soil carbon persistence, insofar as we 

observed the most depleted ∆14Cbulk in soils of the cool climate zone, not the cold climate zone. 

However, we found that as a categorical predictor, climate is critical for explaining the dynamics of 

both persistent and more transient soil C pools (as measured by proxy with ∆14Cbulk and ∆14Crespired, 

respectively). Interestingly, our results indicate that soil mineral characteristics moderate the 
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strength of the climate effect. This is particularly apparent at depth. These findings are supported by 

a recent study in which the authors used a depth-resolved model with energy and substrate 

limitation prescribed by Michalis Menten kinetics to model profiles of ∆14Cbulk (Ahrens et al., 2020). 

The authors found that mean annual temperature could only explain a minimal amount of variation 

in the observed radiocarbon profiles, while varying sorption potential in the model (a function of the 

soil mineral assemblage) allowed for a superior fit. 

Previous work at our study sites showed that PCMs were key to explaining both soil C accumulation 

and ∆14Cbulk values in these soils (Rasmussen et al., 2018b). Our results confirm these findings and 

extend them to demonstrate a highly significant correlation between PCM abundance and ∆14Crespired-

bulk (p = 0.001), and a significant correlation with ∆14Crespired (p = 0.1). We focus here on ∆14Crespired-bulk, 

as this metric offers a unique insight into the magnitude of the difference between the cycling rates 

of persistent and more transiently cycling soil C. 

We would expect the greatest differences between ∆14Crespired and ∆14Cbulk to be found in soils with a 

pool of old soil C protected from decomposition, and another pool of soil C that is readily decomposed. 

In contrast, the smallest differences should occur in soils lacking strong soil C protection 

mechanisms, in which the majority of soil C has an equal probability of being decomposed by 

microbes. Accordingly, we observed the smallest differences between ∆14Crespired and ∆14Cbulk in the 

soils with the lowest abundance of PCMs, while we observed the largest differences in the soils with 

the highest concentrations of these minerals (Figure 3-5). We interpret these findings as direct 

evidence of a key role for PCMs in protecting soil organic matter from decomposition. The values of 

∆14Cbulk in the subsurface layers (0.1–0.3 m) of the soils lacking substantial concentration of PCMs 

(e.g., granitic soils) were depleted relative to the atmosphere, indicating the presence of persistent 

soil C, yet we also observed similarly depleted values of ∆14Crespired in these soils. Given that 

respiration rates were of the same magnitude across all soils (Supplemental Figure 3-2), this 

suggests that soil C persistence in these soils may be due to physical constraints on decomposition 

that are alleviated under laboratory incubation conditions, for example transport or isolation 

(Gleixner, 2013).  

The soils with the greatest differences between ∆14Crespired and ∆14Cbulk were those that had both 

strongly depleted values of ∆14Cbulk and values of ∆14Crespired that were enriched relative to the 

atmosphere. If we employ a theoretical compartmental model to interpret this finding, a possible 

scenario would involve one pool of centennial to millennially cycling soil C whose signal dominates 
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the ∆14Cbulk signal, and second pool of soil C enriched with C fixed from the atmosphere in the years 

immediately following the bomb-C spike, e.g., 1964 to 1990, whose signal dominates the ∆14Crespired 

signal. More complex model structures could potentially be fit to these data, but the data provide 

clear evidence for the presence of at least two distinct pools: one with strongly depleted C largely 

inaccessible to the microbial community, and another pool enriched with decadally cycling C that is 

preferentially respired. This scenario can be contrasted to the soils with ∆14Crespired values close to 

that of the atmosphere, in which the respired signal is likely dominated by close to annually cycling 

C. 

Laboratory studies on mineral-organic matter associations show that only a portion of the organic 

matter is so tightly bound as to resist desorption (Kaiser and Guggenberger, 2003). Further studies 

have demonstrated that a portion of the sorbed organic matter can easily be mobilized by exchange 

with dissolved organic C (DOC) (Leinemann et al., 2018; Liebmann et al., 2022). In such a scenario, 

the highly depleted ∆14Cbulk values observed in this study for the soils with a high abundance of PCMs 

may derive from organic matter that is strongly sorbed to mineral surfaces or trapped in micropores, 

while the bomb-C enriched decadally cycling C observed in the respiration flux could derive from a 

more microbially accessible and DOC-exchangeable mineral associated soil C pool that is in some way 

facilitated by PCMs (e.g., organo-metal complexes, cf. Lawrence et al., 2015; Heckman et al., 2018). 

However, the rates of change over time that we observed for ∆14Crespired indicate that annually cycling 

C is also an important component of soil organic matter at all of our sites. 

Our finding that parent material explains more of the variation in ∆14Crespired at depth than climate 

suggests that the role of soil minerals in regulating annually to decadally cycling soil C is of particular 

importance in deeper soil layers. Dissolved organic C has been shown to move downward through 

the soil profile via preferential sorption of new soil C inputs and corresponding desorption of older 

DOC, which is then made available to the microbial community (Kaiser and Kalbitz, 2012). This 

process is mineral controlled, and while we did not test it directly, such a process could explain why 

we see an increase in the importance of parent material, and the interaction between climate and 

parent material, for explaining ∆14Crespired trends with depth. 

In contrast to what we observed for PCMs, the lack of correlation we observed between CRMs and 

soil radiocarbon suggests that these minerals do not play an important role in explaining soil C 

persistence on either short or long time scales, at least in these soils. Other studies have shown that 

crystalline Fe oxides do protect soil C from microbial decomposition, but that the overall sorption 
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capacity of these mineral species is low (Kahle et al., 2003). We observed a large increase in the 

amount of Fe dissolved from CRMs at the warm sites relative to the cool or cold sites, coinciding with 

a decrease in soil C concentration, and relative enrichment in both ∆14Cbulk and ∆14Crespired. The 

increase in CRM abundance was also associated with a corresponding decrease in PCMs. Together, 

these trends suggest that these soils have lost PCMs through leaching and transformation into CRM 

species. Overall, the patterns of C concentrations, associated SOC stocks, ∆14Cbulk, and ∆14Crespired 

observed across the climate/weathering gradient suggest that weathering and crystallization of 

PCMs leads to a reduction in soil carbon stocks caused by losses of old ∆14C-depleted carbon 

associated with these minerals, and that this process is relevant across a range of igneous parent 

materials. 

The sensitivity of decomposition to temperature is of particular interest for understanding how soil 

C dynamics may change under a warming climate. Comparing the change in ∆14Crespired over time for 

the different climate zones across different lithologies provides insight into this question. Focusing 

on the near surface soils (0–0.1 m), where climate effects are strongest, we observed that the rate of 

change in ∆14Crespired over time was correlated with PCM abundance. We observed a linear 

relationship between MAST and the rate of change in ∆14Crespired over time for the granitic soils, which 

had low abundances of PCMs in all three climate zones. This relationship was absent for the basalt 

and andesitic soils, which had higher concentrations of PCMs in the cool climate zone than in the cold 

climate zone. Furthermore, the change in ∆14Crespired over time was similar in all of the warm climate 

zone soils lacking substantial PCM content. These findings provide evidence that the presence of 

PCMs is associated with a decoupling of MAST and soil C cycling rates, suggesting in turn that PCMs 

may attenuate the temperature sensitivity of soil organic matter decomposition. If this is true, we 

would expect that potential increases in decomposition rates and accompanying carbon losses due 

to climate warming would be greater in soils lacking PCMs than in soils enriched in these mineral 

phases. 

3.6. Conclusion 

Our study shows clearly that parent material and climate interact to control soil C dynamics. This 

interaction is the key to explain trends in ∆14Cbulk, which is a proxy for the mean age of soil C, and 

additionally in ∆14Crespired, which reveals the relative contributions of faster or more slowly cycling 

soil C to respiration. We were unable to explain the trends in ∆14Cbulk, or ∆14Crespired across all sites 
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with MAST, demonstrating the limits of relying on the temperature-decomposition relationship in 

determining soil C persistence, and the importance of considering soil mineral assemblages.  

The results of this study imply that parent material and soil development rates can be equal in 

importance to temperature when determining soil C persistence. Specifically, intermediate aged soils 

developed on parent materials with the potential for substantial PCM development, such as basalt or 

andesite, can be expected to accumulate more C than soils lacking this potential, such as granite. 

Furthermore, changes in environmental conditions that accelerate the loss of PCMs via leaching or 

crystallization, e.g., low redox potential, low pH, warm temperatures and adequate moisture, can be 

expected to lead to SOC stock losses and a lower capacity to store soil C once the system returns to 

steady-state. Finally, the signal from decadally cycling soil C in ∆14Crespired observed at the sites most 

enriched with PCMs provides preliminary evidence that the association of soil organic matter with 

these mineral phases may attenuate the temperature sensitivity of decomposition.  

Code/Data availability 

All data and code required to reproduce the analyses are available on Zenodo (Beem-Miller, 2022). 

Acknowledgements 

C. Rasmussen for the initiating the sites, sharing archived data, and field assistance; M. Rost for 

laboratory assistance; S. von Fromm for field assistance.  

Financial support 

This work was supported with funding from the European Research Council (Horizon, 2020 Research 

and Innovation Programme, grant agreement 695101; 14Constraint).  Open access funding enabled 

and organized by Projekt DEAL. 



Study 2 

 121 

3.7. Supplemental Information 

3.7.1 Temporal trends in soil carbon 

We did not observe clear trends in soil carbon concentration over time for the majority of sites, 

making us confident that most sites are at steady-state with regards to carbon stock changes 

(Supplemental Figure 3-1). Although we did observe substantial variation in some sites, this is 

likely due to spatial heterogeneity in soil C concentration that cannot be avoided when destructively 

resampling the same sites over time (Supplemental Figure 3-1). However, we did observe 

significant trends in soil C concentration with time for a few of the sites when considered by specific 

depth increments. A caveat is that we did not account for potential differences in the mass of soil 

sampled over time, as we only considered depth-based increments. We observed significant changes 

at two sites for the surface layer (0-0.1 m), and at two additional sites in the intermediate depth layer 

(0.1-0.2 m), but C concentration changes were only significant at a single site showed changes for the 

deepest depth layer (0.2-0.3 m) (Supplemental Table 3-1). The soil at the cold climate andesite site 

was an outlier in that the soil C concentration showed a consistently significant increase in the two 

deeper depth layers over the study period, while the other soils with significant changes showed 

decreases in C concentrations (Supplemental Table 3-1). 

3.7.2 Radiocarbon depth profiles: 2001 data 

Depth profiles of ∆14Cbulk were similar in 2001 (Supplemental Figure 3-2) as to what we observed 

in 2019. We observed the most depleted ∆14C overall in the cool climate sites, where we also observed 

the clearest differences among parent materials. Parent material differences were least apparent for 

the cold climate sites, as we also observed in 2019. Within climate zones andesitic soils tended be 

most depleted and the granitic soils most enriched, with the basaltic parent material intermediate 

between the other two. 

3.7.3 Parent material and climate effects on ∆14Cbulk and ∆14Crespired 

We saw more significant contrasts in the change over time in ∆14Crespired than we did for ∆14Cbulk 

(Supplemental Table 3-7). When considered within climate zones, trends for the basaltic and 

granitic soils were more similar to one another overall than were either to the andesitic soils. We 

observed parent material trend contrasts more commonly in the cool and cold climate sites than in 

the warm sites; however, we only observed significant trend contrasts for the cold climate sites in 
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the ∆14Crespired data, and not for ∆14Cbulk. When considered within parent materials, we saw more 

significant trend contrasts for the granitic and basaltic soils than for the andesitic soils 

(Supplemental Table 3-7). 

3.7.4 Mineral assemblages 

We simplified the data in the main text to consider the relationship between ∆14Crespired-∆14Cbulk and 

either PCMs or CRMs. We present here the individual regression plots for ∆14Cbulk (Supplemental 

Figure 3-7) and ∆14Crespired (Supplemental Figure 3-8).  

We also present here the results of the individual regression analyses for ∆14Cbulk (Supplemental 

Figure 3-5) ∆14Crespired (Supplemental Figure 3-6), and ∆14Crespired-bulk vs. Al selectively dissolved 

with ammonium oxalate (Alo) or sodium pyrophosphate (Alp), and Fe selectively dissolved with 

ammonium oxalate (Feo), or dithionite citrate (Fed) (Supplemental Figure 3-4). The relationships 

between Alo, Alp, and Feo and ∆14Crespired-bulk in the models derived from Eq. (3-4) were all highly 

significant (p < 0.001). P-values for the metal oxide concentration coefficients in the ∆14Crespired-bulk 

and ∆14Cbulk models were highly significant (< 0.001 at alpha = 0.1) for Alo, Alp, and Feo. The coefficient 

for Alo in the ∆14Crespired model also had a p-value of < 0.001. While still significant at  = 0.1, p-values 

were larger for Alp and Feo than Alo in the ∆14Crespired models: 0.028, 0.086 respectively. 

In contrast, the concentration of Fed was not significant in any of the models.
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3.8. Tables 

Table 3-1. Soil and climate data by site 

          pHa Sanda Claya   

Parent 
Material 

Climate 
Zone 

MAT MAP Elev mean range mean range mean range Soil Taxonomyb 

    °C mm yr-1 masl     g kg-1 g kg-1 USDA-NRCS 

andesite warm 11.5 1250 1167 6.4 (6.3, 6.4) 384 (352, 410) 323 (264, 342) fine, 
parasesquic, 
mesic, Andic 
Palehumult  

cool 8.5 1400 1737 6.2 (6.1, 6.3) 608 (589, 617) 58 (43, 64) medial-skeletal, 
amorphic, mesic 

Humic 
Haploxerand  

cold 6.0 1350 2240 5.8 (5.7, 6.0) 613 (605, 618) 52 (47, 64) medial-skeletal, 
amorphic, frigid 

Humic 
Vitrixerand 

basalt warm 13.3 990 1167 5.9 (5.8, 6.2) 354 (343, 367) 272 (263, 280) fine, kaolinitic, 
mesic Xeric 

Haplohumult  
cool 8.3 1150 1737 6.5 (6.4, 6.6) 797 (670, 853) 104 (70, 116) loamy-skeletal, 

mixed, 
superactive, 
mesic Typic 
Haploxerept  

cold 6.5 1340 2240 6.0 (5.9, 6.3) 768 (680, 930) 57 (37, 65) sandy-skeletal, 
mixed, 

superactive, 
frigid Typic 
Xerorthent 

granite warm 11.1 910 1385 5.8 (5.6, 5.8) 615 (601, 622) 153 (143, 160) fine-loamy, 
mixed, 

semiactive, 
mesic Ultic 
Haploxeralf  

cool 9.1 1010 1789 6.1 (6.0, 6.1) 824 (800, 829) 62 (47, 67) coarse-loamy, 
mixed, 

superactive, 
mesic Humic 
Dystroxerept  

cold 7.2 1080 2317 5.5 (5.4, 5.5) 810 (810, 811) 40 (40, 40) mixed, 
superactive, 

frigid Dystric 
Xeropsamment 

Abbreviations: MAP—mean annual precipitation; MAT—mean annual temperature; Elev—elevation; masl—meters above 
sea level. apH and particle size data are from samples collected in 2009 and aggregated over the depth increment 0–0.3 m. 
Data were aggregated using a mass-weighted spline function (see text for details). bSoil taxonomy previously reported in 
Rasmussen et al. (2018b). 
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Table 3-2. ANOVA for Δ14Cbulk and Δ14Crespired1 

  Bulk soil Respiration 

Depth Predictor df F p df F p 

0–0.1 m Parent material 2 12.00 < 0.001 2 0.04 0.958 

 Climate 2 32.34 < 0.001 2 14.02 < 0.001 

 Year 1 32.03 < 0.001 1 75.29 < 0.001 

 Parent material:Climate 4 8.75 < 0.001 4 7.9 0.001 

 Parent material:Year 2 2.38 0.105 2 1.93 0.177 

 Climate:Year 2 6.61 0.003 2 2.26 0.137 

 Parent material:Climate:Year 4 5.19 0.002 4 3.75 0.024 

 Residuals 44   44   

0.2–0.3 m Parent material 2 15.58 < 0.001 2 0.92 0.421 

 Climate 2 11.61 < 0.001 2 0.77 0.483 

 Year 1 1.30 0.260 1 0.65 0.434 

 Parent material:Climate 4 1.71 0.165 4 4.33 0.019 

 Parent material:Year 2 1.56 0.222 2 0.86 0.446 

 Climate:Year 2 4.04 0.024 2 1.41 0.278 

 Parent material:Climate:Year 4 0.98 0.430 2 0.37 0.698 

  Residuals 44     44     

1Bold text indicates significance at 𝛼 < 0.05. 
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Supplemental Table 3-1. Changes in soil C concentration (%), 2001-2019. (Only significant trends 
shown). 
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Supplemental Table 3-2. Contrasts of ∆14Cbulk and ∆14Crespired for parent material and climate factors, 
0-0.1 m (all pairs). P-value adjustment: Tukey method for comparing a family of 3 estimates. 
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Supplemental Table 3-3. Contrasts of ∆14Cbulk and ∆14Crespired for parent material and climate factors, 
0.1-0.2 m (all pairs). P-value adjustment: Tukey method for comparing a family of 3 estimates. 
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Supplemental Table 3-4. Contrasts of ∆14Cbulk and ∆14Crespired for parent material and climate factors, 
0.2-0.3 m (all pairs). P-value adjustment: Tukey method for comparing a family of 3 estimates. 
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Supplemental Table 3-5. Change in ∆14Cbulk, 2001-2019. Degrees of freedom = 44; confidence level 
used = 0.95. 

 

Supplemental Table 3-6. Change in ∆14Crespired, 2001-2019. Degrees of freedom = 44; confidence 
level used = 0.95. 
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Supplemental Table 3-7. Contrasts for ∆14Cbulk and ∆14Crespired temporal trends. P-value adjustment: 
Tukey method for comparing a family of 3 estimates. 
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3.9. Figures 

Figure 3-1. Profiles of SOC concentration (a–c) and stocks (d–f). Points show mean of 2001, 2009, 
and 2019 data for SOC concentration, and 2001 and 2009 data for SOC stocks (bulk density was 
not measured in 2019); error bars show ±2SE. 
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Figure 3-2. Depth profiles of Δ14Cbulk (a–c) and Δ14Crespired (d–f) in 2019. Points show the mean of 
three replicate profiles for bulk soil, and the mean of laboratory duplicates for respired CO2. Error 
bars show ±1 SD for bulk soils and the minimum and maximum for respired CO2. Dotted gray 
vertical line shows Δ14C of the atmosphere in the year of sampling, 2019 (data from Graven et al. 
2017, forecasted to 2019 using the method of Sierra 2018). 
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Figure 3-3. Temporal trends in ∆14C for 0–0.1 m and 0.1–0.2 m depth layers. Panels (a–f) show 
Δ14Cbulk data. The first column from left—panels (a), (c), and (e)—shows 0–0.1 m data; the second 
column—panels (b), (d), and (f)—shows 0.1–0.2 m data. Panels (g–l) show Δ14Crespired data; the 
third column—panels (g), (i), and (k)—shows 0–0.1 m data; the rightmost column—panels (h), 
(j), and (l)—shows 0.1–0.2 m data. Points show observed data; lines show linear trend estimates 
for marginal means; ribbons show 95% confidence intervals for trends. Dotted line shows 
atmospheric 𝛥14C (data from Graven et al. 2017, forecasted to 2019 using the method of Sierra 
2018).  
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Figure 3-4. Parent material and climate effects on the relationship of Δ14Cbulk and Δ14Crespired. (a) 
Parent material model, Eq. (3-3) and (b) Climate model, Eq. (3-4). Dotted line shows 1:1 
relationship. Points show the mean of three replicate profiles for Δ14Cbulk, and the mean of 
laboratory duplicates for Δ14Crespired. Error bars show ±1 SD for Δ14Cbulk, and the minimum and 
maximum for Δ14Crespired. The cold granite site in 2001 had extremely depleted in Δ14Crespired values 
and thus was from the models. 
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Figure 3-5. Relationship of poorly crystalline and crystalline metal oxides to the difference of 
Δ14Crespired and Δ14Cbulk (Δ14Crespired-bulk). (a) PCM = poorly crystalline metal oxide content (oxalate-
extractable Al + 1/2 oxalate-extractable Fe), (b) CRM = crystalline metal oxide content 
(dithionite-extractable Fe - oxalate-extractable Fe). Points show mass-weighted metal oxide 
concentrations and carbon-weighted values of Δ14Crespired-bulk for 0–0.3 m profiles. Lines show 
partial slopes for 2001 and 2019 from the linear model fit (Eq. 3-5). P-values indicate significance 
of metal concentration coefficient estimate for predicting Δ14Crespired-bulk. 
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Supplemental Figure 3-1. Changes in soil C concentration, 2001-2019. Points show replicate 
profiles (n = 3); lines show marginal mean estimates of linear trends in soil C concentration with 
time; ribbons show 95% CIs around trend estimates.   
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Supplemental Figure 3-2. Heterotrophic respiration rates from incubations of 2019 and 2001 
samples. Panels a-c show 2019 data, and panels d-f show 2001 data. Panels in the top row (a, d) 
show the first depth increment for each year, middle row shows the second depth increment (b, 
e), and the bottom row shows the third depth increment (c, f). Bars show means for laboratory 
duplicates averaged over the whole incubation period; error bars ± 1 standard error of the mean. 
NB: Total CO2 respired was controlled to be within 10,000 ppm (±1,000 ppm) for all samples; 
incubation duration varied between 4 and 40 days. 
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Supplemental Figure 3-3. Depth profiles of ∆14Cbulk and ∆14Crespired for 2001 data. Top panels 
show bulk data, bottom panels respired data. Dotted vertical lines show ∆14C of the atmosphere 
in the year of sampling. Points show the mean of three replicate profiles for bulk soil, and the 
mean of laboratory duplicates for respired CO2. Error bars show ±1 SD for bulk soils and the 
minimum and maximum for respired CO2. Respired CO2 from the cold granite site (bottom left 
panel) was extremely depleted in ∆14C and thus is excluded for display purposes. 
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Supplemental Figure 3-4. Relationship of selectively dissolved Fe and alumnimum to the 
difference between ∆14Crespired and ∆14Crespired (∆14Crespired-bulk). a) Oxalate-extractable Al (Alo),  b) 
Pyrophosphate-extractable Al (Alp), c) Oxalate-extractable Fe (Feo),  d) Dithionite extractable Fe 
(Fed). Points show mass-weighted mineral concentrations and carbon-weighted values of 
∆14Crespired-bulk for 0-30cm profiles. Lines show linear model fits from Eq. 3-5. 

 

  



Study 2 

 140 

Supplemental Figure 3-5. Relationship of selectively dissolved Fe and alumnimum to ∆14Cbulk. a) 
Oxalate-extractable Al (Alo),  b) Pyrophosphate-extractable Al (Alp), c) Oxalate-extractable Fe 
(Feo),  d) Dithionite extractable Fe (Fed). Points show mass-weighted mineral concentrations and 
carbon-weighted values of ∆14Cbulk for 0-30cm profiles. Lines show linear model fits from Eq. 3-5. 

 

  



Study 2 

 141 

Supplemental Figure 3-6. Relationship of selectively dissolved Fe and alumnimum to ∆14Crespired. 
a) Oxalate-extractable Al (Alo), b) Pyrophosphate-extractable Al (Alp), c) Oxalate-extractable Fe 
(Feo),  d) Dithionite extractable Fe (Fed). Points show mass-weighted mineral concentrations and 
carbon-weighted values of ∆14Crespired for 0-30cm profiles. Lines show linear model fits from Eq. 
3-5. 
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Supplemental Figure 3-7. Relationship of poorly crystalline and crystalline minerals to ∆14Cbulk. 
(a) Poorly crystalline mineral content (oxalate-extractable Al + 1/2 oxalate-extractable Fe), (b) 
Crystalline mineral content (dithionite-extractable Fe - oxalate-extractable Fe). Lines show linear 
model fits from Eq. 3-5. 
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Supplemental Figure 3-8. Relationship of poorly crystalline and crystalline minerals to 
∆14Crespired. (a) Poorly crystalline mineral content (oxalate-extractable Al + 1/2 oxalate-extractable 
Fe), (b) Crystalline mineral content (dithionite-extractable Fe - oxalate-extractable Fe). Lines 
show linear model fits from Eq. 3-5. 
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4.1. Abstract 

The response of soil C to rising temperatures is uncertain, with the potential for gains or losses 
in the coming decades. Insight into these dynamics can be obtained from model-derived probability 
distributions of soil C ages and transit times. The aims of this study were two-fold: 1) assess the 
relationship between climatic and mineralogical factors and soil C age and transit time distributions, 
and 2) quantify the effect of soil mineral assemblages on the temperature response of soil C age and 
transit time distributions. I adopted a comparative modeling approach, with the models constrained 
by time series of ∆14Crespired and ∆14Cbulk observed at the sites described in Ch. 3: 0-0.3 m soil profiles 
developed on andesitic, basaltic, and granitic parent materials, spanning a MAST gradient from 6.0 
to 13.3 °C. Pre-aging of soil C was quantified by fitting a lag time parameter in the models, while 
inputs were estimated using observed soil C stocks and modeled transit times. Parameter uncertainty 
was assessed with a Markov Chain Monte Carlo approach, while relationships among climatic and 
mineralogical variables and model outputs were quantified in a Bayesian linear modeling framework. 

Two pool models (2p) performed better than the one or three pool models. Internal model 
dynamics did not affect the age and transit time distributions or model performance, with similar 
results for the 2p models with inputs processed in parallel (2pp) versus serially (2ps). Root mean 
square error (RMSE) for the 2p model fits ranged from 9.1 to 36.3 ‰le (n = 27), indicating a good fit 
to the data. Trends in ages and transit times mirrored those in ∆14Cbulk and ∆14Crespired (Ch. 3). Soil C 
ages and transit times increased with depth, and were oldest in the soils developed on andesite, then 
basalt, and then granite. The warm climate sites had the youngest ages and transit times. Transit 
times were similar between the cool and cold sites, but C ages were older at the cool sites than the 
cold sites. Mean soil C ages showed no response to MAST in the linear models. Median C ages 
decreased with increasing MAST in the granitic and basaltic soils, but not in the andesitic soils. In 
contrast, mean C ages increased exponentially with PCM content across all parent materials. Transit 
times did not vary in response to PCM content, but the response of transit time to MAST varied by 
parent material, suggesting mineralogical control. Mean and median transit times of soil C decreased 
strongly with increasing MAST for the granite soils, but not the basaltic or andesitic soils.  

Inputs increased along with MAST, suggesting the potential for changes in inputs under predicted 
future temperature increases. Both inputs and lag times increased with soil depth. Lag time increased 
at an average rate of 20 y per 0.1 m, indicating pre-aging of soil C is an important mechanism for older 
apparent C ages in deeper soil layers. Neither parent material nor PCM content were related to inputs 
or lag times in the models. 

The results of this study demonstrate that mineral assemblages attenuate the temperature 
sensitivity of soil C ages and transit times in soils with mixed mineralogies. Mineral control of soil C 
ages is strong, particularly PCM abundance, while the effect of parent material on transit time 
suggests mineral control may be important for annual to decadally cycling soil C as well. These 
findings underscore the importance of future studies identifying the specific mineralogical 
mechanisms controlling soil C cycling on short time scales. Going beyond mean C ages and transit 
times and characterizing their full distributions will be key for predicting the response of soil C 
reservoir to a changing climate, and this work shows that time series of ∆14Cbulk and ∆14Crespired can 
provide the necessary constraints to do so. 
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4.2. Introduction 

Soils have the potential to be a sink or a source for atmospheric CO2 in the coming decades 

(Friedlingstein et al., 2014; Todd-Brown et al., 2018). This potential is a function of both the quantity 

of C stored in soils and the duration of storage (Sierra et al., 2021). Soil C storage capacity is related 

to the average age of C in the soil (system age), while the duration of storage (transit time) is 

equivalent to the mean age of C leaving the system (Sierra et al., 2017). Both mineralogical and 

climatic factors are strongly correlated with soil C storage and persistence on a global scale 

(Heckman et al., 2022), yet the influence of these factors on the time scales of C cycling in different 

soil C pools is poorly quantified. Here we extend the findings of Ch. 2 by using the time series of 

∆14Cbulk and ∆14Crespired from the combined parent material and climate gradient to constrain simple 

compartmental models. We use these models to calculate the age distribution of soil C ages and 

transit times, and assess the relationship between these distributions and both climatological and 

mineralogical factors in order to gain novel insight into future soil C stock changes.  

The majority of topsoil (0 to 0.3 m depth) C cycles on annual to decadal time scales, but a small 

proportion can persist for centuries to millennia, resulting in an age distribution with a mean that is 

much older than the median (Sierra et al., 2018; Schimel, 2006). Due to the skewness of age and 

transit time distributions, the median of these distributions can be a better measure of the central 

tendency than the mean. In a heterogeneous system, i.e., characterized by multiple pools of soil C, a 

skewed distribution arises from the superposition of pool age distributions shaped by soil C 

persistence mechanisms operating on different time scales (Sierra et al., 2018; Lehmann and Kleber, 

2015). A consequence of the typical long-tailed age distribution (mean >> median) is that the 

radiocarbon content of bulk soil C is biased toward the signal from more slowly cycling soil C pools, 

owing to the fact that faster cycling C is preferentially lost and therefore tends to make up a smaller 

proportion of the bulk organic matter mass. In contrast, the ∆14C signal in the release flux, e.g., from 

heterotrophic respiration, skews younger and is dominated by faster cycling soil C (Sierra et al., 

2018).  

Radiocarbon is well suited for constraining soil C models because it can be used to quantify C cycling 

rates across time scales ranging from annual to millennial (Trumbore, 2009, 2000). Radioactive 

decay of 14C (half-life = 5730 y) is used to quantify soil C cycling on centennial to millennial time 

scales. This quantification relies on a 14C calibration curve created by measuring the 14C content of 

known-age samples going back millennia (Reimer et al., 2020). In contrast, the fraction of “bomb-C” 
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derived from nuclear weapons testing in the mid-20th century can be used to quantify cycling rates 

of soil C on annual to decadal timescales. The concentration of 14C in the atmosphere nearly doubled 

prior to the ban of above ground testing in 1963, after which it rapidly declined, enabling the use of 

this “bomb-C” pulse as a tracer for decadally cycling soil C (Broecker et al., 1982). 

A key benefit of using the radiocarbon content of bulk soil C and respired CO2 as model constraints is 

that they can be measured empirically as well as generated as an output of a linear dynamical model 

(Metzler et al., 2018). However, because 14C of bulk soil C is more sensitive to the age distribution, 

and 14C of respired CO2 is more sensitive to the transit time distribution, these constraints are most 

useful when measured in tandem (Trumbore, 2000). Another feature of these measurements is that 

they are independent of any assumptions about the internal dynamics of the system, i.e., the sizes 

and cycling rates of soil C pools. This confers an advantage of flexibility but also carries the risk of 

model equifinality: an outcome where the same data support multiple model solutions (Beven, 2006). 

Mechanistic constraints on decomposition, such as bonding environments, the chemical makeup of 

soil organic matter, or its physical arrangement, are critical for determining the time scales of soil C 

persistence. For example, consider a soil with a portion of the organic matter ionically bound to soil 

minerals via multivalent cation bridging. Assuming this material all has the same mean turnover rate, 

we can treat it as a distinct pool with a characteristic distribution of C ages. In turn, we could expect 

that this turnover rate would be distinct from the turnover rate of the organic matter covalently 

bonded to permanently charged silicate clay minerals, or electrostatically bonded to metal (oxy) 

hydroxides with variable charge. In such a scenario, the overall system age distribution of soil C 

would result from the superposition of the characteristic age distributions of each distinct pool.  

Empirical approaches of partitioning soil organic matter into distinct pools have the advantage of 

clear physical definitions, such as with density or size fractionation. However, these laboratory-

defined pools may not correspond to actual pools in situ (Abramoff et al., 2018; Lehmann and Kleber, 

2015), i.e., they may be mixtures of soil organic matter with different sensitivities to decomposition. 

This pitfall is illustrated with the example presented above, in which different pools of mineral-

associated organic matter are defined by bond type, all of which would likely be categorized as 

“heavy” material in a density fractionation. A conceptual model-based approach provides an 

alternative method which can be used to test simplified hypotheses about soil C dynamics without 

relying on potentially heterogeneous empirical pools. 
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Given our current understanding of the mechanisms of soil organic matter persistence, a single pool 

model is unlikely to be able to reproduce the C dynamics observed in actual soils (Baisden et al., 

2002). However, adding additional pools to a model requires adding more parameters, which in turn 

requires more data for parameterization. For example, increasing the complexity of a model to two 

pools from one introduces a minimum of two additional parameters. The simplest of the two pool 

model structures can be characterized as parallel systems or serial systems (Sierra et al., 2015). In a 

parallel system the inputs are partitioned between the pools, while a serial system has the inputs 

entering the first pool before being transferred to the second pool. A two-pool system could be made 

more complex by adding a feedback mechanism, with C flowing from pool one to pool two and also 

from pool two back to pool one, but at the cost of a fourth parameter. Importantly, even the simplest 

two-pool models, e.g., parallel (2pp) and serial (2ps), are tractable for testing useful hypotheses about 

soil C dynamics (Stoner et al., 2021). 

In Chapter 2, we used a time series of ∆14Cbulk and ∆14Crespired data from to demonstrate that: (1) 

climate controls on ∆14Cbulk and ∆14Crespired dominate at the soil surface, but mineral control increases 

with depth, (2) ∆14Cbulk, ∆14Crespired and ∆14Crespired-∆14Cbulk were all significantly correlated with the 

abundance of oxalate extractable Fe/Al phases, indicating a role for mineral protection in 

determining cycling rates of both fast and more slowly cycling soil C.  

Here, we use the previously described time series of radiocarbon measurements of ∆14Cbulk and 

∆14Crespired to constrain compartmental models of soil C dynamics at nine sites across a combined 

gradient of parent material and climate, resolved by depth. Under the steady-state assumption, we 

estimate below ground inputs from the models using measured soil C stocks. We also introduce a lag 

time to account for pre-aging of C inputs, i.e., in plant tissues or in upper depth layers, which may be 

required to explain the evolution of ∆14Cbulk and ∆14Crespired over the last two decades. Using the 

models, we derive distributions of soil C ages and transit times in order to address the following 

questions regarding climatological and mineralogical controls on the different time scales of soil C 

persistence: 

1. Does parent material or mineral assemblage affect transit time distributions of soil C?  

2. Are climatic controls on soil C age or transit time distributions independent of mineralogical 

controls? Does the relative importance of climate and mineralogical factors change with 

depth, as observed with ∆14Cbulk and ∆14Crespired?  
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3. Do lag times improve model fits? How do lag times vary with soil depth and across the 

climatological and mineralogical gradients?   

4. Are inputs estimated from fitted models comparable to those estimated from flux 

measurements at nearby sites? 

4.3. Materials & Methods 

4.3.1 Data 

4.3.2 Field setting and soil sampling 

The soils used in this study come from a combined gradient of parent material and climate located 

on the western slope of the Sierra Nevada mountains, USA. Parent materials consisted of granite, 

andesite, and basalt, while the climate gradient is defined by MAST, MAP, and potential 

evapotranspiration (PET). Mean annual soil temperature at the study sites ranged from 6.0 to 13.3 

°C, MAP ranged from 910 to 1400 mm yr-1, and PET ranged from 950 to 1140 mm yr-1. Overstory 

vegetation at the sites consisted of mixed conifer species. Full site details are provided in Ch. 2 and in 

Rasmussen (2004) 

Soil samples were collected at three time points over approximately two decades: 2001, 2009-2010, 

and 2019. Three replicate pits were dug at each site, with samples collected from the sidewalls of all 

three pits. Samples in 2001 and 2009–2010 were collected by genetic soil horizon. However, due to 

the strong dependence of ∆14C on depth, we adopted a depth-based sampling strategy in 2019 (0.1 m 

increments). Samples were collected from the A horizons only in 2001, but from the A, B and C 

horizons in 2009–2010 and 2019. We focus here on the A horizons (ca. 0–0.3 m) in order to leverage 

the whole time series as constraints for the soil carbon modeling. Note that the 2009-2010 samples 

will be referred to as “2009 samples” going forward, as the majority of the samples were collected in 

2009. 

Site descriptions and geospatial coordinates were recorded in 2001, allowing us to relocate the sites 

with confidence in subsequent re-samplings (2009, 2019). For the 2019 sampling we compared the 

soil profiles to the pedon descriptions made in earlier sampling campaigns to confirm we were in the 

right locations and that the profiles matched. 
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4.3.3 Soil analyses 

Laboratory analyses of soils were performed on both fresh soils and archived air-dried subsamples. 

Mineralogical assays, including selective dissolution and X-ray diffraction, were conducted on the 

2001 and 2009–2010 samples. Bulk density and soil particle distributions were also determined 

from these samples, along with organic carbon and total nitrogen concentrations. Data from these 

analyses are used here with permission; methodological details are available in Rasmussen (2004) 

and Rasmussen et al. (2018). Concentrations of C and N were also measured for the 2019 samples 

(Ch. 2). The mineralogical data used in this chapter are described in more detail in Ch 2. Full details 

of the analytical methodology are provided in Rasmussen (2004) and Rasmussen et al. (2018). 

Soil organic C stocks were calculated using Eq. 4-1. We used the 2009 bulk density values for 

calculating SOC stocks in 2019, as we did not observe substantial changes in soil C concentrations 

between 2009 and 2019 for the majority of sites (Ch. 2), and soil moisture content was assumed to 

be similar as most samples were collected at the same time of year.  

 𝑆𝑂𝐶𝑠𝑡𝑜𝑐𝑘 =  𝜌 ∙  𝐶 ∙  𝐹𝐸 ∙  𝑑, ( 4-1 ) 

where SOC is soil organic C, ρ is bulk density (g m-2), FE is the fine earth proportion (<2mm), and d is 

depth (m). 

We incubated the soils collected in 2001 and 2019 in the laboratory. Soils were only available from a 

single profile at each site for the 2009 samples, so we excluded these samples from the incubation 

experiment to avoid spatial bias. Incubations for both years were performed in 2020. All soils were 

air-dried prior to remoistening at 60% of WHC for consistency across the freshly collected samples 

(2019) and archived samples (2001) (Beem-Miller et al., 2021). See Ch. 2 for details of the incubation 

procedure and CO2 collection protocol. Prior to incubation we composited the soils from the three 

replicate pits at each site by depth. Each composite sample was then incubated in duplicate. 

We measured the radiocarbon content of both bulk soils and CO2 respired during the laboratory 

incubations. Details of the bulk soil radiocarbon analysis for the 2009 samples are reported in 

Rasmussen et al. (2018), while details of both the bulk soil radiocarbon analysis for 2019 samples 

and respired CO2 radiocarbon analysis for 2001 and 2019 samples are provided in Ch. 2.  
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 Radiocarbon data are reported in units of ∆14C (see Ch.  2 for details) (Stuiver and Polach, 1977). The 

∆14C unit is particularly useful for samples that contain substantial enrichment from bomb-C, which 

derives from atmospheric testing of nuclear weapons in the early 1960s. Values of Δ14C >0 indicate 

the presence of bomb-C, while values < 0 are due to radioactive decay of 14C (half-life ~ 5730 y).  

 We used a mass-preserving quadratic spline function to compare soil properties from samples 

collected from different depth intervals in different years and at different sites (Bishop et al., 1999). 

We performed this operation with the ‘mpspline’ function from the R package mpspline2, using the 

default 𝜆 value of 0.1 (Hengl, 2019; O’Brien, 2022). 

4.3.4 Climate data 

The climate data used in this study comes from a combination of downscaled gridded global climate 

data including MAP (mm yr-1) and MAST (°C), gridded PET (mm yr-1) from a hydrological model 

developed for the state of California and adjacent watersheds (California Basin Characterization 

Model, CBCM), and water balance measurements made at flux tower sites adjacent to soil sampling 

locations (volumetric soil moisture). Rasmussen et al. (2006) calculated MAST and MAP as the 30-

year average over the period 1971–2001 using PRISM (Parameter-elevation Regressions on 

Independent Slopes Model) data. CBCM runs on a monthly timestep, and the available data covers 

the period 1895 to 2010 (Flint et al., 2013). We calculated PET as the sum of monthly CBCM output, 

and averaged these annual sums over the time period 1991 to 2010 to determine mean annual PET.  

We also acquired depth-resolved soil moisture data from two of the National Ecological Observatory 

Network (NEON) (Keller et al., 2008) flux towers located along the granitic parent material transect. 

The Soaproot Saddle site (SOAP) is located at (37.0° N, -119.26° W) at an elevation of (1160 m), 

corresponding to the warm climate granite site from our transect. The Lower Teakettle site (TEAK) 

is located at (37.0° N, -119.01° W) at an elevation of 2147 m, which places it in between the cool and 

cold climate sites on the granite transect. The sampling depths for soil moisture varied between the 

SOAP and TEAK sites, and also diverged from the sampling depths used in our study. Accordingly, we 

used the same mass preserving spline technique as for the other soil data in order to estimate 

volumetric soil moisture content over the same depth increments sampled in our study (0-0.1 m, 0.1-

0.2 m, 0.2-0.3 m). 
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4.3.5 Modeling framework 

4.3.5.1. Model structures and assumptions 

We used a compartmental modeling framework to estimate ages and transit times of soil C. Modeling 

was carried out with the R package SoilR (Sierra et al., 2014), and models were constrained with the 

time series of ∆14Cbulk and ∆14Crespired. We implemented first-order decay kinetics in all models and 

assumed that all systems were at steady-state. The balance of C in such models (Eq. 4-2), and by 

extension 14C (Eq. 4-3), can be treated as a system of linear differential equations with the form  

 
𝑑𝐶

𝑑𝑡
= 𝐮 + 𝐁 ∙ 𝐂 (𝑡) ( 4-2 ) 

 
𝑑 𝐶14

𝑑𝑡
= 𝐮 + 𝐁 ∙ 𝐂𝟏𝟒  (𝑡)  −  𝜆 𝐶(𝑡)14  ( 4-3 ) 

where u is an n dimensional vector of inputs, B is an n x n matrix giving the decomposition rates of 

each pool on the diagonal and transfers between pools on the off-diagonal, C(t) and 14C(t) are the n 

dimensional vector of C stocks and 14C in each pool at time t, and  is the radioactive decay constant.  

We compared the performance of a one pool model system to more complex multiple pool systems. 

Multiple pool models can be structured differently with respect to the amount of C transferred 

between pools and also in the partitioning of inputs among pools. We only considered both parallel 

and series type models, as these models require fewer parameters and therefore fewer data 

constraints than more complex structures, e.g., feedback type models. In a parallel type model, inputs 

(I) are partitioned between the fast and slow pools according to the partitioning coefficient 𝛾fast, and 

there is no transfer of C from one pool to another. The input vector, model matrix, and C stock vector 

for the two pool parallel models are shown in Eq. 4-4. In contrast to the parallel model, all of the 

inputs in a series type model first enter the “fast” pool and are then transferred sequentially to the 

other pools. The input vector, model matrix, and C stock vector for the two pool series models are 

shown in Eq. 4-5. Note that for the two pool models we have adopted the convention of labeling the 

model pools “fast” and “slow”. 

 𝐮 = 𝐼 ∙  (
𝛾𝑓𝑎𝑠𝑡

1 − 𝛾𝑓𝑎𝑠𝑡
) , 𝐁 =  (

−𝑘𝑓𝑎𝑠𝑡 0

0 −𝑘𝑠𝑙𝑜𝑤
) , 𝐂 (𝑡) =  (

𝑥𝑓𝑎𝑠𝑡

𝑥𝑠𝑙𝑜𝑤
) ( 4-4 ) 
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 𝐮 = 𝐼 ∙  (
1
0

) , 𝐁 =  (
−𝑘𝑓𝑎𝑠𝑡 0

𝛼𝑓𝑎𝑠𝑡𝑘𝑓𝑎𝑠𝑡 −𝑘𝑠𝑙𝑜𝑤
) , 𝐂 (𝑡) =  (

𝑥𝑓𝑎𝑠𝑡

𝑥𝑠𝑙𝑜𝑤
) ( 4-5 ) 

For the parallel models, we fit decomposition constants (k) for each model pool and input 

partitioning coefficients (𝛾) that determine the amount of C entering each pool. We fit a single 

partitioning coefficient (𝛾fast) for the two pool parallel models (2pp), defined as the proportion of the 

total system inputs partitioned to the fast pool; accordingly, the proportion of the total system inputs 

entering the slow pool in the 2pp model is 1-𝛾fast. We fit an additional partitioning coefficient (𝛾slow) 

for the three pool parallel (3pp) models, defined as the proportion of total system inputs partitioned 

to the slow pool (𝛾slow). The input to the third pool in the 3pp system is 1-(𝛾fast+𝛾slow). 

The parameters fit for the series model structures include decomposition rate constants for each 

model pool, and transfer coefficients (𝛼) giving the proportion of the output flux from each pool 

transferred sequentially to the next pool in the system. We fit a single alpha coefficient (𝛼fast) for the 

two pool series models (2ps), defined as the proportion of the output flux from the fast pool 

transferred to the slow pool. We fit an additional alpha coefficient (𝛼slow) for the three pool series 

models (3ps), defined as the proportion of the output flux from the slow pool that is transferred to 

the third model pool.  

We also fit a lag time parameter for each of the models considered (1p, 2pp, 2ps, 3pp, 3ps). Fitting 

the lag time parameter enabled us to separate the potential effects of pre-aging of soil C inputs, e.g., 

in vegetation or via vertical transport, from other mechanisms of soil C persistence. We report this 

lag time as a model parameter of interest, including how it varies with climatological and 

mineralogical factors. Lag times are implemented in SoilR by shifting the radiocarbon signature of C 

inputs along the atmospheric radiocarbon curve according to the supplied lag time: for example, if 

we fit a 10-year lag time, inputs to the soil in 2019 would have the ∆14C signature of C fixed in 2009. 

4.3.5.2. Parameter optimization 

We determined the initial parameter values by adjusting the values manually until we achieved 

reasonably good fits for ∆14Cbulk and ∆14Crespired with respect to the observed data. The exception was 

the lag time parameter, for which we used an initial value of 10 y based on lag times and root 14C 

content observed for other temperate forest sites (Gaudinski et al., 2000; Koarashi et al., 2012; Solly 

et al., 2013). The initial parameters were then used as inputs for an optimization algorithm. We 

enforced steady-state during the parameter fitting procedure by finding the steady-state solution for 



Study 3 

 162 

soil C stocks for each candidate set of model parameters (Eq. 4-6), and then initializing C stocks in 

the model using these values. The initial timepoint for our model runs was set to 1900, allowing us 

to use the candidate decomposition rate parameters to determine the initial ∆14C values of the model 

pools (Eq. 4-7) (cf. Eq. 3.25 in Trumbore et al., 2016). 

 𝐂 = −𝐁−𝟏  ∙ 𝐮 ( 4-6 ) 

 𝐹 =
𝒌

𝒌+ 𝝀
 ( 4-7 ) 

We used the Nelder-Mead algorithm for optimization, which is the default from the R package optim 

(R Core Team, 2020). This is a direct search method that performs well for optimization problems 

over a small number of variables with minimal iterations (Sierra et al., 2015; McKinnon, 1998). We 

increased the number of algorithm iterations from a default value (n = 500) as needed, i.e., when the 

initial search did not converge. In a few cases, specifically for the 3p models with a larger number of 

parameters, we observed degeneracy of the Nelder-Mead simplex. When this occurred, we used the 

conjugate gradient method “BFSG” in optim, as we observed the results from this method to be 

similar to those achieved with the Nelder-Mead algorithm when we compared the two algorithms at 

sites where both algorithms converged successfully. 

The optimized parameter set and covariance matrix were then used to initialize a constrained 

Markov Chain Monte Carlo (MCMC) simulation with 10,000 iterations. The MCMC approach is useful 

for avoiding local minima that can confound conventional optimization algorithms when searching 

for the global minimum. Furthermore, when the model system is under constrained, multiple 

parameter combinations may be equally valid, and the MCMC approach is useful for quantifying the 

uncertainty that results from this problem of equifinality (Sierra et al., 2015; Stoner et al., 2021). We 

used the function ‘modMCMC’ in the R package FME to perform MCMC simulations (Soetaert and 

Petzoldt, 2010). We constrained both the decomposition rate parameters and the 𝛼/𝛾 parameters to 

the interval (0, 1) and the lag time parameter to the interval (0, 100) in order to ensure realistic 

results but still allow for flexibility during the MCMC simulation.  We set the delayed rejection 

parameter to 2 to improve fitting for sites with high variance in the model constraint dataset.  

4.3.5.3. Model selection 

We identified the best-fit parameter set from the MCMC simulation as the parameter combination 

that returned the lowest sum of squared residuals against the empirically measured values for 
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∆14Cbulk and ∆14Crespired. We then selected the best-performing MCMC model among the candidate 

model structures (1p, 2pp, 2ps, 3pp, 3ps) using Aikaike’s Information Criterion (AIC) (Eq. 4-8), 

corrected for small sample sizes (AICc) (Eq. 4-9) (Hurvich and Tsai, 1989). We considered models 

with AICc scores within two AICc points to be equally valid (Burnham, 2002). 

 𝐴𝐼𝐶 =  −2 log (ℒ(휃̂|𝑦)) +  2𝐾 ( 4-8 ) 

where the first part of the righthand side of the equation is the maximum value for the log-likelihood 

of the unknown parameter 휃 given data y, and the second part is a bias correction term that increases 

with the number of parameters, K.  

 𝐴𝐼𝐶𝑐 =  𝐴𝐼𝐶 + 
2𝐾 (𝐾+1)

𝑛−𝐾−1
 ( 4-9 ) 

where n is the sample size. 

4.3.6 Model output 

4.3.6.1. Ages & transit times  

We calculated probability distributions for soil C ages and transit times using the modeling 

framework outlined above (Metzler et al., 2018; Sierra et al., 2018). The probability distribution 

functions for C ages and transit times are given by 

 𝑓(𝑎) =  −1𝑇 ∙ 𝐁 ∙  𝑒𝑎∙𝐁 ∙  
𝐂

∑ 𝐂
 ( 4-10 ) 

and 

 𝑓(𝜏) =  −1𝑇 ∙ 𝐁 ∙  𝑒𝜏∙𝐁 ∙  
𝐮

∑ 𝐮
 ( 4-11 ) 

where a is the random variable age, 𝜏 is the random variable transit time, T is the transpose operator, 

B is the model matrix defined in Eq. 4-2, ∑C is the sum of soil C stocks in all model pools at steady-

state, and ∑u is the total input. We report the quantiles of these distributions in addition to the means 

in order to better assess the central tendency as well as the shape of the distributions. The mean age 

of soil C is given by 
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 𝔼 (𝑎) =  −1𝑇  ∙  𝐁−1  ∙  
𝐂

∑ 𝐂
 ( 4-12 ) 

and the mean transit time by 

 𝔼 (𝜏) =  −1𝑇  ∙  𝐁−1  ∙  
𝐮

∑ 𝐮
 ( 4-13 ) 

where 𝔼 symbolizes the expected value.  

Probability distributions for system age and transit time typically decrease exponentially with 

increasing time. The relationship between the mean and median of an exponential distribution can 

be expressed by the ratio in Eq. 4-14; and the degree to which this ratio diverges from one is a useful 

metric for assessing the degree of skewness in the distribution. We use this ratio to identify long-

tailed age distributions of ages that could be expected to develop in soils with persistence 

mechanisms operating on multi-century timescales, or transit time distributions with substantial 

contributions from pools with strongly divergent turnover rates.  

 𝑚𝑒𝑑𝑖𝑎𝑛 ∶ 𝑚𝑒𝑎𝑛 =  
ln(2) ∙ 𝑚𝑒𝑑𝑖𝑎𝑛

𝑚𝑒𝑎𝑛
 ( 4-14 ) 

4.3.6.2. Inputs 

Belowground inputs of C to soils are challenging to measure (Rasse et al., 2005; Schmidt et al., 2011; 

Sokol and Bradford, 2019; Peixoto et al., 2022), and were not available for our sites. However, we did 

measure SOC stocks. Under a steady-state assumption, inputs to the compartmental model system 

are related to SOC stocks by the model matrix (Eq. 4-6). We first fit the models using an arbitrary 

initial input value in order to derive the parameters for the model matrix. Once we obtained the 

optimized parameter values from the MCMC algorithm, we used an exhaustive search method to 

perturb the input values until modeled SOC stocks were equal to measured SOC stocks. We used this 

approach for a random subset of the MCMC parameter sets (n = 200) in order to generate a 

distribution of inputs for each site. 

We compared the model-estimated inputs to CO2 flux data measured at adjacent sites along the 

andesitic and granitic parent material transects in order to determine whether our estimates were 

realistic. The measured data we considered included chamber, gas well, and flux tower data. Chamber 

data came from measurements made by Wang et al. (2000) at sites which correspond to the warm, 
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cool, and cold climate granite soils, and by Tang et al. (2005), who measured soil respiration at the 

Blodgett Forest Ameriflux tower site, which is located at an intermediate elevation between the 

warm and cool climate sites of the andesite climate gradient in this study. The gas well data also came 

from the Blodgett Forest site (Soong et al., 2021). Finally, we drew on eddy covariance-derived gross 

primary production data from Goulden et al. (2012), measured at sites adjacent to the granite climate 

gradient sites. In order to estimate the proportion of total CO2 fluxes contributed per 0.1 m depth 

increment, we fit an exponential model to the depth-resolved CO2 fluxes (combined autotrophic and 

heterotrophic components) measured by Soong et al. (2021) at Blodgett Forest. We used the 

empirically derived parameters from this model (Eq. 4-15) to predict CO2 fluxes at the mid-depth 

point of each depth increment for which we collected samples in 2019 (0.05 m, 0.15 m, 0.25 m).  

 𝐶𝑂2 (𝑔𝐶 𝑚−3 ℎ−1) =  𝑒(𝛽0+ 𝛽𝑑 ∙ 𝑑) ( 4-15 ) 

where 𝛽0 and 𝛽d are the intercept and depth coefficients.  

4.3.7 Bayesian linear modeling 

We employed a generalized Bayesian linear modeling framework to assess the relationship of 

selected mineralogical and climatological variables to ages and transit times of soil C. The choice of 

this modeling framework enabled us to use the variance observed in ages and transit times from the 

MCMC parameter optimization output to inform the model priors. Additionally, considering the 

posterior distribution of the model parameters can improve uncertainty estimates for sparse 

datasets (Gelman et al., 2013).    

We used mean and median system C age and transit time as the response variables in the models. For 

the climatological variables we focused on MAST, and for the mineralogical variables we considered 

the sum of oxalate extractable Al and half of the oxalate extractable Fe (OX) as a proxy for the 

abundance of reactive minerals. Wetness index and MAP were strongly correlated with parent 

material, so we excluded both of these variables from the regression analysis. We based the choice of 

model on the distribution of the data from preliminary model runs.  

The response of mean age to OX appeared to be exponentially distributed from the exploratory data 

analysis, so we modeled the relationship using the Gamma distribution with the log link (Eq. 4-16). 

We assumed normally distributed priors for model coefficients with the exception of the response 

error, which we assumed to be exponential. We used the default values for the prior distributions 
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employed by the function ‘stan_glm’ in the R package rstanarm (Goodrich et al., 2023) for all 

parameters but the intercept term, for which we set the mean to zero and the standard deviation 

equal to the log-transformed standard deviation of mean ages from MCMC parameter optimization 

output.  

We fit a hierarchical mixed model for the effect of MAST on ages and transit times, with intercepts 

varying by parent material, parent material specific slopes for MAST, and a global interaction 

between depth and MAST (Eq. 4-17). The hierarchical mixed model also permits the specification of 

a decomposition of covariance model (Σ), which enables the use of prior knowledge about the 

expected relationship among model coefficients. Details on the specification of the decomposition of 

covariance model are provided in the Supplemental Information (section 4.7.3). As with the GLM 

model for OX, we assumed normally distributed priors for model coefficients with the exception of 

the response error, which we assumed to be exponential. We also used the default values for the 

priors of all parameters but the intercept term, for which we set the mean to zero and the standard 

deviation equal to the log-transformed standard deviation of mean ages from MCMC parameter 

optimization output. 

 𝑌𝑖 | 𝛽𝑜𝑥, 𝛽𝑑 , 𝛽𝑜𝑥𝛽𝑑 =  𝐺𝑎𝑚𝑚𝑎 (𝜇𝑖 , 𝜎2) ( 4-16 ) 

 ln (𝜇𝑖) =  𝛽0 + 𝛽𝑜𝑥  ∙  𝑂𝑋𝑖 + 𝛽𝑑  ∙  𝑑𝑖 +  𝛽𝑜𝑥𝛽𝑑  ∙  𝑂𝑋𝑖  ∙  𝑑𝑖  

 𝜎 ~ 𝐸𝑥𝑝 (1) 

 𝛽𝑝 ~ 𝑁(𝜇𝑝, 𝜎𝑝
2) 

where Yi is the ith mean or median age, or mean or median transit time with a mean value equal to 

the natural log of 𝜇i, 𝜎2 is the exponentially distributed global residual error with a standard deviation 

of 1, di is depth in m, 𝛽0 is the intercept term, OXi is the vector of reactive mineral abundances (g Alox 

+ ½ Feox kg-1 soil), 𝛽OX is the coefficient for the effect of reactive mineral abundance, 𝛽OX𝛽d is the 

coefficient for the change in the rate parameter 𝛽OX with depth, and 𝛽p is the Gaussian normal 

distributed prior for model coefficient p with mean µp and standard deviation 𝜎p2. 
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 𝑌𝑖 | 𝛽0𝑗
, 𝛽𝑇𝑗

, 𝛽𝑑 , 𝛽𝑑𝛽𝑇 =  𝑁 (𝜇𝑖𝑗 , 𝜎𝑦
2) ( 4-17 ) 

 𝜇𝑖𝑗 =  𝛽0𝑗
+ 𝛽𝑇𝑗

 ∙  𝑇𝑖 + 𝛽𝑑  ∙  𝑑𝑖 + 𝛽𝑑𝛽𝑇  ∙  𝑇𝑖  ∙  𝑑𝑖  

 𝜎 ~ 𝐸𝑥𝑝 (
1

𝑠𝑦
) 

 𝛽𝑝𝑗  | 𝛽𝑝, … , 𝛽𝑝+1  ~ 𝑁 (
𝛽𝑝, … ,

𝛽𝑝+1
, Σ) 

where Yij is ith mean or median age, or mean or median transit time for parent material j with a 

Gaussian normal distributed mean of 𝜇ij and standard deviation of 𝜎y2, 𝛽0j is the intercept term for 

parent material j, which is normally distributed around the global intercept term 𝛽0, 𝛽Tj is the 

coefficient for the effect of MAST for parent material j, which is normally distributed around the 

global intercept term 𝛽T, 𝛽dT is the coefficient for the change in the global coefficient 𝛽T with depth, d 

is a vector of depths in m, T is a vector of mean annual soil temperatures in °C, 𝛽d is the normally 

distributed global coefficient for depth, 𝛽pj is the conditional distribution of the parent material 

specific coefficient 𝛽p given the global coefficients, and  is the decomposition of covariance model 

(Supplemental Information section 4.7.3). 

We summarized the estimates from the output of each model by calculating the median and 95% 

uncertainty intervals, and considered coefficient estimates to be significant only when the 95% 

credible interval for the parameter estimate excluded zero.  

4.4. Results 

4.4.1 Compartmental model performance and selection 

The two-pool models performed better than the one-pool model structures for the majority of our 

study sites, with smaller values for both AICc and RMSE (Table 4-1, best-fit model in bold). However, 

the 2pp and 2ps model structures performed equally well (i.e., AICc values were within 2 points) at 

most of the sites, indicating that either model could be used to fit the time series of observed bulk 

and respired ∆14C. The results from the 0-0.1 m depth of the cold climate andesitic soil serves as a 

typical example of the equivalency of the 2pp and 2ps model structures, which can be seen from the 

time series fits, parameterizations, system ages, and transit times (Figure 4-1). The 2pp model fits 

are shown for the uppermost depth layer of all sites in Figure 4-2. In some of the granitic soils, and 
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for the deepest depth layer in the warm climate andesite and basaltic soils, the one-pool model 

performed better than either of the two-pool models (Table 4-1). Mean bulk soil and respired ∆14C 

values overlapped in these soils, supporting the assumption of homogeneity that underlies the one-

pool model structure.  

We were unable to achieve convergence when running the parameter optimization for the three pool 

models at the majority of the sites. Additionally, the parameters returned by the optimization 

algorithm were highly collinear, indicating that the models were over-parameterized for the data 

constraints (Sierra et al., 2015). At the sites where we were able to successfully fit the three-pool 

models, we observed that the additional parameters did not substantially improve the model fits, as 

indicated by lower AICc values for the two-pool models. Given these factors, we did not consider the 

three-pool models further. 

We will focus our results and discussion on the 2pp models on the basis of: 1) improved estimates of 

inputs for these models compared to the 2ps models, and 2) otherwise similar performance in terms 

of AIC, and distributions of system C ages and transit times (See Supplemental Information section 

4.7.1 for a more detailed comparison of the 2pp and 2ps models).  

4.4.2 Fitting issues 

There was one site, cool climate basalt, for which the 2pp (and 2ps) models could not be fitted for the 

two deepest soil layers (0.1-0.2 m, 0.2-0.3 m) with a realistic mean age or transit time. This site had 

to be moved ca. 1 km in 2019 from the GPS coordinates recorded in 2001 due to an ongoing timber 

harvest operation.  This may have contributed to the fact that the ∆14Cbulk data from the 2009 

sampling was much more enriched than either the 2001 or 2019 data, and that ∆14Crespired data from 

this site shifted from being enriched relative to the atmosphere in 2001 to being depleted relative to 

the atmosphere in 2019 (Figure 4-2, Supplemental Figure 4-7). Given that these temporal 

trajectories are not in line with the steady state assumption assumed in this study, we have removed 

the results from this site at these depths from all other analyses.  

The deeper layers at the cold climate granite site (0.1-0.2 m, 0.2-0.3 m) also presented challenges 

when fitting the models. Specifically, ∆14Crespired in these soil layers was highly depleted, suggesting 

the respiration flux was dominated by C in excess of 200 years in age. This also is not commensurate 

with a steady-state assumption, as this would suggest the soil is losing C. We removed these highly 

depleted ∆14Crespired data points as model constraints, and instead fit the model with the time series 
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of ∆14Cbulk data only. With this approach we were able to get acceptable fits for the 0.1-0.2 m depth. 

However, the age and transit time distributions, as well as the estimated inputs from the 0.2-0.3 m 

layer remained unrealistic, so we have removed these data from this site and depth layer from the 

results. 

4.4.3 Soil C model parameters 

Optimized parameter values for the two-pool parallel model structure returned from the accepted 

set of MCMC iterations (n = 10,000) are given in Table 4-2. Mean C ages for the model pools ranged 

from 1 to 119 years for the fast pool (𝜏fast) and from 76 to 3700 years in the slow pool (𝜏slow), while 

the proportion of inputs entering the fast pool (γfast) ranged from 0.21 to 0.99. Both pool turnover 

rates and the proportion of inputs entering the fast pool varied in response to climatological and 

mineralogical variables, yet these trends tended to be weak or inconsistent when considered over all 

sites and depths. When considered within parent materials, the granitic soils were an exception in 

that turnover times for the slow pool tended to decrease with increasing MAST, particularly in the 

two deeper soil layers (0.1-0.3 m), and we also observed a strong increase in γfast with increasing 

MAST in the upper depth layers (0-0.2 m). The clearest trend was the increase in slow pool turnover 

rates with increasing reactive mineral content, which was most apparent in the deeper soil layers 

(Table 4-2).   

Estimated mean lag time ranged from 0 to 50 years, and in contrast to the other model parameters, 

lag times varied strongly in response to climate and depth (Figure 4-3, Table 4-2). However, soils 

developed on different parent materials showed similar lag times for a given climate zone and depth. 

Lag time increased with depth at a rate of approximately 20 y per 0.1 m at both the warm and the 

cold climate sites. Lag times were substantially shorter (≤ 4 y) at the cool climate sites, however, and 

did not change with depth. 

4.4.4 Ages of soil C 

System ages varied with both climate and mineralogical factors, as well as depth. System C age 

distributions skewed right, with older mean than median values (Figure 4-4, Figure 4-5, Figure 4-6, 

Table 4-3), which indicates the presence of small amounts of C with ages on the order of hundreds 

of years. This distribution shape can be characterized by the ratio between median and mean C ages 

(Table 4-3). This ratio converged on a value of around 0.45 for the majority of sites. The andesitic 

soils were an exception to this pattern in the median:mean ratio, with much smaller values of 0.03 
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and 0.07 in the surface layer (0-0.1 m) of the cool and warm climate sites. The median:mean C age 

ratio tended to decline with increasing MAST in the surface soils of all three lithologies, with the 

strongest decrease in the andesitic soils, followed by the granitic and then the basaltic soils. However, 

we did not observe a relationship between MAST and median:mean C age in the deeper soil layers. 

The andesitic soils tended to have the oldest mean and median C ages, and the granitic soils had the 

youngest when compared across all climate zones and all depths (Figure 4-4, Figure 4-5, Figure 

4-6, Table 4-3). Mean and median system C ages were most similar among parent materials in the 

surface layer (0-0.1 m) of the cold climate sites (Figure 4-4). Both mean and median system C ages 

tended to increase with depth, and at a similar rate of approximately 80 y per 0.1 m, with the 

exception of the cool climate andesitic soils, which had similar mean C ages at all depths (Figure 4-7). 

System C ages in the granitic soils showed the strongest overall temperature response (Figure 4-8, 

Table 4-4). Both mean and median system C ages tended to decrease with increasing MAST, but 

decreases were only significant for the median, not the mean. The average rate at which median 

system C age declined with MAST was similar across parent materials, but the posterior distribution 

of the slope term indicated a stronger response for the granitic soils than the basaltic soils, and for 

the andesitic soils the 95% uncertainty interval included zero (Table 4-4). For the granitic and 

basaltic soils, the decrease in median system C age was 16.8 (7, 33.8) y per °C and 15.4 (0.8, 27.7) y 

per °C, respectively (95% uncertainty intervals in parentheses). Although the trend in median age 

with MAST did not appear to be as strong in the deeper soil layers, there was no increase in model 

performance when including an interaction between MAST and depth. 

We found the strongest relationship between C ages and mineralogical variables with the proxy 

measurement for (oxy) hydroxide abundance, i.e., the sum of oxalate extractable Al and half of the 

oxalate extractable Fe (OX). Mean system age increased exponentially with increasing OX abundance 

across all three lithologies (Figure 4-10, Table 4-5), at a rate of 1 y per g kg-1 m-2 OX.   

4.4.5 Transit times of soil C 

System transit time distributions also varied in response to climatic and mineralogical factors, but 

showed different patterns than system C age distributions. The response of system transit time to 

MAST was notably stronger than that of system C age (Figure 4-9, Table 4-5), and the relationship 

between system transit time and reactive mineral content was weak. Mean transit time increased 
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with depth at a similar rate as mean and median C ages, ca. 8 y per 0.1 m, but the increase in median 

transit time with depth was slower, ca. 4 y per 0.1 m (Figure 4-7).  

Mean system C transit times tended to be older than median transit times, as with the means and 

medians of system C age distributions. However, both mean and median system C transit times were 

notably younger than mean and median system C ages (Table 4-3). In contrast to system C ages, the 

median:mean ratio for the transit time distributions varied widely across both climate zones and 

lithologies. In general, the median:mean transit time ratio was higher in the granitic soils than in the 

andesitic or basaltic soils, which we attribute to relatively fast median transit times with respect to 

mean transit times in the andesitic and basaltic soils. We observed a small amount of very fast (< 1 

y) cycling soil C in a few of the models (cold climate basaltic soils and the 0.1-0.2 m depth of the cool 

climate granitic soils) (Figure 4-4, Figure 4-5, Figure 4-6, Table 4-3), which correspond to models 

with less than 1% of the total soil C pool allocated to the fast cycling soil C pool along with fast pool 

turnover rates ≤ 1 y  (Supplemental Figure 4-8, Supplemental Figure 4-3).  

We observed a strong interaction between MAST and parent material in the models for both mean 

and median system C transit time (Figure 4-9), with transit time tending to decrease with increasing 

MAST. These trends were strongest in the granitic parent materials (Figure 4-9, Table 4-4), as with 

system C ages. Mean system C transit time decreased at a rate of 17.7 y per °C increase in MAST (95% 

uncertainty interval: 10.5, 55.1 y per °C) in the granitic soils, and at slightly lower rates in the basaltic 

and andesitic soils. However, the uncertainty intervals for the slope estimates in the basaltic and 

andesitic soils overlapped with zero. We also observed an interaction between depth and the rate of 

change in mean system C transit time with MAST, with a trend towards flatter slopes with increasing 

depth, however, the uncertainty interval for this interaction term was large and overlapped with 

zero. 

The relationship between transit time and OX was inconsistent when considered over all sites and 

depths. Mean system C transit time appeared to show a similarly exponential increase with 

increasing OX as did mean system C ages when the data were restricted to the two deepest depth 

layers (0.1-0.3 m), and to the cool and cold climate basaltic and andesitic soils. However, mean transit 

time did not appear to be affected by OX in the remaining soils, i.e., granitic soils, surface soils, and 

the warm climate soils, indicating a weak relationship overall. 
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4.4.6 Inputs 

Estimated soil C inputs varied in response to depth and climate, but did not vary among parent 

materials. We estimated the highest inputs in the surface layer (0-0.1 m) of the warm climate sites 

andesitic and granitic soils. Inputs at these sites were substantially higher than in the upper layer of 

the warm climate basaltic soils, and were also a full order of magnitude greater than in the 

corresponding surface layer of the cool or cold climate soils for all three lithologies (Figure 4-11, 

Supplemental Table 4-1). Excluding the anomalously high inputs from these two soil layers, inputs 

tended to decrease with increasing depth at a similar rate across parent materials, ca. 11 g C m -2 per 

0.1 m (Figure 4-11).  

4.5. Discussion 

The focus of this chapter was the parameterization of models to quantify the effect of climatic and 

mineralogical factors on distributions of soil C ages and transit times. We accomplished this by using 

the time series of bulk soil and respired radiocarbon from the combined parent material and climate 

gradient introduced in Ch. 3. The age and transit time distributions are the key output from these 

models, but we also fit a lag time parameter to account for pre-aging of soil C inputs in vegetation or 

via vertical transfers between soil layers. Under the steady-state assumption, soil C inputs are related 

to soil C stocks by the transit time (Eq. 4-6), so using our prior knowledge of soil C stocks at the study 

sites we were able to use the fitted models to estimate belowground C inputs.  

4.5.1 System C ages, transit times, and climatic vs. mineralogical controls 

A central question motivating this study was how mineralogical factors, including parent material 

and reactive mineral content, affect transit time distributions. In the previous chapter, we established 

that both bulk soil radiocarbon and the radiocarbon signature of heterotrophically respired CO2 

varied among study sites with distinct mineral assemblages and climatic regimes. These results 

confirmed prior research showing that bulk soil radiocarbon values are strongly correlated with 

parent material, and more specifically, the abundance of reactive secondary minerals such as (oxy) 

hydroxides. We also demonstrated a relationship between the radiocarbon signature of respired CO2 

and reactive mineral content, indicating the potential for mineral control of soil C cycling on annual 

to decadal time scales.  



Study 3 

 173 

Using the compartmental models developed in this study we were able to demonstrate a significant 

interaction between parent material and MAST on transit time, which to our knowledge has not been 

previously demonstrated in situ. These results suggest that soil mineral assemblages can reduce the 

temperature sensitivity of soil C transit times. Transit time is a measure of the average age of C in the 

release flux, which is normally expected to derive from relatively unprotected or otherwise easy to 

decompose material such as particulate organic matter. Decomposition of particulate organic matter 

has been shown to be strongly dependent on temperature, but our finding that mineral assemblages 

affect the temperature sensitivity of transit time indicates that a significant portion of the respiration 

flux may be coming from pools of mineral-associated organic matter in soils rich in reactive minerals. 

Earlier work at our study sites (Rasmussen et al., 2006), as well as in other studies (Karhu et al., 2019, 

2010; Doetterl et al., 2015), provide laboratory evidence that reactive mineral species may reduce 

the temperature sensitivity of decomposition. In a follow up study, Rasmussen et al. (2018) observed 

higher concentrations of reactive secondary minerals in the andesitic and basaltic soils than in the 

granitic soils, and increased partitioning of the soil C pool to the mineral-associated fraction in the 

andesite soils relative to the other lithologies. Although we did not observe strong relationships 

between mean transit time and any proxy measurements for reactive mineral species, when 

compared to the granitic soils the basaltic and andesitic soils had either shallower slopes for the 

relationship between transit time and MAST or failed to exhibit a significant relationship at all. Even 

for the andesitic soils with a significant trend in age or transit time with respect to MAST, we 

observed the oldest mean C ages and longest transit times at the cool climate site (8.5 °C), not the 

cold climate site (6.0 °C). Taken together, we interpret our results as providing field-based evidence 

that parent material can moderate temperature sensitivity of decomposition.  

 In line with the findings of Rasmussen et al. (2018), we found that mean C ages varied strongly in 

response to oxalate extractable Fe and Al content, unlike transit times, and that mineral assemblages 

played a more important role than MAST in determining mean C age. Soils with more abundant 

oxalate extractable metals not only had older mean C ages, but also smaller ratios of median to mean 

C ages. This indicates that the abundance of Al and Fe (oxy) hydroxides is associated with more 

asymmetric C age distributions, and also suggests the older C ages in these soils is a function of small 

amounts of centennial to millennial cycling C that may persist through association with soil minerals.  
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4.5.2 Interactions between climate and mineral assemblages  

Previous research at our study sites demonstrated that lithology determines the potential for (oxy) 

hydroxide formation, but that the observed abundance of these reactive minerals for a given parent 

material is largely determined by the effects of temperature and soil moisture on weathering rates. 

We observed a positive correlation between MAP and mean C age at our sites, and an even stronger 

positive correlation between wetness index and mean C ages. However, we also observed strong 

collinearity between parent material and both MAP and wetness index, as well as between the 

abundance of oxalate extractable metals and both MAP and wetness index. This presents a challenge 

for disentangling the direct effect of precipitation and wetness index on soil C ages from potentially 

indirect effects via enhanced weathering and the development of reactive secondary minerals. 

High soil moisture is associated with old C ages in some soils, which has been attributed to anoxic 

conditions in poorly drained soils (Wickland and Neff, 2008; Harden et al., 1997). However, in lighter 

textured soils, such as those at our sites, anoxic conditions are not common. Increased throughflow 

of water through soils accelerates weathering rates, which in young soils leads to the development 

of reactive secondary mineral species. Comparing the cold climate andesitic and basaltic soils, we 

observe the same wetness index value but much higher abundances of oxalate extractable metals and 

older C ages in the andesitic soils. We interpret this as evidence that the correlation of C age and 

wetness index is more of an indirect effect at these sites: wetter conditions lead to enhanced 

weathering, which in turn favors the development of reactive secondary minerals with high potential 

for slowing decomposition through the formation of mineral-organic associations. 

The importance of climate in controlling both C ages and transit times decreased with depth across 

all lithologies, corresponding to an increase in importance of mineralogical factors. These findings 

support our results for the climatic and mineralogical control of ∆14Cbulk and ∆14Crespired. Temperature 

influences both enzymatic reaction rates and microbial activity, with faster reaction rates and more 

microbial activity observed at warmer temperatures than colder temperatures. However, the 

insulating effect of soil increases with depth, potentially leading to decoupling between air 

temperature and decomposition rates. 

4.5.3 Pre-aging of soil C 

The potential pre-aging of soil C inputs confounds the direct interpretation of soil C ages from ∆14C 

data alone. There are multiple mechanisms that could lead to pre-aging of inputs, including pre-aging 
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of C within vegetation (Gaudinski et al., 2000; Joslin et al., 2006; Herrera-Ramírez et al., 2020) and 

vertical transport of pre-aged soil C between soil layers (Leinemann et al., 2018; Ahrens et al., 2020). 

Earlier studies from sites adjacent to our granitic parent material sites found that the ∆14C of fine 

roots was elevated relative to the atmosphere in the year of sampling, with mean ages ranging 

between 1 to 20 y (Koarashi et al., 2012). This divergence between the ∆14C of fine roots and the 

atmosphere has also been corroborated in other forested ecosystems (Gaudinski et al., 2000; Solly et 

al., 2013, 2018). 

 We addressed this issue by fitting a lag time parameter in our soil C models. The strongest control 

on lag time was depth, which is commensurate with the hypothesis that deeper soil layers receive 

pre-aged inputs from the upper soil layers. We did not measure ∆14C of roots, nor did we model root 

dynamics, so we are unable to separate potential pre-aging of C in vegetation from vertical transport. 

However, we observed that the depth dependence of the lag time parameter was weakest at the 

wettest sites. Although lag times at the cool climate sites with the highest wetness index values did 

not change with depth, they did increase strongly with depth at the relatively dry warm climate sites. 

We interpret this as possible evidence for reduced transport of fresh soil C inputs to deeper soil layers 

in response to drying of the upper soil layers during the spring and summer months (Supplemental 

Information section 4.7.2, Supplemental Figure 4-5). 

Seasonal drying of upper soil layers and reduced transport of recent C inputs to deeper soil layers 

does not explain the increase in lag times with increasing depth that we observed at the cold climate 

sites. However, there are two additional explanations for this. During the winter months, soils at the 

cold climate sites freeze, leading to reduced transport of water through the soil profile. Although a 

portion of this water is flushed through the soil during spring snowmelt, preferential flow is likely 

given the coarse texture of these soils (Rasmussen, 2004), and not all of this snowmelt enters the soil 

due to runoff processes (Flint et al., 2013). In combination, the cryic regime and coarse textures could 

lead to reduced delivery of fresh C inputs to deeper layers in the cold climate sites, which gives a 

hydrological explanation for the increased lag times. 

Alternatively, a potentially more likely explanation is increased in root ages with depth, a 

phenomenon that is well-documented (Hendrick and Pregitzer, 1996; Gaudinski et al., 2000; Wells 

et al., 2002; Baddeley and Watson, 2005; Joslin et al., 2006). Root ages tend to be older overall at 

colder sites than at warmer sites (Sah et al., 2011; Solly et al., 2018), and furthermore, the rate of 

increase in root age with depth has also been shown to increase with decreasing temperature 
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(Kengdo et al., 2023). Taken together, the evidence suggests that the increase in lag time seen with 

depth at the cold climate sites would be driven mainly by the effect of temperature on pre-aging of 

soil C inputs in vegetation (root age), and less so by hydrology, while at the warm climate sites, the 

increase is likely driven more by the development of a seasonal moisture gradient with depth and its 

corresponding impact on vertical transport processes. 

4.5.4 Model-estimated soil C inputs 

The use of soil C models to estimate belowground inputs is not a new idea, and in fact was one of the 

original applications of the Rothamsted soil C model (Jenkinson et al., 1992). A key advantage of the 

model-based approach is that it yields an estimate of inputs that integrates variation in annual inputs 

over time, in contrast to the time-consuming and challenging work of measuring annual inputs over 

multiple years (Jenkinson et al., 1992). The inputs we estimated from our 2pp models decreased with 

both soil depth and MAST, which is commensurate with observations of soil CO2 fluxes reported from 

nearby sites in other studies (Wang et al., 2000; Tang et al., 2005; Soong et al., 2021).  

The decrease in inputs observed with depth matches the decrease observed by Soong et al. (2021) 

for depth profiles of soil air CO2 concentrations at the Blodgett Forest Ameriflux tower site, located 

at an intermediate elevation between the warm and cool climate andesitic soils in this study. The 

data from Soong et al. (2021) estimates the relative contribution of the total soil profile CO2 

concentration from the 0–0.1 m, 0.1-0.2 m, and 0.2-0.3 m depth layers to be 47%, 32%, and 21%. In 

comparison, the estimated contribution to total CO2 fluxes in this study from the same depth layers 

(across all sites) were 52±29%, 20±11%, and 13±7%. Note that the high standard deviation of the 

estimates for the uppermost soil layer was driven by notably higher estimates for inputs in the warm 

climate andesitic and granitic sites compared to the other sites. 

We observed substantial decreases in inputs with increasing elevation and MAST in this study, which 

correlate with the decreases seen in heterotrophic respiration fluxes with increasing elevation 

reported by Wang et al. (2000) and Tang et al. (2005). A potential mechanism that could explain the 

decrease in inputs with increasing elevation and MAST is the presence of a thick under canopy shrub 

layer at both the warm climate andesite and granite soils (dominated by C. foliolosa and 

Arctostaphylos spp., respectively), which is also where we estimated the largest inputs. This 

explanation is supported by the data from basaltic soil transect, where the thick understory 
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vegetation layer was absent at the warm climate site and where we also did not observe large 

differences in inputs along the climate gradient.  

Our model-estimated fluxes were smaller but of the same order of magnitude as the chamber-based 

observations of heterotrophic respiration fluxes reported by Wang et al. (2000) and Tang et al. 

(2005). Wang et al. (2000) estimated annual heterotrophic C fluxes of 460 and 260 g C m-2 y-1 from 

sites adjacent to the warm and cold climate granitic sites in this study, respectively, compared to our 

estimated fluxes of 216 and 102 g C m-2 y-1 at these sites. Tang et al. (2005) estimated annual 

heterotrophic C fluxes of 757 g C m-2 y-1 at the Blodgett Forest site, and we estimated fluxes of 485 

and 65 g m-2 y-1 for the adjacent warm and cool climate andesitic soils, respectively. An important 

caveat for our data is that our estimates of total inputs/fluxes are inherently biased lower than 

chamber measurements, because our method does not fully include the inputs from sub-annually 

cycling C. We sampled soils at the end of the growing season, and therefore our inferred inputs only 

consider the contribution from roots that persist for a whole growing season or longer.  

There are also additional method biases that could explain the differences in inputs between our 

study and these chamber-based studies. For example, we excluded the organic layer in our estimates 

of soil C fluxes, but Tang et al. (2005) included it. Wang et al. (2000) also excluded the organic layer, 

and this could also explain why their flux estimates were lower than those of Tang et al. (2005). 

Another caveat for interpreting the data from Wang et al. (2000) is that they calculated heterotrophic 

respiration with the assumption that the ∆14C signal of CO2 measured from flux chambers during the 

non-growing season would exclude the contribution from root respiration. While the root 

contribution is certain to be lower during the non-growing season, it is not likely to be zero, which 

would contribute to higher flux estimates relative to our findings. Finally, both Wang et al. (2000) 

and Tang et al. (2005) calculated CO2 fluxes for the entire soil profile, while we only considered the 

top 0.3 m of the mineral soil. The contribution to the total heterotrophic CO2 flux from soil layers 

below 0.3 m is likely to be relatively small, but this bias in our data would also make our estimates 

smaller than those from flux chamber measurements. 

4.5.5 Model selection and data limitations   

The choice of model structure is important for determining soil C persistence as models with 

different structures can yield divergent results in terms of mean and median ages and transit times 

(Sierra et al., 2018). However, the 2pp and 2ps model structures assessed in our study performed 



Study 3 

 178 

equally well with regards to model fit (RMSE, AICc). These two model structures also yielded similar 

results for ages and transit times, indicating that the time series of bulk soil and heterotrophically 

respired CO2 was agnostic to the assumptions inherent in model choice. This outcome points to a 

central challenge of modeling studies: that of model equifinality. 

The MCMC approach taken in this study is one solution for dealing with the issue of model 

equifinality. Using this approach, we were able to quantify the uncertainty associated with the 

parameter optimization, as well as the correlation between parameters. We emphasized the output 

from the 2pp model due to the similarity of the output of the two different model structures and the 

moderately higher confidence in the estimated soil C inputs from the 2pp model. However, we stress 

that this does not imply overall poorer performance of the 2ps models. Rather, the equivalency of 

these models indicates that we cannot distinguish the internal dynamics of multiple pool models at 

these sites with the available data. 

 The most divergent property between the 2pp and 2ps model structures were the pool turnover 

rates. While the models performed similarly under the steady-state assumption, violations of that 

assumption due to changes in inputs or mineral assemblages in response to changing temperature, 

moisture, or vegetation regimes in the future could lead to divergent estimates for potential soil C 

gains or losses. In particular, recent work assessing the effect of changes to the size and turnover rate 

of the fast pool underscore the importance of understanding the internal dynamics of the model pools 

for accurately predicting future soil C stock changes. The findings of this study indicate that further 

constraints on pool sizes and turnover rates are needed to assess the response of these systems 

under a non-steady state assumption. I will return to this point in Ch. 5. 

4.6. Conclusion   

The results of this study demonstrate the high value of measuring radiocarbon of both bulk soil and 

heterotrophically respired CO2 over time for constraining soil C models. Furthermore, we also make 

clear the additional power gained from developing models, rather than simply using raw ∆14C data. 

The trends in the ∆14Cbulk data align with the mean C ages calculated with the models, while the trends 

in ∆14Crespired data are closer to what is observed in the mean transit time data. A recommendation 

from the results of this chapter is that ∆14Cbulk and ∆14Crespired should be applied in tandem as model 

constraints as they capture different system dynamics. However, while mean C age and mean transit 

time are important for understanding certain aspects of soil C persistence mechanisms, they are 
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inadequate for understanding how much C is stored in soils and for how long. The distributions of 

soil C ages and transit times are essential for answering such questions as how much of the soil C 

inputs in a given year will remain in the soil over a particular time horizon (Crow and Sierra, 2022). 

These distributions also reveal biases in the means due to the leveraging effect of small pools of 

strongly ∆14C-depleted C, which could lead to underestimates of the rate at which C cycles through 

soils when using ∆14C data without model-based interpretation. 

Pre-aging of soil C inputs and a lack of knowledge regarding the size and turnover rate of distinct soil 

C pools complicates interpretation of ∆14C in soils (Baisden et al., 2013). This study demonstrates 

that combining ∆14Cbulk and ∆14Crespired time series can provide enough information to estimate pre-

aging of inputs as a system parameter. This enables separating the pre-aging component of soil C 

persistence mechanisms, which in the case of this study adds support to recent findings that the old 

14C ages of C in deeper soil layers are due to pre-aging as well as limitations on decomposition. The 

similarity in system age, transit time, and input estimates from the 2pp and 2ps models indicates that 

the combination of ∆14Cbulk and ∆14Crespired time series serve as robust constraints for the system 

absent information about internal pool dynamics. This is an advantage for modeling system C 

dynamics, as it lessens the importance of selecting the correct model structure and obviates the need 

for quantifying soil pool sizes or turnover rates empirically, which remains a challenge.  
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4.7. Supplemental Information 

4.7.1 Comparison of 2pp and 2ps models 

System ages and transit times of soil C did not vary substantially between the 2pp and 2ps model 

structures (Supplemental Figure 4-1). Mean C ages tend to be older in the 2pp models than in the 

2ps models, but the opposite is true for median C ages, which tend to be older in the 2ps models. The 

age distributions for both model structures have long right tails, making the mean C ages 

substantially older than the median ages for both model structures.  

Inputs and pool sizes calculated for the 2pp and 2ps models were also similar (Supplemental Table 

4-1). However, inputs for the 2ps models had higher uncertainty. Additionally, the estimated inputs 

for the 2ps models at a few sites were both substantially higher compared to the inputs estimated for 

the 2pp models and compared to the inputs estimated for the other sites at the same depth.  

Pool turnover times did vary substantially between the 2pp and 2ps models at some sites, leading to 

greater differences in pool ages between the two model structures than observed for system ages or 

transit times. Mean ages of the fast pool in the 2ps models tended to be younger than in the 2pp 

model, particularly for the andesitic soils (Supplemental Figure 4-3). Mean ages of the slow pool 

were more similar between the two model structures, and when different they did not show 

consistent trends across sites (Supplemental Figure 4-4).   

These differences in pool turnover did not lead to substantial differences in ages and transit times 

(Supplemental Figure 4-1). However, these differences are relevant in the context of potential 

changes to turn over rates. Small changes in the decomposition rates of the fast pool, for example, 

can have substantial impact on the amount of C sequestered in the soil over the next several decades 

(cf. Crow and Sierra, 2022). In general, the inability to reliably distinguish between the goodness of 

fit of the 2pp and 2ps models indicates the need for additional constraints on the internal pool 

dynamics in order to determine how future changes to pool turnover rates may affect future SOC 

stock changes. 

Supplemental Figure 4-6 provides an example of a site for which ages and transit times diverged 

substantially between the 2pp and 2ps model structures (cool climate andesitic, 0-0.1 m). For panels 

a) and b): numbers in parentheses give inputs and organic C stocks estimated for each model fit, 

italicized numbers give transfer rates as a percentage of system inputs, and colored numbers give 

pool fluxes; units are gC m-2. For panel c): lines show fits using the mean parameter values returned 
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from the MCMC optimization, ribbons show the estimated 95% confidence interval for the data-

constrained pools (bulk soil C, respired CO2). Note that ∆14C of respired CO2 overlaps ∆14C of the fast 

pool for the 2-pool parallel model. 

4.7.2 Seasonal soil moisture effects on modeled lag times  

We assessed the effect of soil moisture on lag times for the sites on the granitic transect (the only 

sites where these soil moisture data were available). We observed strong seasonal differences in soil 

moisture between the 0-0.1 m and 0.2-0.3 m depths at the SOAP site (equivalent to the warm climate 

site from this study), but not at the TEAK site (intermediate in elevation between the cool and cold 

climate sites) (Supplemental Figure 4-5). Soil moisture at the warm climate site analog diverged 

between 0 and 0.3 m over the course of the year, with similar soil moisture at all depths in winter, 

diverging in the spring as the surface soil begins to dry out substantially more than the deeper soil 

layers, and reaching the maximum difference at the end of summer. In contrast, while we observed 

overall soil moisture fluctuations throughout the year at the cool/cold analog site, these fluctuations 

were similar at all depths (Supplemental Figure 4-5). 

4.7.3 Decomposition of covariance model 

The decomposition of covariance model is a hypothesis about the relationship among the coefficients 

in a hierarchical model. The decomposition of covariance model is defined by three hyperparameters, 

휂, 𝛿, and 𝜏 each of which defines a separate prior probability distribution (Eq. 4-18). The 

regularization hyperparameter (휂) specifies the correlation between the slope and intercept terms 

(R), the concentration hyperparameter (𝛿) gives the proportional contribution to total variance from 

slope versus intercept terms by group (휁), while 𝜏 describes relative contribution of the slope or 

intercept terms to the variability between groups (Johnson et al., 2022). 
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 Σ ~ 𝑑𝑖𝑎𝑔 (𝜔) 𝑅 𝑑𝑖𝑎𝑔 (𝜔) ( 4-18 ) 

 𝜔 =  휁 √𝜏 

 𝑅 ~ 𝐿𝐾𝐽 (휂) 

 휁 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (2, 𝛿) 

 𝜏 ~ 𝐺𝑎𝑚𝑚𝑎 (𝑠, 𝑟) 

where ⍵ is the vector of standard deviations, R is the correlation matrix for the model covariates 

described by the Lewandowski-Kurowicka-Joe (LKJ) distributed parameter 휂, 휁 is the simplex vector 

for the allocation of variance among slope and intercept terms, which is described by a joint 

symmetric Dirichlet distribution with concentration parameter 𝛿, and 𝜏 is the gamma-distributed 

total variance in intercepts and slopes with scale (s) and shape (r) parameters (Goodrich et al., 2023). 

We fit the hyperparameters of the decomposition of covariance models for the response of mean and 

median ages and transit times to MAST using information from the radiocarbon time series of bulk 

soil and respired CO2 at our study sites, as well as an exploratory analysis of variance with the 

posterior distributions of ages and transit times from the MCMC parameter optimization. We used 

these data to determine appropriate values for the hyperparameters 휂 and 𝛿 separately for each 

model. However, as we did not have adequate information about the combined variability in slope 

and intercept terms within each parent material, we used the default value for 𝜏 (Goodrich et al., 

2023). 

Starting with the regularization parameter, we assumed that the parent material specific expected 

value for mean or median age or transit time in a soil is likely to be correlated with the change in 

median age in response to temperature for that parent material. This relationship can be modeled 

with a value of 0.5 for 휂. We compared the variance among parent materials to the variance among 

climate zones (warm, cool, cold) as a tool to assess the relative contribution of the intercept and slope 

terms, respectively, to expected variance in the global response of different parent materials to MAST. 

Mean and median ages varied more among parent materials than climate zones, but the opposite was 

true for mean and median transit times. In either case, this relationship can be captured by setting 

the concentration hyperparameter 𝛿 to a value of 0.5.  



Study 3 

 183 

4.8. Tables 

Table 4-1. Fitting statistics and observed error for 1p, 2pp, 2ps models1 

     Model 

   Data AIC RMSE 

Depth (m) Climate Parent material Obs. Err. n 1p 2pp 2ps 1p 2pp 2ps 

0-0.1 warm andesite 10.6 11 93.7 72.6 73.4 62.4 20.1 23.3 

  basalt 7.9 11 71.5 67.8 67.8 22.6 15.5 15.8 

  granite 10.1 11 80.6 74.6 74.6 35.0 21.9 23.4 

 cool andesite 12.9 11 95.1 74.8 74.2 63.2 22.2 22.4 

  basalt 7.3 11 83.6 77.5 76.8 37.6 23.8 26.1 

  granite 6.9 11 80.6 78.6 80.4 32.5 28.6 30.0 

 cold andesite 4.6 10 72.3 64.4 66.9 32.2 17.4 19.5 

  basalt 7.3 11 84.5 69.5 69.3 39.4 16.7 17.0 

  granite 17.5 11 69.6 73.5 73.2 19.7 21.5 20.3 

0.1-0.2 warm andesite 15.1 11 89.1 80.7 81.0 51.5 28.4 28.8 

  basalt 5.3 11 69.0 63.9 63.8 20.1 13.1 13.5 

  granite 15.3 11 75.6 79.7 79.6 26.0 27.0 27.1 

 cool andesite 4.3 11 99.2 58.6 57.6 83.3 10.7 10.3 

  basalt 10.0 10 95.3 70.1 70.1 64.2 20.3 19.8 

  granite 15.7 11 85.0 85.8 82.1 41.1 36.3 35.3 

 cold andesite 7.0 10 80.4 58.5 58.4 35.3 13.2 13.6 

  basalt 13.3 11 86.7 76.6 76.3 44.6 23.5 23.5 

  granite 5.9 8 62.0 66.0 65.0 18.1 19.8 18.8 

0.2-0.3 warm andesite 20.0 11 81.8 81.7 81.7 52.5 33.6 31.0 

  basalt 14.5 11 76.1 77.7 77.9 27.8 26.3 28.4 

  granite 8.4 10 77.6 80.0 70.1 28.6 30.2 22.3 

 cool andesite 4.5 11 102.3 56.4 53.7 89.5 9.7 9.1 

  basalt 11.0 10 113.2 81.8 81.8 143.9 32.7 33.7 

  granite 11.3 11 81.8 83.5 83.5 36.3 33.3 35.8 

 cold andesite 7.2 10 75.1 55.2 55.2 37.4 11.6 11.6 

  basalt 9.1 10 90.6 73.9 75.5 77.2 32.0 29.3 

  granite 11.2 9 59.8 63.3 62.4 16.2 15.8 16.1 

1 Observed error (Obs. err.) is the overall mean of the standard error calculated for ∆14C (‰) of observed bulk soil and 
respired CO2 across all time points; RMSE units are also ∆14C (‰) 
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Table 4-2. Optimized parameters (2pp model)1 

      𝜏fast 𝜏slow 𝛾fast Lag 

Depth (m) Climate 
Parent 
material mean (quartiles) mean (quartiles) mean (quartiles) mean (quartiles) 

0-0.1 warm andesite 9 (9, 9, 9) 2697 (1914, 2668, 3884) 1 (1, 1, 1) 0 (0, 0, 0) 

  basalt 19 (19, 19, 19) 110 (107, 110, 114) 0.38 (0.39, 0.39, 0.38) 1 (1, 1, 1) 

  granite 14 (14, 14, 14) 86 (77, 90, 100) 0.83 (0.87, 0.84, 0.79) 1 (2, 1, 1) 

 cool andesite 90 (86, 90, 94) 3714 (3009, 3713, 4901) 0.99 (0.99, 0.99, 0.99) 1 (1, 1, 1) 

  basalt 9 (9, 9, 9) 197 (190, 196, 204) 0.64 (0.65, 0.64, 0.64) 0 (0, 0, 0) 

  granite 18 (18, 18, 18) 150 (144, 150, 157) 0.55 (0.6, 0.55, 0.5) 4 (6, 4, 2) 

 cold andesite 17 (16, 17, 17) 161 (155, 161, 167) 0.48 (0.49, 0.48, 0.46) 1 (1, 1, 1) 

  basalt 1 (1, 1, 1) 188 (182, 188, 195) 0.66 (0.67, 0.66, 0.64) 11 (11, 11, 10) 

  granite 59 (42, 52, 128) 165 (163, 166, 169) 0.09 (0.14, 0.07, 0.03) 11 (17, 10, 4) 

0.1-0.2 warm andesite 14 (12, 14, 17) 347 (332, 348, 365) 0.48 (0.5, 0.49, 0.47) 2 (3, 2, 1) 

  basalt 26 (26, 26, 27) 173 (166, 174, 182) 0.25 (0.27, 0.25, 0.23) 1 (1, 1, 1) 

  granite 97 (87, 97, 112) 76 (62, 77, 101) 0.72 (0.88, 0.73, 0.57) 27 (27, 27, 27) 

 cool andesite 64 (64, 64, 65) 1002 (976, 1007, 1031) 0.83 (0.83, 0.83, 0.83) 1 (1, 1, 1) 

  basalt - - - - - - - - 

  granite 1 (1, 1, 1) 266 (243, 267, 295) 0.61 (0.68, 0.6, 0.54) 2 (3, 1, 1) 

 cold andesite 38 (37, 38, 39) 393 (378, 393, 411) 0.42 (0.42, 0.42, 0.42) 1 (1, 1, 1) 

  basalt 1 (1, 1, 1) 210 (194, 208, 228) 0.61 (0.61, 0.61, 0.61) 14 (14, 14, 14) 

  granite 36 (36, 36, 37) 349 (324, 356, 381) 0.05 (0.08, 0.04, 0.02) 13 (20, 12, 6) 

0.2-0.3 warm andesite 58 (49, 55, 67) 307 (238, 310, 424) 0.47 (0.63, 0.47, 0.3) 50 (54, 52, 48) 

  basalt 119 (94, 118, 165) 529 (415, 489, 812) 0.6 (0.88, 0.54, 0.37) 22 (26, 23, 18) 

  granite 38 (29, 54, 103) 154 (154, 154, 154) 0.21 (0.27, 0.16, 0.09) 36 (37, 36, 36) 

 cool andesite 48 (47, 48, 49) 1043 (1016, 1045, 1073) 0.73 (0.74, 0.73, 0.72) 0 (0, 0, 0) 

  basalt - - - - - - - - 

  granite 102 (74, 104, 187) 278 (251, 306, 364) 0.34 (0.46, 0.29, 0.19) 1 (1, 1, 0) 

 cold andesite 96 (84, 98, 114) 672 (594, 670, 761) 0.64 (0.73, 0.64, 0.56) 26 (28, 27, 25) 

  basalt 1 (1, 1, 1) 244 (224, 249, 267) 0.37 (0.49, 0.36, 0.23) 23 (29, 21, 16) 

    granite - - - - - - - - 

1 Parameter units are: y for 𝜏fast, 𝜏slow, and lag; 𝛾fastis a ratio. 
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Table 4-3. Summary of ages and transit times (2pp model)1 

   System age Transit time Lag 

Depth 
(m) 

Climate 
Parent 

material 
mean (sd) quartiles median:mean (sd) 

mean 
(sd) 

quartiles median:mean (sd) mean 

0-0.1 warm andesite 257 (217) 1, 7, 712 0.03 (0.01) 10 (0) 0, 6, 28 0.45 (0.01) 0 (0) 

  basalt 102 (5) 4, 66, 320 0.45 (0) 75 (3) 2, 36, 278 0.33 (0.01) 1 (0) 

  granite 54 (10) 1, 23, 206 0.31 (0.03) 26 (3) 1, 12, 99 0.33 (0.02) 1 (1) 

 cool andesite 1049 (284) 6, 96, 5970 0.07 (0.02) 118 (7) 5, 63, 284 0.37 (0.02) 1 (0) 

  basalt 183 (10) 4, 120, 569 0.46 (0) 76 (3) 1, 12, 383 0.11 (0) 0 (0) 

  granite 134 (10) 4, 84, 430 0.43 (0.02) 79 (11) 2, 28, 332 0.25 (0.02) 5 (3) 

 cold andesite 149 (9) 5, 96, 464 0.45 (0) 92 (3) 2, 31, 374 0.24 (0.01) 1 (0) 

  basalt 187 (9) 8, 129, 562 0.48 (0) 65 (3) 0, 1, 360 0.02 (0) 11 (0) 

  granite 163 (8) 8, 112, 492 0.48 (0.01) 159 (9) 8, 108, 485 0.47 (0.01) 11 (8) 

0.1-0.2 warm andesite 337 (25) 11, 228, 1033 0.47 (0) 189 (16) 1, 38, 816 0.14 (0.04) 2 (2) 

  basalt 166 (10) 7, 111, 510 0.47 (0) 137 (5) 4, 76, 467 0.38 (0.02) 1 (0) 

  granite 96 (9) 5, 65, 288 0.47 (0.01) 92 (7) 5, 62, 281 0.47 (0.01) 27 (0) 

 cool andesite 786 (37) 12, 432, 2763 0.38 (0.01) 226 (6) 4, 57, 1247 0.18 (0.01) 1 (0) 

  basalt - - - - - - - 

  granite 269 (33) 12, 184, 799 0.48 (0) 104 (15) 0, 2, 551 0.02 (0.03) 2 (2) 

 cold andesite 373 (24) 13, 246, 1151 0.46 (0) 247 (14) 4, 91, 965 0.26 (0.01) 1 (0) 

  basalt 210 (25) 9, 143, 622 0.48 (0) 83 (10) 0, 2, 428 0.02 (0) 14 (0) 

  granite 354 (41) 18, 245, 1066 0.48 (0) 339 (40) 14, 224, 1045 0.46 (0.02) 13 (9) 

0.2-0.3 warm andesite 308 (100) 10, 175, 929 0.41 (0.07) 191 (15) 6, 90, 734 0.33 (0.06) 49 (8) 

  basalt 395 (68) 14, 214, 1301 0.39 (0.07) 271 (35) 10, 149, 937 0.38 (0.04) 22 (5) 

  granite 149 (7) 7, 102, 453 0.47 (0.01) 141 (12) 7, 95, 441 0.46 (0.03) 36 (1) 

 cool andesite 938 (33) 18, 605, 3015 0.45 (0) 318 (11) 3, 52, 1768 0.11 (0) 0 (0) 

  basalt - - - - - - - 

  granite 310 (67) 13, 194, 916 0.46 (0.03) 264 (29) 10, 160, 851 0.42 (0.05) 1 (1) 

 cold andesite 546 (48) 16, 312, 1812 0.4 (0.05) 302 (21) 7, 117, 1290 0.27 (0.02) 26 (2) 

  basalt 247 (27) 12, 175, 757 0.48 (0) 161 (42) 0, 64, 664 0.23 (0.16) 23 (8) 

  granite - - - - - - - 

1 Summary statistics calculated from MCMC runs. Quartiles are the median values of a random subsample (n = 200) drawn 
from the system age distributions returned from each MCMC iteration (n total iterations = 10,000); units are y. 
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Table 4-4. Mean annual soil temperature (MAST) effect on C ages and transit times (TT)1  

1 Estimates are the slopes from Figs. 4-8 & 4-9, i.e., change in age or TT per change in °C; 95% CI gives the 2.5th and 97.5th 

quantiles of the posterior probability distribution of the model coefficients. 
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Table 4-5. Effect of reactive mineral content (OX) on mean C age1 

 
1Values in the ‘estimate’ column are the exponentiated coefficients from the model given in Eq. 4-16, therefore the effect of 
each coefficient is multiplicative; model fits for depth values of 0.1 m, 0.2 m. and 0.3 m are shown in Fig. 4-10. The 95% CI 
gives the 2.5th and 97.5th quantiles of the posterior probability distribution of the model coefficients. 
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Supplemental Table 4-1 Comparison of estimated inputs by model structure. Units are g C m-2 y-1. 

  
    2pp model 2ps model 

Depth Climate 

Parent 

Material mean sd mean sd 

0-0.1 warm andesite 433 7 3026 431 

  
basalt 51 2 53 6 

  
granite 170 17 156 29 

 
cool andesite 32 2 16 2 

  
basalt 48 2 88 76 

  
granite 39 5 64 30 

 
cold andesite 45 2 44 6 

  
basalt 40 2 41 9 

  
granite 12 1 15 7 

0.1-0.2 warm andesite 23 2 32 13 

  
basalt 24 1 26 2 

  
granite 32 3 32 3 

 
cool andesite 17 0 12 1 

  
basalt - - - - 

  
granite 26 4 66 159 

 
cold andesite 17 1 17 1 

  
basalt 11 1 17 16 

  
granite 6 1 33 18 

0.2-0.3 warm andesite 29 2 244 333 

  
basalt 9 1 8 1 

  
granite 14 1 11 2 

 
cool andesite 16 1 10 1 

  
basalt - - - - 

  
granite 8 1 8 1 

 
cold andesite 15 1 12 1 

  
basalt 9 3 9 1 

    granite - - - - 
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4.9. Figures 

Figure 4-1. Model schematic (2-pool parallel model). Comparison of parallel and series fits for the 
cold climate andesite soil (0-0.1 m). For the diagrams in panels a) and b): numbers in parentheses 
give inputs and organic C stocks estimated for each model fit, italicized numbers give transfer rates 
as a percentage of system inputs, and colored numbers give pool fluxes; units are g C m-2 y-1; values 
for turnover times (τ), ages, and transit times (TT) are means with medians in parentheses. For panel 
c): lines show fits using the mean parameter values returned from the MCMC optimization, ribbons 
show the estimated 95% confidence interval for the data-constrained pools (bulk soil C, respired 
CO2). 
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Figure 4-2. ∆14C time series of model fits (2-pool parallel model) and data constraints (0-0.1 m). Note 
expanded y-axis limits on plots marked with asterisk. 
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Figure 4-3. Depth and climate effects on modeled lag time. Points show means of 10,000 MCMC runs, 
error bars show ±SD. 
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Figure 4-4. System age & transit time distributions, 0-0.1 m 

 

Figure 4-5. System age & transit time distributions, 0.1-0.2 m 

 



Study 3 

 193 

Figure 4-6. System age & transit time distributions, 0.2-0.3 m 
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Figure 4-7. Depth dependence of mean and median ages and transit times (TT). Points show means 
and medians of 10,000 MCMC runs. Error bars for means show ±SD. Error bars for median age and 
transit time show the median values of the 25th and 75th quartiles of the age and transit time 
distributions from the total set of MCMC runs. Depth profiles are shown on a log scale to capture the 
interquartile range of the distribution.  
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Figure 4-8. Mean annual soil temperature effect on system C ages 
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Figure 4-9. Mean annual soil temperature effect on system C transit times 
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Figure 4-10. Mean C age vs. oxalate extractable Fe and Al abundance. Points show means and error 
bars standard deviation from MCMC estimates of mean system age, lines and ribbons show Bayesian 
model fits. 
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Figure 4-11. Model estimated soil C inputs 
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Supplemental Figure 4-1. System ages of 2pp and 2ps models 
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Supplemental Figure 4-2. Transit times of 2pp and 2ps models 
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Supplemental Figure 4-3. Fast pool ages for 2pp and 2ps models 
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Supplemental Figure 4-4. Slow pool age for 2pp and 2ps models 
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Supplemental Figure 4-5. Seasonal volumetric soil water content along granitic elevation transect 
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Supplemental Figure 4-6. Model structure comparison for the cool climate andesitic soil (0-0.1 m) 
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Supplemental Figure 4-7. Time series fits for 0.1-0.2 m and 0.2-0.3 m depths (2-pool parallel 

models). Note: data not shown for rejected model fits (marked with asterisk). 

a) 0.1-0.2 m 
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b) 0.2-0.3 m 
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Supplemental Figure 4-8. Partitioning of soil C stocks between fast and slow pools (2-pool parallel 
models) 
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5. Synthesis 

5.1. Introduction 

The central motivation for this dissertation was to quantify the effect of climatic and soil 

mineralogical variables on timescales of soil C cycling. In Chapter 2 (Study 1), I demonstrated the 

feasibility of a novel methodology for measuring the radiocarbon signature of heterotrophically 

respired CO2 in incubations of archived soil samples. In Chapter 3 (Study 2), I implemented this 

method to construct radiocarbon time series for both bulk soil (∆14Cbulk) and respired CO2 (∆14Crespired) 

at nine sites spanning a combined gradient of parent material and climate. Leveraging previous work 

at the study sites, I demonstrate how the change in ∆14Cbulk and ∆14Crespired between 2001 and 2019 

varied in response to edaphic variables, including soil depth, mineral content, and climate. In Chapter 

4 (Study 3), I developed compartmental models using the time series of ∆14Cbulk and ∆14Crespired as 

model constraints. I then applied these models to characterize the distribution of ages and transit 

times at the study sites, and furthermore, how the means and medians of these age and transit time 

distributions varied in response to mean annual soil temperature and reactive mineral content. In 

this chapter, I will assess the limitations of using ∆14C from bulk and respired CO2 to constrain soil C 

models (the approach taken in this dissertation), by comparing it to an alternative approach relying 

on ∆14C of density fractions. To put the modeling results in context, I will discuss the implications of 

using reactive mineral content to predict how soil C stocks will respond to rising temperatures. 

Finally, I will demonstrate how climatic and mineralogical effects on age and transit time 

distributions affect the potential climate change mitigation benefits of soil C sequestration. 

5.2. Empirical approaches to partitioning soil organic matter 

Soil contains a heterogeneous mixture of organic matter, some of which is readily decomposed and 

some of which persists for hundreds to thousands of years.  The results of this dissertation add to a 

growing body of literature confirming this heterogeneity, and the need to account for it in models of 

soil C dynamics. Soil C cycling at annual to decadal timescales is of particular interest, as it is on these 

timescales that accelerated soil C losses or mitigation efforts are most relevant. Many methods have 

been developed to separate organic C into fractions believed to cycle at different rates on the basis of 

certain physical or chemical characteristics. However, defining meaningful pools empirically remains 

a key challenge in soil organic matter research. 
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Density fractionation is a common technique for separating particulate organic matter (POM), which 

is assumed to be readily decomposable, from mineral associated organic matter (MAOM), which is 

assumed to be protected from decomposition via bonding or complexation with minerals (Golchin, 

1996). Mineral associated soil organic matter will tend to sink in a dense solution, in contrast to POM 

which floats freely on top of a solution that is denser than water. The density of the fractionating 

solution (commonly sodium polytungstate) can be varied in order to account for the density of 

known minerals, or to distinguish multiple MAOM fractions sequentially (Sollins et al., 2009). 

Particulate organic matter can also be found within soil aggregates, and aggregate disruption can be 

performed to separate this occluded POM (oPOM) fraction from the free-floating POM (fPOM) (Cerli 

et al., 2012). 

Mineral associated soil organic matter is the largest pool of soil C on a global scale, and is the largest 

pool in most soils as well (Heckman et al., 2022). Historically, MAOM has been considered to be a 

highly persistent pool of soil C, in part because 14C contents indicated mean ages on the scale of 

hundreds to thousands of years, and in part because of the “microbial signature” of MAOM indicated 

recycling of the organic matter via microbial processing. However, in a recent synthesis assessing 

abundance and persistence of soil C on a global scale, MAOM in near-surface soils (< 0.3 m) had ∆14C 

values greater than zero, suggesting that a substantial component of this pool is likely cycling on 

decadal time scales (Heckman et al., 2022).  

One interpretation of this finding is that MAOM is simply not as old as previously thought. Recent 

work in which thermal fractionation was used to further separate density fractionated MAOM 

demonstrated that soils rich in amorphous mineral phases, 2:1 clays, and short-range order metal 

oxides exhibited a large range of radiocarbon ages within the heavy fraction (Stoner, 2023). This 

provides support to the theory that organic matter associated with different minerals turns over at 

different rates (Wagai et al., 2018; Kaiser and Guggenberger, 2007; Kleber et al., 2007; Sollins et al., 

2009). Given that the soil mineral assemblage in most soils consists of a mixture of mineral phases, 

this heterogeneity suggests that some of the C in MAOM cycles on faster timescales and has 

incorporated ‘bomb’ 14C, while C that is tightly bound to other mineral phases may lack this bomb-C 

signal. 

Recent empirical studies show that while the amount of C in MAOM may not change, a substantial 

proportion of MAOM may be exchangeable with DOC in the soil solution. In the laboratory, exchange 

rates between DOC and organic matter sorbed to goethite have been shown to range from one sixth 
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to one third of the total sorbed pool (Leinemann et al., 2018). Following desorption, DOC can cycle 

downward in the soil, contributing to a perceived pre-aging of soil C inputs in deeper soil layers 

(Kaiser and Kalbitz, 2012). This exchange mechanism is congruent with the bomb-C signal observed 

in surface MAOM pools and the delayed arrival of this signal deeper in the soil seen in this study (Ch. 

4) and others (Koarashi et al., 2012). A key point about such exchange processes is that they can only 

be detectable through the use of tracers, given that in the laboratory experiment the total pool of 

sorbed C remained relatively constant (Leinemann et al., 2018).  

Methodological considerations are also important for interpreting the radiocarbon signature of 

density fractions and their associated turnover rates. High loading rates of organic matter on mineral 

surfaces (or a high proportion of organic matter in mineral-organo complexes) decreases the density 

of MAOM, which can lead to misclassification of MAOM as POM (Kaiser and Guggenberger, 2007; 

Wagai et al., 2018). Another challenge for interpreting ∆14C values of POM is the presence of charcoal, 

which may have strongly depleted ∆14C values, but have low enough density to be captured in the 

POM fractions (Koarashi et al., 2012; Heckman et al., 2014). Soils replete with charcoal are common 

in ecosystems characterized by fire disturbance regimes with moderate to frequent burn intervals, 

such as the mixed conifer forest ecosystems studied in this dissertation (Beaty and Taylor, 2008; 

Koarashi et al., 2012; Castanha et al., 2008). Despite these challenges, density fractionation remains 

a useful tool for gaining mechanistic insight into the importance of parent material and mineral 

assemblages for soil C persistence, as well as the importance of temperature for persistence of POM.  

Previous efforts employing density fractionation on the soils studied in this dissertation 

demonstrated clear patterns in the partitioning of total soil C stocks among POM and MAOM fractions 

as a function of climate zone and parent material (Rasmussen et al., 2018). The proportion of total 

soil C stock in the fPOM fraction declined with increasing elevation across all parent materials, which 

the authors attributed primarily to the increased abundance of clay sized particles in the well-

weathered soils of the low elevation, warm climate sites (Rasmussen et al., 2018). In contrast, parent 

material was more important for determining the allocation of total C stocks to the MAOM fraction. 

Rasmussen et al. (2018) observed proportionally more MAOM in the andesitic soils than in the 

basaltic or granitic soils across all three climate zones, despite similar particle size distributions, 

highlighting the importance of reactive secondary minerals in determining the size of the MAOM 

pool.  
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The previous density fractionation work focused on soils collected during the 2009 sampling 

campaign. Building on this effort, I performed additional density fractionations and radiocarbon 

analysis of the 2001 and 2019 samples. Initially I sought to use the radiocarbon time series from the 

density fraction data to constrain three pool models using the SoilR package. However, this effort was 

not successful, as I was unable to achieve good model fits with the pool sizes and ∆14C content 

constrained by the empirical data. This finding suggests that the density fractions, at least from these 

sites, do not comprise homogenous pools. Given current understanding of different bonding 

strengths and exchangeability of organic matter associated with different soil minerals, and the 

presence of recalcitrant charcoal in the POM fractions, the inability to model the density fractions 

directly is not surprising, and indeed has been demonstrated previously (Schrumpf and Kaiser, 

2015).  

A common assumption regarding the turnover of density fractions is that the fPOM fraction is easily 

decomposed, and the MAOM fraction is highly persistent. If this is true, the fPOM fraction should 

contribute more to heterotrophic respiration than MAOM. This hypothesis can be simply tested by 

regressing ∆14C of fPOM and MAOM fractions against ∆14Crespired and comparing the regression 

coefficients. Slopes close to unity indicate that changes in fraction ∆14C and ∆14Crespired are correlated, 

which in turn suggests that a substantial component of the fraction pool has a similar ∆14C value as 

the CO2 in the respiration flux. Deviations from unity indicate that different mechanisms control the 

change in fraction C ∆14C with depth, parent material, or climate than in the respired CO2 flux. With 

fraction ∆14C on the y-axis, intercept values diverging from zero indicate the presence of more 

enriched or more depleted C in the fraction pool relative to respired CO2. 

I performed this test with fPOM and MAOM data from both the 2001 and 2019 samples collected at 

the Sierra Nevada sites. For both the fPOM and MAOM regressions the majority of the points fall 

below the 1:1 line, indicating the presence of older C in both fractions that is not actively utilized by 

the microbial community, e.g., charcoal in the fPOM fraction or organic material bound directly to the 

mineral surfaces in the MAOM fraction (Figure 5-1). The slopes and intercepts in both regressions 

varied by depth, climate zone, and parent material, suggesting that the contribution of the fractions 

to respiration varies with these factors. 

I observed a nearly 1:1 relationship between fPOM ∆14C and ∆14Crespired, with the slope of the 

relationship consistent across all parent materials and climate zones (Figure 5-1, panels A-B). The 

closest relationship between ∆14C of the fPOM fraction and ∆14Crespired was for the warm climate soils, 
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which had a slope of 1 and an intercept value of zero, indicating almost complete overlap in ∆14C 

values. This correlation between fPOM ∆14C and ∆14Crespired indicates that the organic matter respired 

by the microbial community is the same age, on average as the organic matter in the fPOM fraction.  

I observed more differences in intercept values when the data were grouped by parent materials, 

with values near 0‰ for the granite soils, -20‰ for the basalt soils, and -60‰ for the andesite soils. 

These differences suggest the presence of an older, more depleted pool of C within the fPOM fraction, 

which is not actively metabolized by the microbial community. The presence of more depleted C in 

the fPOM fractions of the andesitic and basaltic soils relative to the granitic soils could be explained 

by different fire histories among the three parent material transects. This would be particularly 

relevant during the fire suppression period (1850-present), as historical fire regimes were likely to 

have been consistent among sites with a similar vegetation and topographic setting, and therefore 

would not explain the consistent differences among parent materials (Kilgore and Taylor, 1979; 

Beaty and Taylor, 2008). An alternative explanation is that the more depleted ∆14C values in the fPOM 

fraction of the andesitic and basaltic soils indicate the presence of organo-mineral complexes with a 

high enough proportion of organic matter to be less dense than the MAOM cut-off used in this study, 

i.e., <1.8 g cm-3 (Baisden et al., 2002; Sollins et al., 2006; Kaiser and Guggenberger, 2007; Cerli et al., 

2012).  

In contrast to the fPOM regressions, the slope for the relationship between MAOM ∆14C and ∆14Crespired 

were consistently less than one, with intercept values all less than zero (Figure 5-1, panels C-D). This 

indicates that the composition of the respired CO2 flux is only likely to be similar to that of the MAOM 

fraction when it is highly depleted, a trend observed for the deeper soil layers in these samples. When 

grouped by climate zone, the slope for the warm climate MAOM fractions vs. ∆14Crespired was notably 

closer to one (0.68±0.22‰) than the slopes for the cool and cold climate MAOM fractions (Figure 

5-1, panel D). This suggests that the MAOM fraction could be contributing more to respiration in the 

warm climate soils than in the soils of the cooler climate zones.  

The challenge of the regression approach is that it does not account for potential heterogeneity 

within the fractions. Although the strong correlations between ∆14C of fPOM and ∆14Crespired provides 

evidence that fPOM could make up a substantial proportion of the respiration flux, the weaker 

correlation of MAOM and ∆14Crespired does not preclude the contribution to respiration from younger 

C in the MAOM fraction. In order to demonstrate this, I compared the C-weighted distribution of 14C 

from the fractions to the distribution returned from the two-pool parallel models presented in Ch. 4 
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(Figure 5-2). From this comparison it is clear that the distribution of fraction ∆14C tends to be biased 

towards the center of the modeled ∆14C distribution. The fraction ∆14C distribution excludes the 

enriched ∆14C captured by the fast-cycling pool of the model in both soils, while also excluding the 

depleted tail of the 14C distribution seen in the slow pool of the granitic soil (Figure 5-2, b). A major 

advantage of the modeling approach is that these histograms of ∆14C can be more finely resolved by 

taking advantage of the probability distribution function for C ages returned by the model (Chanca 

et al., 2022). Converting the probability distribution of C ages from the model pools to ∆14C reveals 

how misleading the mean values (as seen in Figure 5-2) can be when compared to the full distribution 

(Figure 5-3). However, since I could not successfully model the fraction data as pools, the C age 

distribution within the fractions remains hidden.  

The distribution of ∆14C within these density fractions can be obtained in an alternative way, 

however: through further fractionation. Techniques such as applying more finely resolved density 

steps, or applying chemical or thermal means can be used to reveal glimpses of the distribution of C 

ages hidden within density fractions. Such methods are time-consuming and are costly when 

combined with radiocarbon analysis, thus further fractionation of all of the soils in the study was 

beyond the scope of this dissertation. However, I was able to further fractionate the heavy fractions 

from a few selected soils using ramped combustion, which enabled testing of the hypothesis that this 

fraction contains a heterogeneous mixture of organic matter turning over at different rates (Figure 

5-4).  

The C-weighted distributions of ∆14C in the heavy fractions of the basalt and granitic soils are 

characterized by long tails containing a small amount of C that is substantially depleted in 

comparison to the central tendency of the distribution. The bias created by this tail is evident when 

comparing the distribution of MAOM ∆14C in the granite soil in Figure 5-4, which shows clearly that 

the majority of C in the fraction contains the bomb-C signal and is thus cycling on decadal timescales, 

to the histogram bar with a mean value of -25‰ in Figure 5-2, which suggests rather that the C in 

this fraction cycles on centennial timescales. Perhaps most interesting is the bimodal distribution of 

∆14C in the heavy fraction of the andesitic soil. Using mass spectrometry to analyze the source of C in 

the thermal fractions indicates that the thermal method successfully distinguishes between C bound 

to different types of minerals. For the andesitic soil, the more depleted peak around -180‰ is likely 

from organic matter bound to 2:1 clays, while the more enriched peak around -70‰ likely derives 

mainly from organic matter associated with pedogenic oxides. Both the andesitic and basaltic soils 

have overlapping peaks at -70‰, which aligns with the sequential extraction data that confirms the 
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presence of pedogenic oxides in both soils. See Stoner (2023) for more information about assigning 

functional groups to specific thermogram peaks. 

5.3. Transit time distributions and soil C sequestration 

Human efforts to slow the accumulation of greenhouse gases in the atmosphere will require the use 

of negative emissions technologies (Amundson and Biardeau, 2018). Soil C sequestration is a 

promising option as it is low-tech, relatively low cost, and is thought to have high potential (Minasny 

et al., 2017; Paustian et al., 2019; Canadell et al., 2021; Matthews et al., 2022). The potential for C 

sequestration in a given soil depends on the total amount of C entering the soil, but also on how long 

C inputs remain in the soil before being respired back to the atmosphere—i.e., the distribution of 

organic matter among relatively faster or slower cycling soil C pools. Accordingly, in order to 

determine the amount of C that can be stored, and for how long, we must go beyond calculating the 

mean age or transit time of soil C and characterize their full distributions (Sierra et al., 2021). 

Determining the efficacy of soil C sequestration as a climate change mitigation approach requires 

quantifying the amount of radiative forcing avoided by storing C in the soil that would otherwise be 

emitted to the atmosphere as CO2. This can be quantified over specified time horizons using the 

climate benefit of sequestration metric developed by Sierra et al. (2021). The soil C transit time 

distribution is the key for calculating this metric as it gives the age distribution of CO2 in the release 

flux—i.e., the distribution of time elapsed between C fixation and its return to the atmosphere. In this 

context, mean transit time can be interpreted as the average duration of storage for a given unit of 

soil C input, and median transit time as the amount of time taken to return half of that input to the 

atmosphere (Crow and Sierra, 2022). These different metrics provide a lens for understanding how 

potential changes in inputs or decomposition rates may affect soil C sequestration. 

A major source of uncertainty in predicting future soil C stock changes in response to climate change 

is the relative impact of potential increases in ecosystem productivity versus increases in soil organic 

matter decomposition rates (Friedlingstein et al., 2014; Bradford et al., 2016). Increased ecosystem 

productivity is predicted for many ecosystems due to the CO2 fertilization effect or alleviation of 

temperature constraints in colder ecosystems. At the same time, increases in decomposition rates 

have been predicted in response to increased temperature, largely based on laboratory estimates of 

Q10 values (Todd-Brown et al., 2018). Another important consideration is the potential interaction 
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between productivity and decomposition rates, i.e., if increasing soil C inputs stimulated increased 

microbial activity, decomposition rates would likely increase as well (Melillo et al., 2017). 

The estimated inputs for the warm climate granitic and andesitic soils in this dissertation (Ch. 4) 

were much higher than the corresponding cool or cold climate sites on the same parent material, 

which in turn lead to much higher estimates of soil C storage at these sites (Figure 5-5). In Ch. 4, I 

proposed that the dramatic differences in these input estimates were likely related to the dense 

understory shrub layer present at the warm sites and absent at the cool and cold sites. These changes 

in the composition of the vegetative community in the lower elevation forests of the Sierra Nevada 

mountains where the warm climate study sites are located have already been documented as a 

consequence of climate change. The term “zombie forests” has been used to describe such transitions, 

in which the climate has shifted beyond the suitable climate envelope for the current vegetation (Hill 

et al., 2023). Coupled climate vegetation models predict similar transitions for the higher elevation 

forests in the coming decades as well (Lenihan et al., 2003; Shafer et al., 2001). Applying the results 

of this dissertation, we can begin to answer the important question of how the impact of these 

changes in vegetation might affect soil C dynamics and soil C storage in the coming decades. 

The difference in mean annual soil temperature between the warm and cool climate sites described 

in Chs. 3 & 4 is approximately 4 °C, which is at the upper end of the range of the increase in global 

mean air temperature predicted for the end of the 21st century (+1.4 to +4.4 °C, relative to a 1850-

1900 baseline) (Masson-Delmotte et al., 2021). Under the assumption that increases in inputs will 

follow increases in mean annual air temperature, a change in inputs from the current levels observed 

at the cool climate sites to those observed at the warm climate sites may well be within the scope of 

potential increases by 2100. The soils with high inputs in Figure 5-5 (warm climate andesitic and 

granitic sites) lose a relatively higher proportion of the pulse of inputs on a 25 y time frame than the 

lower input soils do, e.g., from the cool and cold climate sites. This result suggests differences in input 

quantity may be positively correlated with input quality, with important implications for how 

changes in inputs will affect ages and transit times of soil C. This is best illustrated with the surface 

soils from the granite parent material elevation transect, for which we saw the strongest response of 

ages and transit times to temperature. 

Along the granitic soil elevation transect mean annual soil temperature increases by approximately 

2 °C between the warm and cool sites, and by an additional 2°C between the cool and cold sites. Using 

a space-for-time approach, we can simulate the effect of a 2 °C increase on soil C stock changes with 
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the CBS method by comparing the pulse response functions along the MAST gradient. These scenarios 

can be run with and without changes in inputs to assess the relative impact of potential changes in 

inputs versus changes in decomposition rates and input partitioning (given by the optimized model 

parameters) (Figure 5-6). In the first scenario (a) I adjusted the model parameters to match those of 

the next warmest climate zone, but maintained the same inputs. In the second scenario (b) I adjusted 

both the model parameters and inputs. These scenarios demonstrate that increasing decomposition 

rates had a smaller impact on soil C sequestration than changing inputs, which can likely be 

attributed to the high inputs currently estimated for the warm climate sites. These models predict a 

net increase in total C storage between the cool and cold climate sites under a 2 °C temperature 

increase, with small losses in the scenario with increased decomposition rates and current inputs, 

but large soil C gains in the scenario where we increased both decomposition rates and inputs.  

Conspicuously absent from these predictions about future soil C sequestration are the effects of 

temperature changes beyond the limits of the temperature gradient in this study. Evidence from 

global scale studies report threshold changes in the sensitivity of soil C transit times to temperature, 

with temperature sensitivity increasing at temperatures < 4 °C and decreasing above ~18 °C (Koven 

et al., 2017), just outside the range of MAST at the study sites in this dissertation. The authors posit 

that these thresholds in temperature sensitivity are likely a product of environmental constraints on 

decomposition, for example climatic and hydrological thresholds beyond which microbial activity is 

sharply limited, such as in extremely dry or frozen soils. However, increasing temperatures could 

also lead to declining productivity (and therefore soil C inputs) if coupled with decreasing soil 

moisture. Accordingly, we could expect a corresponding reduction in C storage at the warm climate 

granite site if a 2 °C increase in temperature pushed the vegetation past such a threshold, in contrast 

to the net gains in C storage predicted for the cool and cold climate sites. 

The lack of overlap in the range of soil wetness for the different parent materials in this study 

precluded analysis of the effect of soil moisture on soil C ages and transit times. However, the effect 

of soil moisture is likely to be highly relevant for both turnover of soil C and belowground inputs, as 

outlined in the scenario above. Changes in soil moisture are certain to occur under future climate 

change, thus future efforts aimed at quantifying age and transit time distributions across a soil 

moisture gradient would deepen our understanding of how these changes may affect changes in soil 

C stocks in the future.  
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Quantifying ages and transit times of soil C in response to temperature, and across soils with different 

soil mineral assemblages is an important step towards understanding soil C sequestration potential. 

However, improving predictions of changes to soil C stocks under future climate change will require 

a deeper understanding of how soil C is allocated among different pools of soil C, as well as 

quantifying the turnover rates of these pools. The results of this dissertation suggest that progress 

towards this goal could be made by applying density and thermal fraction ∆14C data as additional 

constraints for the inner pool dynamics of a model also constrained by a time series of ∆14Cbulk and 

∆14Crespired.  

5.4. Soil archives and the potential of 14Crespired time series 

The primary challenge of interpreting soil ∆14C is that soil is an open system, continuously exchanging 

C with the atmosphere. Heterogeneity of soil organic matter further complicates interpretation, as 

organic matter entering the soil has many possible fates, including immediately being respired, 

sorption to minerals, transformation into particulate organic matter, or further transformation into 

dissolved organic matter, microbial biomass, necromass, etc., before eventually leaving the soil as 

dissolved organic matter or a product of respiration. In such a system, ∆14C represents the balance of 

decomposition in each pool as well as the process of radioactive decay.  

Measuring ∆14Crespired provides a unique window into these dynamics as it integrates the flux-

weighted contribution of each pool to the respiration flux without requiring quantification of the size 

or ∆14C content of each pool. However, fluctuations in the ∆14C concentration of the atmosphere also 

complicate interpretation, especially during the modern period when the ∆14C of CO2 fixed from the 

atmosphere is not unique to a single year. Time series offer a solution to this problem, as they capture 

the rate of incorporation of newly fixed C into soil organic matter over time, an insight that cannot be 

quantified from a single observation (Baisden et al., 2013). The contribution of the annual signal is 

diluted by the ∆14C signature of the existing pool of soil C, a dynamic which can be seen clearly in the 

time series of ∆14Crespired in Figure 3-3.  

Soil archives are uniquely positioned to provide time series data. Archived soils from the period 

immediately following the bomb-C pulse are especially valuable, as the high concentration of 

atmospheric 14C during these years provides correspondingly high resolution for tracing annual to 

decadal soil C dynamics (Trumbore, 2009). The prohibitive cost and sample requirements of 14C 
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analysis during this period also precluded many measurements of soil 14C during this time period, 

thus soil archives represent a chance to make up for this lost opportunity.   

The first study of this dissertation demonstrates the feasibility of measuring ∆14Crespired in incubations 

of archived soils by quantifying the bias due to air-drying, rewetting, and storage duration, while the 

second and third studies (Chs. 3 & 4) demonstrate the application of this technique. The results from 

Chs. 3 & 4 underscore the power of ∆14Crespired for constraining soil C models, as well as the advantages 

gained from the use of archived soils. The biases in ∆14Crespired observed due to air-drying and 

rewetting were small in the proof-of-concept study (Ch. 2), corresponding to the changes observed 

in atmospheric ∆14C over two to ten years. However, the specific mechanism behind this effect 

warrants additional study. For example, the difference in the magnitude of the bias introduced by air-

drying and rewetting between forest and grassland soils, along with the changes in δ13CO2, suggests 

that air-drying and rewetting increases availability of microbially derived C. The source of this 

microbial C could be microbial biomass, necromass, or highly processed soil organic matter sorbed 

to mineral surfaces. The strongly depleted ∆14Crespired signature observed in Chs. 3 & 4 from the cold 

climate granitic soils, but not the soils from the other sites, may also provide another clue to the 

source of the C released following air-drying and rewetting, but without further study the 

mechanisms driving this release are only speculative. The results in this dissertation clearly illustrate 

the advantages of the archived incubation technique, and wider adoption of the method in the future 

may further elucidate the mechanisms driving the observed shift in substrate use following air-

drying and rewetting.  
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5.5. Figures 

Figure 5-1. Relationship of ∆14Crespired to ∆14C of free light and heavy fractions. Points show data from 
2001 and 2019 sampling; size of points increases with increasing depth. 
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Figure 5-2. Distribution of C stocks and ∆14C among modeled pools and density fractions. 
Data from cool climate andesite and granite soils collected in 2019 (0.2-0.3 m). 
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Figure 5-3. Probability density distribution of ∆14C in model pools (two-pool parallel model)1 

 

1Data from cool climate andesite and granite soils collected in 2019 (0.2-0.3 m). Note: tails of distribution 
truncated for display purposes. 
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Figure 5-4. Distribution of carbon-weighted ∆14C in heavy fractions (thermal fractionation)1 

 

1Cool climate sites, 0.2-0.3 m, collected in 2019. Curves fit with Gaussian kernel smoothing function (as with 

modeled data in Figure 5-3, cf. Chanca et al., 2021). 
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Figure 5-5. Pulse response function for current inputs and decomposition rates, 0-0.1 m 
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Figure 5-6. Change in carbon sequestration of a pulse of annual inputs with increased decomposition 
rates under two scenarios: a) unchanged inputs, and b) inputs shifted to match the those of the next 
warmest climate zone (cool to warm, cold to cool). 
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6. Conclusion 

The key advances of this dissertation include developing a novel approach for determining 

timescales of soil C cycling and demonstrating the combined effect of climate and mineral 

assemblages on the distribution of ages and transit times in soils. The results of Chs. 3 & 4 provide 

evidence for the robust estimates of system age and transit time distributions that can be achieved 

when soil C models are constrained with a radiocarbon time series of both bulk soil and 

heterotrophically respired CO2, and the advantages of the archived soil incubation technique 

introduced in Ch. 2. These models indicate that it takes decades for bomb-C to move downward and 

affect radiocarbon-depth relationships, which also suggests that fast-cycling C in deeper soil layers is 

likely to be pre-aged from its downward transit. In this final chapter, I suggest that modeling density 

fraction data may not be feasible or practical in soils where these fractions are likely to contain a 

mixture of organic matter with different turnover rates, and demonstrate this through a comparison 

with model pool age distributions and thermal fractionation for a subset of the soils studied in this 

dissertation.  

A fundamental issue with the model approach taken in Ch. 4 is that while system age and transit time 

output is robust and independent of model structure, the size and turnover of model pools are 

relatively uncertain when using only bulk and respired ∆14C data as model constraints. This issue of 

equifinality is particularly problematic when predicting future changes in soil C stocks in response 

to changes in the environment, given that different soil C pools are expected to differ in sensitivity to 

these changes. Further partitioning of density fractions, particularly the heavy fraction which makes 

up the majority of the soil C pool in most mineral soils (Heckman et al., 2022), may improve 

constraints on the internal dynamics of soil C models. For example, applying tools such as the thermal 

fractionation approach shown in Figure 5-4 can be used to provide higher resolution information 

about the size and age of subfractions of the MAOM pool. Such data could enable the testing of 

hypotheses about model structure, e.g., via comparisons of ∆14C distributions from models with 

measured ∆14C distributions, that were not tractable with the exclusive use of bulk and respired CO2 

constraints used in this dissertation.  

Understanding how soil C stocks will shift in response to environmental change over the coming 

decades will be invaluable for both predicting future climate changes as well as developing 

management strategies to mitigate the planet warming effects of greenhouse gas emissions. The 

abundance of soil in archives worldwide represents an invaluable resource for understanding how 
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soils change over time. This knowledge will be essential for predicting changes in soil C stocks, the 

distribution of soil C among pools with different turnover rates, and characterizing the mineral 

assemblages that play such a fundamental role in determining soil C persistence—on timescales 

ranging from annual to centennial and beyond. Soil organic matter research is at a critical threshold 

with unprecedented levels of interest from the public sphere, including both governmental and non-

governmental institutions, as well as private companies seeking to monetize soil C 

sequestration.  Radiocarbon measurements that once were rare due to high costs and a paucity of 

measurement facilities are now more readily available, yielding key indicators for the time scales of 

C sequestration in soils. The central tenet of this dissertation is that the soil organic matter research 

community must go beyond calculating simple radiocarbon ages or relying on mean C ages from bulk 

soils and soil organic matter fractions when quantifying soil C turnover. Instead, we must turn our 

attention to characterizing soil C age and transit time distributions if we are to provide a critical check 

against unrealistic promises of rapid drawdown of atmospheric CO2 in soils and realize the full 

potential of soil C sequestration. 
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