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The collective modes of a quantum liquid shape and impact its properties profoundly, including its emergent
phenomena such as superfluidity. Here we present how a two-dimensional Bose gas responds to a moving lattice
potential. In particular, we discuss how the induced heating rate depends on the interaction strength and the
temperature. This study is motivated by the recent measurements of Sobirey et al. [arXiv:2005.07607], for
which we provide a satisfying understanding. Going beyond the existing measurements, we demonstrate that
this probing method allows us to identify two sound modes in quantum liquids. We show that the two sound
modes undergo hybridization as a function of interaction strength, which we propose to detect experimentally.
This gives insight into the two regimes of Bose gases, defined via the hierarchy of sound modes.
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I. INTRODUCTION

The emergent phenomena of quantum liquids such as su-
perfluidity and sound modes depend on a multitude of system
features, such as interaction strength, dimensionality, and
temperature. These two classes of phenomena are linked in
an intricate manner, as exemplified by the Landau criterion,
which predicts dissipationless flow for a perturbation moving
with a velocity below a critical velocity. This critical velocity
in turn is associated with the creation of elementary excita-
tions [1–5]. While study of superfluids was first motivated by
the properties of helium II, ultracold atoms have expanded
the scope of the study of superfluidity by a wide range of
trappable quantum liquids, including superfluids having re-
duced dimensionality and tunable interactions. Measurements
of the critical velocity have been performed by perturbing
ultracold atom clouds with a moving laser beam [6–8] or
lattice potential [9,10].

Superfluidity in two-dimensional (2D) systems is a partic-
ularly intriguing case, due to the critical properties of these
systems, which differ from higher dimensional systems. Al-
though 2D systems have no long-range order due to increased
thermal fluctuations, they can become a superfluid via the
Berezinksii-Kosterlitz-Thouless (BKT) mechanism [11–13].
The superfluid phase is a quasicondensate characterized by an
algebraically decaying phase coherence. Ultracold atom sys-
tems provide unprecedented control and tunablity, allowing
the study of superfluidity in 2D. This led to the observation
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of pair condensation [14], phase coherence [15–17], critical
velocity [7,18], and sound propagation [19,20]. Two sound
modes were recently detected in Ref. [21]. However, their
hybridization and sublinear dissipation for small perturbation
velocities, which we identify in this paper, have not been
detected yet.

In this article, we use both classical-field dynamics and
analytical estimates to investigate the induced heating rate as
a function of the velocity of a moving lattice potential. The
simulated heating rate shows two maxima corresponding to
two sound modes, and sublinear dissipation at low velocities.
By changing the periodicity of the lattice potential, we exam-
ine the heating rate at varying wave vectors. We find phononic
excitations for low wave vectors and free-particle excitations
for high wave vectors. This is in excellent agreement with
Bogoliubov theory and the measurements of Ref. [18]. We de-
termine a critical velocity from the sharp onset of dissipation
and compare it with the measurements for various interactions
[18]. Below the critical velocity, we find that the heating rate
has a power-law dependence in the velocity and its magni-
tude increases with the temperature, which is supported by
the analytic estimate of the quasicondensed phase. Finally,
we determine the two mode velocities from the heating rate
and identify their hybridization dependent on interaction and
temperature.

II. RESULTS

A. System and dynamical response

We simulate bosonic clouds of 6Li2 molecules confined to
2D motion in a box potential. This geometry offers tunability
of the effective interaction strength and was used in Ref. [18],
depicted in Fig. 1(a). The system is perturbed by a lattice
potential moving at a constant velocity v. The unperturbed
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FIG. 1. Superfluid response. (a) A 2D superfluid in a box poten-
tial V is probed by moving a lattice potential with lattice vector k0

through it, at a velocity v. (b) The resulting heating of the superfluid
derives from the excitation branches at k0. For the weak-coupling
regime, for which the velocity of the non-Bogoliubov (NB) mode is
larger than the velocity vB of the Bogoliubov (B) mode, the Landau
criterion predicts the critical velocity vc = vB, as indicated. (c) Sim-
ulated heating rate R(v) for k0/kξ = 0.6, where kξ = 2.2 μm−1 is the
wave vector above which the Bogoliubov dispersion approaches a
quadratic momentum dependence. The fit (red curve) yields a sharp
increase at vc = 4.0 mm/s; see text. The two maxima of the heating
rate correspond to the two modes, where the first maximum is close
to vB = 5.8 mm/s.

system is described by the Hamiltonian

Ĥ0 =
∫

dr
[ h̄2

2m
∇ψ̂†(r) · ∇ψ̂ (r) + g

2
ψ̂†(r)ψ̂†(r)ψ̂ (r)ψ̂ (r)

]
.

(1)

ψ̂ (ψ̂†) is the bosonic annihilation (creation) operator. The 2D
interaction parameter is g = g̃h̄2/m, where g̃ = √

8πas/�z is
the dimensionless interaction, m is the molecular mass, as is
the 3D molecular scattering length, and �z is the harmonic os-
cillator length in the transverse direction [22]. In connection to
a Fermi gas of 6Li atoms, m and as are given by m = 2ma and
as = 0.6aaa, with ma being the atomic mass and aaa being the
atom-atom scattering length. The interaction strength can also
be expressed by ln(kFa2D), where kF is the Fermi wave vector
and a2D is the 2D scattering length [23]. We consider a square
box with dimensions Lx × Ly = 100 × 100 μm2 and a density
n = 1.2 μm−2, comparable to the experimental parameters
[18]. We use g̃ in the range 0.6–3.4, which results in the range
0.35–0.83 μm for the healing length ξ , which is defined as
ξ = h̄/

√
2mgn. To perform numerical simulations, we dis-

cretize space using a lattice of size Nx × Ny = 200 × 200 and
a discretization length l = 0.5 μm; see also Appendix A. We
note that l is chosen to be smaller than or comparable to
the healing length and the de Broglie wavelength [24]. We
solve the dynamics using the classical-field method described
in Refs. [25,26]. According to this methodology, we replace
the operators ψ̂ in Eq. (1) and in the equations of motion

by complex numbers ψ . We sample the initial states from a
grand-canonical ensemble with a chemical potential μ and
a temperature T via a classical Metropolis algorithm. We
note that this method describes the BKT transition; see, e.g.,
Refs. [26,27]. To obtain the many-body dynamics of the sys-
tem, we propagate the state using the classical equations of
motion. We model the lattice perturbation via the additional
term

Hp =
∫

drV (r, t )n(r), (2)

where n(r) is the density at the location r = (x, y). The lattice
potential V (r, t ) is directed along the x direction:

V (x, t ) = V0 cos2[k0(x + vt )/2]. (3)

V0 is the strength, k0 = 2π/λl is the wave vector, and v is
the velocity, where we define λl as the distance between two
maxima of the potential. We move this potential for a fixed
perturbation time tp of 100 ms. We calculate an ensemble
average of the energy change �E = 〈H0(tp)〉 − 〈H0(0)〉 using
Eq. (1) and ψ (r, t ). From this change of energy, we deter-
mine the heating rate �E/tp for various sets of parameters v,
k0, V0, g̃, and T/T0. Throughout this paper, we will use the
temperature T0 = 2πnh̄2/(mkBDc), with the critical phase-
space density Dc = ln(380/g̃), as the temperature scale; see
Refs. [28,29]. This scale gives an estimate of the critical tem-
perature Tc, which is the temperature of the BKT transition.
We define a dimensionless heating rate R = h̄�E/(tpV 2

0 N ),
where N is the number of molecules. This heating rate and its
velocity, temperature, and interaction dependence are central
quantities of this paper. As an example, in Fig. 1(c) we show
R(v) for g̃ = 1 and T/T0 = 0.3. We used V0/μ = 0.05 and
k0/kξ = 0.6. μ = gn is the mean-field energy and kξ ≡ √

2/ξ

is the wave vector above which the Bogoliubov dispersion ap-
proaches a quadratic momentum dependence. As we depict in
Fig. 1(c), the heating rate is small at low velocities. Below, we
comment on the velocity dependence in this regime in more
detail. The heating rate increases rapidly around a velocity
which we refer to as the critical velocity of the condensate.
As a simple estimate of this velocity, we fit the heating rate
below the Bogoliubov velocity vB = √

gn/m = 5.8 mm/s to
the function f (v) = A0max[0, v2 − v2

c ], with A0 and vc as
fitting parameters. The fit gives vc = 4.0 mm/s, as depicted
in Fig. 1(c).

In addition to the sudden increase of the heating rate,
captured by the critical velocity, the heating rate displays two
maxima. These two maxima derive from the two excitation
branches of the system. In the example shown in Fig. 1(c),
the maximum at lower velocities is close to the Bogoliubov
estimate vB, as shown. We give further evidence for this
interpretation below. We refer to this branch as the Bogoli-
ubov (B) mode. Additionally, there is a second maximum at
a higher velocity, which we refer to as the non-Bogoliubov
(NB) mode. This is consistent with an excitation spectrum
sketched in Fig. 1(b). Characterizing these two modes further
is the second objective of this paper, in addition to the critical
velocity.
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FIG. 2. Heating rate dependence on the lattice vector. (a) Measurements of the response r(v) of Ref. [18], determined from the heating
of the condensate density and normalized individually for each column, as a function of k0/kξ and v/vs. The sound velocity vs is determined
from the propagation of a density wave, as described in Appendix D. (b) Simulated heating rate R(v) and (c) Bogoliubov estimate RB(v), for
the same interaction and the same lattice parameters as in the experiment. The density n = 1.2 μm−2, the interaction strength g̃ = 1.6, and the
temperature T/T0 = 0.1 are close to the experiments. The red dashed line is the result vmax/vB = √

1 + (k0/kξ )2 of Eq. (5). The experimental
result is primarily due to the Bogoliubov mode, reflected in the good agreement with the simulation and the analytical estimate.

B. Analytical estimates

We present two analytical estimates for properties of the
heating rate. The first estimate uses Bogoliubov theory and
the second estimate uses the quasicondensate properties of 2D
quantum gases. We derive the heating rate perturbatively at
second order in the probing term. The Bogoliubov estimate of
the heating rate is (see Appendix B 1)

dE

dt
= 2π

h̄

∑
k

ωk (uk + vk )2N0|Vk|2δ(ωk − vk). (4)

h̄ωk =
√

εk (εk + 2mv2
B) is the Bogoliubov dispersion, and

uk and vk are the Bogoliubov parameters, with (uk +
vk )2 = εk/h̄ωk . εk = h̄2k2/(2m) is the free-particle disper-
sion. Vk = V0δky (δkx−k0 + δkx+k0 )/4 is the time-independent
part of the lattice potential in momentum space, and N0 is
the number of condensed atoms. In dimensionless form R ≡
h̄(dE/dt )/(N0V 2

0 ) and after simplifying Eq. (4) we obtain

RB = π

16

h̄k0

m
δ
[√

v2
0/4 + v2

B − v
]
, (5)

where v0 is v0 = h̄k0/m. The normalized heating rate RB has a
maximum at vmax = (v2

0/4 + v2
B)1/2. The location of the max-

imum moves to higher velocities with increasing k0 or v0. We
show vmax as a red line in Fig. 2, which captures the trend of
the measurement and the simulation. We include the thermal
damping of the phonon modes by considering a Landau-type
damping �k = v�k, where v� is the damping velocity. This
results in (see Appendix B 1)

RB = 1

16

v0v�(√
v2

0/4 + v2
B − v

)2 + v2
�

. (6)

We show this estimate in Fig. 2(c).
To describe the heating rate at low velocities, we relate the

heating rate to the momentum distribution nk and arrive at the
expression (see Appendix B 2)

dE

dt
= 2π

h̄2

∑
kq

(Ek+q − Eq)nq|Vk|2δ(vk + ωq − ωk+q), (7)

where Ek = h̄vB|k| is the phononic dispersion at long wave-
lengths. The momentum density nk follows a power-law
dependence in the wave vector k as

nk = n
πτ

2
rτ/4

0 |k|τ/4−2, (8)

where r0 is the short-range cutoff of the order of ξ and τ

is the algebraic scaling exponent. τ increases monotonously
from 0 to 1 as the temperature is increased from 0 to Tc. In
dimensionless form and for v < vB, we obtain the heating rate
of a quasicondensate at low temperatures (see Appendix B 2)

Rqc = π

32

τv2

v2
B − v2

, (9)

which scales as Rqc ∝ τv2 for low v and yields a rapid in-
crease for v close to vB. It vanishes as τ approaches 0.

C. Comparison

In this section, we compare the analytical estimates
with the simulation results and the experimental results. In
Fig. 2(a), we show the measurements of Ref. [18]. The mea-
surement was performed at ln(kFa2D) = −2.8, where kF =√

4πn is the Fermi wave vector and a2D is the 2D scattering
length. The maximum of this measured response is close
to the phonon velocity for small k0/kξ and shifts to larger
velocities with increasing k0/kξ . We perform a simulation for
the same system parameters, which results in the heating rate
shown in Fig. 2(b). The heating rate displays the same overall
dependence on the lattice wave vector k0. In particular, for
vanishing k0 the maximum of the heating rate approaches the
sound velocity. Furthermore, the simulation recovers the mea-
surements for intermediate and high wave vectors. We note
that for k0/kξ > 1 the lattice wave vector k0 approaches the
maximum momentum set by the system discretization length,
so that the simulation becomes quantitatively unreliable. In
Fig. 2(c), we show the Bogoliubov estimate RB of Eq. (6).
We set the value of v�/vB = 0.03, which we have obtained
numerically by determining the damping of a density wave
(see Appendix D). The magnitude of the maximum of RB
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FIG. 3. Critical velocity. Measurements of the critical velocity
(diamonds) of Ref. [18] are compared to the simulations of T/T0 =
0.1 (blue crosses) and 0.3 (red crosses) for various interactions
ln(kFa2D). kF is the Fermi wave vector, a2D is the 2D scattering length,
and vF is the Fermi velocity. We also show the propagation velocity
of a density wave (circles) for T/T0 = 0.1 and the Bogoliubov veloc-
ity vB (continuous line).

increases with increasing k0 as in the simulation in Fig. 2(b)
and provides a good estimate for both the measurement and
the simulation. We note that the simulation also displays a
faint second branch above the Bogoliubov branch. As we
elaborate below, this is due to the non-Bogoliubov mode. This
feature becomes more pronounced and realistically detectable
for higher temperatures and for an interaction strength near
the hybridization interaction, as we discuss below.

Next, we determine the critical velocity for the same value
k0/kF = 0.3 and for varying interactions as in the experiment.
In Fig. 3, we compare the simulation results of the critical
velocity vc for T/T0 = 0.1 and 0.3 with the measurements
of Ref. [18]. The measurement agrees with the simulation
of T/T0 = 0.3 for the interaction strengths ln(kFa2D) � −1.5,
except for the data point at ln(kFa2D) = −3.2. For strong
interactions, ln(kFa2D) � −1.5, the measurements are closer
to the simulations of T/T0 = 0.1. This might suggest that
the experimental results were obtained at temperatures that
varied with varying interaction strengths. We also show the
simulation results of the sound velocity vs for T/T0 = 0.1,
which is determined from the propagation of a density wave
(see Appendix D). For all interactions, this sound velocity
is slightly below the Bogoliubov velocity vB and above the
results of vc. The difference between vs and vc is higher for
strong interaction and high temperature, which is due to the
broadening of the heating rate.

Finally, we examine the low-velocity behavior of the heat-
ing rate at v/vB � 1. In Fig. 4, we show the simulated heating
rate R(v) for k0/kξ = 0.4 and various T/T0. R(v) shows a
power-law dependence at low velocities, visible as a linear
dependence on v on a log-log scale. More specifically, we
observe a quadratic dependence on v, as supported by fit-
ting with the function f (ṽ) = αṽ2, where α is the fitting
parameter. ṽ = v/vB is the scaled velocity. We refer to this
power-law dependence as sublinear dissipation, because the
power-law dependence is sublinear. We note that above the
critical temperature, where the bosons form a thermal cloud,
the dissipation is linear in v [30]. The quantity α(T ) increases
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FIG. 4. Low-velocity dependence of the heating rate. Simulated
heating rate R(v) on a log-log scale for a weak perturbation and
various T/T0. The dashed lines are the algebraic fits with the function
f (ṽ) = αṽ2, where ṽ = v/vB is the scaled velocity. The fit parameter
α(T ) is shown in the inset, where the error bar denotes the standard
deviation.

with the temperature, as we show in the inset of Fig. 4. Both
the power-law dependence and α(T ) are consistent with the
estimate Rqc in Eq. (9), where α(T ) is related to the BKT
exponent τ via τ = α ∗ 32/π . For T/T0 = 0.7, the value of
α = 0.024 results in τ ≈ 0.25, which is below the critical
BKT exponent τc = 1. Since the magnitude of the heating rate
is small, it would be demanding to extract τ experimentally.
However, in principle this result relates the low-velocity heat-
ing rate to the quasicondensate scaling exponent.

D. Two sound modes

In this section, we characterize the two sound modes that
we observe in the heating rate. For the sound modes, we
employ the terminology of B and NB modes, which was
used in Ref. [31]. In Fig. 5, we show the simulation results
of R(v) for g̃ = 1.4, k0/kξ = 0.4, and various T/T0. R(v)
displays two maxima. The first maximum corresponds to the
B mode and the second maximum to the NB mode. At low
temperatures, the B mode has a higher magnitude than the NB
mode. This changes as the temperature is increased. For high
temperatures, the NB mode has a higher magnitude than the B
mode. This shift of the magnitude is consistent with the shift
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FIG. 5. Two sound modes. R(v) for g̃ = 1.4, k0/kξ = 0.4, and
various T/T0. The transition temperature is Tc/T0 = 0.86, which is
determined from a zero critical velocity; see Appendix C.

023112-4



COLLECTIVE MODES AND SUPERFLUIDITY OF A … PHYSICAL REVIEW RESEARCH 3, 023112 (2021)

0

5

10

15

v
(m

m
/
s)

0

5

10

15

1 1.5 2 2.5 3

v
(m

m
/
s)

g̃

B

NB

1 1.5 2 2.5 3
g̃

(e)

B

NB

NB

B

1 1.5 2 2.5 3
g̃

(f)

B

NB

NB

B

0

0.2

v0

(a) T/T0 = 0.1

0

0.1

(b) T/T0 = 0.3

0

0.05

(c) T/T0 = 0.6

v1
v2
vs

(d)
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mode. The vertical dashed line indicates the hybridization point; see text.

of spectral weights of the two modes in the dynamic structure
factor [31]. Thus, the heating rate provides direct access to
the relative amplitude of two modes [32]. The first maximum
disappears and turns into a broad background of the diffu-
sive sound mode above the critical temperature Tc/T0 = 0.86,
where the value of Tc is identified by the critical velocity going
to zero (see Appendix C).

Next, we analyze the interaction dependence by varying g̃
in the range 0.6–3.4 and using the lattice wave vector fixed
at k0 = 1.1 μm−1. In Figs. 6(a)–6(c), we show R(v) as a
function of g̃ for T/T0 = 0.1, 0.3, and 0.6. R(v) displays a
hybridization of the two sound modes as a function of g̃.
This hybridization is more visible at intermediate and higher
temperatures, due to the larger weight of the non-Bogoliubov
mode, which we observed in Fig. 5. For low temperatures,
as in Fig. 6(a), this hybridization occurs at a high value of
g̃, which shifts to low values of g̃ for high temperatures in
Figs. 6(b) and 6(c). Similarly, the magnitude of the velocity
difference at the avoided crossing increases with increasing
temperature. To study this hybridization, we determine the
two mode velocities by fitting R(v) with a single and a
bi-Lorentzian function. In Figs. 6(d)–6(f), we present the in-
teraction dependence of the two velocities v1/2 obtained from
the fit. We indicate the hybridization point at the interaction at
which the magnitude of the heating rate of the high-velocity
(v1) mode exceeds the magnitude of the heating rate of the
low-velocity (v2) mode by a vertical dashed line in Figs. 6(e)
and 6(f). We compare v1/2 with the velocity vs obtained from
the propagation of a density wave (see Appendix D). We also
show the Bogoliubov velocities vB and vB,T = √

gns(T )/m
determined using either the total density or the numerically
obtained superfluid density ns(T ) (see Appendix E and also
Ref. [31]). The lower velocity v2 agrees with vs and vB,T for

all interactions and all temperatures. The upper velocity v1

agrees with vB above the hybridization point only. This sug-
gests that for weak interaction and low temperature the system
is in the nonhydrodynamic regime, where the lower velocity
is described by the Bogoliubov (B) approach and the upper
mode is the non-Bogoliubov (NB) mode, as we pointed out in
Refs. [31,33]. This scenario changes for strong interaction and
high temperatures, where the system enters the hydrodynamic
regime and a hydrodynamic two-fluid model describes the
two sound modes. Here, the upper mode propagates with the
total density and the lower mode with the superfluid density
[34,35].

III. CONCLUSIONS

We have determined and discussed the heating rate of a
superfluid 2D Bose cloud by perturbing it with a moving lat-
tice potential, using classical-field simulations and analytical
estimates. This study is primarily motivated by the experiment
reported in Ref. [18]. Indeed, we find first that the signature
of the Bogoliubov mode in the heating rate is well reproduced
in our study, for which we present a numerical result as well
as an analytical estimate. Second, we show that the critical
velocity that emerges in this type of stirring experiment is
consistent with the experimental findings of Ref. [18].

However, our study also suggests broadening the scope of
this type of stirring experiment. The results that we report
here elucidate the general behavior of sound excitations in 2D
Bose gases. In particular, they give access to the two-mode
structure of the excitation spectrum and their interaction and
temperature dependence. We show that the heating rate has
two maxima, as a function of its velocity and for fixed lattice
wave length, corresponding to the two sound modes of the
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fluid. The relative weight of these modes changes significantly
as a function of temperature and reverts its hierarchy. Further-
more, we show that the two modes undergo hybridization as a
function of the interaction strengths. At interaction strengths
below the hybridization strength, the non-Bogoliubov mode
has a higher velocity than the Bogoliubov mode, whereas
for interaction strengths above the hybridization strengths the
hierarchy is reversed, which is consistent with the scenario
described in Ref. [31]. This provides insight into the collective
modes of Bose gases, which we put forth here and which we
propose to be tested experimentally.

ACKNOWLEDGMENTS

We thank Lennart Sobirey, Thomas Lompe, and Henning
Moritz for insightful discussions and providing us with the
experimental data. This work was supported by the Deutsche
Forschungsgemeinschaft (DFG) in the framework of SFB
925, Project Id. No. 170620586; the excellence cluster “Ad-
vanced Imaging of Matter,” EXC 2056, Project Id. No.
390715994; and Germany’s Excellence Strategy, EXC-2123
QuantumFrontiers, Project No. 390837967.

APPENDIX A: NUMERICAL DISCRETIZATON

In our classical-field simulation method, we discretize
space on a lattice of Nx × Ny sites and a discretization length
l , which introduces a short-range cutoff for the energy and the
momentum. We choose l to be smaller than or comparable to
the healing length ξ and the de Broglie wavelength, so that
all relevant momentum modes of the system are included in
the initial ensemble and the dynamics. As a key quantity, we
choose the critical velocity vc and study its dependence on the
discretization length of the numerical grid. We use the density
n = 1.2 μm−2, the interaction g̃ = 2.0, and the temperature
T/T0 = 0.2. We vary the discretization length ldis/l in the
range 0.7–1.3, where l = 0.5 μm is the discretization length
throughout the paper. For each ldis/l , we determine the heating
rate by moving a weak lattice potential, and then from the
sharp onset of dissipation below the Bogoliubov velocity vB,
we determine the critical velocity vc, as described in Sec. II A.
In Fig. 7, we show the determined values of vc as a function
of ldis/l . The value of the critical velocity agrees very well
for all ldis/l and does not show a sizable dependence on the
discretization length. This confirms that a sufficiently weak
dependence on the discretization length is given in our nu-
merical approach.

APPENDIX B: ANALYTIC HEATING RATE

We determine the heating rate perturbatively by consider-
ing a weak perturbation term. To second order, the heating rate
is given by [30]

d 〈Ĥ0(t )〉
dt

= − 1

h̄2

∫ t

0
dt1〈[Ĥs,I (t1),[Ĥs,I (t ), Ĥ0]]〉. (B1)

Ĥ0 is the unperturbed Hamiltonian. Ĥs,I is the perturbation
term in the interaction picture. In momentum space, the
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FIG. 7. Numerical discretizaton. Critical velocity vc as a function
of the discretization length ldis/l , for n = 1.2 μm−2, g̃ = 2.0, and
T/T0 = 0.2. l = 0.5 μm is the discretization length throughout the
paper and the horizontal dashed line denotes the corresponding value
of vc.

perturbation term is described as

Ĥs =
∑

k

Vk(t )ρ̂k, (B2)

where Vk(t ) is the Fourier transform of the potential V (r, t )
and ρ̂k = ∑

q a†
qak+q is the Fourier transform of the density

operator n̂(r). ak (a†
k) is the bosonic annihilation (creation)

operator. V (r, t ) is the lattice potential directed along the
x direction: V (x, t ) = V0 cos2[k0(x + vt )/2], where V0 is the
strength, v is the velocity, and k0 is the wave vector. We
Fourier transform V (x, t ) and obtain

Vk(t ) = V0

4
δky (δkx−k0 + δkx+k0 ) exp(−ikxvt ). (B3)

We transform Eq. (B2) to the interaction picture via Ĥs,I (t ) =
exp(iĤ0t )Ĥs(t ) exp(−iĤ0t ).

1. Bogoliubov heating rate

Here we derive the heating rate for a condensate at zero
temperature. We use the Bogoliubov approximation and ob-
tain the diagonalized Hamiltonian

H0 =
∑

k

h̄ωkb̂†
kb̂k, (B4)

where b̂k and b̂†
k are the Bogoliubov operators, and

h̄ωk =
√

εk (εk + 2mv2
B) is the Bogoliubov dispersion. εk =

h̄2k2/(2m) is the free-particle dispersion and vB is the Bo-
goliubov velocity. We expand ρ̂k around the condensate mode
as ρ̂k = √

N0(uk + vk )(b̂†
−k + b̂k ), where N0 is the number

of condensed atoms, and uk and vk are the Bogoliubov pa-
rameters, with (uk + vk )2 = εk/h̄ωk . This results in Hs(t ) =∑

k Vk(t )
√

N0(uk + vk )(b̂†
−k + b̂k ). For the interaction pic-

ture, we use b̂k → b̂k exp(−iωkt ) and b̂†
k → b̂†

k exp(iωkt ),
which yields

Hs,I (t ) =
∑

k

Vk(t )
√

N0(uk + vk )(b̂†
−keiωkt + b̂ke−iωkt ).

(B5)

023112-6



COLLECTIVE MODES AND SUPERFLUIDITY OF A … PHYSICAL REVIEW RESEARCH 3, 023112 (2021)

Using Eqs. (B4) and (B5), we solve the commutator in
Eq. (B1) and arrive at the heating rate [30]

dE

dt
= 2π

h̄

∑
k

ωk (uk + vk )2N0|Vk|2δ(ωk − vk). (B6)

Vk is the time-independent part of the lattice potential in
Eq. (B3). Using the expression of |Vk|2 and ωk (uk + vk )2 =
h̄k2/(2m), we obtain

dE

dt
= π

16

N0V 2
0

m
k2

0δ[ωk0,0 − vk0]. (B7)

The Dirac δ term in the heating rate gives an onset
of dissipation at the velocity v = ωk0,0/k0, where ωk0,0 =
k0

√
v2

0/4 + v2
B and v0 = h̄k0/m. In dimensionless form R ≡

h̄(dE/dt )/(N0V 2
0 ), we have

RB = π

16

h̄k0

m
δ
[√

v2
0/4 + v2

B − v
]
. (B8)

We extend this result to nonzero temperatures by including
the thermal damping of the phonon modes. We consider a
Landau-type damping �k = v�k, where v� is the damping
velocity. We replace the δ distribution by a Lorentzian dis-
tribution, i.e., πδ(x) = limε→0 ε/(x2 + ε2). This results in

RB = 1

16

v0v�(√
v2

0/4 + v2
B − v

)2 + v2
�

. (B9)

2. Quasicondensate heating rate

To derive the heating rate for a quasicondensate, we con-
sider a Hamiltonian of the form

H0 =
∑

k

Eka†
kak, (B10)

where Ek ≡ h̄ωk is the excitation spectrum. For the perturba-
tion term, we transform Eq. (B2) to the interaction picture by
using ak → exp(−iωkt )ak. This results in

Hs,I =
∑
kq

Vk(t )ei(ωq−ωk+q )t a†
qak+q. (B11)

We now use Eqs. (B10) and (B11) to calculate the commutator
[Hs,I (t ), H0], which gives

[Hs,I (t ), H0] =
∑
kq

(Ek+q − Eq)Vk(t )ei(ωq−ωk+q )t

× a†
qak+q. (B12)

Using Eqs. (B11) and (B12), we calculate the commutator
[Hs,I (t1), [Hs,I (t ), H0]] and obtain

[Hs,I (t1), [Hs,I (t ), H0]] = − 2
∑
kq

(Ek+q − Eq)|Vk|2a†
qaq

× cos[(vk + ωq − ωk+q)(t1 − t )].

(B13)

Integrating Eq. (B13) over time t1 yields the heating rate

dE

dt
= 2

h̄2

∑
kq

(Ek+q − Eq)|Vk|2〈a†
qaq〉

× sin[(vk + ωq − ωk+q)t]

(vk + ωq − ωk+q)
, (B14)

which at long times approaches

dE

dt
= 2π

h̄2

∑
kq

(Ek+q − Eq)nq|Vk|2δ(vk + ωq − ωk+q).

(B15)

This result relates the heating rate to the momentum dis-
tribution nk. We consider the phononic dispersion at long
wavelengths, i.e., Ek = h̄vB|k|. The momentum distribution
is given by

nk = n
πτ

2
rτ/4

0 |k|τ/4−2, (B16)

where n is the real-space density, r0 is the short-range cutoff
of the order of ξ , and τ is the algebraic scaling exponent. We
simplify Eq. (B15) and obtain

dE

dt
= NV 2

0

128h̄
(k0r0/2)τ/4τ ṽ(1 − ṽ2)τ/4−1I (φ), (B17)

with

I (φ) =
∫ 2π

0
dφ(1 + ṽ2 − 2ṽ cos φ)(ṽ − cos φ)−(1+τ/4).

(B18)

ṽ = v/vB is the scaled velocity. I (φ) can be solved, giving

I (φ) = π

2

[
3(ṽ − 1)1−x(ṽ + 1)2F1

(
− 1

2
, x, 2,− 2

ṽ − 1

)

− (ṽ − 1)−x(ṽ2+4ṽx + 4x−5)2F1

(
1

2
, x, 2,− 2

ṽ − 1

)

− (ṽ + 1)−x(ṽ2 − 4ṽx + 4x − 5)2F1

(
1

2
, x, 2,

2

ṽ+1

)

+ 3(ṽ + 1)−x(ṽ2 − 1)2F1

(
− 1

2
, x, 2,

2

ṽ + 1

)]
,

(B19)

where x = (1 + τ/4) and 2F1(a, b, c, d ) are the hypergeomet-
ric functions. We expand I (φ) as I (φ) = 4π ṽ + O(τ ). The
dimensionless heating rate R = h̄(dE/dt )/(NV 2

0 ) is

Rqc = π

32

τ ṽ2

1 − ṽ2
+ O(τ 2). (B20)

This low-temperature estimate scales linearly in τ , while it
vanishes for τ approaching zero. At this order, the dependence
of k0 and r0 drops out. For low velocity, the heating rate scales
quadratically in v as Rqc = πτ ṽ2/32. In Fig. 8(a), we show
the result of Eq. (B17) as a function of ṽ and τ for k0r0 = 2.
The dissipation is nonzero below the Bogoliubov velocity and
increases with increasing both ṽ and τ . This nonzero dissipa-
tion at low velocities is peculiar to 2D superfluids. In Fig. 8(b),
we compare the results of Eqs. (B17) and (B20), which show

023112-7



VIJAY PAL SINGH AND LUDWIG MATHEY PHYSICAL REVIEW RESEARCH 3, 023112 (2021)

0

0.5

1

15.00

τ

ṽ
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FIG. 8. Heating rate for a quasicondensate. (a) The estimate Rqc of Eq. (B17) as a function of the scaled velocity ṽ = v/vB and the algebraic
scaling exponent τ . The magnitude of the heating rate is displayed on a log scale. (b) The estimates of Eq. (B17) (continuous line), Eq. (B20)
(dots), and Rqc = πτ ṽ2/32 (dashed line) are plotted on a log-log scale, for τ = 0.1, 0.2, 0.4, and 0.8.

good agreement for all ṽ and all τ . The low-velocity sublinear
behavior is also captured well by the estimate Rqc = πτ ṽ2/32.

APPENDIX C: INFLUENCE OF TEMPERATURE AND
LATTICE STRENGTH ON THE CRITICAL VELOCITY

As we show in the main text, the critical velocity is smaller
for high temperatures. In this section, we analyze this thermal
reduction systematically by varying the temperature T/T0 in
the range 0.1–0.9, where T0 is the estimate of the critical tem-
perature. We simulate the heating rate R(v) for n = 1.2 μm−2,
g̃ = 1.6, and k0/kξ = 0.4. kξ = √

2/ξ is determined by the
healing length ξ . In Fig. 9(a), we show R(v) as a function
of T/T0 for the lattice strength V0/μ = 0.01. With increasing
temperature, the broadening of the heating rate increases and
the onset of rapid increase occurs at a lower velocity. At low
temperatures, the heating rate primarily shows one maximum
close to the Bogoliubov velocity vB = 7.3 mm/s. At high tem-
peratures, the heating rate shows two maxima corresponding
to the two sound modes. We fit the heating rate below vB to the
function f (v) = A0max[0, v2 − v2

c ], with A0 and vc as fitting
parameters. We show the determined values of vc in Fig. 9(a).
The critical velocity decreases linearly with the temperature.
We fit this temperature dependence of vc with a linear func-
tion to determine the critical velocity at zero temperature

vc(0) = 7.3 mm/s, which is in excellent agreement with the
Bogoliubov velocity vB. From the fit, we also extrapolate the
temperature T/T0 = 0.86, for which vc is zero. We denote this
temperature as the critical temperature. In Fig. 9(b), we show
R(v) as a function of the lattice strength V0/μ for T/T0 = 0.1.
μ is the mean-field energy. The lattice strength introduces an
additional broadening of the heating rate. This broadening is
higher for higher V0/μ. We determine the value of the critical
velocity vc, which is shown in Fig. 9(b). The critical velocity
decreases in a nonlinear fashion as a function of V0/μ.

APPENDIX D: SOUND PROPAGATION

To determine the sound velocity, we excite a density wave
following the method of Refs. [17,26]. We imprint a phase
difference on one-half of the system along x direction. This
sudden imprint of the phase results in an oscillation of the
phase difference between the two subsystems, �φ(t ), as
shown in Fig. 10(a). We fit �φ(t ) with a damped sinusoidal
function f (t ) = A0 exp(−�t ) sin(2π f + φ0) to determine the
amplitude A0, the damping rate �, the frequency f , and the
phase shift φ0. From the fit to the results in Fig. 10(a), we ob-
tain f = 35.8 Hz and �/(2π ) = 1.29 Hz. The sound velocity
is determined by vs = 2 f Lx, where Lx is the system length
in the x direction. This results in vs = 7.16 mm/s and the
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FIG. 9. Influence of temperature and lattice strength on the critical velocity. (a) Simulated heating rate R(v) as a function of T/T0. The
values of the critical velocity vc are shown as circles connected with a dashed line. The linear fit (red continuous line) is employed to determine
the critical temperature Tc/T0 = 0.86, for which vc is zero. (b) R(v) as a function of V0/μ for T/T0 = 0.1. μ is the mean-field energy. The
system parameters are n = 1.2 μm−2 and g̃ = 1.6.
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FIG. 10. Sound propagation. (a) Time evolution of the phase
difference between the two subsystems, �φ(t ), for n = 1.2 μm−2,
T/T0 = 0.1, and g̃ = 1.6. The dashed line is the fit with a damped
sinusoidal function; see text. (b) Spectrum of �φ(t ) shows a peak at
the sound frequency.

damping velocity v� = 0.26 mm/s, which are vs/vB = 0.98
and v�/vB = 0.03, respectively. The reduction of the sound
velocity is small for T/T0 = 0.1, as expected. In Fig. 10(b),
we show the spectrum of �φ(t ), which yields the peak at the
sound frequency and is the same as the one determined from
the time evolution in Fig. 10(a).

APPENDIX E: SUPERFLUID DENSITY

We determine the superfluid density by calculating the
current-current correlations in momentum space; see also
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FIG. 11. Superfluid density. Numerical superfluid fraction ns/n
as a function of the interaction strength g̃ for n = 1.2 μm−2 and
T/T0 = 0.1 (squares), 0.3 (diamonds), and 0.6 (circles).

Refs. [27,31]. The current density j(r) is defined as

j(r) = h̄

2im
[ψ∗(r)∇ψ (r) − ψ (r)∇ψ∗(r)]. (E1)

We choose the gradient along x/y directions and calculate the
Fourier transform of the current density ( jk )x/y in the x and y
directions. This allows us to determine 〈( j∗k )x( jk )y〉, which in
the limit of k → 0 are approximated by [35]

〈( j∗k )l ( jk )m〉 = kBT

m
A
(

ns
kl km

k2
+ nnδlm

)
. (E2)

ns and nn are the superfluid and the normal fluid densities,
respectively. A is the system area. By taking a cut along
the line kx = ky = k/

√
2 and by estimating the k = 0 value

using a linear fit, we determine the superfluid density based
on Eq. (E2). In Fig. 11, we show the interaction dependence
of the numerically determined superfluid density. While the
superfluid density does not show a qualitative dependence on
the interaction strength for low and intermediate temperatures,
it decreases with increasing interaction strength for high tem-
perature.
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