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A B S T R A C T   

Acoustic indicators serve as an effective means of assessing the quality of urban green space soundscape. The 
informative, easy accessibility and non-invasive nature of acoustic monitoring renders it an excellent tool for 
studying the interaction among the natural environment, wildlife, and human activities. Urban green space is 
essential in the urban ecosystem and constitutes the primary location for public outdoor recreation. However, the 
existing methods for monitoring public recreational behavior, such as on-site observation, drone observation, or 
questionnaire interviews, require significant labor or professional expertise. All of these methods have their 
limitations, so there is still much to be researched in the acoustic indices and recreational behavior. As a result, 
the potential for using acoustic characteristics to monitor public recreational behavior remains underexplored. 
To address this gap, this study investigates the potential of 5 widely used acoustic indices and acoustic intensity 
for monitoring public recreational behavior: Acoustic Complexity Index (ACI), Acoustic Diversity Index (ADI), 
Acoustic Richness (AR), Normalized Difference Soundscape Index (NDSI), and Power Spectral Density (PSD). 
Data were collected from 35 monitoring points in urban green spaces during the opening hours (6:00–22:00) to 
analyze the relationship between these indices and public recreational behavior. The findings indicate that (1) 
ACI, ADI, and AR daily exhibited multi-peak daily variation characteristics similar to those of public recreational 
behavior, displaying a “W” shape, while NDSI exhibits opposite variation characteristics; (2) the spatial variation 
characteristics of ACI, ADI, and AR change in response to the green space, and these changes align with public 
recreational behavior; (3) the correlation analysis and generalized linear mixed model construction further 
demonstrate that acoustic indices are effective in capturing the dynamic activities of visitor behavior; and (4) 
PSD undergoes significant temporal dynamic changes along the frequency gradient, with different frequency 
intervals reflecting the activity information of different recreational behaviors. In conclusion, this research 
highlights the effectiveness of using acoustic indices to analyze both the spatial and temporal variation char
acteristics of public recreational behavior in urban green spaces. The results can provide valuable data support 
for the enhancement and renovation of urban green spaces.   

1. Introduction 

Recreational behavior is crucial for promoting physical and mental 
health of urban populations. Studies have demonstrated that an increase 
in public use of green spaces can effectively reduce the risk of public 
illness. As a result, improving urban public space to meet the recrea
tional needs of individuals has become a popular research topic as well 

as a key strategy for planning and design. Direct observation of recrea
tional behavior is considered the most reliable and accurate method for 
obtaining information about recreational behavior for designers and 
managers. SOPARC (System for Observing Play and Recreation in 
Communities) is a scientific and effective observation system that has 
been validated by research experiments (Baran et al. 2014). However, 
direct observation has high requirements for observers, who must be 
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trained to collect various data from visitors and must be able to record 
large amounts of visitor data instantly into text or images (Marquet et al. 
2019). To improve the effectiveness of public recreation observation, 
new methods have been developed, such as video recording, GPS 
tracking, and drone observation (Arnberger et al. 2005; Engelhard et al. 
2001; Park and Ewing 2017). These methods align with the development 
of science and technology. However, each method has its limitations. 
For instance, video recording has a limited observation area (Guillén 
et al. 2008); GPS tracking method requires high capital investment 
(Matisziw et al. 2016), and often yields a small sample size (Zhao et al. 
2019); and drone observation is subject to regulations restricting its use 
and is limited by rainy day (Park and Ewing 2017). Most research on 
observing visitors’ recreational behavior focused on daytime observa
tion periods, with little attention has been given to nighttime observa
tions, which are often preferred by urban residents (Zhong and Wang 
2019). This knowledge gap raises the question of whether a mature and 
efficient observation method can be employed to analyze public recre
ational behavior during different time periods. See (Table 1). 

In the late 1960 s, the pioneering Canadian composer Raymond 
Murray Schafer initiated the “World Soundscape Project,” which paved 
the way for the establishment of the field of acoustic ecology. This field 
recognizes the significance of sound in the environment and its 

interactions with human activities (Schafer 1969, 1970). Research in 
acoustic ecology mainly focused on describing the soundscape dynamics 
in terrestrial ecosystems (Krause et al. 2011), facilitate wildlife research 
(Lillis et al. 2014), habitat quality assessment (Gómez et al. 2018), 
biodiversity assessment (Pieretti et al. 2011), conservation effectiveness 
assessment (Bobryk et al. 2016), and the impacts of human activities on 
biodiversity (Krause and Farina 2016; Zhao et al. 2020). The efficacy of 
acoustic indicators in quantifying geo-, bio-, and artificial sounds has 
been confirmed, offering high application value with low intrusion 
(Zhao et al. 2021), low cost, and increased information. Although 
acoustic characteristics are well-suited for studying visitor behavior, 
which is the main component of artificial sound (Bai et al. 2021), the 
utilization of acoustic indices to analyze public recreational behavior 
remains an unexplored area in the existing literature. 

This study aims to investigate the potential of acoustic indices in 
reflecting the features of public recreational behavior. Specifically, the 
study collects recreational sounds in Jinshan Park, Fuzhou City, using 
recording equipment and obtains temporal and spatial distribution data 
of visitors’ recreational behavior using the SOPARC tool. The spatial and 
temporal relationships among 5 commonly used acoustic indices, 
namely, Acoustic Complexity Index (ACI) (Farina et al. 2011), Acoustic 
Diversity Index (ADI) (Villanueva-Rivera et al. 2011), Acoustic Richness 
(AR) (Depraetere et al. 2012), Normalized Difference Soundscape Index 
(NDSI) (Kasten et al. 2012), and Power Spectral Density (PSD) (Joo et al. 
2011), and visitors’ recreational behavior were analyzed. This study 
seeks to address the gap in the application of acoustic indices for 
examining recreational behavior. Moreover, the research endeavors to 
introduce a novel and cost-effective monitoring approach for analyzing 
public recreational behavior in urban green spaces. The findings of the 
study could contribute to the understanding and advancement of public 
recreational behavior in urban green spaces and ultimately improve 
public health. See (Table 2). 

2. Study area and methods 

2.1. Study location 

Jinshan Park is a comprehensive park in the Cangshan District of 
Fuzhou City. Located adjacent to the Wulong River, the park is sur
rounded by primarily residential communities and educational in
stitutions, thereby providing a broad and diverse pool of subjects for 
experimental studies. Jinshan park takes the form of a belt-like config
uration and spans an area of approximately 31.6 ha from north to south. 
Within its territory, 16 ha are dedicated to green space, while the 
remaining 13.2 ha are characterized by water bodies, augmenting the 
park’s recreational appeal and accommodating a wide range of recrea
tional activities. 

Table 1 
4 acoustic indices used in this study.  

Acoustic indices Details Reference 

Acoustic Complexity 
Index (ACI) 

This index measures changes in 
amplitude between adjacent 
frequency bands, reflecting the 
variability and irregularity of 
acoustic intensity. The index is 
relatively unaffected by a constant 
intensity of a sustained sound. The 
following parameters are used in this 
study:max_freq = 2000, min_freq =
1000, fft_w = 1024, no_cores = 2. The 
higher the ACI value, the higher the 
variability of the acoustic intensity in 
the audio. 

Farina et al. 
2011 

Acoustic Diversity 
Index (ADI) 

The spectrogram is divided into 
frequency bands (default 10), and the 
percentage of sounds in each band 
that exceed the threshold (default 
− 50dBFS) is calculated using the 
Shannon index. The following 
parameters are used in this study: 
max_freq = 2000, db_threshold = -50, 
freq_step = 1000, no_cores = 2. The 
higher the ADI value, the higher the 
diversity of sounds in the audio. 

Villanueva- 
Rivera et al. 
2011 

Acoustic Richness (AR) The index is obtained based on 
temporal entropy (Ht) and the 
median of the amplitude envelope 
(M). It can assess vocal animal 
diversity and acoustic activity levels. 
This index ranges from 0 to 1 and is 
calculated using the default 
parameters in this study. The higher 
the AR value, the higher the 
complexity of the sound changing in 
time. 

Depraetere et al. 
2012 

Normalized Difference 
Soundscape Index 
(NDSI) 

NDSI is assessed by calculating the 
ratio of anthrophony (1–2 kHz) to 
biophony (2–11 kHz). The formula is 
NDSI = (biophony - anthrophony) / 
(biophony + anthrophony). The 
range is from − 1 to 1 and is 
calculated using the default 
parameters in this study. A high NDAI 
value means that animal 
communication is dominant in that 
habitat and vice versa for human 
activities. 

Kasten et al. 
2012  

Table 2 
Acoustic intensity used in this study.  

Acoustic 
intensity 

Details Reference 

Power Spectral 
Density (PSD) 

PSD was calculated in 1-kHz frequency 
intervals based on the Welch algorithm, which 
computes modified periodograms of 
overlapping segments using the Fast Fourier 
transform (FFT) to estimate the average power 
spectral density. A Hamming window of size 
512 with 50% overlap was used between 
segments. Then output an energy value (PSD) 
for each of 11 frequency intervals. The 
numerical values resulting from this process 
provided a quantitative measure of how 
energy is distributed across the acoustic 
spectrum. The higher the PSD value, the 
higher the acoustic intensity in the audio. 

Joo et al. 
2011  
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2.2. Data collection 

2.2.1. Soundscape data collection 
According to previous studies, the feasible distance between 

recording equipment is 100 m (Hao et al. 2021; Zhang 2020). To 
enhance soundscape monitoring accuracy, 35 monitoring points were 
established by dividing the grid into 70*70 m equally spaced sections, 
taking into account both practical considerations and specific charac
teristics of the park. (see Fig. 1). Data were collected in two clear and 
breezy days in June and July of 2022, during the park opening hours 
(6:00–22:00). At each of the 35 monitoring points, Sony PCM-D100 
recording equipment was positioned simultaneously. The recording 
parameters were set to a sampling frequency of 44.1 kHz, a resolution of 
16 bits, and stereo sampling, with audio format saved in the WAV 
format. A total of 560 min of audio recordings were acquired through 
the collection of two-minute sound clips every two hours randomly 
(Gage and Axel 2014). If the center of the grid was inaccessible, 
appropriate adjustments were made to ensure data acquisition. 

2.2.2. Recreational behavior data collection 
During the soundscape data collection, panoramic data were simul

taneously gathered from the 35 monitoring points using an Insta360
◦one X camera device. The camera is equipped with two F2.0 fisheye 
lenses and offers various modes, including HDR and night shot. The 

observation was conducted at a height of 3 m, and the resulting pano
ramic photos have a resolution of 6080 by 3040 pixels. Examples of the 
panoramic images are shown in Fig. 2. For each two-minute period of 
soundscape data acquisition, panoramic photos were taken every 5 s, 
resulting in a total of 7,000 panoramic images. These images were 
subsequently analyzed to identify the characteristics of public recrea
tional behavior (Huang et al. 2022). 

2.3. Data analysis 

2.3.1. Soundscape data analysis 
Based on previous research, biological sounds typically fall within 

the 2–11 kHz frequency range, while artificial sounds fall within the 1–2 
kHz range. Earth sounds, on the other hand, can span the entire sound 
spectrum of 1–11 kHz (Pijanowski et al. 2011). The spectrograms of the 
audio files collected in Jinshan Park indicated that most recreational 
sounds were within the 1–2 kHz frequency range. However, certain 
sounds such as conversations, music, and radio equipment extended to 
the 1–5 kHz range. Other sounds, including footsteps, ball tapping, 
running and jumping, and even laughing, and coughing, covered the full 
range of 0–11 kHz, although most of these sounds still fell within the 
1–2 kHz range. To account for operational considerations, data within 
the 0–1 kHz range were excluded to avoid potential distortions caused 
by wind sounds (Bradbury and Vehrencamp 1998). Therefore, the 

Fig. 1. Grid and sampling sites location.  
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calculation of acoustic indices in this study were restricted exclusively to 
the 1–2 kHz frequency range. 

The analysis of the soundscape data was carried out using the R 
programming language. To compute and present 280 sound samples of 
560 min in the 1–11 kHz frequency range, the ’multipe sounds’ function 
in the ’soundecology’ package and ’sewave’ package were utilized in the 
RStudio software. In this paper, four acoustic indices and one acoustic 
intensity index are used.  

(1) Acoustic index calculation 

The present study employs four well-established acoustic indices 
commonly employed in landscape research: the Acoustic Complexity 
Index (ACI), the Acoustic Diversity Index (ADI), the Acoustic Richness 
(AR), and the Normalized Difference Soundscape Index (NDSI). These 
indices have been extensively utilized in prior studies to monitor the 
α-diversity index of green space soundscape, showcasing robust 
analytical techniques and producing reliable findings (Zhao et al. 2021; 
Zhao et al. 2020). Given that the 1–2 kHz frequency range is sensitive to 
almost all recreational sounds, the acoustic indices for 35 sample sites in 
Fuzhou Jinshan Park were calculated using data within this range. The 
resulting data were then averaged and visualized to depict the daily 
variations of the acoustic indices in Fuzhou Jinshan Park from 6:00 to 
22:00.  

(2) Acoustic intensity calculation 

The automated calculation of Power Spectral Density (PSD) was 
performed using the C++ programming language. The recorded audio 
files were analyzed within the frequency range of 0–11 kHz, with data 
from 0 to 1 kHz being excluded. Recreational sounds can span multiple 

frequency bands and typically exceed 7 kHz, thus minimizing interfer
ence from biological sounds. Consequently, the power spectral density 
of each frequency band can be utilized to identify recreational behavior. 
To this end, all audio files were segmented into frequency intervals, 
specifically ranging from 1 to 2 kHz, 2–3 kHz, and so on up to 10–11 
kHz, within the overall range of 0–11 kHz. The power spectral density of 
each frequency interval was calculated using Matlab software. The 
resulting PSD values can provide a quantitative description of the rela
tive contribution of sound power variation across time and frequency 
(Joo et al. 2011). 

2.3.2. Recreational behavior data analysis 
Panoramic images were used to capture public recreational behavior 

data, including information on gender, age, type of behavior, and 
location of the subject. Th data collection process employed the SOPARC 
(System for Observing Play and Recreation in Communities) recording 
method. To suit the specific research requirements, modifications were 
made to the original SOPARC record content-based localization, and the 
classification of recreational behavior types was refined according to 
observation results. Subsequently, the activity types of visitors were 
then categorized into three groups: static, dynamic, and passing-by (as 
detailed in Table 3) for further calculation and analysis (Huang et al. 
2022). 

2.3.3. Statistical analysis 
A quantitative approach was utilized to investigate the correlation 

between the acoustic index of green spaces and recreational behavior 
and how they overlap. Temporal variation was visually represented 
using line graphs generated by Excel software, while spatial variation 
was analyzed using the inverse distance weighting method in ArcGIS 
software, resulting in the generation of a visualization map. Spearman 

Fig. 2. Panoramic overview of monitoring sites.  
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correlation analysis was performed on the original data to examine the 
relationship between different types of recreational behavior and 
acoustic indices and acoustic intensity, with the results visualized on 
ChiPlot. For comparison purposes, the acoustic intensity is presented 
together with the acoustic indices. The discrete data were fitted to the 
Poisson distribution (Zhang et al. 2018). Thus, a Generalized Linear 
Mixed Model (GLMM) was developed based on the count of public 
recreational data, aiming to evaluate the prediction power of acoustic 
indices on public static, dynamic, and passing-by recreational behavior. 
Prior to modeling, the data were standardized, and response variables 
were public static, dynamic, and passing-by recreational behaviors. 
Random effects were accounted for using sample points. 5 acoustic 
indices and acoustic intensity (ACI, ADI, AR, NDSI, PSD) and the power 
spectral intensity of 10 frequency intervals (1–2 kHz, 2–3 kHz…10–11 
kHz) were calculated as fixed effects. To avoid multicollinearity among 
the explanatory variables, the variance inflation factor (VIF) was 
calculated for each variable, and those with VIF > 10 were excluded 
from the analysis. The McFadden R-squared of the model and the Akaike 
information criterion (AIC) were used to assess the model’s goodness of 
fit (Grueber et al. 2011). 

3. Results 

3.1. Temporal variation characteristics of acoustic indices and public 
recreational behavior 

3.1.1. Temporal variation characteristics of acoustic indices 
Fig. 3 depicts the temporal variation patterns of four acoustic indices 

(ACI, ADI, AR, and NDSI) during the park opening hours (06:00–22:00) 
in summer. The data is presented in a normalized format to facilitate 

Table 3 
Content of the SOPARC record.  

Fig. 3. Temporal variation characteristics of each acoustic index after 
normalization. 

W. Fu et al.                                                                                                                                                                                                                                      



Ecological Indicators 154 (2023) 110729

6

comparisons (Zhao et al. 2021). The daily patterns of ACI, ADI, and AR 
indices followed a “W”-shaped multi-peak variation pattern. These 
indices demonstrated a rising trend during the morning hours, reaching 
their highest between 8:00–10:00. Subsequently, they gradually 
declined, reaching the lowest points during 12:00–14:00, followed by a 
slow increase until 18:00–20:00 and a further rise until the park’s 
closing time at 22:00. Conversely, the NDSI index displayed different 
temporal variations compared to other three indices. Its values remained 
consistently above zero from 06:00–20:00, indicating a predominance of 
biological sounds during this period. However, during 20:00–22:00, 
recreational sounds surpassed biological sounds, revealing the domi
nance of recreational behavior. This observation was negatively corre
lated with the overall variation characteristics the other indices. 

The distribution of PSD average values is illustrated in Fig. 4, 
showing a concentration within the 0–0.3 w/kHz. A bimodal distribu
tion of PSD is evident with fluctuations. After the park opens, there was 
an increase in the sound power spectrum density, followed by a slight 
decrease, and then peaking at 20:00–22:00. The main sources of recre
ation sound were detected in the 1–2 kHz range, although some recre
ational sounds extended to 2–5 kHz, such as conversations, children’s 
play, and equipment sounds. The temporal variations of power spectral 
density in these four frequency intervals corresponded to the overall 
temporal variations observed in Fig. 7. Moreover, the temporal variation 
of power spectral density within the 5–11 kHz range exhibited a similar 
trend to that in the 1–5 kHz range but demonstrated a more pronounced 
increase at night. 

3.1.2. Temporal variation characteristics of recreational behavior 
Fig. 5 displays the overall temporal variation characteristics of visi

tors, which exhibit a bimodal distribution. The first peak was observed 
during the period of 8:00–10:00, followed by a gradual decrease and a 
sharp drop to the lowest value at 12:00–16:00. The number of visitors 
then steadily increased, reaching the highest peak at 20:00–22:00. The 
lowest number of visitors was recorded from 12:00–16:00, possibly due 
to the high summer temperatures and lunch breaks. Differences were 
observed in the temporal changes of different recreational behaviors. 
Dynamic behavior tended to be minimal from 12:00–18:00, followed by 
a rapid increase towards 22:00 after 18:00. The change of static behavior 
coincided with the overall change in the number of visitors from 
6:00–16:00, but the frequency of static behaviors decreased after 16:00. 
Passing-by behavior was the most frequent recreational behavior, and its 
temporal change trend mirrored that of total number of visitors. How
ever, the rate of increase in passing-by behavior during 20:00–22:00 is 
comparatively lower. 

3.1.3. Comparison of acoustic indices and temporal variation 
characteristics of recreational behavior 

The similarities in trends between the acoustic indices and the rec
reational behaviors are evident in Fig. 6. Specifically, the diurnal 

variation of the ACI, ADI, and AR indices closely resembled the trends 
observed in the three types of recreational behaviors and the total 
number of visitors. Notably, only the NDSI index exhibited a different 
change pattern from 8:00–12:00 compared to the other indices. Simi
larly, only the dynamic behavior from 14:00–20:00 showed a distinct 
trend compared to other behaviors. When comparing the temporal 
variation characteristics of the acoustic indices and the number of rec
reational behaviors, there was a significant overlap between them, 
suggesting that both can serve as reliable indicators of visitors’ behav
ioral activities. 

3.2. Spatial distribution characteristics of acoustic index and public 
recreational behavior 

3.2.1. Spatial distribution characteristics of acoustic index 
According to Fig. 7, areas with high vegetation coverage, such as 

forest nodes, tend to have higher ACI and ADI indices, as they offer rich 
bio-acoustic and artificial sounds, diverse sound sources, and a highly 
complex spectrum that covers all frequency acoustic intensity. In 
contrast, plazas and hard nodes that lack bioacoustics and artificial 
sound tended to have lower ACI and ADI indices. Areas with a higher AR 
index were typically active nodes with rhythmic and highly varied 
artificial sounds, such as musical sounds, while quieter natural nodes 
had lower AR indices. Natural nodes with less human activity and 
abundant natural sound tended to have higher NDSI indices, whereas 
large hard-paved nodes like plazas, dominated by artificial sound, ten
ded to have lower NDSI indices. 

Additionally, landscape spaces with high PSD values (PSD ≥ 0.4w/ 
kHz) were typically located near open water or uncovered squares, 
where there was less vegetation and more human activities. In these 
areas, wind, insects, and recreational sounds were the main contributors 
to the sound power spectrum density. Conversely, sites with low PSD 
values (PSD ≤ 0.01w/kHz) tended to be enclosed and covered areas with 
abundant vegetation and little human activity. In such locations, bird 
calls and footsteps were the primary contributing factors to the power 
spectral density. 

3.2.2. Spatial distribution characteristics of recreational behavior 
According to Fig. 8, passing-by behavior emerges as the most prev

alent and widely distributed type of recreational behavior. A correlation 
was observed between its occurrence and the accessibility of park nodes, 
with nodes situated along main roads and landscape roads exhibiting 
more passing-by behaviors. In contrast, nodes at the end of cut-off roads 
demonstrated fewer instances of passing-by behaviors. Nodes with high 
levels of dynamic behavior typically encompass large hard surfaces, 
such as plazas. Conversely, nodes with a higher concentration of static 
behavior featured resting areas furnished with pavilions or seats, 
thereby suggesting that fixed recreational facilities, such as pavilions 
and promenades, play a role in shaping the occurrence of static behavior 
among park visitors. 

3.2.3. Comparison of acoustic index and spatial variation characteristics of 
recreational behavior 

The spatial distributions of acoustic indices and recreational 
behavior were compared in Fig. 7 and Fig. 8. Results showed a consis
tency between the distribution of the PSD index and dynamic behavior. 
Similarly, the ACI index’s distribution aligned with the pattern of 
passing-by behavior and the total number of visitors. However, other 
acoustic indices and recreational behavior exhibited comparable char
acteristics at specific locations. This suggests that acoustic indices can 
effectively represent the acoustic landscape information of urban parks, 
highlighting notable spatial dynamics, and can reasonably reflect the 
dynamic activities of park visitors. 

Fig. 4. Temporal variation characteristics of power spectral density in 10 fre
quency intervals. 
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3.3. Correlation analysis and model construction 

3.3.1. Correlation analysis of acoustic index and public recreational 
behavior 

Fig. 9 illustrates strong positive correlations between ACI, ADI, AR, 
and each behavior type, including total behavior. Notably, both ACI and 
AR showed extremely significant positive correlations with all types of 
behavior, including dynamic behavior, static behavior, passing-by 
behavior, and total visitors (p < 0.01). ADI showed significant posi
tive correlations with dynamic behavior and passing-by behavior (p <
0.05), and extremely significant positive correlations with total visitors 
and static behavior (p < 0.01). Additionally, NDSI exhibited a signifi
cant positive correlation only with static behavior (p < 0.05), implying 
that locations with a higher occurrence of biological sounds are more 
appealing for static public behavior. In contrast, NDSI lacks significant 
connections with other types of public recreational behavior. 

According to Fig. 10, the PSD values in the 5–6 kHz, 6–7 kHz, 9–10 
kHz, and 10–11 kHz frequency intervals all showed significant negative 
correlations (p < 0.05) with the total visitor count. The PSD values in the 
4–5 kHz and 7–8 kHz frequency intervals showed a significant negative 
correlation with passing-by behavior (p < 0.05), while the PSD values in 
the 5–6 kHz, 6–7 kHz, 8–9 kHz, 9–10 kHz, and 10–11 kHz frequency 
intervals showed an extremely significant negative correlation with 
passing-by behavior (p < 0.01). These results indicate that the passing- 
by behavior significantly affects the PSD values in each frequency in
terval within 4–11 kHz. In other words, an increase in passing-by 

behaviors corresponds to lower PSD values within the 4–11 kHz fre
quency band. 

3.3.2. Model construction of acoustic index and recreational behavior 
When constructing the regression models for acoustic indices and 

recreational behavior, no evidence of multicollinearity was observed, as 
indicated by variance inflation factors (VIF) values of each variable 
being<10. The results are presented in Table 4, showing the significance 
of all indices. Specifically, static behavior displayed significant positive 
correlations with ACI, ADI, and AR indices and a significant negative 
correlation with the NDSI index. Dynamic behavior exhibited a signifi
cant positive correlation with ADI and NDSI indices only. Passing-by 
behavior showed a significant positive correlation with ACI index, 
while displaying a significant negative correlation with NDSI and overall 
PSD index. Furthermore, when fitting acoustic indices to types of rec
reational behaviors, the results showed that the fit of acoustic indices to 
passing-by behavior (R2 = 0.524, △AICC = 2.641) was better than the 
fit of acoustic indices to dynamic behavior (R2 = 0.478, △AICC = 2.679) 
and static behavior (R2 = 0.453, △AICC = 3.513). 

Table 5 displays the correlation coefficients between the PSD values 
in different frequency intervals and recreational behaviors. Static 
behavior showed a significant positive correlation with PSD values in 
the 1–2 kHz, 3–4 kHz, 4–5 kHz, 7–8 kHz, and 8–9 kHz frequency in
tervals. Dynamic behavior showed a significant positive correlation with 
PSD values in the 8–9 kHz frequency interval only. In contrast, passing- 
by behavior showed a significant positive correlation with PSD values in 

Fig. 5. Temporal variation characteristics of recreational behavior.  

Fig. 6. Normalized temporal variations in acoustic indices and recreational behavior.  

W. Fu et al.                                                                                                                                                                                                                                      



Ecological Indicators 154 (2023) 110729

8

the 3–4 kHz, 4–5 kHz, 5–6 kHz, 8–9 kHz, 9–10 kHz, and 10–11 kHz 
frequency intervals. Furthermore, the regression results indicated that 
the fit of acoustic intensity to passing-by behavior (R2 = 0.544, ΔAICC =

7.937) outperforms the fit of acoustic intensity to dynamic behavior (R2 

= 0.505, ΔAICC = 8.446) and static behavior (R2 = 0.104, ΔAICC =

10.280). 

4. Discussion 

4.1. Comparison of traditional observation and acoustic monitoring 

The composition of recreational behaviors identified by acoustic 
monitoring in this study is approximately the same and demonstrates a 
considerable overlap (90%) with those recorded by traditional obser
vation method. However, each method has its own advantages and 
weakness which are summarized in Table 6. Given the specific 

Fig. 7. Spatial distribution characteristics of different acoustic indices（a) Spatial distribution characteristics of ACI;（b)Spatial distribution characteristics of ADI; 
（c) Spatial distribution characteristics of AR;（d) Spatial distribution characteristics of NDSI;（e) Spatial distribution characteristics of PSD;（f)Spatial distribution 
characteristics of PSD in each frequency interval. 
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objectives of the study, researchers can leverage the unique strengths of 
each method and combine them to obtain more comprehensive statis
tical data on public recreational behavior, depending on the purpose of 
the study. In this study, both types of observation were conducted 
simultaneously to ensure the consistency and reliability of the experi
mental data, but acoustic monitoring was more advantageous in long- 
term detection. The recording equipment supports continuous day and 

night operations for long periods of time at different locations without 
requiring human intervention. This frees up labor and facilitates the 
collection of more complete and comprehensive data. The long-term 
nature of acoustic monitoring allowed for the effective capture of un
common recreational behaviors and enabled the analysis of dynamic 
changes in public recreational behavior over time. 

Fig. 8. Spatial distribution characteristics of recreational behavior（a) Spatial distribution characteristics of total visitors;（b)Spatial distribution characteristics of 
dynamic behavior;（c) Spatial distribution characteristics of static behavior;（d) Spatial distribution characteristics of passing-by behavior;（e) Spatial and temporal 
variation of various recreational behaviors. 
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4.2. Spatial and temporal variation characteristics of acoustic indices 

Some studies have reported that the highest value of the PSD index 
occurs in the evening (16:00–18:00) (Zhao et al. 2022), while another 
study proposed that the peak occurs in the low-frequency band in the 
early morning (6:00–8:00) (Zhao et al. 2021). In contrast, our study 
found that the peak of the PSD index occurs during the night hours 
(20:00–22:00). These inconsistent results may be attributed to the po
tential influence of multiple sources of interference in the urban envi
ronment that may bias the results. Regarding spatial variations in 
acoustic indices, our study reveals that the ACI and ADI indices were 
positively correlated with dense vegetation, indicating that higher 
vegetation density and coverage were related to higher ACI and ADI 
value. These findings are consistent with prior research (Zhao et al. 
2021). Conversely, the AR and PSD indices depended on open areas, as 
higher AR and PSD values were found in areas with more open space and 
less vegetation coverage. This pattern may be attributed to the influence 
of urban traffic noise in the open fields of the urban park (Margaritis 
et al. 2018). 

4.3. Spatial and temporal characteristics of public recreational behavior 

During summer, visitor activity in urban parks peaks in the morning 

and evening, potentially due to the high temperatures during the af
ternoon that discourage outdoor recreation. Previous studies have found 
that individuals tend to engage in more indoor activities in hot summer 
weather (Qi et al. 2022; Qi et al. 2023), and lifestyle habits like napping 
may also contribute to this phenomenon (Wang et al. 2023). Notably, 
during the nighttime, dynamic behavior becomes the dominant type of 
activity, which aligns with the findings of Liu et al. (2017)., who pro
posed that the number of park visitors is sensitive to microclimate 
changes. Furthermore, it was observed that long-term recreational ac
tivities are primarily walking-based, with passing-by behaviors 
concentrated on park paths. Dynamic behaviors tend to occur on large 
hard surfaces, while static behaviors were more common around fixed 
park recreational facilities. These results confirm that various landscape 
elements influence recreational behaviors, highlighting the importance 
of designing well-considered landscape elements to meet the needs of 
visitors in urban parks (Zhang, 2022). 

4.4. Correlation between acoustic index and public recreational behavior 

Of the acoustic indices evaluated in this study, the ACI index appears 
to be the most robust in capturing the complexity of bio-acoustic signals 
in urban environments. The ACI index shows an extremely significant 
positive correlation with all recreational behavior types, highlighting its 

Fig. 9. Visual heat map of the correlation between the acoustic index and public recreational behavior. The color scheme used in the graphs assigns red to signify a 
positive correlation and blue to represent a negative correlation. The size and color intensity of the graphs directly correspond to the magnitude of the correlation 
index, with larger and darker graphs indicating a stronger correlation. *At the 0.05 level (two-tailed), the correlation is significant; **at the 0.01 level (two-tailed), 
the correlation is significant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Visual heat map of the correlation between acoustic intensity and public recreational behavior. The color scheme used in the graphs assigns red to signify a 
positive correlation and blue to represent a negative correlation. The size and color intensity of the graphs directly correspond to the magnitude of the correlation 
index, with larger and darker graphs indicating a stronger correlation. *At the 0.05 level (two-tailed), the correlation is significant; **at the 0.01 level (two-tailed), 
the correlation is significant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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applicability in urban parks. Additionally, the ADI, AEI, and AR indices 
were also found to be correlated with recreational behaviors. The ADI 
and AR indices showed significant positive correlations with each type 
of behavior, while the AEI index decreased as recreational behavior 
increased. On the other hand, the NDSI index, which indicates the 
impact of human activities on the soundscape, was significantly corre
lated only with static behavior. This suggests that people prefer quiet 
and natural environments for rest and the static activity has the least 
impact on the soundscape, consistent with previous studies (He 2022). 
The analysis of spatiotemporal variation characteristics of the NDSI 
index reveals errors occur during the time periods of 8:00–12:00 due to 
the high frequency of biological sounds above 2 kHz and the influence of 
other traffic noises, indicating that the NDSI index is not suitable for 
environments with strong disturbances. However, the changing trend of 
NDSI index in other periods matches the changing trend of public rec
reational behavior. When the NDSI index fell to a negative value, it 
coincides with the time when public recreational behavior is most 
abundant. This suggests that the NDSI index can effectively capture di
versity of recreational behavior and that the acoustic index can quickly 
assess the recreational condition of urban parks. 

4.5. Correlation between acoustic intensity and public recreational 
behavior 

In this study, the effectiveness of acoustic intensity was investigated 
as an indicator of passing-by, dynamic, and static behaviors in urban 
parks. However, it is important to acknowledge that disturbing factors 
such as traffic and construction noise, which fall within the same fre
quency range, can potentially affect the correlation results for recrea
tional behavior. In contrast, sound sources in the high-frequency power 
value range, such as footsteps in passing-by behavior, and sounds related 
to ball tapping, running, and jumping sounds in dynamic behavior, were 
more accurate in predicting recreational behavior. Specifically, the PSD 
values within the 4–11 kHz frequency range were inversely correlated 
with passing-by behavior, with footsteps being the most frequent sound 

source within the high-frequency power value interval. These findings 
suggest that acoustic intensity at high-frequency power values can serve 
as useful tool for quickly assessing the recreational conditions of urban 
parks. In addition, the present study found that both dynamic and static 
behaviors were positively correlated with the PSD values of the full 
frequency band, indicating that larger PSD values in each frequency 
interval were linked with increased occurrences of these two behaviors. 
Conversely, the insignificant correlation with dynamic behaviors may be 
due to smaller sample size and its less frequent occurrence compared to 
the other two behavior types. 

4.6. Limitations and potential of acoustic indices for assessing visitor 
recreational behavior in urban parks 

Acoustic indices are affected by various sounds present in the envi
ronment. Many domestic and international studies have pointed out that 
the predictive power of acoustic indices and landscape intensity models 
can be negatively interfered with by insects, weather, and other human 
activity noise, resulting in a reduction in their effectiveness (Buxton 
et al. 2018). However, it should be acknowledged that our analysis 
cannot completely exclude the presence of non-focal organisms’ sounds. 
Furthermore, the selection of acoustic indices can impact the predictive 
ability of a model. Consequently, it is imperative for future research to 
explore ways to select the appropriate acoustic ecological indexes that 

Table 4 
Parameter estimates for the average model of visitor recreational behavior.  

Response 
variable 

Explanatory 
variable 

Estimate Standard 
Error 

value P 

Static 
behavior 

(Intercept)  − 67.600  3.485  − 19.398 <0.001 
*** 

ACI  0.193  0.009  21.325 <0.001 
*** 

ADI  3.145  0.814  3.863 <0.001 
*** 

AR  6.639  1.685  3.939 <0.001 
*** 

NDSI  − 3.260  0.292  − 11.163 <0.001 
*** 

PSD  0.447  0.177  − 2.526 0.011 * 
Dynamic 

behavior 
(Intercept)  1.167  4.484  0.260 0.795 
ACI  − 0.017  0.012  − 1.397 0.162 
ADI  6.115  0.947  6.455 <0.001 

*** 
AR  0.790  1.513  2.800 0.005 ** 
NDSI  0.440  0.282  3.889 <0.001 

*** 
PSD  1.167  0.113  0.260 0.795 

Passing-by 
behavior 

(Intercept)  − 10.849  2.458  − 4.414 <0.001 
*** 

ACI  0.039  0.007  5.948 <0.001 
*** 

ADI  − 0.260  0.567  0.459 0.646 
AR  0.057  1.078  0.314 0.754 
NDSI  − 0.596  0.181  − 4.419 <0.001 

*** 
PSD  − 10.849  0.135  − 4.414 <0.001 

*** 

Note: *P ≤ 0.05, **P ≤ 0.005, ***P ≤ 0.001. 

Table 5 
Parameter estimates for the average model of visitor recreational behavior.  

Response 
variable 

Explanatory 
variable 

Estimate Standard 
Error 

value P 

Static 
behavior 

(Intercept)  2.789  0.057  49.231 <0.001 
*** 

1–2 kHz  11.392  2.664  4.276 0.023 * 
2–3 kHz  27.351  5.557  4.922 0.135 
3–4 kHz  32.002  8.246  3.881 0.007 ** 
4–5 kHz  54.855  16.249  3.376 <0.001 

*** 
5–6 kHz  98.122  30.256  3.243 0.286 
6–7 kHz  49.558  41.535  1.193 0.058. 
7–8 kHz  89.738  21.941  4.090 <0.001 

*** 
8–9 kHz  186.360  83.358  2.236 <0.001 

*** 
9–10 kHz  246.794  86.067  2.867 0.851 
10–11 kHz  277.216  107.491  2.579 0.196 

Dynamic 
behavior 

(Intercept)  1.959  0.080  24.407 <0.001 
*** 

1–2 kHz  0.873  2.882  0.303 0.762 
2–3 kHz  4.478  6.146  0.729 0.466 
3–4 kHz  12.389  8.351  1.484 0.138 
4–5 kHz  24.212  15.815  1.531 0.126 
5–6 kHz  9.818  35.934  0.273 0.785 
6–7 kHz  37.286  54.784  0.681 0.496 
7–8 kHz  2.753  35.119  0.078 0.938 
8–9 kHz  187.341  89.456  2.094 0.036 * 
9–10 kHz  140.860  110.594  1.274 0.203 
10–11 kHz  136.844  145.072  0.943 0.346 

Passing-by 
behavior 

(Intercept)  3.225  0.046  70.091 <0.001 
*** 

1–2 kHz  6.455  1.935  0.303 0.762 
2–3 kHz  13.186  3.994  1.531 0.126 
3–4 kHz  − 7.945  4.146  − 3.153 0.002 ** 
4–5 kHz  − 46.875  7.799  − 6.011 <0.001 

*** 
5–6 kHz  − 53.032  16.487  − 3.217 0.001 ** 
6–7 kHz  − 2.674  23.704  − 0.113 0.910 
7–8 kHz  − 5.964  13.209  − 0.452 0.652 
8–9 kHz  − 301.283  54.650  − 5.513 <0.001 

*** 
9–10 kHz  − 166.609  57.228  − 2.911 0.003 ** 
10–11 kHz  303.094  79.332  − 3.821 <0.001 

*** 

Note: *P ≤ 0.05, **P ≤ 0.005, ***P ≤ 0.001. 
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can enhance model-fitting efficacy. This study verifies the feasibility of 
acoustic monitoring in urban parks, where audio-based manual recog
nition of recreational behavior can yield comparable results to pano
ramic camera photography. As future research progresses, the potential 
of acoustic detection in analyzing public recreational behavior, and even 
landscape gardening, can be further explored. The continuous innova
tion of science and technology portends a promising application pros
pect for acoustic monitoring. However, it should be noted that the study 
did not compare multiple acoustic indices or conduct larger-scale testing 
due to time and content constraints. It is possible that methodological 
issues may emerge over time and require further investigation. 

5. Conclusion 

The application of acoustic indices in analyzing recreational 

behavior offers numerous benefits, including cost-effectiveness and non- 
invasiveness. This research investigates the spatial and temporal varia
tion characteristics of acoustic indices, acoustic intensity, and public 
recreational behavior by simultaneously recording both metrics at 35 
monitoring points located in urban green spaces during park operating 
hours from 6:00 to 22:00. The study aims to examine the possibility of 
using acoustic indicators to reflect public recreational behavior. Find
ings reveal that: (1) the ACI, ADI, AR, and NDSI acoustic indices have 
substantial overlap with the spatial and temporal variation character
istics of recreational behavior, and can reflect tourist behavioral activ
ities to a certain degree; (2) the daily variation characteristics of the 
three acoustic indices (ACI, ADI, and AR) are similar to those of public 
recreational behavior, displaying multi-peak daily variation patterns in 
a “W” shape, and their spatial variation characteristics are also analo
gous; (3) the acoustic intensity shows significant variation across the 
frequency gradient, and different frequency intervals can reflect activity 
information of different recreational behaviors, particularly the power 
spectral density in the high-frequency interval, which possesses great 
capacity for assessing passing-by behavior; (4) regarding the three rec
reational behaviors, the acoustic index model and the acoustic intensity 
model exhibit better assessment ability for passing-by behavior than for 
dynamic behavior and static behavior; (5) based on correlation analysis 
and model construction, acoustic indices can be used to analyze the 
spatial and temporal variation characteristics of public recreational 
behavior in green spaces, providing data support for urban green area 
renovation and enhancement. Overall, acoustic monitoring, either as an 
independent or complementary tool, holds excellent potential for 
development and application in visitor activity research. This study 
supports the inclusion of acoustic indices such as ACI, ADI, AR, and the 
PSD values within high-frequency intervals in existing monitoring 
methods. By incorporating these acoustic indicators, researchers can 
gain a more comprehensive understanding of public recreational 
behavior. Furthermore, the application of data analysis techniques, such 
as machine learning and pattern recognition, facilitates the analysis of 
large volumes of acoustic data, allowing for the extraction of meaningful 
insights and the identification of behavioral patterns in a more efficient 
and systematic manner. This contributes to the improvement of moni
toring methods and enhances our ability to assess and manage public 
recreational behaviors in urban parks. Finally, integrating acoustic 
monitoring as a constituent element of park management strategies is 
recommended. The recorded acoustic data provides valuable informa
tion for formulating targeted interventions and allocating resources 
effectivelly. By leveraging these insights, park managers can enhance 
visitor experiences while minimizing environmental impacts. Imple
menting these suggestions will lead to improvements in existing public 
behavior monitoring methods, resulting in a more comprehensive and 
effective understanding of public behavior in urban green spaces. 
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